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Abstrakt 
 

Za pomoci najmodernejších, voľne dostupných open-source SLAM a SfM technológií, sme 

vytvorili plne funkčný systém na zdieľanú rozšírenú realitu v interiéri pre viacerých hráčov. 

Udržiavame si lokácie všetkých užívateľov a obsah nimi vytvorený v globálnej mape na serveri a 

zdieľame ho so všetkými klientmi v reálnom čase. Toto tvorí základ pre každú reálnu aplikáciu 

využívajúcu rozšírenú realitu. Tiež hodnotíme odozvu a presnosť a identifikujeme hlavné 

problémy tohto systému a navrhujeme miesta na zlepšenie. Takisto poskytujeme 3D vizualizér, 

ktorý umožňuje zobrazovať globálnu mapu, pozície užívateľov v reálnom čase a obsah 

vytvorený užívateľmi. 

 

Kľúčové slová: rozšírená realita, lokalizácia, mapovanie, SLAM, SfM, 3D  

 



Abstract 

Using state-of-the-art free and open-sourced SLAM and SfM we build fully functional 

multiplayer shared augmented reality indoor experience. We keep track of all user locations and 

user-generated content in one global map on the server shared with clients in real-time. This lays 

the foundation for any real application of shared augmented reality. Also we evaluate latency and 

accuracy and identify main bottlenecks and directions for improvements of such a system 

together with providing the number of debug tools like 3D visualizer of the global map detected 

features and real-time position of users and the content. 

 

Keywords : augmented reality, localization, mapping, SLAM, SfM, 3D  
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CHAPTER 1 

INTRODUCTION 

Objectives 
In this bachelor thesis, we create an Android app which is able to provide shared 

augmented reality experience, that means it can localize our device in an environment with the 

precision of a few centimeters, render augmented reality(AR) objects in app view and be able to 

add objects to the environment and share them with other users. Then we investigate what the 

biggest issues and problems are and we analyze them. 

 

Applications 

The use of this system is in AR applications. In the game industry, there are already 

multiple mobile games which you can play in your environment and this would permit to make 

these games multiplayer. Ikea developed the application[5] to decorate your room with Ikea 

furniture, so you can run the application and see how would your room look like and then buy 

their stuff, this project would allow to save progress and then load it and share it with other users. 

AR Mole is a mobile game which shows moles on the screen as they would be in the real world 

and they disappear as you hit them[7]. There are multiple other areas like interactive museums, 

virtual boards, and others.  

 

Problems 

Localization and mapping is an essential problem for multiple applications. Localization 

is useful for knowing where we are and which virtual object should be displayed. Localization 

gives us a position on the map. The map is a list of positions of feature points and objects in the 

environment. Mapping is a process of adding new features and adjusting old features as we 

explore the environment. Mapping is important in order to do localization in this map and to 

understand the new unknown environment and store virtual objects in the map. The problem of 

simultaneous localization and mapping is called SLAM. SLAM continues to be under active 
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research for the last 2 decades.[6] SLAM appears to be a chicken-egg problem because 

localization depends on mapping and vice versa. One of the first monocular camera SLAM was 

MonoSLAM[4] which was introduced in 2003.  

There are libraries for SfM and localization on the server and libraries for SLAM on the 

client. The problem is that there is no end-to-end solution to share the global map and have a 

consistent experience for multiple users on the mobile device. We try to fill this gap. Our work is 

to combine already established technologies as SfM on the server and SLAM on the client and to 

create an end-to-end solution including communication between these systems and moving 

responsibility of sharing the content from client to server to enable a higher number of anchors 

without decreasing overall performance. 

 

Contribution 

In this thesis, we build more robust SLAM system for AR content in the interior. We 

combine SLAM on the mobile phone and SLAM on the server.  SLAM on the mobile phone is 

less accurate, have an only local map, but we have instant information about the position. SfM 

on the server has a global map and store AR objects and can do more robust optimization, so our 

localization is more accurate. Moreover we moved storing anchors from client to server which 

enabled us to remove the common limitation of similar systems that the increasing number of 

anchors decreases performance. We take technologies for SLAM on the client and SfM on the 

server and combine them and create an end-to-end solution for AR mobile applications. 

