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Abstrakt

Táto práca popisuje metódu optimálneho vykresľovania tieňov v real-time 3D

aplikáciach a 3D video hrách. Popísaný algoritmus zlepšuje presnosť algo-

ritmu Shadow Mapping, často používanej metódy, ktorá využíva textúru na

ukladanie hĺbkovej informácie zo scény. Táto hĺbková informácia je následne

použitá na zistenie, ktoré časti scény sú zatienené a ktoré nie.

Algorimtus vylepšujúci túto metódu sa nazýva Parallel-Split Shadow Map-

ping, ktorý používa viacero hĺbkových textúr. Pohľadový objem kamery sa

rozdelí na niekoľko častí a pre každú z týchto častí sa ukladá hĺbková infor-

mácia. Tento prístup redukuje aliasing takto vykreslených tieňov na úkor

zníženého výkonu. Vďaka tomuto prístupu sa ale tiene vykresľujú iba pre tie

časti scény, ktoré sú vidno, pričom pri bežnom Shadow Mapping-u sa musia

vykresliť pre celú scénu.

Kľúčové slová: OpenGL, Real-time Rendering, Shadow Mapping, Parallel-

Split Shadow Mapping



Abstract

This thesis describes a method for optimized shadow rendering used in real-

time 3D applications and 3D video games. The algorithm is a modified

version of Shadow Mapping, a widely used shadowing technique that employs

an additional pixel buffer to store depth information from the scene. This

information is then used to determine which parts of the scene are lit and

which are in shadow.

The improved algorithm for Shadow Mapping is named Parallel-Split

Shadow Mapping, which uses multiple shadow maps. The camera’s view-

ing frustum is split into several parts and one shadow map is rendered for

each of these parts. This reduces the aliasing of the shadows at the cost

of additional computational time. In addition, the shadows are synthesized

every frame only for the parts of the scene that are inside the camera viewing

volume, whereas in Standard Shadow Mapping, the shadows for the whole

scene have to be synthesized.

Keywords: OpenGL, Real-time Rendering, Shadow Mapping, Parallel-Split

Shadow Mapping
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Introduction

Real-time rendering is a crucial part of all modern video games, which are

meant to be as realistic as possible. With increasing number of triangles

rendered per frame and complex lighting calculations, optimization becomes

very important. Shadows are indispensable in the complex lighting models,

since they increase realism of the rendered images rapidly and provide the

viewer with depth information.

Rendering shadows fast and efficient has been troubling developers for

a long time and only two viable options emerged: Shadow Volumes and

Shadow Mapping. Shadow Volumes (introduced in [Crow77]) are precise

and are usually synthesized by rendering to an additional stencil buffer. The

problem that emerges is that it requires to detect the silhouette of the shadow

casters, which can be very costly for scenes with hundreds of thousands of

triangles. Shadow Volumes will not be discussed in this thesis.

Shadow Mapping, on the other hand, can be done without silhouette

detection and requires very little computation on the CPU. Crucial parts of

the algorithm can be executed on the GPU, which is usually faster due to

parallelization of the algorithms. The bottleneck is that the scene has to be

rendered multiple times, with the minimum of 2 for simple Shadow Mapping.

More complex Shadow Mapping techniques usually require more rendering

passes but the generated results are preciser. Since the shadow maps are

just 2D images with a certain resolution, they suffer from aliasing and can

therefore produce unrealistic results.

Parallel-Split Shadow Mapping is an extension to Shadow Mapping. The
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main idea is to split the camera viewing volume using split planes parallel to

the near and the far plane and rendering one shadow map for each of these

splits. This reduces shadow aliasing significantly, especially for a distant

light source. We can then control the aliasing by moving the split planes

accordingly.

Chapter 1 (Basic Terms) explains the basic terms needed to understand

the concept of Shadow Mapping. These terms include camera representation

in a 3D scene, the meaning of a depth buffer, rendering to texture and using

shaders within OpenGL through the OpenGL Shading Language (GLSL).

Chapter 2 (Shadow Mapping) explains the basic Shadow Mapping algo-

rithm, its limitations and problems.

Chapter 3 (Parallel-Split Shadow Mapping) explains a modification to

Shadow Mapping which improves the precision and decreases the aliasing

significantly by rendering multiple shadow maps for the viewing volume.

The algorithm is derived from Shadow Mapping explained in Chapter 2.

Chapter 4 (Implementation) describes the implementation of rendering to

texture, Shadow Mapping and Parallel-Split Shadow Mapping. The imple-

mentation is written in C++, using OpenGL for rendering and The OpenGL

Shading Language for shaders.

In Chapter 5, we show some results and compare the results from the two

techniques mentioned. We also compare the performance of both algorithms,

and finally conclude discuss future work.
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Chapter 1

Basic Terms

Before understanding Shadow Mapping, you will need to get familiar with

certain basic terms.

