
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Localization and mapping of interior and shared augmented

reality

Bachelor thesis

2019

Matej Sládek

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Localization and mapping of interior and shared augmented

reality

Bachelor thesis

Študijný program: Informatika

Študijný odbor: Informatika

Školiace pracovisko: Katedra aplikovanej informatiky

Školiteľ: Mgr. Vladimír Boža, PhD.

2019

Matej Sládek

Abstrakt

Za pomoci najmodernejších, voľne dostupných open-source SLAM a SfM technológií, sme

vytvorili plne funkčný systém na zdieľanú rozšírenú realitu v interiéri pre viacerých hráčov.

Udržiavame si lokácie všetkých užívateľov a obsah nimi vytvorený v globálnej mape na serveri a

zdieľame ho so všetkými klientmi v reálnom čase. Toto tvorí základ pre každú reálnu aplikáciu

využívajúcu rozšírenú realitu. Tiež hodnotíme odozvu a presnosť a identifikujeme hlavné

problémy tohto systému a navrhujeme miesta na zlepšenie. Takisto poskytujeme 3D vizualizér,

ktorý umožňuje zobrazovať globálnu mapu, pozície užívateľov v reálnom čase a obsah

vytvorený užívateľmi.

Kľúčové slová: rozšírená realita, lokalizácia, mapovanie, SLAM, SfM, 3D

Abstract

Using state-of-the-art free and open-sourced SLAM and SfM we build fully functional

multiplayer shared augmented reality indoor experience. We keep track of all user locations and

user-generated content in one global map on the server shared with clients in real-time. This lays

the foundation for any real application of shared augmented reality. Also we evaluate latency and

accuracy and identify main bottlenecks and directions for improvements of such a system

together with providing the number of debug tools like 3D visualizer of the global map detected

features and real-time position of users and the content.

Keywords : augmented reality, localization, mapping, SLAM, SfM, 3D

TABLE OF CONTENTS

INTRODUCTION 1
Objectives 1
Applications 1
Problems 1
Contribution 2
Organization 2

BACKGROUND 3
Sensors 3
Loop Closure 4
SLAM on the mobile phone 4
SfM on the server 5
Feature maps 5

END-TO-END SOLUTION 7
A general overview of the solution 7
Underlying core technologies 7

SHARING OF POSES AND CONTENT 9
Translation 9
Scaling 9
Rotation 10
Pose representation 10
The transformation between server and client map 10
Content sharing 10

BUILDING MAP 12
Image Listing 12
Feature Extracting 12
Feature Matching 13
SfM Algorithm 14

SOFTWARE DESIGN AND IMPLEMENTATION 16
Server 16
Client 18
Web visualizer 18

EVALUATION AND METRICS 20
Metrics 20
Results 20

CONCLUSION 22
Future work 22

Literature 24

CHAPTER 1

INTRODUCTION

Objectives
In this bachelor thesis, we create an Android app which is able to provide shared

augmented reality experience, that means it can localize our device in an environment with the

precision of a few centimeters, render augmented reality(AR) objects in app view and be able to

add objects to the environment and share them with other users. Then we investigate what the

biggest issues and problems are and we analyze them.

Applications

The use of this system is in AR applications. In the game industry, there are already

multiple mobile games which you can play in your environment and this would permit to make

these games multiplayer. Ikea developed the application[5] to decorate your room with Ikea

furniture, so you can run the application and see how would your room look like and then buy

their stuff, this project would allow to save progress and then load it and share it with other users.

AR Mole is a mobile game which shows moles on the screen as they would be in the real world

and they disappear as you hit them[7]. There are multiple other areas like interactive museums,

virtual boards, and others.

Problems

Localization and mapping is an essential problem for multiple applications. Localization

is useful for knowing where we are and which virtual object should be displayed. Localization

gives us a position on the map. The map is a list of positions of feature points and objects in the

environment. Mapping is a process of adding new features and adjusting old features as we

explore the environment. Mapping is important in order to do localization in this map and to

understand the new unknown environment and store virtual objects in the map. The problem of

simultaneous localization and mapping is called SLAM. SLAM continues to be under active

1

research for the last 2 decades.[6] SLAM appears to be a chicken-egg problem because

localization depends on mapping and vice versa. One of the first monocular camera SLAM was

MonoSLAM[4] which was introduced in 2003.

