
Introduction: Context and Basic Notions
Cryptology (1)

Martin Stanek

2025
KI FMFI UK Bratislava

Introduction

– Cryptology = cryptography & cryptanalysis
▫ cryptography: constructing algorithms, schemes, and protocols
▫ cryptanalysis: attacking these construction, analyzing their security

– security in the presence of an adversary
▫ security means … (requirements in particular context/application)
▫ adversary means … (capabilities of an attacker)

– some requirements and related cryptographic constructions
▫ confidentiality ↦ encryption
▫ integrity/authenticity ↦ hash functions, MAC, digital signatures
▫ authentication ↦ protocols
▫ non-repudiation ↦ digital signatures
▫ other requirements: privacy, anonymity, etc.

1 / 27

Security requirements/goals

– confidentiality – Preserving authorized restrictions on information access and
disclosure, including means for protecting personal privacy and proprietary
information.

– integrity – Guarding against improper information modification or destruction, and
includes ensuring information non-repudiation and authenticity.

– authenticity – The property of being genuine and being able to be verified and
trusted; confidence in the validity of a transmission, message, or message originator.

– non-repudiation – Protection against an individual who falsely denies having
performed a certain action and provides the capability to determine whether an
individual took a certain action, such as creating information, sending a message,
approving information, or receiving a message.

source: NIST SP 800-53 Rev. 5, 2020

2 / 27

Relation to Cybersecurity

– cryptography ⊂ cybersecurity ⊂ information security

– important part of cybersecurity, provides essential tools and techniques

– cryptography is not an answer to all security needs:
▫ availability (redundancy),
▫ secure software (software engineering, security testing), etc.

– cryptography is often useless without other security measures
▫ key management, access control, risk assessment, personnel security, information

classification, etc.

This course: cryptographic constructions and their security

3 / 27

Encryption

– traditional cryptographic technique

– intuitively, we know what encryption is
▫ transforming data so that an unauthorized subject is unable to read it
▫ probably using some sort of secret key

– encryption provides confidentiality (prevents data compromise) for
▫ communicated data – when an attacker eavesdrops

SSL/TLS, WPA2/WPA3, S/MIME, …
▫ stored data – when an attacker gets access to storage media

BitLocker, VeraCrypt, FileVault, …

– informally: encryption + decryption ∼ encryption scheme ∼ cipher

4 / 27

Encryption – basic terminology

– original data ∼ plaintext

– data after encryption ∼ ciphertext

– finite sets of all plaintexts 𝑃, ciphertexts 𝐶, and keys 𝐾

– symmetric (secret key) encryption scheme:
▫ key generation; usually a random bit string in modern ciphers
▫ encryption: 𝐸 : 𝐾 × 𝑃 → 𝐶 (might be probabilistic)
▫ decryption: 𝐷 : 𝐾 × 𝐶 → 𝑃

– sometimes more complicated by using various modes of encryption, randomization, …

5 / 27

Encryption – what we want

– correctness: ∀𝑘 ∈ 𝐾 ∀𝑝 ∈ 𝑃 : 𝐷𝑘(𝐸𝑘(𝑝)) = 𝑝
▫ probabilistic encryption: ∀𝑘 ∈ 𝐾 ∀𝑝 ∈ 𝑃 ∀𝑐 ← 𝐸𝑘(𝑝) : 𝐷𝑘(𝑐) = 𝑝

– efficiency: encryption and decryption should as fast as possible
▫ reasonable speed depends on application, computational resources, etc.

– security – difficult to define precisely
▫ usually “resistance to all known attacks”

– identity is correct and efficient but completely insecure

– security vs. efficiency trade off

6 / 27

Example 1 – Shift cipher (Caesar cipher)

– alphabet 𝐴 = {A, B, …, Z}

– natural mapping between characters and numbers: A ↔ 0, B ↔ 1, …, Z ↔ 25

– plaintexts and ciphertexts: 𝑃 = 𝐶 = 𝐴

– keys: 𝐾 = ℤ26

– encryption: 𝐸𝑘(𝑝) = (𝑝 + 𝑘) mod 26

– decryption: 𝐷𝑘(𝑐) = (𝑐 − 𝑘) mod 26

– correctness follows from using inverse operation in decryption; (ℤ26, +) is a group:

𝐷𝑘(𝐸𝑘(𝑝)) = ((𝑝 + 𝑘) − 𝑘) mod 26 = 𝑝, for any 𝑝, 𝑘 ∈ ℤ26

7 / 27

Example 1 – Shift cipher (Caesar cipher) – remarks

– plaintext longer than single character?
▫ using cipher in a mode, e.g., encrypt each individual character separately

– Julius Caesar used 𝑘 = −3 in his private correspondence
▫ regardless of cipher security, fixed key is a security risk

Security

– none in any reasonable context
▫ reasonable: encrypting natural text of nontrivial length

– the main problem: small key space, only 26 keys
▫ all keys can be tested (brute force attack)
▫ How easy is to recognize a plaintext?

