

Discrete Logarithm and Encryption Schemes

Cryptology (1)

Martin Stanek

2025

KI FMFI UK Bratislava

Discrete logarithm problem

- Given a finite group (G, \cdot) and elements $g, y \in G$. Compute $x \in \mathbb{Z}$ such that $g^x = y$.
- usually cyclic (sub)groups with generator g
- DLOG is easy/hard depending on the group (G, \cdot)
- Easy:
 - $(\mathbb{Z}_n, +)$ – DLOG by solving congruence $gx \equiv y \pmod{n}$
- Hard:
 - (\mathbb{Z}_p^*, \cdot) for prime p ; usually with g generating a subgroup of large prime order q
 - Elliptic curve groups (various curve types over finite fields)

Example of DLOG in $(\mathbb{Z}_{11}^*, \cdot)$

- $g = 5$: $\log_5 9 = 4$; $\log_5 7$ does not exist

x	0	1	2	3	4	5	6	7	8	9	10
$5^x \bmod 11$	1	5	3	4	9	1	5	3	4	9	1

- $g = 7$: $\log_7 2 = 3$; $\log_7 10 = 5$

x	0	1	2	3	4	5	6	7	8	9	10
$7^x \bmod 11$	1	7	5	2	3	10	4	6	9	8	1

Solving “hard” instances of DLOG

- (\mathbb{Z}_p^*, \cdot)
 - Specific algorithms, for example when $p - 1$ lacks large prime factor
 - General algorithm: Number Field Sieve for DLOG – complexity as GNFS for factorization (\Rightarrow equal key length)
- Elliptic curves
 - specific algorithms, e.g., for supersingular curves over small field
 - elliptic curves should be chosen carefully
- Generic algorithms
 - work for any cyclic group
 - the best algorithms for some groups, such as some elliptic curve groups
 - complexity $O(n^{1/2})$, for $n = |G|$
 - algorithms: baby-step/giant-step, Pollard’s ρ , Pohlig-Hellman

Equivalent key lengths

- NIST Recommendations (SP 800-57 part 1 rev. 5) (2020)
- other estimates are compared at [Keylength.com](https://keylength.com)

symmetric	modular (subgroup)	elliptic curves
80	1024 (160)	160
112	2048 (224)	224
128	3072 (256)	256
192	7680 (384)	384
256	15360 (512)	512

Selection of the base is irrelevant for DLOG

- g, h - generators of G , $|G| = n$
- y - input
- if $\log_h(\cdot)$ can be computed efficiently, then $\log_g(\cdot)$ can be computed:
 1. compute a, b : $h^a = g, h^b = y$
 2. $g^{ba^{-1}} = (h^a)^{ba^{-1}} = h^b = y$, where the inverse is computed mod n
- since g, h are generators, the inverse a^{-1} mod n must exist
- For some constructions, e.g. ElGamal digital signature scheme, it is important to choose the generator carefully (there are strong and weak ones)!

How to choose a generator of (\mathbb{Z}_p^*, \cdot)

- generator of (\mathbb{Z}_p^*, \cdot)
 - assume $p = 2q + 1$ for a prime number q (p is called a “safe” prime)
 - $|\mathbb{Z}_p^*| = p - 1$, thus any element has order in $\{1, 2, q, p - 1\}$
 - there are $\varphi(p - 1) = \varphi(2)\varphi(q) = q - 1$ generators
 - the probability of a random element being a generator is $\frac{q-1}{p-1} = \frac{q-1}{2q} \approx 50\%$
 - testing: $g \notin \{1, -1\}$ is a generator $\Leftrightarrow g^q \bmod p \neq 1$
- generator of a subgroup
 - assume a prime $q \mid (p - 1)$
 - choose random h and compute $g = h^{(p-1)/q} \bmod p$; if $g = 1$ choose again
 - trivially $g^q \equiv 1 \pmod{p}$ (FLT), so we have $\text{ord}(g) \mid q$
 - since $\text{ord}(g) > 1$, it follows $\text{ord}(g) = q$
 - useful for working in smaller subgroup (shorter exponents are used)

Security of the last bit(s) of DLOG in (\mathbb{Z}_p^*, \cdot)