 

Organization 

In chapter 2 we get into the theory of localization and mapping and we describe basic 

principles of SLAM. In chapter 3 we describe an overview of our solution. In chapter 4 we get 

into sharing a pose between local and global map. In chapter 5 we describe the process of 

building a map. In chapter 6 we describe our software design. In chapter 7 we discuss the 

evaluation and demonstrate our results. Chapter 8 is the conclusion and ideas for future work.  
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CHAPTER 2 

BACKGROUND 

“SLAM is the computational problem of constructing or updating a map of an unknown 

environment while simultaneously keeping track of an agent's location within it.” D. G. Lowe 

2004 [2] 

A device may have different sensors (camera, inertial measurement unit(IMU), laser) which 

perceive the environment. A device needs to know the position and the rotation relative to the 

map in order to extend the map, so the device has to keep relocalizing in an incomplete map. 

Problem is that sensors are not accurate enough and have noise. SLAM can be divided into 

different categories based on precision, types of sensors, the map it generates and many others.  

 

Pose 

Pose store information about translation and rotation. It represents transformation 

between object local coordinate and world coordinate. Usually, it is represented by a 4x4 matrix. 

 

Anchor 

The anchor is a pose which we use to anchor another object relatively against. It is meant 

to be shared in time and between devices and systems. 

 

Sensors 

We introduce two basic sensors here. 

GPS(Global Positioning System) is one of the most basic sensors for localization. It can 

give us geolocation, but precision is in few meters. Another problem is that the GPS signal is not 

stable. In a shopping mall or underground parking the signal can be lost completely. In cities, 

reflections from the surrounding buildings can interfere with the signal. Moreover, GPS only 

gives us a translation, so we are still missing a rotation. 
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IMU is an acronym to an inertial measurement unit. It is used to compute the rotation and 

translation of the device. It usually consists of accelerometers, gyroscopes, and magnetometers. 

An output from IMU is frequent, usually tens of Hertzs and data have small errors. Problem is 

when we use it for a longer time then an error accumulates. IMU results have offset changing 

slowly over time. We get rotation by integrating angular speed from gyroscope and translation 

by integrating acceleration from an accelerometer. In this process error sums up. 

 

We can run SLAM on a mobile device, but also on the server. Both of these approaches have 

different trade-offs and we would like to combine them to create a more accurate and more 

robust system. 

 

Loop Closure 

As we observe the environment our estimation of position drifts apart as error sums up, this can 

cause that we have done a loop and in reality, we ended up on the same position, but our position 

estimate is shifted. As we enter an area with known features, we can use these features to correct 

position estimate. 

 

SLAM on the mobile phone 

On the device, we have IMU so we can use this sensor and have instant information 

about changes of pose and in combination with building map from images, we can have an 

instant change of pose with minimal error. Problem is when this small error accumulates and we 

drift apart, we can use loop closures to suppress this problem, but it’s limited since limited 

memory and processor time. On the device the map is only local, so we can localize only this 

device and other devices can’t see the object we added by this device. So we basically have to 

build some global map or do something else to localize our device with other devices and objects 

in our space. 

We introduce a few libraries we use in our system. 

ARCORE[1] 
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Arcore is implementation on SLAM on the mobile phone for Android, Google released 

the first version of this project in March 2018.  

This library helps with: 

- motion tracking: tracking of relative position in the world 

- environmental understanding: detection of planes and surfaces,  

- light estimation 

CloudAnchors (Arcore) 

Part of Arcore. It makes possible to get transformation between multiple maps from 

different devices which are in the same environment. It has a simple interface to implement, but 

it gives you not much control over system and possibilities are limited. 

ARKIT (similar to Arcore) 

SLAM for iOS from Apple. So it is possible to port our android app to iOS. 

 

SfM on the server 

On the server, we can build one persistent global map for all devices. We have data from 

all devices on the server, so we have more data and more computation power, so we can do more 

optimization and have better accuracy. Also when estimating position in time, we already know 

images from earlier. When we want to localizes device in this map, we send request from a 

device with an image which camera sees, server localization this image and returns pose of the 

device, it all can take few seconds regards to the connection. The global map makes possible to 

store the position of shared objects and retrieve them to the device. There are multiple 

open-source implementations already as OpenSfM, OpenMVG. 