There are libraries for SfM and localization on the server and libraries for SLAM on the

client. The problem is that there is no end-to-end solution to share the global map and have a

consistent experience for multiple users on the mobile device. We try to fill this gap. Our work is

to combine already established technologies as SfM on the server and SLAM on the client and to

create an end-to-end solution including communication between these systems and moving

responsibility of sharing the content from client to server to enable a higher number of anchors

without decreasing overall performance.

Contribution

In this thesis, we build more robust SLAM system for AR content in the interior. We

combine SLAM on the mobile phone and SLAM on the server. SLAM on the mobile phone is

less accurate, have an only local map, but we have instant information about the position. SfM

on the server has a global map and store AR objects and can do more robust optimization, so our

localization is more accurate. Moreover we moved storing anchors from client to server which

enabled us to remove the common limitation of similar systems that the increasing number of

anchors decreases performance. We take technologies for SLAM on the client and SfM on the

server and combine them and create an end-to-end solution for AR mobile applications.

Organization

In chapter 2 we get into the theory of localization and mapping and we describe basic

principles of SLAM. In chapter 3 we describe an overview of our solution. In chapter 4 we get

into sharing a pose between local and global map. In chapter 5 we describe the process of

building a map. In chapter 6 we describe our software design. In chapter 7 we discuss the

evaluation and demonstrate our results. Chapter 8 is the conclusion and ideas for future work.

2

CHAPTER 2

BACKGROUND

“SLAM is the computational problem of constructing or updating a map of an unknown

environment while simultaneously keeping track of an agent's location within it.” D. G. Lowe

2004 [2]

A device may have different sensors (camera, inertial measurement unit(IMU), laser) which

perceive the environment. A device needs to know the position and the rotation relative to the

map in order to extend the map, so the device has to keep relocalizing in an incomplete map.

Problem is that sensors are not accurate enough and have noise. SLAM can be divided into

different categories based on precision, types of sensors, the map it generates and many others.

Pose

Pose store information about translation and rotation. It represents transformation

between object local coordinate and world coordinate. Usually, it is represented by a 4x4 matrix.

Anchor

The anchor is a pose which we use to anchor another object relatively against. It is meant

to be shared in time and between devices and systems.

Sensors

We introduce two basic sensors here.

GPS(Global Positioning System) is one of the most basic sensors for localization. It can

give us geolocation, but precision is in few meters. Another problem is that the GPS signal is not

stable. In a shopping mall or underground parking the signal can be lost completely. In cities,

reflections from the surrounding buildings can interfere with the signal. Moreover, GPS only

gives us a translation, so we are still missing a rotation.

3

IMU is an acronym to an inertial measurement unit. It is used to compute the rotation and

translation of the device. It usually consists of accelerometers, gyroscopes, and magnetometers.

An output from IMU is frequent, usually tens of Hertzs and data have small errors. Problem is

when we use it for a longer time then an error accumulates. IMU results have offset changing

slowly over time. We get rotation by integrating angular speed from gyroscope and translation

by integrating acceleration from an accelerometer. In this process error sums up.

We can run SLAM on a mobile device, but also on the server. Both of these approaches have

different trade-offs and we would like to combine them to create a more accurate and more

robust system.

Loop Closure

As we observe the environment our estimation of position drifts apart as error sums up, this can

cause that we have done a loop and in reality, we ended up on the same position, but our position

estimate is shifted. As we enter an area with known features, we can use these features to correct

position estimate.

SLAM on the mobile phone

On the device, we have IMU so we can use this sensor and have instant information

about changes of pose and in combination with building map from images, we can have an

instant change of pose with minimal error. Problem is when this small error accumulates and we

drift apart, we can use loop closures to suppress this problem, but it’s limited since limited

memory and processor time. On the device the map is only local, so we can localize only this

device and other devices can’t see the object we added by this device. So we basically have to

build some global map or do something else to localize our device with other devices and objects

in our space.

We introduce a few libraries we use in our system.

ARCORE[1]

4

Arcore is implementation on SLAM on the mobile phone for Android, Google released

the first version of this project in March 2018.

This library helps with:

- motion tracking: tracking of relative position in the world

- environmental understanding: detection of planes and surfaces,

- light estimation

CloudAnchors (Arcore)

Part of Arcore. It makes possible to get transformation between multiple maps from

different devices which are in the same environment. It has a simple interface to implement, but

it gives you not much control over system and possibilities are limited.