- let g be a generator of (\mathbb{Z}_p^*, \cdot)
- we can write $p = 2^s \cdot t + 1$ for $s \geq 1$ and some odd t
- input: $y \in \mathbb{Z}_p^*$
- let $x = \log_g y$ ($g^x \bmod p = y$)
- we use the binary representation of $x = (x_l \dots x_1 x_0)_2 = 2^l x_l + \dots + 2x_1 + x_0$
- compute:

$$y^{\frac{p-1}{2}} \equiv g^{\frac{x(p-1)}{2}} \equiv g^{x_0 \frac{p-1}{2}} \equiv \begin{cases} 1 & \text{if } x_0 = 0 \\ -1 & \text{if } x_0 = 1 \end{cases} \pmod{p}$$

- x_0 can be found

... cont.

- we can continue for s bits
- let us assume that x_0, \dots, x_{i-1} are known ($i < s$)
- compute:

$$\begin{aligned} \left(y \cdot g^{-\left(x_0 + \dots + 2^{i-1}x_{i-1}\right)} \right)^{\frac{p-1}{2^{i+1}}} &\equiv g^{\left(2^i x_i + \dots + 2^l x_l\right) \frac{p-1}{2^{i+1}}} \\ &\equiv g^{x_i \frac{p-1}{2}} \equiv \begin{cases} 1 & \text{if } x_i = 0 \\ -1 & \text{if } x_i = 1 \end{cases} \pmod{p} \end{aligned}$$

- cannot be extended for more than s bits
- we can limit the “damage” to a single bit by choosing a safe prime

Encryption schemes

ElGamal encryption scheme

- ElGamal (1985)
 - originally, a default algorithm in GPG (still an option in GPG)
- Initialization:
 1. choose a large random prime p , and a generator g of (\mathbb{Z}_p^*, \cdot)
 2. choose a random $x \in \{1, \dots, p - 2\}$
 3. $y = g^x \bmod p$
 - public key: y, p, g (the values p, g can be shared among group of users)
 - private key: x

ElGamal – encryption and decryption

- Encryption (plaintext $m \in \mathbb{Z}_p^*$):

$$(r, s) = (g^k \bmod p, y^k \cdot m \bmod p), \quad \text{for random } k \in \mathbb{Z}_{p-1}$$

- Decryption (ciphertext (r, s) , computation mod p):

$$s \cdot r^{-x} = y^k \cdot m \cdot r^{-x} = g^{xk} \cdot g^{-xk} \cdot m = m$$

- encryption: two exponentiations; decryption: single exponentiation
 - $r = g^k$ and y^k can be precomputed
- randomized encryption: 1 plaintext maps to $\approx p$ ciphertexts
- security of the private key: DLOG problem
- knowledge of k allows to decrypt without x : $s \cdot y^{-k} = m$
 - computing k from r : DLOG problem

- Reusing k : $m_1 \mapsto (r, s_1)$, $m_2 \mapsto (r, s_2)$, we can compute $\frac{s_1}{s_2} = \frac{m_1}{m_2}$
- Homomorphic property for multiplication:
 - encryptions of two plaintexts m_1, m_2 :
 $m_1 \mapsto (r_1, s_1) = (g^{k_1}, y^{k_1} \cdot m_1)$, $m_2 \mapsto (r_2, s_2) = (g^{k_2}, y^{k_2} \cdot m_2)$
 - multiplying the ciphertexts: $(r_1 \cdot r_2, s_1 \cdot s_2) = (g^{k_1+k_2}, y^{k_1+k_2} \cdot (m_1 \cdot m_2))$
- Simple malleability: $(r, s) \mapsto (r, s \cdot m')$ changes the plaintext from m to $m \cdot m'$
- Blinding (CCA):
 - access to a CCA oracle
 - How to decrypt (r, s) if the oracle won't decrypt this message?
 - use $(rg^c, sy^c \cdot m')$ for a random value c and m'
 - after decryption we get a message $m \cdot m'$, so m can be recovered easily

