
Discrete Logarithm and Encryption Schemes
Cryptology (1)

Martin Stanek

2025
KI FMFI UK Bratislava

Discrete logarithm problem

– Given a finite group (𝐺, ⋅) and elements 𝑔, 𝑦 ∈ 𝐺. Compute 𝑥 ∈ ℤ such that 𝑔𝑥 = 𝑦.

– usually cyclic (sub)groups with generator 𝑔

– DLOG is easy/hard depending on the group (𝐺, ⋅)

– Easy:
▫ (ℤ𝑛, +) – DLOG by solving congruence 𝑔𝑥 ≡ 𝑦 (mod 𝑛)

– Hard:
▫ (ℤ∗

𝑝, ⋅) for prime 𝑝; usually with 𝑔 generating a subgroup of large prime order 𝑞
▫ Elliptic curve groups (various curve types over finite fields)

1 / 26

Example of DLOG in (ℤ∗
11, ⋅)

– 𝑔 = 5: log5 9 = 4; log5 7 does not exist

𝑥 0 1 2 3 4 5 6 7 8 9 10
5𝑥 mod 11 1 5 3 4 9 1 5 3 4 9 1

– 𝑔 = 7: log7 2 = 3; log7 10 = 5

𝑥 0 1 2 3 4 5 6 7 8 9 10
7𝑥 mod 11 1 7 5 2 3 10 4 6 9 8 1

2 / 26

Solving “hard” instances of DLOG

– (ℤ∗
𝑝, ⋅)

▫ Specific algorithms, for example when 𝑝 − 1 lacks large prime factor
▫ General algorithm: Number Field Sieve for DLOG – complexity as GNFS for

factorization (⇒ equal key length)

– Elliptic curves
▫ specific algorithms, e.g., for supersingular curves over small field
▫ elliptic curves should be chosen carefully

– Generic algorithms
▫ work for any cyclic group
▫ the best algorithms for some groups, such as some elliptic curve groups
▫ complexity 𝑂(𝑛1/2), for 𝑛 = |𝐺|
▫ algorithms: baby-step/giant-step, Pollard’s 𝜌, Pohlig-Hellman

3 / 26

Equivalent key lengths

– NIST Recommendations (SP 800-57 part 1 rev. 5) (2020)

– other estimates are compared at Keylength.com

symmetric modular (subgroup) elliptic curves
80 1024 (160) 160

112 2048 (224) 224
128 3072 (256) 256
192 7680 (384) 384
256 15360 (512) 512

4 / 26

https://www.keylength.com

Selection of the base is irrelevant for DLOG

– 𝑔, ℎ – generators of 𝐺, |𝐺| = 𝑛

– 𝑦 – input

– if logℎ(⋅) can be computed efficiently, then log𝑔(⋅) can be computed:

1. compute 𝑎, 𝑏: ℎ𝑎 = 𝑔, ℎ𝑏 = 𝑦

2. 𝑔𝑏𝑎−1 = (ℎ𝑎)𝑏𝑎−1
= ℎ𝑏 = 𝑦, where the inverse is computed mod 𝑛

– since 𝑔, ℎ are generators, the inverse 𝑎−1 mod 𝑛 must exist

– For some constructions, e.g. ElGamal digital signature scheme, it is important to choose
the generator carefully (there are strong and weak ones)!

5 / 26

How to choose a generator of (ℤ∗
𝑝, ⋅)

– generator of (ℤ∗
𝑝, ⋅)

▫ assume 𝑝 = 2𝑞 + 1 for a prime number 𝑞 (𝑝 is called a “safe” prime)
▫ |ℤ∗

𝑝| = 𝑝 − 1, thus any element has order in {1, 2, 𝑞, 𝑝 − 1}
▫ there are 𝜑(𝑝 − 1) = 𝜑(2)𝜑(𝑞) = 𝑞 − 1 generators
▫ the probability of a random element being a generator is 𝑞−1

𝑝−1
= 𝑞−1

2𝑞
≈ 50%

▫ testing: 𝑔 ∉ {1, −1} is a generator ⇔ 𝑔𝑞 mod 𝑝 ≠ 1

– generator of a subgroup
▫ assume a prime 𝑞 ∣ (𝑝 − 1)
▫ choose random ℎ and compute 𝑔 = ℎ(𝑝−1)/𝑞 mod 𝑝; if 𝑔 = 1 choose again
▫ trivially 𝑔𝑞 ≡ 1 (mod 𝑝) (FLT), so we have ord(𝑔) ∣ 𝑞
▫ since ord(𝑔) > 1, it follows ord(𝑔) = 𝑞
▫ useful for working in smaller subgroup (shorter exponents are used)