Brute force attack
⇒ |K| must be large !

8 / 27

Example 2 – Simple substitution cipher

– alphabet 𝐴 = {A, B, …, Z}

– plaintexts and ciphertexts: 𝑃 = 𝐶 = 𝐴

– keys: 𝐾 = {𝜋 | 𝜋 is a permutation on 𝐴}

– encryption: 𝐸𝜋(𝑝) = 𝜋(𝑝)

– decryption: 𝐷𝜋(𝑐) = 𝜋−1(𝑐)

– trivially correct

– long plaintext – encrypt each character
individually

– large number of keys: |𝐾| = 26! ≈ 288.38

▫ brute force does not work

– easily broken by frequency and/or
pattern analysis
▫ see the next lecture
▫ E.A. Poe: The Gold-Bug (1843)

– various variants/improvements exist
▫ multiple (polyalphabetic)

substitutions
▫ frequent letters to multiple targets, …

homophonic substitutions

9 / 27

Example 3 – Permutation cipher

– 𝑃 = 𝐶 = 𝐴𝑛, 𝐾 = {𝜋 | 𝜋 is a permutation on ℤ𝑛}

– encryption: 𝐸𝜋(𝑝0𝑝1…𝑝𝑛−1) = 𝑝𝜋(0)𝑝𝜋(1)…𝑝𝜋(𝑛−1)

– decryption: 𝐷𝜋(𝑐0𝑐1…𝑐𝑛−1) = 𝑐𝜋−1(0)𝑐𝜋−1(1)…𝑐𝜋−1(𝑛−1)

– trivially correct

– long plaintext can be divided into separate blocks of length 𝑛

– key space size: |𝐾| = 𝑛!

– cryptanalysis
▫ frequency analysis of digrams/trigrams for various key lengths and parts of 𝜋

– various variants of permutation cipher exist

10 / 27

Example 4 – Fleissner/Cardano Grille

– 2𝑛 × 2𝑛 square with 𝑛2 perforations
▫ exactly one position chosen for perforation from each quadruple of rotational-

symmetric positions
▫ key: positions of perforations, i.e., the key space size is 4𝑛2

– encryption: using perforations to write the plaintext
▫ rotating the square by 90° when needed, fill unused space with suitable text

– decryption: rotate the square and read the text

– long plaintext divided into blocks of length 4𝑛2

11 / 27

Example – Fleissner/Cardano Grille

12 / 27

Security of an encryption scheme

– robust security definition is a nontrivial task

– What is the goal of an attacker?
▫ Find the key … what about identity?
▫ Find the plaintext from the ciphertext … what about half of the plaintext?
▫ Find at least one bit/character of the plaintext from the ciphertext … function?
▫ Compute any nontrivial function of the plaintext?

– What capabilities are available to the attacker?
▫ attack scenarios … see later in this lecture

13 / 27

Perfect secrecy

– plaintext, ciphertext, and key as random variables (𝑷, 𝑪, 𝑲)
▫ 𝑷: (a priori) probability distribution of plaintexts

• e.g. tomorrow is more probable than mjuuwerq
• we don’t need to know the distribution of 𝑷

▫ 𝑲 depends on key generation algorithm (often uniform)
▫ 𝑪 depends on encryption algorithm, 𝑷, and 𝑲

(Shannon) An encryption scheme is perfectly secure, if for any 𝑝 ∈ 𝑃 and 𝑐 ∈ 𝐶 such
that Pr[𝑪 = 𝑐] > 0: Pr[𝑷 = 𝑝 | 𝑪 = 𝑐] = Pr[𝑷 = 𝑝].

– knowing a ciphertext does not change the probability distribution of the plaintexts

– an eavesdropper learns nothing from the ciphertext

14 / 27

Perfect secrecy (2)

– observation: |𝐾| ≥ |𝑃| for any perfectly secure encryption scheme

– information-theoretic security (arbitrary strong attacker)

– limitations:
▫ single ciphertext attack
▫ no additional information about the plaintext

– an equivalent definition (encryptions of plaintexts are indistinguishable):

An encryption scheme is perfectly secure, if for all 𝑝0, 𝑝1 ∈ 𝑃 and any 𝑐 ∈ 𝐶 such that
Pr[𝑪 = 𝑐] > 0: Pr[𝑪 = 𝑐 | 𝑷 = 𝑝0] = Pr[𝑪 = 𝑐 | 𝑷 = 𝑝1].