1.1 OpenGL

In the implementation part of this thesis, we will be using the Open Graphics

Library (OpenGL), which is the most widely used graphics library supported

by almost all platforms. Since 1992, when OpenGL was introduced by Silli-

con Graphics International (SGI), OpenGL has become a standard graphics

application programming interface (API). It is a constantly evolving, easy

to use, reliable and portable solution. Specifications and documentation for

OpenGL can be found at [GLregistry].

One of the main purposes of OpenGL is to provide a hardware indepen-

dent interface for using the graphics card to perform 2D and 3D rendering.

Another is to provide as much functionality as possible on the target machine

using OpenGL extensions, which can be platform-specific or graphics card

vendor specific.

Usually, an OpenGL application creates a system-specific window and

creates an OpenGL context that is interconnected with the window. After-

wards, the application calls OpenGL functions to render to the window and
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display primitives like triangles, lines, etc. on the screen.

1.2 Camera and Frustum

Always when rendering an image, there is a camera that represents the

viewer’s position, facing and also some other parameters that affect the out-

put image. Therefore, the camera is a set of parameters that specify where

the camera is, which way it is facing, and most importantly which objects or

parts of the scene will be seen by the camera.

A camera in a 3D world can have many representations. Every camera

representation has the camera position, but other camera attributes may

vary from implementation to implementation. The type we will explain is

used the most.

1.2.1 Camera’s Frustum

Top

Near

Right

Far

Left

Bottom

Camera

Figure 1.1: Typical camera perspective

Each camera can alternatively be defined by it’s frustum. The camera’s

frustum is defined by six clipping planes (near, far, top, bottom, left, right),
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as shown if Figure 1.1. If a point is outside the camera’s frustum, that point

will not be rendered when rendering using the camera, because the camera

actually cannot see the point. Each of the clipping planes are in the form

ax + by + cz + d = 0. The normal vector (a, b, c) of these planes is defined

to point to the inside of the frustum. This representation (thanks to the

normals pointing inside) offers a simple algorithm to determine if a point is

inside the frustum, as shown in Listing 1.1.

1 point(x, y, z)

2 foreach( plane(a, b, c, d) in frustum )

3 if(a*x + b*y + c*z + d < 0)

4 return outside;

5 return inside;

Listing 1.1: Point in frustum test

The frustum can be recovered from a camera setup such as the one de-

scribed in 1.2.2. It is done by creating a clip matrix from the matrices

returned by gluLookAt and gluPerspective. From this clip matrix, the plane

recovery is simply a matter of constructing a 4D vector for each plane from

the columns of the clip matrix.

1.2.2 Typical Camera Setup

For an application programmer in OpenGL, there are a few ways to define

a camera. The camera we will describe is set up by the functions gluLookAt

and gluPerspective. Despite the fact that both of these functions are from

the GLU package, they simply create a 4 × 4 transformation matrix from a

few parameters. Therefore, anyone can write a replacement function without

having to worry about the dependency on the package. These two functions

can apply the camera, which means setting up the transformation matrices

so that the rendered image will be from the camera’s point of view.

The function gluLookAt takes 9 parameters that can be grouped into three

3D vectors. The first one being the camera’s position, the second one the

camera’s target, meaning that it is the point that will be in the middle of
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the rendered image. Finally, the third vector represents the up vector of the

camera that tells us which direction is ”up” for the camera. The up vector

is usually set to (0, 1, 0), resulting in objects that have higher y coordinate

to be higher in the final rendered image.

The function gluPerspective takes 4 parameters: the field of view angle,

the aspect ratio of the final image and the near and far values. It is closely

described in Figure 1.2. The near and far values determine the extents of the

camera’s viewing volume. The near value specifies the near clipping plane,

which causes all the objects that are closer to the camera than the near plane

will not be rendered. And similarly, objects farther away from the camera

than the far clipping plane will not be rendered as well.

Camera Near Far

Top

Bottom

α

α - Field of view angle

Figure 1.2: Camera perspective - side view

The aspect ratio should be w
h

where w is the width of the final rendered

image and h is the height of the image. If set otherwise, the image will be

fit to the w × h rectangle, resulting in incorrect scaling.

Another type of projection is an orthographic projection, in which all the

planes of the camera’s frustum are either orthogonal or parallel (parallel to

each other are the pairs near-far, top-bottom and right-left. Such a projection

is set in OpenGL using the glOrtho command, which has six parameters that
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define the positions of the clipping planes.

Such a projection is used when rendering top views, side views, etc., when

we want all the parallel lines to be parallel even when rendered. In Shadow

Mapping, it is used for directional lights such as the sun, which is so far away

that the clipping planes of the perspective projection would look much like

an orthographic projection.

1.3 Rendering to Texture

Rendering to texture is a way to render to an off-screen buffer instead of the

OpenGL window, which is usually the target for all rendering calls.