ARKIT (similar to Arcore)

SLAM for iOS from Apple. So it is possible to port our android app to iOS.

SfM on the server

On the server, we can build one persistent global map for all devices. We have data from

all devices on the server, so we have more data and more computation power, so we can do more

optimization and have better accuracy. Also when estimating position in time, we already know

images from earlier. When we want to localizes device in this map, we send request from a

device with an image which camera sees, server localization this image and returns pose of the

device, it all can take few seconds regards to the connection. The global map makes possible to

store the position of shared objects and retrieve them to the device. There are multiple

open-source implementations already as OpenSfM, OpenMVG.

Feature maps

Map generated by SLAM can be represented as poses of features or landmarks in the

environment. Feature maps are good for the environment with recognizable landmarks. There are

basically three types of features depends on the sensors we use.

Feature types:

5

Range only - It can be obtained by the strength of the wifi signal.

Bearing only - It usually obtains by a monocular camera, so we have information about

direction, but we don’t have any information about depth.

Range and bearing - It can be obtained by the stereo camera, these features have

established position relative to our device.

In our project, we work with a monocular smartphone camera, so our features are visual

landmarks. Information about positions of these landmarks can be obtained by triangulation, that

means that we don’t know much after we first time see this feature. We can compute its position

after we see the same landmark from different angles. To extract features from camera images

there are multiple feature extractor. One of the most known is SIFT [3].

6

CHAPTER 3

END-TO-END SOLUTION

A general overview of the solution

To be able to share object positions between devices, we need some global coordinate system,

where we can store positions of these objects. To achieve this goal we build a global map of the

environment on the server. On the phone, we build a local map so we know relative change of

our position. The problem is to find a transformation between the server map and the client map.

To obtain this transformation client sends a request to the server. This request contains an image

from the camera. The server runs localization on this image and it finds the position of the phone

when the image was taken. From the moment the client has this transformation it can work with

global coordinates. The problem is that server response has latency and frequency of response is

around every few seconds, so this information is not real-time and it is delayed. To resolve this

problem we use SLAM on the client to find how position changed since the last server response.

When the client wants to add an object it computes global position from transformation and from

the position in local space and it sends a request to the server, the server takes request and saves

it to the map. Another part of our system is the 3D web visualizer. Visualizer is a tool to

visualize point cloud of the map, user added objects, positions of phones and paths of phones.

The server streams information to visualizer and all clients about positions of objects and about

changes in these positions. A visualizer is an important tool for debugging and also for further

analysis of our system.

Underlying core technologies

The server has two main purposes to build a map and localize clients on this map. On the server

side, we decided to use OpenMVG. OpenMVG is open Multiple View Geometry library. It’s the

library for 3D computer vision and Structure from Motion. We choose this library because it’s

7

open source and it implements a pipeline to compute structure from motion(SfM) and

localization.

On the client, we need to compute online SLAM. We use ARCore for this purpose.

Arcore is a library for Android from Google. It is supported on most of the new Android phones.

Arcore uses phone sensors and images from the camera to build SLAM to provide pose in local

map with low latency. Arcore also gives us calibration of the phone camera which we need to be

able to do more precise computation.

Visualizer needs to render 3D data and work with 3D data, transformations and matrices.

Visualizer runs in the browser, so we chose Three.js for these purposes. Three.js is a

cross-browser javascript library which uses WebGL to render 3D computer graphics.

8

CHAPTER 4

SHARING OF POSES AND CONTENT

In this Chapter, we discuss the matrix representation of pose and transformations. Then we

discuss the way how to transform poses between global and local map. We work with poses in

3D homogeneous coordinates.

Translation
The translation is transformation which moves every point by some fixed vector v. Translation

by vector v, can be represented as matrix :

To use this transformation we can multiply point with this matrix:

The inverse can be obtained by the reverse direction of vector v.

Scaling
Scaling is a transformation which enlarges an object by a scale factor. The scale factor can be

different for every axis.