15 / 27

Vernam cipher (one-time pad)

– 𝑃 = 𝐶 = 𝐾 = {0, 1}𝑛, for 𝑛 ∈ ℕ

– encryption: 𝐸𝑘(𝑝) = 𝑝 ⊕ 𝑘, where ⊕ denotes a bitwise XOR

– decryption: 𝐷𝑘(𝑐) = 𝑐 ⊕ 𝑘

– correctness: 𝐷𝑘(𝐸𝑘(𝑝)) = (𝑝 ⊕ 𝑘) ⊕ 𝑘 = 𝑝 ⊕ (𝑘 ⊕ 𝑘) = 𝑝

– perfectly secure if
1. keys are random with uniform distribution
2. keys are not reused (new key is generated for each plaintext)

– intuition: given a ciphertext 𝑐, can some 𝑝′ be the corresponding plaintext?
▫ sure, if 𝑘′ = 𝑐 ⊕ 𝑝′ is used as the key

16 / 27

Perfect secrecy of one-time pad

– for any 𝑝 ∈ 𝑃 and 𝑐 ∈ 𝐶 (where Pr[𝑪 = 𝑐] > 0):

Pr[𝑷 = 𝑝 | 𝑪 = 𝑐] =
Pr[𝑷 = 𝑝 ∩ 𝑪 = 𝑐]

Pr[𝑪 = 𝑐] =
Pr[𝑪 = 𝑐 | 𝑷 = 𝑝] ⋅ Pr[𝑷 = 𝑝]

Pr[𝑪 = 𝑐]

=
Pr[𝑲 = (𝑝 ⊕ 𝑐)] ⋅ Pr[𝑷 = 𝑝]

∑𝑘∈𝐾 Pr[𝑲 = 𝑘] ⋅ Pr[𝑪 = 𝑐 | 𝑲 = 𝑘]

=
2−𝑛 ⋅ Pr[𝑷 = 𝑝]

2−𝑛 ⋅ ∑𝑘∈𝐾 Pr[𝑪 = 𝑐 | 𝑲 = 𝑘]

=
Pr[𝑷 = 𝑝]

∑𝑘∈𝐾 Pr[𝑷 = (𝑐 ⊕ 𝑘)] =
Pr[𝑷 = 𝑝]

∑𝑝′∈𝑃 Pr[𝑷 = 𝑝′] = Pr[𝑷 = 𝑝]

17 / 27

Vernam cipher (one-time pad) – remarks

– keys with nonuniform distribution:
▫ change the probability distribution of plaintexts (after observing the ciphertext)

– reusing keys:
▫ let 𝑐1 = 𝑝1 ⊕ 𝑘, 𝑐2 = 𝑝2 ⊕ 𝑘
▫ then 𝑐1 ⊕ 𝑐2 = 𝑝1 ⊕ 𝑝2 (XOR of two plaintexts)
▫ can be solved for common texts (languages) … two time pad problem

– disadvantage: |key| = |plaintext|
▫ consider key distribution in advance (e.g. physical storage media)
▫ shorter key ⇒ sacrifice of perfect secrecy

18 / 27

Modern symmetric ciphers

– designed for efficient hardware and software implementations
▫ operate on bit vectors

– cannot have the perfect secrecy property, since |key| < |plaintext|

– block ciphers: 𝐸, 𝐷 : {0, 1}𝑛 × {0, 1}𝑘 → {0, 1}𝑛

▫ encryption and decryption algorithms are defined over bit vectors of fixed length
▫ AES (block size: 128 bits, key length: 128/192/256 bits)

– stream ciphers:
▫ key and an initialization vector (nonce)
▫ finite state deterministic generator producing (pseudo-random) keystream
▫ ChaCha20 (key length: 256 bits, nonce length: 96 bits)
▫ block ciphers in specific modes of operation

19 / 27

Asymmetric (public key) encryption schemes

– each user generates his/her own instance

– based on intractable mathematical problems
▫ factoring, discrete logarithm, learning with errors, etc.