Shadow maps are dynamically created depth textures, meaning that they

are rendered before applied. Therefore, we will need a possibility to render

to a texture.

In OpenGL, there are these three options to render to a texture:

• Copying pixels - works on all hardware since it actually renders to

the framebuffer and then copies the pixels (using glCopyTexImage2D or

glCopyTexSubImage2D) from the framebuffer to a texture. It’s the slowest

possible solution, but also the most portable. The problem that occurs

is that every time a texture is rendered, the framebuffer has to be

cleared, which can be costly. Another problem is that the resolution of

the target texture cannot exceed the resolution of the window.

• P-buffers - Are Windows-specific and require the WGL_ARB_pbuffer ex-

tension. No copying of pixels is done and it actually renders to a P-

buffer, which can then be bound as a texture. Bounding a depth texture

is available only through the WGL_NV_render_depth_texture, which is an

NVIDIA specific extension. To use P-buffers on ATI and other video

cards for rendering depth textures, a pixel copy has to occur after the

rendering into the P-buffer is done. A P-buffer has it’s own render-

ing context and it can be costly to switch between contexts, especially

when done quite often.
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• Framebuffer Objects - Are the newest and probably the best perfor-

mance solution for rendering to a texture. Another framebuffer is cre-

ated in the video memory and similar to a P-buffer, the framebuffer can

be used as a texture. The problem with this implementation is that it

requires newer graphics cards. It requires the GL_ARB_framebuffer_object

extension and it’s platform-independent in comparison to P-buffers.

We will provide an implementation of the first option in Chapter 4. The

demo program is using pixel copy or P-buffers, depending on the extensions

supported by the graphics card.

1.4 The OpenGL Shading Language

The OpenGL Shading Language(GLSL) is a language that allows OpenGL to

execute user-defined per-vertex and per-pixel operations on the GPU when

rendering primitives. GLSL is a language derived from C, enriched by addi-

tional keywords, specific types and operations. In [Rost06], authors provide

every information you might need about GLSL as well as a nice palette of

examples. The whole language specification for different language versions

can be found at [GLregistry].

1.4.1 OpenGL Rendering Pipeline

To better understand how GLSL works, a better understanding of the OpenGL

rendering pipeline is needed. An OpenGL program sends vertex information

such as position, normal or texture coordinate to the GPU. The raw vertex

data is processed and the result is a list of triangles with attributes assigned

to each vertex.

A vertex shader is a replacement of the OpenGL’s built-in per-vertex

operations. After these operations (such as transforming the vertex into eye

clip space or storing the color of the vertex) complete, rasterization occurs.

It is a process of converting stored primitives in clip space into pixels and

storing them in the framebuffer (which will then be shown on the screen).
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Then, for each pixel, per-fragment (also known as per-pixel) operations

occur. These operations include applying the right color of the pixel using

material color, vertex color, lighting, textures, . . . .

A simplified rendering pipeline is shown in Figure 1.3. The Vertex Trans-

formation field is replaced with a vertex shader and the Fragment Texturing

and Coloring field is replaced with a fragment shader.

Vertex
Transformation

Vertex Connectivity

Transformed
VerticesVertices

Fragments

Pixel
Positions

Colored
Fragments

Pixel
Updates

Primitive Assembly
Rasterization

Fragment Texturing
and Coloring

Raster Operations

Figure 1.3: Simplified OpenGL Rendering Pipeline

1.4.2 Special Variables

Vertex shaders and fragment shaders need to communicate with each other.

The output of a vertex shader can be the vertex color for each corner of

a triangle. Since the application only specifies these corners, some kind of

interpolation has to occur between the corners of the triangle to actually

make a smooth gradient between the corners. varying variables allow that.

A varying variable is set in a vertex shader (let it be the color of the vertex)

and is read in a fragment shader. But the value read in the fragment shader
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is always bilinearly interpolated between all three corners of the triangle.

Meaning that if every corner of a triangle has a different color, then the

resulting coloring of the triangle will be a smooth color gradient between the

colors specified in the corners. The further the fragment is from a corner,

the less color is applied from that specific corner.

Shaders also need to be controlled by the application. Telling the shader

what color the lights are or how the vertices should be transformed cannot be

done by sending additional vertex information. Therefore, uniform variables

are present in both vertex and fragment shader to allow global input variables

to be sent to the shaders. The application programmer only has to recognize

the right uniform variable (access it by name) and can then set it’s value

using one of the glUniform functions. Setting an uniform variable will make

all future render calls have the value specified by the programmer stored

in the shader’s variable. That way, the programmer can control the shader

(such as disable texturing for objects that do not have texture coordinates

or use normal mapping for objects that have a normal map).

The shader programmer can also define custom vertex attributes (using

the attribute keyword) and send custom vertex data using the glVertexAttrib

functions. These variables are accessible only by a vertex shader, since the

fragment shader has nothing to do with triangle vertices, only with pixels.