Matrix representation of scaling:

Scaling of point p can be obtained by matrix multiplication:

9

https://www.codecogs.com/eqnedit.php?latex=T_v%0
https://www.codecogs.com/eqnedit.php?latex=T_v%20%3D%20%5Cbegin%7Bbmatrix%7D1%260%260%26v_x%5C%5C0%261%260%26v_y%5C%5C0%260%261%26v_z%5C%5C0%260%260%261%5C%5C%5Cend%7Bbmatrix%7D%0
https://www.codecogs.com/eqnedit.php?latex=T_vp%20%3D%20%5Cbegin%7Bbmatrix%7D1%260%260%26v_x%5C%5C0%261%260%26v_y%5C%5C0%260%261%26v_z%5C%5C0%260%260%261%5C%5C%5Cend%7Bbmatrix%7D%20%5Cbegin%7Bbmatrix%7Dp_x%5C%5Cp_y%5C%5Cp_z%5C%5C1%5C%5C%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7Dp_x%2Bv_x%5C%5Cp_y%2Bv_y%5C%5Cp_z%2Bv_z%5C%5C1%5C%5C%5Cend%7Bbmatrix%7D%0
https://www.codecogs.com/eqnedit.php?latex=%20T_v%5E%7B-1%7D%20%3D%20T_%7B-v%7D%20%0
https://www.codecogs.com/eqnedit.php?latex=S%20%3D%20%5Cbegin%7Bbmatrix%7Dx%260%260%260%5C%5C0%26y%260%260%5C%5C0%260%26z%260%5C%5C0%260%260%261%5C%5C%5Cend%7Bbmatrix%7D%0

Rotation

Rotation can be represented in the format:

The rotation matrix is an orthogonal matrix, so . It follows that the inverse of this

matrix can be easily computed.

Pose representation

The pose can be described by rotation and translation. To represent a pose we apply rotation and

then the translation to the object. As matrix multiplication is associative we can compose

translation matrix and rotation matrix to one matrix which represents pose and can be easily

constructed by translation and rotation matrix.

The transformation between server and client map

We have pose in the local map which we get from SLAM on the client. We also have pose

in the global map which we get from server localization. To be able to transform local

10

https://www.codecogs.com/eqnedit.php?latex=Sp%20%3D%20%5Cbegin%7Bbmatrix%7Dx%260%260%260%5C%5C0%26y%260%260%5C%5C0%260%26z%260%5C%5C0%260%260%261%5C%5C%5Cend%7Bbmatrix%7D%20%5Cbegin%7Bbmatrix%7Dp_x%5C%5Cp_y%5C%5Cp_z%5C%5C1%5C%5C%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7Dp_x*x%5C%5Cp_y*y%5C%5Cp_z*z%5C%5C1%5C%5C%5Cend%7Bbmatrix%7D%0
https://www.codecogs.com/eqnedit.php?latex=R%5E%7BT%7D%20%3D%20R%5E%7B-1%7D%0
https://www.codecogs.com/eqnedit.php?latex=L%0
https://www.codecogs.com/eqnedit.php?latex=G%0
https://www.codecogs.com/eqnedit.php?latex=M_%7Bglobal%7D%0
https://www.codecogs.com/eqnedit.php?latex=M_%7Bglobal%7D%0

coordinates to global coordinates and another way around, we need to know the transformation

between these two spaces. Let’s call this transformation . says how to transform pose from

local coordinates to global coordinates which says this equation . That means we can

compute as . When the user wants to add object on someplace in the local map,

we transform local pose to global pose and we send to

server and server save this object to the global map. When the server sends out positions of

objects in the global map to the client, the client wants to compute the local pose of these objects

and then visualize them. The client computes as .

Content Sharing

When the user wants to share the object with another user it is really simple since at the moment

of creation we know not only local object position but also a global object position which is sent

to the server and stored in the database. At the time of retrieval, this global position is sent to the

other user who now knows the global pose of object and camera as well, therefore can render it

at the right place on the screen.

11

https://www.codecogs.com/eqnedit.php?latex=M%0
https://www.codecogs.com/eqnedit.php?latex=M%0
https://www.codecogs.com/eqnedit.php?latex=LM%20%3D%20G%0
https://www.codecogs.com/eqnedit.php?latex=M%0
https://www.codecogs.com/eqnedit.php?latex=M%20%3D%20L%5E%7B-1%7DG%0
https://www.codecogs.com/eqnedit.php?latex=(L_%7Bpose%7D)%0
https://www.codecogs.com/eqnedit.php?latex=(G_%7Bpose%7D)%0
https://www.codecogs.com/eqnedit.php?latex=%20G_%7Bpose%7D%20%3D%20L_%7Bpose%7DM%0
https://www.codecogs.com/eqnedit.php?latex=G_%7Bpose%7D%0
https://www.codecogs.com/eqnedit.php?latex=L_%7Bpose%7D%0
https://www.codecogs.com/eqnedit.php?latex=%20L_%7Bpose%7D%20%3D%20G_%7Bpose%7DM%5E%7B-1%7D%20%0

CHAPTER 5

BUILDING MAP

In this chapter, we describe the process of building a map on the server.

