Privilege escalation, Pivoting and Persistence

Martin Stanek
2024

Table of Contents

Privilege escalation — Linux
Privilege escalation — Windows
Pivoting

Persistence

Privilege escalation in general

= obtaining access to privileged account
= root (Linux), Administrator, SYSTEM (Windows)
= SYSDBA (Oracle DB), sa (MS SQL)
= user in privileged groups (wheel, Administrators, Backup Operators)
= user with additional privileges (SeTakeOwnershipPrivilege)

= vulnerabilities in kernel, system utilities and programs
= vulnerabilities in 3rd party app

= configuration problems

= lack of timely patching and lax administration

= today: few examples for Linux and Windows

File permissions

SEE———= 1 root shadow 1489 Jan 28 05:42 shadow

= file permissions (owner/group/others model)
= sensitive information can be read
= configuration of important services/utilities can be changed
= examples:
= readable /etc/shadow — dictionary or brute-force attacks
= writable /etc/shadow or /etc/passwd — replace password or create new root user
= writable /etc/sudoers or something from @includedir, e.g. sudoers.d/*
= directory permissions
= add or replace a configuration file
= add a malicious library/program in the path

Linux Kernel — Dirty Pipe

CVE-2022-0847
= since version 5.8, fixed in 5.16.11, 5.15.25 and 5.10.102

= attacker can overwrite arbitrary (must have read permission) file on the system

= page caching problem, basic idea:
= files are read to page cache
= set PIPE_BUF_FLAG_CAN_MERGE flag for a pipe — writing data to the page cache
= splice() system call, moves data between two file descriptors
= splice data from read only file to pipe with the flag set
= modify data in the pipe — cached file data are overwritten
= easy exploitation, e.g. overwrite /etc/passwd, overwrite SUID binary

= Linux kernel privilege escalation auditing tool: LES (Linux Exploit Suggester)

System utility — sudo

= CVE-2021-3156 (Sudo Baron Samedit)
= affected versions: 1.8.2-1.8.31p2 and 1.9.0-1.9.5p1
= heap-based buffer overflow, almost 10 years in the source code
= any user can escalate to root
= another problem: CVE-2023-22809
= sudoedit allows a user with sudoedit privileges to edit arbitrary files
= user-specified editor may contain a “~-" argument that defeats a protection
mechanism (where “~="is used as a separator)
= affected versions: 1.8.0-1.9.12.p1 (see next slide)

= patching is important

sudoedit problem CVE-2023-22809

$ cat /etc/sudoers
user ALL=(ALL:ALL) sudoedit /etc/custom/service.conf

[...]
$ EDITOR='vim -- /etc/passwd' sudoedit /etc/custom/service.conf
sudoedit: --: editing files in a writable directory is not permitted

2 files to edit
sudoedit: /etc/custom/service.conf unchanged

$ tail -1 /etc/passwd
sudoedit::@:@:root:/root:/bin/bash

Source: Synacktiv, Sudoedit bypass in Sudo <= 1.9.12p1

https://www.synacktiv.com/sites/default/files/2023-01/sudo-CVE-2023-22809.pdf

Escalating privilege — sudo

= sudo — delegating authority to run commands as a privileged user (usually root)
= some utilities allow privilege escalation
= examples: vim, dd, zip, find etc.
= GTFOBins (gtfobins.github.io)
= collection of Unix binaries
= how to bypass local security restrictions in misconfigured systems
= SUID, sudo, read/write files, spawning an interactive shell

= NOPASSWD — executing some commands without knowing the password

https://gtfobins.github.io/

= environment variables and configuration
= LD_PRELOAD - preloading (malicious) library
= security feature: preload ignored if real UID is different from effective UID
= potentially vulnerable sudo option: env_keep+=LD_PRELOAD
= LD_LIBRARY_PATH — where to search for a library
= similar to the previous case
» /etc/1d.so.conf and configuration files in specified paths
= paths where libraries are searched for
= writable configuration or paths allow to inject malicious library

Sensitive information stored in readable way

= passwords, API keys and other data
= places:

= configuration files

= scripts (profile, scheduled, etc.)