1.4.3 Shader Example

Vertex and fragment shaders are usually coupled together. This is because

of the shared varying and uniform variables. A simple vertex shader looks

like the one in Listing 1.2.

1 void main()

2 {

3 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

4 }

Listing 1.2: Simple vertex shader

10



Each shader, be it vertex or fragment, has to have a main method, similar

to a C executable program. The vertex shader in Listing 1.2 takes a built-in

uniform variable that is a transformation matrix from world space to camera

clip space. This matrix is simply the OpenGL modelview matrix multiplied

with the OpenGL projection matrix. It transforms the built-in vertex at-

tribute gl_Vertex, which actually contains the value specified by a program

call to glVertex, and stores it into gl_Position, which is the output of the

vertex shader (besides the varying variables that are set in the shader).

1 void main()

2 {

3 gl_FragColor = vec4 (1.0, 0.0, 0.0, 1.0);

4 }

Listing 1.3: Simple fragment shader

A hello-world-like fragment shader is shown in Listing 1.3. The only thing

that happens in the shader is that the color of the fragment is set to red.

This results in any geometry that is drawn to be completely red (if the clear

color is set to a different color, you will be able to distinguish the background

and the objects).

Shaders contain a number of built-in functions and types for simplifying

certain operations. The types are vectors, matrices, samplers, etc. and

the functions are usually basic operations with those types, such as matrix

multiplication, linear interpolation, vector dot product, . . . . The samplers

are used for sampling a texture in a shader.

The key function for us is shadow2DProj(sampler2DShadow, coord). It sam-

ples a depth texture bound to a sampler2DShadow variable at the specified

texture coordinate. It automatically performs depth comparison and there-

fore simplifies the shaders used for Shadow Mapping rapidly. The function

returns a 4D vector, but only the first coordinate is interesting. The first co-

ordinate will be 1 if the fragment’s depth is greater than the sampled value

from the depth map, 0 otherwise.
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Shaders can do a lot of computation, not just simple math. An example

of a per-pixel Phong shading is shown in Listing 1.4.

1 uniform sampler2D texture0; // Texture

2 varying vec4 color; // Input color

3 varying vec2 texCoord; // Input texture coordinate

4 varying vec3 position; // Input position of point in 3D

5 void main() {

6 vec4 outColor = texture2D(texture0 , texCoord) * color;

7 float d = distance(position , light [0]. position);

8 float att = 1.0 / (1.0 * d + 0.1 * d * d);

9 vec3 N = normalize(normal);

10 vec3 V = normalize(-position);

11 vec3 L = normalize(light [0]. position - position);

12 vec3 R = normalize(reflect(L, N));

13 float NdotL = max(dot(N, L), 0.0);

14 if(NdotL > 0.0) {

15 vec4 vAmb = att*light [0]. ambient*outColor;

16 vec4 vDif = att*light [0]. diffuse*NdotL*outColor;

17 float RdotV = max(dot(R, V), 0.0);

18 vec4 vSpe = light [0]. specular * pow(RdotV , material.

shininess);

19 outColor.rgb = vec3(vAmb + vDif + vSpe);

20 }

21 gl_FragColor = outColor;

22 }

Listing 1.4: Per-pixel Phong shading - Fragment Shader
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Chapter 2

Shadow Mapping

Shadow Mapping was first introduced by Lance Williams in [Williams78].

The algorithm requires only an additional render pass for the whole scene

geometry. Therefore it is relatively easy to implement when compared to

shadow volumes and it fully utilizes the power of the graphics processor.

The algorithm works in multiple rendering passes, usually one for each

light in the scene and some additional passes to render the final scene.

To simplify things, let’s have just one light casting shadows. How do we

determine which points in our scene are lit and which are shadowed? If we

could extend the rays emitting from the light, only the closest point to the

light (hit by a ray) will be lit by it. All other points will be shadowed by the

object containing the closest point, as shown in Figure 2.1: The point P on

the object has distance d from the light, and therefore the point Q, which is

farther away on the line defined by the light’s position and the position of P

will be in shadow. We just have to do this for every single point that could

be lit. A straightforward approach would be very costly, but thankfully the

idea of Shadow Mapping will reduce the computation time significantly.

By rendering the scene from the light’s point of view and storing the

rendered depth values into a depth texture (called the shadow map) from

that render pass, we will acquire the distances of all the points that are lit

by the light. The final rendering pass would only need to compare the right
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Figure 2.1: Shadow Mapping geometry

depth value from our stored shadow map with the point that is currently

being rendered. If the distance of the point is almost exactly the value

stored in the shadow map, then this point is lit by the light. If the distance

is greater, it is in shadow.

2.1 First pass

In the first pass, the scene is rendered from the light’s point of view. We

only need the depth values from this render pass, therefore no special com-

putations for lighting or other effects are needed (only the vertex positions

should be taken into account, ignoring vertex color and textures). We will

save the depth values into a texture (or render into it directly).