Image Listing

At the start, we need to collect images which will be used to build a map. We use the phone

which stream images to server and server saves them. To be able to perform SfM we need

intrinsic parameters of the camera which took images. If our sensor is in our sensor database, we

can obtain intrinsic parameters from there, otherwise, we have to obtain them on our own. In our

case, we use ARCore calibration to get these data.

Feature Extracting

In this part, we extract features from every image separately. For feature detection, we use

SIFT[3]. SIFT features are invariant to scale and rotation. SIFT try to detect and extract

interesting points in the image and describe them. The problem is when the scene is

homogeneous and SIFT detects no interesting points. On figure 1, we can see there are 352

detected features, especially in the border of objects. On figure 2, we can see that the wall is

homogeneous and there are not found any features and on the image, there are 62 detected

features and there is a white wall which doesn’t contain any of them. These features are used for

12

matching. A low number of matched features makes the approximation of camera pose less

precise.

Feature Matching

Feature matching is the process of finding visual overlap on images. From the feature

extracting phase we have features of images. The feature is described by features descriptor. The

descriptor is usually an array of floats. In feature matching phase we would like to take two

images and match features which describe the same object just from another perspective. To be

able to say which features are similar we need to use metric, most used metrics are hamming and

Euclidean. When we have feature descriptors as and ,

the hamming metric is defined as and the Euclidean metric as

To determine k-nearest neighbors of the feature, we can use brute force and compute

distances between every pair, this method is time ineffective. To determine k-nearest neighbor

we use FLANN(Fast Library for Approximate Nearest Neighbors)[8]. Our algorithm takes

feature of the first image(let’s call it X) and try to find 2 nearest features (let’s call them -

Y(nearest), Z), in the second image, then it takes the Y and finds the nearest feature of the Y in

first image if this feature is the same as X then we suppose we found a match. It also checks the

ratio of distances XY and XZ. We consider match valid only if this ratio is bigger than the

threshold. We repeat this process for certain pairs of images. Our source of images is basically a

video that means we have images in order and images which are close to each other are more

promising to find matches, so we try to find matches only between these images. After this

process, we have putative matching.

Next step is geometric filtering. Geometric filtering is used to preserve geometric

consistency. We want to somehow estimate camera poses of these two images and then project

matched features to create 3D points and check if we can create these 3D points correctly. For

this process, we use Ransac[9] algorithm. Ransac picks a few samples of matched features and

estimate camera poses, then project other matched features and check if the 3D point was created

13

https://www.codecogs.com/eqnedit.php?latex=p%20%3D%20(p_1%2C%20p_2%2C...%2C%20p_n)%0
https://www.codecogs.com/eqnedit.php?latex=q%20%3D%20(q_1%2C%20q_2%2C...%2C%20q_n)%0
https://www.codecogs.com/eqnedit.php?latex=%5Ctextstyle%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cmid%20p_i%20-%20q_i%20%5Cmid%0
https://www.codecogs.com/eqnedit.php?latex=%5Ctextstyle%20%5Csqrt%7B%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20(p_i%20-%20q_i)%5E2%7D%0

correctly, so it counts inliers. Ransac repeats this process with other random matched features.

After some number of iteration, it chooses a pair of camera poses which have most inliers. At the

end of feature matching, for some pairs of images, we have a relative transformation between

camera poses of these images and information about which features belong to which feature in

the second image and 3D points. On figure 3 we can see two images and feature points which

were matched

SfM Algorithm

This is the main process of building a map. From the feature matching, we know

mutually camera poses of images. Our SfM algorithm is iterative. At the start, we take one pair

of camera poses. It is important to pick the right one as we would like to have a stable anchor.

We can pick based on the angle between poses, the number of inliers, the error of inliers. Then

we estimate 3D points as a projection of features and add another camera pose from another

image, we know exact rotation from feature matching, but translation is up to scale, so we

estimate position based on 3D points as we know which feature belong to which 3D point. We

can measure error as the distance of 3D points from projected features. Our total error is the sum

of squares of errors. We would like to minimize the total error. We use bundle adjustment.