= environment variables

= shell history

= logs

= backups

10

Vulnerable cron jobs

= cron jobs — scheduling tasks
= system-wide (/etc/crontab), and user specific crontabs
= run as root at 2am every Monday and Wednesday (crontab fragment):
SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin
0 2 x * 1,3 root /root/backup.sh > /root/backup-report.txt
= vulnerable, if the attacker can
= modify scheduled program/script directly
= abuse vulnerability of scheduled task
= inject script in the path before the original script
= similar functionality (cron alternative): timers in systemd
= similar problems/opportunities for privilege escalation

11

SUID, SGID

-rwsr-xr-x 1 root root 68248 Nov 11 03:28 passwd

= SUID — execute with the same permissions as the owner

= SGID - execute with the same permissions as the group

= GTFOBIns — again, exploiting common tools with SUID

= simple find can enumerate SUID binaries (2000 for SGID):
find / -type f -perm -4000 2>/dev/null

12

Capabilities

$ getcap /usr/bin/ping
/usr/bin/ping cap_net_raw=ep
= more granular approach to allow privileged operations

= examples of what can be achieved with a capability:
= cap_setuid — arbitrary manipulations of process UIDs
= cap_sys_ptrace — transfer data to or from the memory of arbitrary processes

= cap_dac_override — bypass file read, write, and execute permission checks

(permitted, effective)

= misconfiguration can open privilege escalation possibilities

13

Services

SERVICE_NAME: ekrn

TYPE : 20 WIN32_SHARE_PROCESS

START_TYPE 2 AUTO_START

BINARY_PATH_NAME : "C:\Program Files\ESET\ESET NOD32 Antivirus\ekrn.exe"
DISPLAY_NAME : ESET Service

DEPENDENCIES

SERVICE_START_NAME : LocalSystem

= background processes (some are part of the OS, some are part of installed apps)
= manage: sc command, GUI, PowerShell

14

Services — paths, permissions

= Unquoted Service Paths
= binary path name without quotes, e.g.
BINARY_PATH_NAME : C:\Program Files (x86)\Some App\progam.exe
= evaluated as C:\Program.exe, C:\Program Files (x86)\Some.exe,
C:\Program Files (x86)\Some App\progam.exe
= ability to create/overwrite any of those files leads to an exploit
= (re)start the service or wait for a reboot
= permission to change service configuration, i.e. BINARY_PATH_NAME
= replace with malicious executable

= permission to replace service binary with own executable

15

Startup and Autoruns

= programs that run when QS is starting or after user logs in to Windows
= system-wide or user-specific
= placed in defined folders or in the registry
= GUIs (e.g. Startup Apps, Task Manager) consolidate various sources of startup

applications
= vulnerable, if user has permission to insert additional application, e.g. to the

system-wide Startup folder
= wait for administrator to log in (running with administrator’s privileges)

= Autoruns from Sysinternals (deep dive into auto-starting components)

16

Passwords at rest

= stored as LM hash (weak) and NT hash
= LM hashes disabled by default since Windows Vista and Windows Server 2008
= unsalted, hash values are encrypted
= Active Directory: stored in NTDS.DIT file
= domain members, workstations:
= local users in the Security Account Manager (SAM database); file/Registry
= supplementalCredentials — additional forms of the cleartext password, e.g.
= Primary:Kerberos — hashes of the cleartext password for the Kerberos protocol

= access to SAM database is restricted, otherwise:
= CVE-2021-36934 (HiveNightmare)
= overly permissive Access Control Lists (ACLs), read any Registry hives
= SAM, SYSTEM, SECURITY - access to password hashes

= brute-force or dictionary attacks, pass-the-hash

17

Other sources of passwords (hashes)

= memory dumps

= cached domain credentials
= elevated privileges required
= tools: Mimikatz, Impacket

= Net-NTLMvl, Net-NTLMv2 authentication protocols
= relaying authentication requests (SMB Signing disabled)

= tools: Responder, Inveigh

18

DLL Hijacking

= tricking an application to load a malicious DLL (and execute a code in the DLL)
= methods — examples:
= missing DLL for a process (that can be substituted)
= modifying PATH variable
= replace a legitimate DLL with a modified version
= abusing DLL search order
= assumption: process that runs with elevated privileges and DLL hijacking possible
» default search order for Windows (unpackaged apps, SafeDIlISearchMode enabled):
= 12 steps
> 1. DLL redirection (<your app name>.local file)
> 7. the folder from which the application loaded
> 11. the current folder
> 12. PATH environment

19

Scheduled tasks

= scripts and programs running when triggered
= defined in the registry
= HKLM\Software\Microsoft\Windows NT\CurrentVersion\
Schedule\Taskcache\Tasks
= GUI: Task Scheduler, CLI: schtasks, PowerShell
= modern versions of Windows require local admin to create a scheduled task

= weak file permissions for scheduled task
= replace or overwrite

20

= enumerate various configuration problems in the system
= large number of potential problems
= tedious and error-prone to check manually
= faster result, but you should know what a how is tested
= false sense of security (if nothing is detected)
= unwanted impact of some tests
= tools
= Linux: LinEnum, LinPEAS (PEAS-ng), etc.
= Windows: PrivescCheck, WinPEAS (PEAS-ng), etc.