A depth texture can be interpreted as a grayscale image, where darker

color means higher depth (or higher distance from the camera position).
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In Figure 2.2, you can see a scene with shadows synthesized using Shadow

Mapping, and the shadow map for that scene represented as a grayscale

image.

(a) Scene with shadows (b) Scene’s shadow map

Figure 2.2: Shadow Mapping output

2.2 Second pass

We have a texture with depth values (our shadow map) that tell us how far

those pixels are from the light. But when pixels are rendered during the

second pass, the algorithm has to have a position in the shadow map to read

the values from. Therefore, we need to prepare a transformation matrix to

transform the pixels from object space to the light’s clip space. We had to

use this matrix in the first pass when rendering from the light’s point of view.

Therefore, we only need to save the matrix during the first pass and then use

it during the second pass.

Let us consider these 4×4 transformation matrices: VL will be the light’s

view matrix, PL will be the light’s projection matrix. Then the matrix trans-

forming the coordinates from object space to the light’s clip space will be

T = PL · VL.
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Consider a point in object space p = (x, y, z). Applying the matrix T to it

would represent

T · p = (PL · VL) ·


x

y

z

1

 = PL · q = r =


xr

yr

zr

1

 .

Where q is p transformed into the light’s eye space and r is q projected

into the light’s clip space. That means that r(or (xr, yr)) represents the

position of the pixel to be queried in the shadow map.

Calculation of this matrix is done on the CPU since it only has to be

done once per light. Afterwards, it will be sent to the shader that renders

the second pass.

We have the shadow map and the transformation matrix prepared. The

second pass is not that different from a normal scene rendering. It only has

to compare the depth values for each pixel it renders and either perform light

computation (if it is lit by the light) or apply the shadow color. The shadow

color doesn’t neccessarily have to be black and in the shader implementation

proposed, it can be either a fixed color or a simple ”absence of light”, meaning

the light won’t contribute to the pixel’s output color.

If there were more lights in the scene, it becomes more complex. Without

shaders, it would require one final pass per light, resulting in a total of 2n

passes, where n is the number of lights. We will not discuss this option

here, since shaders can handle second passes for each light in one single pass,

resulting in a total of n+ 1 passes.

2.3 Problems and Limitations

There are certain problems that occur when using this technique. One of

them is the floating point number precision problem. When the depth is

stored in the shadow map and the final scene is rendered, all the rendered

pixels suffer from floating point precision problems. This results in so-called
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Moire patterns, which are unwanted artifacts shown in Figure 2.3. The Moire

patterns are caused by the fact that two lit pixels near to each other might

(due to precision problems) be evaluated so, that one of them is lit and the

other is not. To avoid this, we will need to add a small bias to the depth

values in the shadow map. That way, values queried from the shadow map

will be slightly higher than the actual distance from the light. OpenGL has

a function for this called glPolygonOffset.

(a) Without polygon offset, unacceptable (b) With polygon offset, no moire patterns

Figure 2.3: Polygon offset

Another limitation is the resolution of the shadow map. The higher the

resolution, the preciser the shadow map. But increasing the shadow map

size decreases performance rapidly and the increased precision is not usually

worth it. It depends on the hardware used and the complexity of the rendered

scene as well as a lot of other aspects, it is usually good to experiment a bit

and find the right resolution that still doesn’t decrease the performance too

much but is large enough. To improve it further, filtering of the shadow map

is present in most algorithms.

If we were to cover an entire scene with shadow-mapped shadows, we

would have to use 6 different shadow maps (like a cube map), since the

light viewing volume cannot cover an entire scene. Imagine a room with

a point light in the exact middle, meaning that shadows can be cast in all

ways. Certain Shadow Mapping techniques get rid of this problem, and using
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directional lights avoids this problem.

2.3.1 Filtering

There are many different techniques how to filter a shadow map. A nicely

filtered shadow map could be used to produce soft shadows. A straightfor-

ward approach is to read multiple shadow map values when doing the shadow

lookup in the fragment shader. This technique is called percentage-closer fil-

tering (PCF). It’s main drawback is that multiple texture lookups decrease

the performance rapidly, as seen in Section 5.2.

An additional render step could occur between the first and the second

pass to filter the depth texture that was the output of the first pass. Us-

ing a gaussian blur or a different convolution could produce quite good soft

shadows, but there are lots of things that need to be taken into account. In

[Donnelly06], authors introduced a way of rendering soft shadows without the

need to actually filter the shadow map. Also, the authors of [Lloyd08] used

reparametrization and analysis of shadow map aliasing to reduce aliasing.
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Chapter 3

Parallel-Split Shadow Mapping

The simple Shadow Mapping algorithm is not precise enough. Therefore,

many algorithms that improve the shadow map precision are being used.