- Computational Diffie-Hellman problem (CDH):
 - compute g^{ab} given g, g^a, g^b for random generator g , and random a, b
 - DLOG \Rightarrow CDH (opposite direction is open in general)
- ElGamal decryption without the private key \Leftrightarrow CDH
 - [\Leftarrow] use CDH to compute g^{xk} from $r = g^k$ and $y = g^x$; then the plaintext can be computed: $m = s \cdot (g^{xk})^{-1}$
 - [\Rightarrow] input: g^a, g^b
 - set $y = (g^a)^{-1}, r = g^b$ and $s = g^c$ for a random c
 - use the decryption oracle for y and (r, s) to get the value $m = s \cdot r^a = g^{c+ab}$
 - finally, divide m by s : $m \cdot s^{-1} = g^{c+ab} \cdot g^{-c} = g^{ab}$

What is a quadratic residue?

- $a \in \mathbb{Z}_n^*$ is called a *quadratic residue* modulo n if there exists an integer b such that $b^2 \equiv a \pmod{n}$
- otherwise a is called a quadratic nonresidue modulo n
- QR_n – the set of all quadratic residues modulo n
- QNR_n – the set of all quadratic nonresidues modulo n
- trivially $\text{QR}_n \cup \text{QNR}_n = \mathbb{Z}_n^*$
- it is easy to test quadratic residuity modulo a prime number:

Euler's criterion. Let $p > 2$ be a prime and $a \in \mathbb{Z}_p^*$. Then $a \in \text{QR}_p \Leftrightarrow a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$.

Semantic “insecurity” of ElGamal

- we can test the parity of k (it is the last bit of discrete logarithm of r)
- another view: for a generator g we have $r \in \text{QR}_p \Leftrightarrow k$ is even
- for even k : $s \in \text{QR}_p \Leftrightarrow m \in \text{QR}_p$
- for odd k :
 - if $y \in \text{QR}_p$: $s \in \text{QR}_p \Leftrightarrow m \in \text{QR}_p$
 - if $y \in \text{QNR}_p$: $s \in \text{QR}_p \Leftrightarrow m \in \text{QNR}_p$
- we can compute “something” about m from the ciphertext and y

How to achieve semantic security

- use a subgroup QR_p for a safe prime $p = 2q + 1$ (or a general cyclic group of some prime order) **and** assume the hardness of a DDH problem in this group
- DDH (Decisional Diffie-Hellman) problem: efficiently distinguish triplets (g^a, g^b, g^{ab}) and (g^a, g^b, g^c) where c is random
- there are groups where CDH seems to be hard and DDH is easy
 - (\mathbb{Z}_p^*, \cdot) , elliptic-curve groups with pairing

Some variants of ElGamal scheme

- ElGamal in a general cyclic group:
 - $|G| = q$ (for prime q) with generator g
 - private key: $x \in \mathbb{Z}_q^*$; public key $y = g^x$
 - encryption of $m \in G$: $(r, s) = (g^k, m \cdot y^k)$ for random $k \in \mathbb{Z}_q^*$
 - decryption of (r, s) : $s \cdot r^{-x} = m \cdot y^k \cdot g^{-kx} = m$
- ElGamal with a hash function:
 - overcoming the group encoding problem ($m \in G$)
 - encryption $m \in \{0, 1\}^l$:
 $(r, s) = (g^k, m \oplus H(y^k))$ for random $k \in \mathbb{Z}_q^*$ and suitable H and l
 - security depends on CDH and properties of H
 - still malleable

Elliptic curves

Elliptic curves – introduction

- we start with elliptic curves over real numbers
- Weierstrass equation ($a, b \in \mathbb{R}$): $y^2 = x^3 + ax + b$
- we are interested in non-singular curves, i.e. $4a^3 + 27b^2 \neq 0$
- non-singular: $x^3 + ax + b$ has no repeated roots
- points: $E = \{(x, y) \mid y^2 = x^3 + ax + b\} \cup \{0\}$,
where 0 is an identity element (point at infinity)
- group $(E, +)$ uses a commutative “addition”:
 - notation: $P = (x_P, y_P)$, $\bar{P} = (x_P, -y_P)$
 - $P + \bar{P} = 0$
 - $P + P = R = (x_R, y_R)$ such that the line $P\bar{R}$ is a tangent in P
 - $P + Q = R = (x_R, y_R)$ such that \bar{R} , P and Q are collinear