6 / 26

Security of the last bit(s) of DLOG in (ℤ∗
𝑝, ⋅)

– let 𝑔 be a generator of (ℤ∗
𝑝, ⋅)

– we can write 𝑝 = 2𝑠 ⋅ 𝑡 + 1 for 𝑠 ≥ 1 and some odd 𝑡

– input: 𝑦 ∈ ℤ∗
𝑝

– let 𝑥 = log𝑔 𝑦 (𝑔𝑥 mod 𝑝 = 𝑦)

– we use the binary representation of 𝑥 = (𝑥𝑙…𝑥1𝑥0)2 = 2𝑙𝑥𝑙 + … + 2𝑥1 + 𝑥0

– compute:

𝑦
𝑝−1

2 ≡ 𝑔
𝑥(𝑝−1)

2 ≡ 𝑔𝑥0
𝑝−1

2 ≡ {1 if 𝑥0 = 0
−1 if 𝑥0 = 1 (mod 𝑝)

– 𝑥0 can be found

7 / 26

… cont.

– we can continue for 𝑠 bits

– let us assume that 𝑥0, …, 𝑥𝑖−1 are known (𝑖 < 𝑠)

– compute:

(𝑦 ⋅ 𝑔−(𝑥0+…+2𝑖−1𝑥𝑖−1))
𝑝−1
2𝑖+1

≡ 𝑔(2𝑖𝑥𝑖+…+2𝑙𝑥𝑙) 𝑝−1
2𝑖+1

≡ 𝑔𝑥𝑖
𝑝−1

2 ≡ {1 if 𝑥𝑖 = 0
−1 if 𝑥𝑖 = 1 (mod 𝑝)

– cannot be extended for more than 𝑠 bits

– we can limit the “damage” to a single bit by choosing a safe prime

8 / 26

Encryption schemes

ElGamal encryption scheme

– ElGamal (1985)
▫ originally, a default algorithm in GPG (still an option in GPG)

– Initialization:
1. choose a large random prime 𝑝, and a generator 𝑔 of (ℤ∗

𝑝, ⋅)
2. choose a random 𝑥 ∈ {1, …, 𝑝 − 2}
3. 𝑦 = 𝑔𝑥 mod 𝑝

▫ public key: 𝑦, 𝑝, 𝑔 (the values 𝑝, 𝑔 can be shared among group of users)
▫ private key: 𝑥

10 / 26

ElGamal – encryption and decryption

– Encryption (plaintext 𝑚 ∈ ℤ∗
𝑝):

(𝑟, 𝑠) = (𝑔𝑘 mod 𝑝, 𝑦𝑘 ⋅ 𝑚 mod 𝑝), for random 𝑘 ∈ ℤ𝑝−1

– Decryption (ciphertext (𝑟, 𝑠), computation mod 𝑝):

𝑠 ⋅ 𝑟−𝑥 = 𝑦𝑘 ⋅ 𝑚 ⋅ 𝑟−𝑥 = 𝑔𝑥𝑘 ⋅ 𝑔−𝑥𝑘 ⋅ 𝑚 = 𝑚

– encryption: two exponentiations; decryption: single exponentiation
▫ 𝑟 = 𝑔𝑘 and 𝑦𝑘 can be precomputed

– randomized encryption: 1 plaintext maps to ≈ 𝑝 ciphertexts

– security of the private key: DLOG problem

– knowledge of 𝑘 allows to decrypt without 𝑥: 𝑠 ⋅ 𝑦−𝑘 = 𝑚
▫ computing 𝑘 from 𝑟: DLOG problem

11 / 26

ElGamal - remarks

– Reusing 𝑘: 𝑚1 ↦ (𝑟, 𝑠1), 𝑚2 ↦ (𝑟, 𝑠2), we can compute 𝑠1
𝑠2

= 𝑚1
𝑚2

– Homomorphic property for multiplication:

▫ encryptions of two plaintexts 𝑚1, 𝑚2:
𝑚1 ↦ (𝑟1, 𝑠1) = (𝑔𝑘1 , 𝑦𝑘1 ⋅ 𝑚1), 𝑚2 ↦ (𝑟2, 𝑠2) = (𝑔𝑘2 , 𝑦𝑘2 ⋅ 𝑚2)