 

Feature maps 

Map generated by SLAM can be represented as poses of features or landmarks in the 

environment. Feature maps are good for the environment with recognizable landmarks. There are 

basically three types of features depends on the sensors we use.  

 

Feature types: 
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Range only - It can be obtained by the strength of the wifi signal. 

Bearing only - It usually obtains by a monocular camera, so we have information about 

direction, but we don’t have any information about depth. 

Range and bearing - It can be obtained by the stereo camera, these features have 

established position relative to our device. 

 

In our project, we work with a monocular smartphone camera, so our features are visual 

landmarks. Information about positions of these landmarks can be obtained by triangulation, that 

means that we don’t know much after we first time see this feature. We can compute its position 

after we see the same landmark from different angles. To extract features from camera images 

there are multiple feature extractor. One of the most known is SIFT [3].  
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CHAPTER 3 

END-TO-END SOLUTION 

A general overview of the solution 
 

To be able to share object positions between devices, we need some global coordinate system, 

where we can store positions of these objects. To achieve this goal we build a global map of the 

environment on the server. On the phone, we build a local map so we know relative change of 

our position. The problem is to find a transformation between the server map and the client map. 

To obtain this transformation client sends a request to the server. This request contains an image 

from the camera. The server runs localization on this image and it finds the position of the phone 

when the image was taken. From the moment the client has this transformation it can work with 

global coordinates. The problem is that server response has latency and frequency of response is 

around every few seconds, so this information is not real-time and it is delayed. To resolve this 

problem we use SLAM on the client to find how position changed since the last server response. 

When the client wants to add an object it computes global position from transformation and from 

the position in local space and it sends a request to the server, the server takes request and saves 

it to the map. Another part of our system is the 3D web visualizer. Visualizer is a tool to 

visualize point cloud of the map, user added objects, positions of phones and paths of phones. 

The server streams information to visualizer and all clients about positions of objects and about 

changes in these positions. A visualizer is an important tool for debugging and also for further 

analysis of our system. 

 
Underlying core technologies 
 
The server has two main purposes to build a map and localize clients on this map. On the server 

side, we decided to use OpenMVG. OpenMVG is open Multiple View Geometry library. It’s the 

library for 3D computer vision and Structure from Motion. We choose this library because it’s 
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open source and it implements a pipeline to compute structure from motion(SfM) and 

localization.  

On the client, we need to compute online SLAM. We use ARCore for this purpose. 

Arcore is a library for Android from Google. It is supported on most of the new Android phones. 

Arcore uses phone sensors and images from the camera to build SLAM to provide pose in local 

map with low latency. Arcore also gives us calibration of the phone camera which we need to be 

able to do more precise computation.  

Visualizer needs to render 3D data and work with 3D data, transformations and matrices. 

Visualizer runs in the browser, so we chose Three.js for these purposes. Three.js is a 

cross-browser javascript library which uses WebGL to render 3D computer graphics.  

 

8



CHAPTER 4 

SHARING OF POSES AND CONTENT 

In this Chapter, we discuss the matrix representation of pose and transformations. Then we 

discuss the way how to transform poses between global and local map. We work with poses in 

3D homogeneous coordinates. 

 
Translation 
The translation is transformation which moves every point by some fixed vector v. Translation 

by vector v, can be represented as matrix  : 

 

To use this transformation we can multiply point with this matrix: 

 

The inverse can be obtained by the reverse direction of vector v. 

 
 
Scaling 
Scaling is a transformation which enlarges an object by a scale factor. The scale factor can be 

different for every axis. 

Matrix representation of scaling: 

 

Scaling of point p can be obtained by matrix multiplication: 
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Rotation 

Rotation can be represented in the format: 

 

The rotation matrix is an orthogonal matrix, so . It follows that the inverse of this 

matrix can be easily computed. 

 

Pose representation 

The pose can be described by rotation and translation. To represent a pose we apply rotation and 

then the translation to the object. As matrix multiplication is associative we can compose 

translation matrix and rotation matrix to one matrix which represents pose and can be easily 

constructed by translation and rotation matrix. 