Bundle adjustment[11] is a process of optimization. It takes poses of cameras and 3D points and

adjusts it to minimize the total error. One well-known minimizer is Ceres Solver[10]. We repeat

this process until we add all camera poses. After this process, we have estimated camera poses

and a 3D point cloud of the environment.

14

The problem is scaling as the algorithm cannot estimate the scale of pointcloud since it

does not know the size of objects. After algorithm build map, we are obliged to fix the scale. So

we find in the map an object with known size in the real world and measure it in the point cloud.

Then we compute the scale factor between real-world size and map size. When we know the

scale factor, we apply a scale factor to transformation.

15

CHAPTER 6

SOFTWARE DESIGN AND IMPLEMENTATION

In this chapter, we discuss the implementation details of our system.

Server

On the server, we need to create simple HTTP server which supports WebSockets and async

programming. We need async programming because we call localization process from inside and

it can take a few seconds to get output so it would be useful if in the meantime server can serve

other requests. We decided to use WebSockets protocol for communication because we would

like to stream data from client to server but also another way around. Our decision was to use

Javascript and NodeJS. For WebSockets communication we use library socket.io, it’s useful

because it makes work with WebSockets much more comfortable. We send all data in JSON

format. JSON is easy to use, easy to debug and it’s supported on Javascript and Android. The

main purpose of the server is to provide localization.

Endpoints:

- Cam_img_phone:

It takes care of providing localization. This endpoint takes data which contains an

image from phone camera and metadata as request id, hashCode of device and

time when the image was taken. At first, it saves the image and runs the separate

process with openMVG localization binary and wait for results. After localization

is done, our server parses JSON output. JSON output pose of the image in the

global world, after it is parsed server adjusts data to respond and sends data to the

client. The server saves every image on the disk, these data can be also used when

we want to build a new map, that means we can use this endpoint to create data

for building map purposes.

16

- Add_android:

It takes the pose of the new object and saves it to memory and stream these data

to visualizer and other phones.

- Cam_pointcloud_phone:

It takes an array of new point cloud points from the client and streams them to the

visualizer.

- Cam_pos_phone:

It takes the position of the client and streams it to the visualizer.

17

Client

The client is an android phone. We use ARCore for computing SLAM and application is coded

in Java. After every frame ARCore computes new position, we send this position to the server

for web visualizer so we can see moving client on the visualizer in real time. Every 4 seconds we

also send a camera image for localization to obtain new transformation between server and a

local map. The reason of 4 seconds delay is because localization usually takes a few seconds and

also image has around 1 MB, so it takes time to deliver these data to the server. When the

response of localization is received, the server computes transformation between global and local

map and adjust positions of objects. ARCore can detect planes, when the user clicks on planes in

our application it computes position on that plane in the local map, then it uses transformation to

transform these pose to global map and send the request to the server to save this object in the

global map. On figure 4 we can see our app screen. On the view, we see two user objects and

white dots visualize detected plane.

Web visualizer

The main purpose of the visualizer is real-time visualization of positions and phones and also

show global map and added objects in it. We developed visualizer in javascript. Javascript is the

main language in web development. For the component structure of the application, we used a

well-known framework React. Visualizer takes data from the server via WebSockets. Visualizer

consist of multiple smaller react component, every of this component has only one purpose. The

main scene shows the most important data, it shows all connected phone and user objects. To

show the path of the device, it draws a line between every two consecutive positions so we can

track the whole ride of device. It also shows the frustum of the camera so we can see the rotation

of the camera and what camera can see and what cannot. On the right up corner, we can see Axes

helper. It helps us see how is the main scene rotated. On the right down corner, we see the last

image from the device. On the left up corner, there are few options, we can set up if we want to

18

see point cloud, features of image and axes helper. It makes the whole experience of visualizer

more pleasant. On figure 5 we can see the screen of web visualizer.

19

CHAPTER 7

EVALUATION AND METRICS

In this chapter, we discuss the evaluation, metrics and our results.

Metrics

To evaluate the accuracy of localization we can measure multiple metrics. Precision and recall

are most used. In our case precision says what percentage of our predictions were correct. In our

case recall says what percentage of requests we were able to respond. We would like to also

measure the latency of localization, it says how long it takes to send an image from client to

server and compute localization and send a response back. We can also measure the build time of

the global map and parameters of the global map as a number of points in the point cloud. When

we want to measure the accuracy and quality of the map we could use other technique(like 3D

scanner or Kinect) and then compare results.