– three algorithms (Gen, Enc, Dec):
▫ Gen: public key pk, secret (private) key sk
▫ encryption: Encpk(𝑚) = 𝑐
▫ decryption: Decsk(𝑐) = 𝑚

– public key for encryption (everyone can encrypt)

– secret (private) key for decryption, only the owner can decrypt

– correctness: ∀(pk, sk) ← Gen() ∀𝑚 : Decsk(Encpk(𝑚)) = 𝑚

20 / 27

Kerckhoffs’s principle

Auguste Kerckhoffs: “A cryptosystem should be secure even if everything about the
system, except the key, is public knowledge.” (19th century)

– the security should not rely on secret algorithms

– replacing (HW or SW) implementation is costly/impossible

– a recent failure: TETRA:BURST
▫ ETSI TETRA (European Telecommunications Standards Institute)
▫ Terrestrial Trunked Radio public standard, some secret cryptography (20+ years)
▫ widely used by police, military, and intelligence
▫ reverse engineered, several vulnerabilities found (Midnight Blue, 2023)

– protecting the design of a cryptosystem is sometimes used
▫ but again, the security should not depend on it

21 / 27

Attack scenarios – ciphers

– COA – Ciphertext only attack
▫ attacker gets some ciphertexts
▫ eavesdropping, theft, …

– KPA – Known plaintext attack
▫ attacker knows some plaintext and

ciphertext pairs
▫ headers in files, data structures,

opening/closing sentences, …

– CPA – Chosen plaintext attack
▫ attacker can (adaptively) choose

plaintexts and obtain their encryption
▫ always possible with asymmetric

schemes

– CCA – Chosen ciphertext attack
▫ attacker can (adaptively) choose

ciphertexts and obtain their
decryption

– We know neither the environment nor the operational conditions of an encryption
scheme ⇒ use the strongest possible scheme (with respect to an attack scenario).

22 / 27

Example – Attack scenarios vs. Simple substitution cipher

– COA: frequency/patterns analysis

– KPA: reveals values in 𝜋 for all symbols appearing in the plaintext

– CPA: chosen plaintext “ABCDE...XYZ”

– CCA: similar to CPA (the attack cannot be improved further)

– similarly for shift cipher, and other simple ciphers

23 / 27

Key length (symmetric schemes)

– generic attack: exhaustive search of the key space (brute-force)

– large key space: necessary but not sufficient requirement for security

– example of a brute-force attack (what key space is covered):

time key length (bits)
1 minute 34.4
1 hour 40.3
1 day 44.9
1 month 49.8
1 year 53.4

▫ ≈ 380 mil. AES-128 operations/s (Intel
Core Ultra 5 125U, HW accelerated AES)

▫ /usr/bin/openssl speed -multi 8
-bytes 16 -evp aes-128-ecb

▫ better CPUs, GPUs, ASICs, and more
parallelism improve results (but not
much), 2128 is infeasible

24 / 27

Modern cryptology

– emphasis on formal security definitions and proofs

– precise formulation of assumptions
▫ attacker’s capabilities
▫ hardness of computational problems
▫ properties of underlying primitives

25 / 27

How cryptography fails

– common real-world security problems related to cryptography:
▫ bad randomness source for generation of keys
▫ insufficient checking of public-key certificates
▫ incorrect implementation of cryptographic algorithms/protocols
▫ fixed passwords of service accounts or passwords derived from public information
▫ sending sensitive data in plaintext (no encryption)
▫ using weak/obsolete cryptographic algorithms

– examples can be found in NIST’s National Vulnerability Database (NVD)

26 / 27

Exercises

1. (Double Encryption) Apply two consecutive encryptions with independent keys: 𝑐 =
𝐸𝑘2(𝐸𝑘1(𝑝)). If used for the Simple substitution cipher, does this make the resulting
cipher weaker, stronger, or equally strong as the original cipher?

2. Show that Shift cipher used for a single character plaintext is perfectly secure.

3. Show that |𝐾| ≥ |𝑃| for any perfectly secure encryption scheme.

4. We test for an unknown password. Let’s assume it is in some set of leaked passwords.
Compare the expected number of tests needed when
a) the passwords are uniformly distributed,
b) the distribution of passwords is “skewed”.

For realistic data, use any leaked database with counts, such as phpbb-withcount.txt.

27 / 27

	Introduction
	Security requirements/goals
	Relation to Cybersecurity
	Encryption
	Encryption – basic terminology
	Encryption – what we want
	Example 1 – Shift cipher (Caesar cipher)
	Example 1 – Shift cipher (Caesar cipher) – remarks
	Example 2 – Simple substitution cipher
	Example 3 – Permutation cipher
	Example 4 – Fleissner/Cardano Grille
	Example – Fleissner/Cardano Grille
	Security of an encryption scheme
	Perfect secrecy
	Perfect secrecy (2)
	Vernam cipher (one-time pad)
	Perfect secrecy of one-time pad
	Vernam cipher (one-time pad) – remarks
	Modern symmetric ciphers
	Asymmetric (public key) encryption schemes
	Kerckhoffs's principle
	Attack scenarios – ciphers
	Example – Attack scenarios vs. Simple substitution cipher
	Key length (symmetric schemes)
	Modern cryptology
	How cryptography fails
	Exercises