▫ multiplying the ciphertexts: (𝑟1 ⋅ 𝑟2, 𝑠1 ⋅ 𝑠2) = (𝑔𝑘1+𝑘2 , 𝑦𝑘1+𝑘2 ⋅ (𝑚1 ⋅ 𝑚2))

– Simple malleability: (𝑟, 𝑠) ↦ (𝑟, 𝑠 ⋅ 𝑚′) changes the plaintext from 𝑚 to 𝑚 ⋅ 𝑚′

– Blinding (CCA):
▫ access to a CCA oracle
▫ How to decrypt (𝑟, 𝑠) if the oracle won’t decrypt this message?
▫ use (𝑟𝑔𝑐 , 𝑠𝑦𝑐 ⋅ 𝑚′) for a random value 𝑐 and 𝑚′

▫ after decryption we get a message 𝑚 ⋅ 𝑚′, so 𝑚 can be recovered easily

12 / 26

ElGamal – security and CDH

– Computational Diffie-Hellman problem (CDH):
▫ compute 𝑔𝑎𝑏 given 𝑔, 𝑔𝑎, 𝑔𝑏 for random generator 𝑔, and random 𝑎, 𝑏
▫ DLOG ⇒ CDH (opposite direction is open in general)

– ElGamal decryption without the private key ⇔ CDH
[⇐] use CDH to compute 𝑔𝑥𝑘 from 𝑟 = 𝑔𝑘 and 𝑦 = 𝑔𝑥; then the plaintext can be
computed: 𝑚 = 𝑠 ⋅ (𝑔𝑥𝑘)−1

[⇒] input: 𝑔𝑎, 𝑔𝑏

▫ set 𝑦 = (𝑔𝑎)−1, 𝑟 = 𝑔𝑏 and 𝑠 = 𝑔𝑐 for a random 𝑐
▫ use the decryption oracle for 𝑦 and (𝑟, 𝑠) to get the value 𝑚 = 𝑠 ⋅ 𝑟𝑎 = 𝑔𝑐+𝑎𝑏

▫ finally, divide 𝑚 by 𝑠: 𝑚 ⋅ 𝑠−1 = 𝑔𝑐+𝑎𝑏 ⋅ 𝑔−𝑐 = 𝑔𝑎𝑏

13 / 26

What is a quadratic residue?

– 𝑎 ∈ ℤ∗
𝑛 is called a quadratic residue modulo 𝑛 if there exists an integer 𝑏 such that

𝑏2 ≡ 𝑎 (mod 𝑛)

– otherwise 𝑎 is called a quadratic nonresidue modulo 𝑛

– QR𝑛 – the set of all quadratic residues modulo 𝑛

– QNR𝑛 – the set of all quadratic nonresidues modulo 𝑛

– trivially QR𝑛 ∪ QNR𝑛 = ℤ∗
𝑛

– it is easy to test quadratic residuity modulo a prime number:

Euler’s criterion. Let 𝑝 > 2 be a prime and 𝑎 ∈ ℤ∗
𝑝. Then 𝑎 ∈ QR𝑝 ⇔ 𝑎

𝑝−1
2 ≡ 1 (mod 𝑝).

14 / 26

Semantic “insecurity” of ElGamal

– we can test the parity of 𝑘 (it is the last bit of discrete logarithm of 𝑟)

– another view: for a generator 𝑔 we have 𝑟 ∈ QR𝑝 ⇔ 𝑘 is even

– for even 𝑘: 𝑠 ∈ QR𝑝 ⇔ 𝑚 ∈ QR𝑝

– for odd 𝑘:
▫ if 𝑦 ∈ QR𝑝: 𝑠 ∈ QR𝑝 ⇔ 𝑚 ∈ QR𝑝
▫ if 𝑦 ∈ QNR𝑝: 𝑠 ∈ QR𝑝 ⇔ 𝑚 ∈ QNR𝑝

– we can compute “something” about 𝑚 from the ciphertext and 𝑦

15 / 26

How to achieve semantic security

– use a subgroup QR𝑝 for a safe prime 𝑝 = 2𝑞 + 1 (or a general cyclic group of some
prime order) and assume the hardness of a DDH problem in this group

– DDH (Decisional Diffie-Hellman) problem: efficiently distinguish triplets (𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏)
and (𝑔𝑎, 𝑔𝑏, 𝑔𝑐) where 𝑐 is random