The shadow map size is limited by hardware (most graphic cards cannot

handle texture with resolution higher than 4096× 4096). Therefore, the idea

of using multiple shadow maps at once was introduced. Also, when using the

simple Shadow Mapping for a large scene such as a city, the shadow map has

to cover the whole city and thus the coverage of the entire scene by this one

shadow map will result in strongly decreased precision.

Parallel-Split Shadow Mapping is one of the techniques that uses multiple

shadow maps for one light. The main idea is to split the view frustum with

parallel splits (parallel to the near and far plane) into smaller frusta and

then synthesizing one shadow map per frustum. It was first introduced in

[Zhang06] and further examined in GPU Gems 3 [Nguyen07], in Chapter 10,

which is dedicated to PSSM.

How the algorithm works is shown in Figure 3.1. There are 4 splits,

meaning that for each of these parts, a single shadow map is created. Point

P on the first object is lit, this information is retrievedby looking up the

value in shadow map for the third split. Point Q is in shadow, because

it has the same lookup position in shadow map as point P , but is farther

away. If point Q was in the last subfrustum, we would be querying if it
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is shadowed or not from the last shadow map. All the shadow maps have

the same resolution, therefore the near and far planes of the split parts are

the controlling elements and by altering them, we adjust the aliasing. The

point is to use preciser shadow maps for objects that are closer to the viewer

(since these objects will be larger in the final image) and thus improving the

precision.

Near
plane

Far
plane

Top
plane

Bottom
plane

Light

Camera

d

P

Q

Split 0         Split 1                  Split 2                      Split 3

Figure 3.1: Parallel-Split Shadow Maps

The algorithm can be divided into these steps:

1. Split the view frustum into n parts depending on the split scheme

2. Calculate the light’s view matrix for each of these parts

3. Generate shadow maps (with resolution w×h for each of the splits) by

rendering the scene from the light’s point of view

4. Render the final scene with shadows applied, choose which shadow map

to use based on the depth of the pixel being rendered
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3.1 Step 1 - Splitting the View Frustum

The problem that emerges is how to place the splitting planes. Analyzing

how Shadow Map Aliasing depends on the distance of rendered objects (in

the final scene render, when applying the shadow map) will help us find the

optimal split positions.

When rendering the scene from a certain point of view, objects that are

farther away from that point will be smaller in the output image. Meaning

that when we render the scene from the light’s point of view (as described

in Chapter 2), objects that are far away from the light will be very small,

covering only a few pixels in the result image. But when the camera is close to

this object when rendered with shadows applied, the actual objects are large

but the pixels in the shadow map representing their distance from light cover

only a small area. This results in strong aliasing artifacts when performing

simple Shadow Mapping.

The first thing that comes to mind would be to split the frustum uni-

formly. The position of the split plane i would then be

Ci
uni = n+ (f − n) ∗ i

m
.

where n is the near plane, f the far plane and m the number of splits. This

is called the uniform split scheme.

But it does not describe how the pixel count decreases with increasing

distance from light. The decrease is much more similar to an exponential

function rather than a simple linear function. This means that the uniform

scheme will cause over-sampling in parts that are farther and under-sampling

for objects that are close to the camera. All this happens because the first

sub-frustum of the camera frustum is too large and the last sub-frustum is

too small. A logarithmic split scheme seems much more appropriate:

Ci
log = n+

(
f

n

) i
m

.

This scheme is much more fitting but it causes opposite problems to the

problems caused by the uniform split scheme. Over-sampling occurs for close
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objects and under-sampling for distant objects. Therefore, a combination of

the logarithmic and the uniform split scheme should be sufficent. The final

scheme looks like

Ci = λ · Ci
log + (1− λ) · Ci

uni.

Where 0 ≤ λ ≤ 1. The parameter λ allows us to control the sampling

efficiently. In our experiments, λ = 0.5 seemed like the best compromise

for close as well as distant objects. The parameter could also be changing

dynamically according to scene conditions, but it would require some scene

analysis.

3.2 Step 2 - Generating Shadow Maps

Before the final scene render can occur, one shadow map for each of the

splits needs to be rendered. It is simply a matter of setting the right light

view volume for each part and render a shadow map the same way the simple

Shadow Mapping algorithm does it. That means we need one view-projection

matrix per split for the light, looking from the light’s position on the split.

There are two ways this can be done. The Scene-Independent projection

constructs an axis-aligned bounding box (AABB) for each subfrustum and

makes a view-projection matrix that is looking exactly at the AABB. After-

wards, the near and far plane of the light viewing frustum can be altered to

encapsulate the subfrustum as tight as possible. But the near plane cannot

be moved too far away from the light, because there can be some objects

casting shadows between the light and the subfrustum. As shown in Figure

3.2, if we move the near plane of the light viewing frustum too close, shadow

values for object P would not be stored in the shadow map and therefore,

the object would not be casting shadows.