Results

As we stated at the assignment, we created an end-to-end solution for multiplayer shared

augmented reality. Users are able to add AR objects to map and other users can fetch them and

see them in the same position. There is a common problem in other feature-based approaches,

like in ARCore that every new anchor incurs CPU cost[12], whilst our system can embrace

virtually unlimited number of anchors since we have a global map and for every new object we

only remember one pose matrix on the server and those matrices can be served to the client in

chunks based on the client position.

Our system consists of a server which is able to build offline SfM map and localize

images from the client app. We also have a client mobile app which is able to communicate with

the server to have more accurate localization and to get positions of AR objects which can render

to view. We test our solution in the room. Size of this room is 3m x 5m. For building map, we

used Amazon EC2 instance t3.large. This instance consists of 2 cores processor and 8GB of

20

RAM. We built our map from 438 images. Building the map took 33 minutes. Poses of 345

images were estimated. We put the mobile in the different poses and sent a request to

localization. We tried to localize 68 images. Localization managed to find pose in 62 requests, so

recall is 91%. Median of latency is 3.44 seconds. Our 3D point cloud consists of 30268 points.

On figure 7, we can see the histogram of latency of localization in seconds.

21

CHAPTER 8

CONCLUSION

We accomplished to build a basic system for sharing objects and positions of devices in an

unknown indoor environment. Building map and SLAM is stable and we were able to build good

enough map from just 438 images in 33 minutes.

After every server localization, we can see a visible jump in position, that means that

SLAM on client drifted apart from the global map from which we infer that low latency of server

localization and smoothing of current location estimates is critical for the accuracy of our

system.

Future work

The latency of localization:
The latency of localization is a critical problem. It usually takes a few seconds to send an image

to server and localize it in the global map. Localization could be accurate but after few seconds

phone moves a lot and it can be inaccurate again. In the current solution for every localization,

we run the whole new process with localization binary. This binary at first loads features and

data and then it provides localization. It could be useful to run it and load features and data only

once and then start HTTP server which can do only localization itself. Another improvement

would be to use a more compact format than JSON so serialization can be more efficient. We

could use gRPC for high-performance communication and protobuf as a protocol for

serialization.

Automatically scale estimation:

The problem is that after we build the map we have to estimate scale manually. To automatize

scale estimation, we can use ARCore. Our SLAM on the server does not know anything about

scale but SLAM on mobile phone uses IMU sensors, which can be used to estimate scale.

22

Smoothing of current location estimates:

In the current solution when we get a new response we compute the transformation and move

every object to a new position which we computed using new transformation. This has an effect

that after every response our server shifts a little bit. We would rather have some continuous

transition. So we would like to implement weighted position and rotation averaging to make the

transition smoother. We also have to deal with the possibility that localization provided by the

server can be completely off since in the current solution we do not filter them out.

23

Literature

[1] Google. Arcore overview. https://developers.google.com/ar/discover/, 2018.

[2] Wikipedia. Simultaneous localization and mapping — Wikipedia, the free encyclopedia.

https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping, 2019.

[3] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput.

Vision, 60(2):91–110, November 2004

[4] Andrew J. Davison. Real-time simultaneous localisation and mapping with a single camera.

pages 1403–1410, 2003.

[5] Ikea. Ikea place app. https://highlights.ikea.com/2017/ikea-place/, 2018.

[6] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, José Neira,

Ian D. Reid, and John J. Leonard. Simultaneous localization and mapping: Present, future, and

the robust-perception age. CoRR, abs/1606.05830, 2016.

[7] Bgame. AR mole app. https://play.google.com/store/apps/details?id=com.BGame.

MoleCatchAR&hl=en_US, 2018.

[8] Muja, Marius, and David G. Lowe. "Fast approximate nearest neighbors with automatic

algorithm configuration." VISAPP (1) 2.331-340 (2009): 2.

[9] Yaniv, Ziv. "Random sample consensus (RANSAC) algorithm, a generic implementation."

Insight Journal (2010).

[10] Agarwal, Sameer, and Keir Mierle. "Ceres solver." (2012).

[11] Triggs, Bill, et al. "Bundle adjustment—a modern synthesis." International workshop on

vision algorithms. Springer, Berlin, Heidelberg, 1999.

[12] Google. Arcore anchors.

https://developers.google.com/ar/develop/developer-guides/anchors/, 2018.

24