 
The transformation between server and client map 
 

We have pose  in the local map which we get from SLAM on the client. We also have pose  

in the global map which we get from server localization. To be able to transform local 
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coordinates to global coordinates and another way around, we need to know the transformation 

between these two spaces. Let’s call this transformation .  says how to transform pose from 

local coordinates to global coordinates which says this equation . That means we can 

compute  as . When the user wants to add object on someplace in the local map, 

we transform local pose  to global pose   and we send  to 

server and server save this object to the global map. When the server sends out positions of 

objects in the global map to the client, the client wants to compute the local pose of these objects 

and then visualize them. The client computes  as . 

 

Content Sharing 

When the user wants to share the object with another user it is really simple since at the moment 

of creation we know not only local object position but also a global object position which is sent 

to the server and stored in the database. At the time of retrieval, this global position is sent to the 

other user who now knows the global pose of object and camera as well, therefore can render it 

at the right place on the screen.  
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CHAPTER 5 

BUILDING MAP 

In this chapter, we describe the process of building a map on the server. 

 

Image Listing 
 
At the start, we need to collect images which will be used to build a map. We use the phone 

which stream images to server and server saves them. To be able to perform SfM we need 

intrinsic parameters of the camera which took images. If our sensor is in our sensor database, we 

can obtain intrinsic parameters from there, otherwise, we have to obtain them on our own. In our 

case, we use ARCore calibration to get these data. 

 
Feature Extracting 
 
In this part, we extract features from every image separately. For feature detection, we use 

SIFT[3]. SIFT features are invariant to scale and rotation. SIFT try to detect and extract 

interesting points in the image and describe them. The problem is when the scene is 

homogeneous and SIFT detects no interesting points. On figure 1, we can see there are 352 

detected features, especially in the border of objects. On figure 2, we can see that the wall is 

homogeneous and there are not found any features and on the image, there are 62 detected 

features and there is a white wall which doesn’t contain any of them. These features are used for 
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matching. A low number of matched features makes the approximation of camera pose less 

precise. 

 

Feature Matching 
 

Feature matching is the process of finding visual overlap on images. From the feature 

extracting phase we have features of images. The feature is described by features descriptor. The 

descriptor is usually an array of floats. In feature matching phase we would like to take two 

images and match features which describe the same object just from another perspective. To be 

able to say which features are similar we need to use metric, most used metrics are hamming and 

Euclidean. When we have feature descriptors as  and , 

the hamming metric is defined as  and the Euclidean metric as 

 

To determine k-nearest neighbors of the feature, we can use brute force and compute 

distances between every pair, this method is time ineffective. To determine k-nearest neighbor 

we use FLANN(Fast Library for Approximate Nearest Neighbors)[8]. Our algorithm takes 

feature of the first image(let’s call it X) and try to find 2 nearest features (let’s call them - 

Y(nearest), Z), in the second image, then it takes the Y and finds the nearest feature of the Y in 

first image if this feature is the same as X then we suppose we found a match. It also checks the 

ratio of distances XY and XZ. We consider match valid only if this ratio is bigger than the 

threshold. We repeat this process for certain pairs of images. Our source of images is basically a 

video that means we have images in order and images which are close to each other are more 

promising to find matches, so we try to find matches only between these images. After this 

process, we have putative matching.  

Next step is geometric filtering. Geometric filtering is used to preserve geometric 

consistency. We want to somehow estimate camera poses of these two images and then project 

matched features to create 3D points and check if we can create these 3D points correctly. For 

this process, we use Ransac[9] algorithm. Ransac picks a few samples of matched features and 

estimate camera poses, then project other matched features and check if the 3D point was created 
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correctly, so it counts inliers. Ransac repeats this process with other random matched features. 

After some number of iteration, it chooses a pair of camera poses which have most inliers. At the 

end of feature matching, for some pairs of images, we have a relative transformation between 

camera poses of these images and information about which features belong to which feature in 

the second image and 3D points. On figure 3 we can see two images and feature points which 

were matched 

SfM Algorithm 

This is the main process of building a map. From the feature matching, we know 

mutually camera poses of images. Our SfM algorithm is iterative. At the start, we take one pair 

of camera poses. It is important to pick the right one as we would like to have a stable anchor. 