The Scene-Dependent projection takes all the objects in the subfrustum

and calculates an AABB that contains all the objects. This may result into

a smaller AABB than the Scene-Independent projection and thus using the

same resolution shadow map for smaller space, resulting in increased shadow
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Figure 3.2: PSSM - Light’s viewing frustum

map precision. When the light’s viewing frustum is altered (to encapsulate

the AABB of the split), the near plane of the frustum must not be moved,

since there could be objects casting shadows between the light and the sub-

frustum of the split.

In Figure 3.3, you can see a scene rendered with PSSM shadows and

the shadow maps for that scene. Notice that the Bunny is in each of those

shadow maps, that is because of the near plane positioning, since the bunny’s

shadow actually lies in all of the splits. There are two sets of maps shown, one

using the Scene-Independent projection and one using the Scene-Dependent

projection where the Bunny is casting shadows and the ground and the Bunny

are recieving shadows.

3.3 Step 3 - Rendering the scene

Finally, all the shadow maps are applied to the scene when doing the final

render. It is very similar to the simple Shadow Mapping, but each of the

splits has it’s own light view-projection matrix and it’s own shadow map.
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(a) Scene with PSSM shadows

(b) The shadow maps - Scene Independent projection

(c) The shadow maps - Scene dependent projection

Figure 3.3: Parallel-Split Shadow Mapping output

The scene can be synthesized in multiple passes (one for each split), resulting

in decreased performance. Doing one final pass for each split would result in
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2n rendering passes (one to generate the shadow map, one to apply it).

Using a complex shader can replace the final renders with one single

render. The fragment shader loops through all the shadow maps (starting

with number 0, the closest to the camera) and tests if the fragment’s depth

is in the range for the current shadow map. If it is not, it just continues to

the next map. If it is, it does the shadow lookup, applies the shadow color

depending on the lookup result and breaks the loop. This way, the number

of rendering passes is decreased to n+ 1.

3.4 Problems and Limitations

Despite the fact that the algorithm proposed in this chapter improves shadow

map precision significantly, it has a few limitations. The shadow map aliasing

is reduced to an acceptable level and only small parts of the shadow maps

are not being used.

The first drawback is the fact that everytime the camera moves, the

shadows need to be recalculated. In the simple Shadow Mapping algorithm,

a static scene with a static light would require the shadow map to be rendered

only once and then applied when rendering. The gained performance is

usually negligible, since most scenes are not static.

There are certain unwanted artifacts appearing when using the parallel-

split approach. When moving the camera quickly, the edges of the shadows

might ”shake”. This happens due to the constant changes of the actual

shadow maps, which occur when cropping the light’s viewing volume for

each split part. The shaking is usually not noticable, but could be a major

distraction when using smaller resolution shadow maps. Applying a blur filter

to the shadow map might solve the problem and even provide soft shadows.

The second drawback is that each of the shadow maps are rendered to

a different render target. Switching between render targets might be costly,

especially when using pixel copying due to the need to clear the window’s

framebuffer everytime the rendering to the texture is complete (see Section
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1.3). One solution would be to use different render target technique such as

the already mentioned P-buffers or framebuffer objects.

Another solution would be to pack the rendered shadow maps into one

texture, placing the separate shadow maps next to each other. It would

require more complex shaders, shadow map coordinate calculation etc., but

the gained performance might be worth it. On the other hand, we would

once again be limited to the maximum texture size.

3.5 Further Optimizations

It is possible to further reduce the number of rendering passes to 2 using

rendering to a texture array in the first pass and thus generating all the

shadow maps in one pass. Another approach with only 2 passes is using

geometry shader cloning. For more information about these approaches in

DirectX 10 and higher, see Chapter 10 in [Nguyen07].

In OpenGL, it is possible to render to multiple textures in one render-

ing pass when using the Framebuffer Objects for rendering to textures. A

Framebuffer Object can have different textures attached to each of the Frame-

buffer’s GL_COLOR_ATTACHMENT*_EXT. In this kind of setup, the output of a frag-

ment shader is not the variable gl_FragColor but an array of output vectors

named gl_FragData. Setting the value of gl_FragData[i] sets the pixel of the

texture attached as GL_COLOR_ATTACHMENTi_EXT.

We will not be able to avoid the geometry shader, since the fragment

shader is only able to store values to each texture on one fixed coordinate.

Despite the gl_FragData variable, the output values written are always on the

same (x, y) coordinate in each of the attached textures.

Geometry shaders are available through the GL_EXT_geometry_shader4 ex-

tension in OpenGL. Every triangle in the scene should be cloned n−1 times,

resulting in one triangle copy per split, and then rendered to the right depth

texture. Access to shadow maps will be through the color attachment to

the Framebuffer Objects. This way, the total number of rendering passes
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becomes 2 for one light.