21

= using access to one system to perform reconnaissance/enumeration and exploitation
of other systems
= separate networks, firewall rules
= might bypass network security controls
= might avoid triggering network security monitoring controls
= criteria for tools selection
= privileged or unprivileged account on pivot machine
= pivot communication for a single port or multiple ports
= native tools or additional software required (on pivot machine)
= configuration complexity

22

SSH - port forwarding

= local port forwarding (“jump” server)
= ssh -L 8080:internal_server:80 user@ssh_server
= local port (8080) forwarded to internal server (port 80) through an SSH tunnel
= e.g. accessing internal web from the outside
= remote port forwarding
= ssh -R 2222:internal_server:22 user@my_server
= my_server port (2222) forwarded to internal server (22) through SSH tunnel
= e.g. creating a backdoor into the internal network
= server must enable AllowTcpForwarding
= Note that disabling TCP forwarding does not improve security unless users are also
denied shell access, as they can always install their own forwarders.

= dynamic port forwarding (client as a SOCKS proxy server)

23

SSH - local port forwarding

Short, form \ "local” address “remote” address sshd address
ssh -L 8080 :server:80 user@bastion
ssh -L localhost:8080:server:80 user@bastion

S local address remote address
Long Form tells seh chent tells sshel server
where to start where to forward
listering trabfic to
Client Bastion Server
local’
SSH Tunnel
vl e
client server
listens on 7
localhosti 8080 T

’ Has public & prvate

nterfaces
curl localhost:8080 lemmmmmmmmmmssssssssesoses

Source: lvan Velichko, A Visual Guide to SSH Tunnels: Local and Remote Port Forwarding

24

https://iximiuz.com/en/posts/ssh-tunnels/

SSH - remote port forwarding

"remote’ address local” address sshd address

ssh -R 0.0.0.0:8080:server:80 user@gateway

remote address local address
tells sshd server tells ssh client
where to start where to forward
listening traffic to
Client Gateway
................................. ,
E
1
i SSH Tunnel
SSH ' | SssH | curl
client | server gateway:8080
H
H
H
H
1
|

echo "GatewayPorts yes" >> sshd_config

Source: lvan Velichko, A Visual Guide to SSH Tunnels: Local and Remote Port Forwarding

23

https://iximiuz.com/en/posts/ssh-tunnels/

SOCKS, Ncat, socat

= SOCKS
= proxy for any TCP (and UDP since SOCKS5) traffic
= client must support SOCKS protocol to use the proxy (e.g. web browsers)
= proxychains for tools that do not support SOCKS natively
= Ncat (part of nmap project)
= advanced alternative to netcat (nc)
= connections through SOCKS and HTTP proxies
= redirect or proxy TCP/UDP traffic to other ports or hosts, etc.

socat (data relay)
= creates two bidirectional data streams and connects them
= streams: files, pipes, sockets (TCP, UDP), etc.
= port forwarding, relaying, etc.

= many other tools exist (chisel, ...)

26

Persistence — general

= retaining access after compromise
= exploit hard to reproduce (e.g. depends on successful phishing)
= easier access than the original exploit
= avoiding detection
= security testing perspective
= testing detection and reaction capabilities of the target

27

Persistence — Linux

= create a new user
= possibly in sudo/wheel group

= ssh authorized keys
= adding a new public key to authorized_keys (or create file if not present)

= cron jobs or systemd timers with a backdoor

= modify files that are executed at login/logoff or starting a shell
= systemwide or user-specific
= /etc/profile, .bashrc, .profile, etc.

= modify files that are executed when system starts (boots)
= set SUID for an installed program or for a prepared script
= create or modify a systemd service

28

Persistence — Windows

= add user to a special group
= Administrators, Backup Operators, etc.

= assign a special privilege (for example SeBackupPrivilege)

= modifying executable files, shortcuts, file associations

= creating or modifying a service

= plant a backdoor in task scheduler

= StartUp folder, Run/RunOnce registry keys, Winlogon registry keys, etc.

= login screen — replace helper tools with other programs (e.g. cmd.exe)
= sticky keys (sethc.exe), Ease of Access options (utilman.exe)

29

Exercises

1. TryHackMe: Linux PrivEsc, Windows PrivEsc

Don't just copy&paste the instructions, think about the root cause.
What went wrong and how you would test for each particular privilege escalation

vector?
What privilege escalation “opportunity” you think is the most prevalent (one for each

0S)? Justify your answer.

30

Resources

1. HackTricks
2. 1. Velichko, A Visual Guide to SSH Tunnels: Local and Remote Port Forwarding,
2023

31

https://book.hacktricks.xyz
https://iximiuz.com/en/posts/ssh-tunnels/

	Privilege escalation – Linux
	Privilege escalation – Windows
	Pivoting
	Persistence