We can pick based on the angle between poses, the number of inliers, the error of inliers. Then 

we estimate 3D points as a projection of features and add another camera pose from another 

image, we know exact rotation from feature matching, but translation is up to scale, so we 

estimate position based on 3D points as we know which feature belong to which 3D point. We 

can measure error as the distance of 3D points from projected features. Our total error is the sum 

of squares of errors. We would like to minimize the total error. We use bundle adjustment. 

Bundle adjustment[11] is a process of optimization. It takes poses of cameras and 3D points and 

adjusts it to minimize the total error. One well-known minimizer is Ceres Solver[10]. We repeat 

this process until we add all camera poses. After this process, we have estimated camera poses 

and a 3D point cloud of the environment.  
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The problem is scaling as the algorithm cannot estimate the scale of pointcloud since it 

does not know the size of objects. After algorithm build map, we are obliged to fix the scale. So 

we find in the map an object with known size in the real world and measure it in the point cloud. 

Then we compute the scale factor between real-world size and map size. When we know the 

scale factor, we apply a scale factor to transformation. 
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CHAPTER 6 

SOFTWARE DESIGN AND IMPLEMENTATION 

In this chapter, we discuss the implementation details of our system. 

Server 
 
On the server, we need to create simple HTTP server which supports WebSockets and async 

programming. We need async programming because we call localization process from inside and 

it can take a few seconds to get output so it would be useful if in the meantime server can serve 

other requests. We decided to use WebSockets protocol for communication because we would 

like to stream data from client to server but also another way around. Our decision was to use 

Javascript and NodeJS. For WebSockets communication we use library socket.io, it’s useful 

because it makes work with WebSockets much more comfortable. We send all data in JSON 

format. JSON is easy to use, easy to debug and it’s supported on Javascript and Android. The 

main purpose of the server is to provide localization.  

Endpoints: 

- Cam_img_phone: 

It takes care of providing localization. This endpoint takes data which contains an 

image from phone camera and metadata as request id, hashCode of device and 

time when the image was taken. At first, it saves the image and runs the separate 

process with openMVG localization binary and wait for results. After localization 

is done, our server parses JSON output. JSON output pose of the image in the 

global world, after it is parsed server adjusts data to respond and sends data to the 

client. The server saves every image on the disk, these data can be also used when 

we want to build a new map, that means we can use this endpoint to create data 

for building map purposes.  
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- Add_android: 

It takes the pose of the new object and saves it to memory and stream these data 

to visualizer and other phones.  

- Cam_pointcloud_phone: 

It takes an array of new point cloud points from the client and streams them to the 

visualizer.  

- Cam_pos_phone: 

It takes the position of the client and streams it to the visualizer.  
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Client 
 
The client is an android phone. We use ARCore for computing SLAM and application is coded 

in Java. After every frame ARCore computes new position, we send this position to the server 

for web visualizer so we can see moving client on the visualizer in real time. Every 4 seconds we 

also send a camera image for localization to obtain new transformation between server and a 

local map. The reason of 4 seconds delay is because localization usually takes a few seconds and 

also image has around 1 MB, so it takes time to deliver these data to the server.  When the 

response of localization is received, the server computes transformation between global and local 

map and adjust positions of objects. ARCore can detect planes, when the user clicks on planes in 

our application it computes position on that plane in the local map, then it uses transformation to 

transform these pose to global map and send the request to the server to save this object in the 

global map. On figure 4 we can see our app screen. On the view, we see two user objects and 

white dots visualize detected plane. 

