Kontakt a konzultačné hodiny
adresa: Katedra informatiky, FMFI UK, Mlynská dolina, 842 48 Bratislava
miestnosť: M-214
e-mail: stanek@dcs.fmph.uniba.sk
telefón: (+421 2) 60295 101
Konzultačné hodiny: dohodou
Výuka ZS 2023/24
Diplomový seminár (3) (Str 11:30-13:00 M-III)
Kryptológia 1 / Cryptology 1 (Str 16:30-18:00 M-I, Štv 14:00-15:30 M-I)
Lectures:
- When, How, and What - pdf, Introduction: Context and Basic Notions - pdf
- Cryptanalysis of Classical Ciphers - pdf
- Block Ciphers - pdf
- Block Ciphers 2 - pdf
- Hash Functions - pdf
- Message Authentication Codes - pdf (-)
- RSA - pdf
- Security of RSA - pdf
- Discrete Logarithm and Encryption Schemes - pdf
- Bezpečnosť asymetrického šifrovania (SK) - pdf
- Learning with Errors - pdf
- Passwords - pdf
- Signature Schemes - pdf
- Hash-based Signatures - pdf
- Cryptographic protocols - introduction - pdf
Homework assignments (students):
- Find the plaintext (English text) for given ciphertext. We use a transposition cipher on 10 x 10 grid (a torus)
that arranges plaintext characters in a spiral. A starting position, initial direction and spin (clockwise or
anti-clockwise) are part of the key. Final ciphertext is read from the grid left-right and top-down as usual.
An example of such grid is given below. Send your solution by e-mail with subject "Cryptology (1) - HW1".
It should contain (1) a brief description of solution, (2) a source code used in analysis, and (3) plaintext.
14 3 2 9 24 47 78 95 60 33 15 4 1 8 23 46 77 96 61 34 16 5 6 7 22 45 76 97 62 35 17 18 19 20 21 44 75 98 63 36 38 39 40 41 42 43 74 99 64 37 67 68 69 70 71 72 73 100 65 66 88 87 86 85 84 83 82 91 90 89 55 54 53 52 51 50 81 92 57 56 30 29 28 27 26 49 80 93 58 31 13 12 11 10 25 48 79 94 59 32Ciphertexts: ct.zip
Deadline: 29.10.2025 (midnight) - Primes for RSA were generated using the following code gen_rsa.py. Find the private exponent d.
Send your solution by e-mail with subject "Cryptology (1) - HW2". It should contain (1) a brief description of solution,
(2) a source code used in analysis, and (3) value d as an integer.
Public keys: pk.zip
Deadline: 19.11.2025 (midnight) - An innovative deterministic variant of Schnorr's scheme is proposed. It modifies the calculation of 's' value.
The implementation, using P-256 curve, of key generation and signing is provided hw3.py.
Your input data file contains a public key 'Q' and 29 triplets '(m, rx, s)'. Only one of the triplets is a correct
message and signature pair. Construct a verification algorithm, find the triplet, and show that this variant
is insecure by forging a signature for message "fakeXX".
Send your solution by e-mail with subject "Cryptology (1) - HW3". It should contain (1) a brief description of solution,
(2) a source code used, (3) identification of the valid triplet, and (4) forged signature for "fakeXX".
Data files: hw3-data.zip
Deadline: 5.12.2025 (midnight)