– there are groups where CDH seems to be hard and DDH is easy
▫ (ℤ∗

𝑝, ⋅), elliptic-curve groups with pairing

16 / 26

Some variants of ElGamal scheme

– ElGamal in a general cyclic group:
▫ |𝐺| = 𝑞 (for prime 𝑞) with generator 𝑔
▫ private key: 𝑥 ∈ ℤ∗

𝑞; public key 𝑦 = 𝑔𝑥

▫ encryption of 𝑚 ∈ 𝐺: (𝑟, 𝑠) = (𝑔𝑘 , 𝑚 ⋅ 𝑦𝑘) for random 𝑘 ∈ ℤ∗
𝑞

▫ decryption of (𝑟, 𝑠): 𝑠 ⋅ 𝑟−𝑥 = 𝑚 ⋅ 𝑦𝑘 ⋅ 𝑔−𝑘𝑥 = 𝑚

– ElGamal with a hash function:
▫ overcoming the group encoding problem (𝑚 ∈ 𝐺)
▫ encryption 𝑚 ∈ {0, 1}𝑙:

(𝑟, 𝑠) = (𝑔𝑘 , 𝑚 ⊕ 𝐻(𝑦𝑘)) for random 𝑘 ∈ ℤ∗
𝑞 and suitable 𝐻 and 𝑙

▫ security depends on CDH and properties of 𝐻
▫ still malleable

17 / 26

Elliptic curves

Elliptic curves – introduction

– we start with elliptic curves over real numbers

– Weierstrass equation (𝑎, 𝑏 ∈ ℝ): 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

– we are interested in non-singular curves, i.e. 4𝑎3 + 27𝑏2 ≠ 0

– non-singular: 𝑥3 + 𝑎𝑥 + 𝑏 has no repeated roots

– points: 𝐸 = {(𝑥, 𝑦) | 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏} ∪ {0},
where 0 is an identity element (point at infinity)

– group (𝐸, +) uses a commutative “addition”:
▫ notation: 𝑃 = (𝑥𝑃, 𝑦𝑃), 𝑃 = (𝑥𝑃, −𝑦𝑃)
▫ 𝑃 + 𝑃 = 0
▫ 𝑃 + 𝑃 = 𝑅 = (𝑥𝑅 , 𝑦𝑅) such that the line 𝑃𝑅 is a tangent in 𝑃
▫ 𝑃 + 𝑄 = 𝑅 = (𝑥𝑅 , 𝑦𝑅) such that 𝑅, 𝑃 and 𝑄 are collinear

19 / 26

Elliptic curves – addition formulas

– 𝑃 = (𝑥𝑃, 𝑦𝑃), 𝑄 = (𝑥𝑄, 𝑦𝑄)

– case 1: 𝑃 + (−𝑃) = (𝑥𝑃, 𝑦𝑃) + (𝑥𝑃, −𝑦𝑃) = 0

– case 2 and case 3: 𝑃 + 𝑄 = (𝑥𝑅 , 𝑦𝑅)

𝑥𝑅 = 𝜆2 − 𝑥𝑃 − 𝑥𝑄

𝑦𝑅 = 𝜆(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃

𝜆 = {
(3𝑥2

𝑃 + 𝑎)(2𝑦𝑃)−1 𝑃 = 𝑄
(𝑦𝑄 − 𝑦𝑃)(𝑥𝑄 − 𝑥𝑃)−1 𝑥𝑃 ≠ 𝑥𝑄

20 / 26

Elliptic curves over finite field

– GF(𝑝) = (ℤ𝑝, +, ⋅), for prime 𝑝 > 3
▫ other finite fields can be used, e.g. GF(2𝑛), with different forms, conditions and

addition formulas

– 𝐸 = {(𝑥, 𝑦) | 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 mod 𝑝} ∪ {0},
for 𝑎, 𝑏 ∈ ℤ𝑝 satisfying 4𝑎3 + 27𝑏2 ≢ 0 (mod 𝑝)

– addition of points still “works” (mod 𝑝), i.e. (𝐸, +) is an abelian group

– no geometric interpretation anymore

– Hasse’s theorem: ‖𝐸| − 𝑝 − 1| ≤ 2√𝑝
▫ counting the exact number of points: Schoof-Elkies-Atkin algorithm with 𝑂(log4 𝑝)

operations in ℤ𝑝

– remark: a point 𝑃 = (𝑥𝑃, 𝑦𝑃) can be uniquely represented by 𝑥𝑃 and the sign of 𝑦𝑃