 
 
Web visualizer 
 

The main purpose of the visualizer is real-time visualization of positions and phones and also 

show global map and added objects in it. We developed visualizer in javascript. Javascript is the 

main language in web development. For the component structure of the application, we used a 

well-known framework React. Visualizer takes data from the server via WebSockets. Visualizer 

consist of multiple smaller react component, every of this component has only one purpose. The 

main scene shows the most important data, it shows all connected phone and user objects. To 

show the path of the device, it draws a line between every two consecutive positions so we can 

track the whole ride of device. It also shows the frustum of the camera so we can see the rotation 

of the camera and what camera can see and what cannot. On the right up corner, we can see Axes 

helper. It helps us see how is the main scene rotated. On the right down corner, we see the last 

image from the device. On the left up corner, there are few options, we can set up if we want to 
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see point cloud, features of image and axes helper. It makes the whole experience of visualizer 

more pleasant. On figure 5 we can see the screen of web visualizer. 
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CHAPTER 7 

EVALUATION AND METRICS 

In this chapter, we discuss the evaluation, metrics and our results. 

 

Metrics 

To evaluate the accuracy of localization we can measure multiple metrics. Precision and recall 

are most used. In our case precision says what percentage of our predictions were correct. In our 

case recall says what percentage of requests we were able to respond. We would like to also 

measure the latency of localization, it says how long it takes to send an image from client to 

server and compute localization and send a response back. We can also measure the build time of 

the global map and parameters of the global map as a number of points in the point cloud. When 

we want to measure the accuracy and quality of the map we could use other technique(like 3D 

scanner or Kinect) and then compare results. 

 

Results 

As we stated at the assignment, we created an end-to-end solution for multiplayer shared 

augmented reality. Users are able to add AR objects to map and other users can fetch them and 

see them in the same position. There is a common problem in other feature-based approaches, 

like in ARCore that every new anchor incurs CPU cost[12], whilst our system can embrace 

virtually unlimited number of anchors since we have a global map and for every new object we 

only remember one pose matrix on the server and those matrices can be served to the client in 

chunks based on the client position. 

Our system consists of a server which is able to build offline SfM map and localize 

images from the client app. We also have a client mobile app which is able to communicate with 

the server to have more accurate localization and to get positions of AR objects which can render 

to view. We test our solution in the room. Size of this room is 3m x 5m. For building map, we 

used Amazon EC2 instance t3.large. This instance consists of 2 cores processor and 8GB of 
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RAM. We built our map from 438 images. Building the map took 33 minutes. Poses of 345 

images were estimated. We put the mobile in the different poses and sent a request to 

localization. We tried to localize 68 images. Localization managed to find pose in 62 requests, so 

recall is 91%. Median of latency is 3.44 seconds. Our 3D point cloud consists of 30268 points. 

On figure 7, we can see the histogram of latency of localization in seconds. 
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CHAPTER 8 

CONCLUSION 

We accomplished to build a basic system for sharing objects and positions of devices in an 

unknown indoor environment. Building map and SLAM is stable and we were able to build good 

enough map from just 438 images in 33 minutes.  

After every server localization, we can see a visible jump in position, that means that 

SLAM on client drifted apart from the global map from which we infer that low latency of server 

localization and smoothing of current location estimates is critical for the accuracy of our 

system. 

 

Future work 

The latency of localization: 
The latency of localization is a critical problem. It usually takes a few seconds to send an image 

to server and localize it in the global map. Localization could be accurate but after few seconds 

phone moves a lot and it can be inaccurate again. In the current solution for every localization, 

we run the whole new process with localization binary. This binary at first loads features and 

data and then it provides localization. It could be useful to run it and load features and data only 

once and then start HTTP server which can do only localization itself. Another improvement 

would be to use a more compact format than JSON so serialization can be more efficient. We 

could use gRPC for high-performance communication and protobuf as a protocol for 

serialization. 

 

Automatically scale estimation: 

The problem is that after we build the map we have to estimate scale manually. To automatize 

scale estimation, we can use ARCore. Our SLAM on the server does not know anything about 

scale but SLAM on mobile phone uses IMU sensors, which can be used to estimate scale. 
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Smoothing of current location estimates: 

In the current solution when we get a new response we compute the transformation and move 

every object to a new position which we computed using new transformation. This has an effect 

that after every response our server shifts a little bit. We would rather have some continuous 

transition. So we would like to implement weighted position and rotation averaging to make the 

transition smoother. We also have to deal with the possibility that localization provided by the 

server can be completely off since in the current solution we do not filter them out. 
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