Elliptic curves – addition formulas

- $P = (x_P, y_P), Q = (x_Q, y_Q)$
- case 1: $P + (-P) = (x_P, y_P) + (x_P, -y_P) = 0$
- case 2 and case 3: $P + Q = (x_R, y_R)$

$$x_R = \lambda^2 - x_P - x_Q$$

$$y_R = \lambda(x_P - x_R) - y_P$$

$$\lambda = \begin{cases} (3x_P^2 + a)(2y_P)^{-1} & P = Q \\ (y_Q - y_P)(x_Q - x_P)^{-1} & x_P \neq x_Q \end{cases}$$

Elliptic curves over finite field

- $\text{GF}(p) = (\mathbb{Z}_p, +, \cdot)$, for prime $p > 3$
 - other finite fields can be used, e.g. $\text{GF}(2^n)$, with different forms, conditions and addition formulas
- $E = \{(x, y) \mid y^2 = x^3 + ax + b \pmod{p}\} \cup \{0\}$,
for $a, b \in \mathbb{Z}_p$ satisfying $4a^3 + 27b^2 \not\equiv 0 \pmod{p}$
- addition of points still “works” (\pmod{p}) , i.e. $(E, +)$ is an abelian group
- no geometric interpretation anymore
- Hasse’s theorem: $| |E| - p - 1 | \leq 2\sqrt{p}$
 - counting the exact number of points: Schoof-Elkies-Atkin algorithm with $O(\log^4 p)$ operations in \mathbb{Z}_p
- remark: a point $P = (x_P, y_P)$ can be uniquely represented by x_P and the sign of y_P

Real world examples: NIST P-256 curve

- prime: $p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$

- the curve:

$$y^2 = x^3 - 3x +$$

41058363725152142129326129780047268409

11444101599372554835256314039467401291

- number of points (prime):

11579208921035624876269744694940757352999

6955224135760342422259061068512044369

- critique: Failures in NIST's ECC standards (Bernstein, Lange, 2016)

Real world examples: Curve25519

- prime: $p = 2^{255} - 19$
- the curve: $y^2 = x^3 + 486662x^2 + x$
- number of points $8 \cdot p_1$ for a prime

$$p_1 = 2^{252} + 27742317777372353535851937790883648493$$

- Montgomery form
 - different addition formulas, it can be translated into Weierstrass form
- used (along other curves) in various applications (OpenSSH, Signal, Threema, etc.)
- *equivalent* curve Ed25519 standardized for a signature scheme
 - FIPS 186-5, see also NIST SP 800-186

DLOG in elliptic curve groups

- $(E, +)$ – elliptic curve group
- point $P \in E$
- $kP = \underbrace{P + P + \dots + P}_k$, for an integer $k \geq 0$
- DLOG: given a point kP , compute k
- CDH: given aP and bP , compute $(ab)P$

EC version of ElGamal scheme

- $(E, +)$ – elliptic curve group
- $G \in E$ – generator of some subgroup of E , $\text{ord}(G) = q$ (prime)
- private key: random $x \in \mathbb{Z}_q$
- public key: $Y = xG$
- Encryption of $M \in E$: $(R, S) = (kG, kY + M)$ for random $k \in \mathbb{Z}_q$
- Decryption of $(R, S) \in E \times E$:

$$S - xR = (kY + M) - xR = (kx)G + M - (kx)G = M$$

- group encoding

Exercises

1. Consider group (P_n, \circ) , where P_n is the set of permutations on \mathbb{Z}_n , and \circ is a composition operator. How hard is DLOG problem for this group?
2. Prove the Euler's criterion.

Let $p > 2$ be a prime and $a \in \mathbb{Z}_p^*$. Then $a \in \text{QR}_p \Leftrightarrow a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$.

3. Let $(E, +)$ be an elliptic curve group of prime order p . Let G, F be generators with unknown $\log_G F$. Show that $h : \mathbb{Z}_p \times \mathbb{Z}_p \rightarrow E$ defined as $h(a, b) = aG + bF$ is collision resistant.