21 / 26

Real world examples: NIST P-256 curve

– prime: 𝑝 = 2256 − 2224 + 2192 + 296 − 1

– the curve:

𝑦2 = 𝑥3 − 3𝑥 +
41058363725152142129326129780047268409
114441015993725554835256314039467401291

– number of points (prime):

11579208921035624876269744694940757352999
6955224135760342422259061068512044369

– critique: Failures in NIST’s ECC standards (Bernstein, Lange, 2016)

22 / 26

Real world examples: Curve25519

– prime: 𝑝 = 2255 − 19

– the curve: 𝑦2 = 𝑥3 + 486662𝑥2 + 𝑥

– number of points 8 ⋅ 𝑝1 for a prime

𝑝1 = 2252 + 27742317777372353535851937790883648493

– Montgomery form
▫ different addition formulas, it can be translated into Weierstrass form

– used (along other curves) in various applications (OpenSSH, Signal, Threema, etc.)

– equivalent curve Ed25519 standardized for a signature scheme
▫ FIPS 186-5, see also NIST SP 800-186

23 / 26

DLOG in elliptic curve groups

– (𝐸, +) – elliptic curve group

– point 𝑃 ∈ 𝐸

– 𝑘𝑃 = 𝑃 + 𝑃 + … + 𝑃⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘

, for an integer 𝑘 ≥ 0

– DLOG: given a point 𝑘𝑃, compute 𝑘

– CDH: given 𝑎𝑃 and 𝑏𝑃, compute (𝑎𝑏)𝑃

24 / 26

EC version of ElGamal scheme

– (𝐸, +) – elliptic curve group

– 𝐺 ∈ 𝐸 – generator of some subgroup of 𝐸, ord(𝐺) = 𝑞 (prime)

– private key: random 𝑥 ∈ ℤ𝑞

– public key: 𝑌 = 𝑥𝐺

– Encryption of 𝑀 ∈ 𝐸: (𝑅, 𝑆) = (𝑘𝐺, 𝑘𝑌 + 𝑀) for random 𝑘 ∈ ℤ𝑞

– Decryption of (𝑅, 𝑆) ∈ 𝐸 × 𝐸:

𝑆 − 𝑥𝑅 = (𝑘𝑌 + 𝑀) − 𝑥𝑅 = (𝑘𝑥)𝐺 + 𝑀 − (𝑘𝑥)𝐺 = 𝑀

– group encoding

25 / 26

Exercises

1. Consider group (𝑃𝑛, ∘), where 𝑃𝑛 is the set of permutations on ℤ𝑛, and ∘ is a composition
operator. How hard is DLOG problem for this group?

2. Prove the Euler’s criterion.
Let 𝑝 > 2 be a prime and 𝑎 ∈ ℤ∗

𝑝. Then 𝑎 ∈ QR𝑝 ⇔ 𝑎
𝑝−1

2 ≡ 1 (mod 𝑝).

3. Let (𝐸, +) be an elliptic curve group of prime order 𝑝. Let 𝐺, 𝐹 be generators with
unknown log𝐺 𝐹. Show that ℎ : ℤ𝑝 × ℤ𝑝 → 𝐸 defined as ℎ(𝑎, 𝑏) = 𝑎𝐺 + 𝑏𝐹 is collision
resistant.

26 / 26

	Discrete logarithm problem
	Example of DLOG in (ℤ∗11, ⋅)
	Solving "hard" instances of DLOG
	Equivalent key lengths
	Selection of the base is irrelevant for DLOG
	How to choose a generator of (ℤ∗p, ⋅)
	Security of the last bit(s) of DLOG in (ℤ∗p, ⋅)
	… cont.
	Encryption schemes
	ElGamal encryption scheme
	ElGamal – encryption and decryption
	ElGamal - remarks
	ElGamal – security and CDH
	What is a quadratic residue?
	Semantic "insecurity" of ElGamal
	How to achieve semantic security
	Some variants of ElGamal scheme

	Elliptic curves
	Elliptic curves – introduction
	Elliptic curves – addition formulas
	Elliptic curves over finite field
	Real world examples: NIST P-256 curve
	Real world examples: Curve25519
	DLOG in elliptic curve groups
	EC version of ElGamal scheme
	Exercises