It would be possible to synthesize shadows for multiple lights (and mul-

tiple splits) in one rendering pass. It would require a similar approach, but

the number of shadow maps/splits/lights will be limited by the maximum

number of attachable textures to a Framebuffer Object(less than 16 even

for newer video cards). Since Parallel-Split Shadow Mapping works best for

directional lights such as sunlight, more lights will not usually be needed.
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Chapter 4

Implementation

With the theory explained, we will now provide an implementation of the

algorithms mentioned. This includes rendering to a texture, which is a crucial

part of the algorithms, since we could not continue without it. We also

propose an interface to hide different implementations of the rendering to

texture techniques. As next, we will show an implementation of the standard

Shadow Mapping, packed into a reusable, easy-to-use class. In the final

section, we will extend the Shadow Mapping class to incorporate Parallel-

Split Shadow Mapping.

4.1 Rendering to Texture

We are looking for a unified interface that would encapsulate all the methods

that allow rendering to a texture. We called the interface IRenderTarget.

Specific implementations of the rendering to texture will be inherited from

this interface. The IRenderTarget interface will have the methods shown in

Listing 4.1.

The function FetchTexture binds the already rendered texture to a tex-

ture layer. Usually, this just calls glBindTexture with a previously created

texture. When a texture is bound, it should not be rendered into, therefore

we also incorporate a ReleaseTexture function, which releases a previously
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fetched texture. The releasing of the fetched texture is not neccessary for

certain implementations (e.g. when only copying pixels to a texture from the

framebuffer, releasing a texture becomes unneccessary).

1 class IRenderTarget

2 {

3 public:

4 uint32 GetWidth ();

5 uint32 GetHeight ();

6 virtual void FetchTexture(uint32 layer) = 0;

7 virtual void ReleaseTexture () = 0;

8 virtual void MakeCurrent () = 0;

9 virtual void OnFinishRendering () {}

10 RenderTargetFormat GetFormat () { return format; }

11 protected:

12 RenderTargetFormat format;

13 };

Listing 4.1: IRenderTarget interface

The function MakeCurrent makes the texture the current render target,

resulting in all drawing operations called after calling MakeCurrent to be exe-

cuted in our render target (and therefore rendering to the texture).

Finally, the OnFinishRendering function is called whenever the active ren-

der target becomes inactive (being replaced by another render target that

makes a call to MakeCurrent, where the render target can be the window’s

framebuffer).

We will now provide an implementation of the copying pixels rendering

to texture. The class CCopyPixels will implement the IRenderTarget interface.

The constructor prepares a new texture with certain width and height as

well as a desired pixel format. A texture in OpenGL can either have color

channels or depth channel, not both at one time. Therefore, if the pixel

format has both color bits and depth bits, 2 different textures need to be

created (one color and one depth texture). Then, the FetchTexture function

has to have two versions, one for each of the textures used.

The destructor only deletes these two textures (if any of them was cre-
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ated). The MakeCurrent function saves the values of the current window view-

port (because it should be restored once the rendering to texture is finished)

and sets the viewport to the size of the texture. The problem that occurs

here is that the size of the rendered texture cannot exceed window resolution,

it would result in errorneous results in the parts of the texture that are not

inside window bounds, because OpenGL would not be able to render in those

parts since the viewport would have to be bigger than the window itself.

MakeCurrent also has to clear the framebuffer using glClear, there would

otherwise be artifacts from previous rendering. The OnFinishRenderingmethod

should be executed as well for the current render target to allow it to fin-

ish it’s current rendering and restore values it has changed. This step is

crucial, because switching between different types of render targets (for ex-

ample having one P-buffer and one copying pixels render target) can cause

a lot of errors.

The function OnFinishRendering has to actually copy the pixels rendered

from the window’s framebuffer to the texture. It is only a matter of calling

glCopyTexImage2D accordingly (and for both the color and the depth textures,

of course). It should also clear the framebuffer, otherwise rendering to the

window afterwards would have problems with kept depth values from the

previous render. The depth test would simply read the values that remained

in the framebuffer and therefore would most likely produce errorneous images.

Restoring of the viewport is also crucial, as well as storing it when MakeCurrent

is called.

FetchTexture simply binds the texture(s) to the right texture units. ReleaseTexture

can remain empty, since no releasing of textures needs to occur.

4.2 Shadow Mapping

There are lots of different implementations of simple Shadow Mapping. One

of them even uses 3 rendering passes ([PaulsProjects]) for one light Shadow

Mapping. We have chosen an implementation in OpenGL and OpenGL Shad-
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ing Language for shaders. It requires only the mentioned n+ 1 passes for n

lights. We create a class implementing a simple interface, so that anyone can

use it without even knowing how it works:

1 class CShadowMapping {

2 public:

3 CShadowMapping(uint32 depthBits , uint32 w, uint32 h);

4 ~CShadowMapping ();

5 void StartRendering(const CLight& l);

6 void EndRendering ();

7 void FetchTexture(uint32 layer , bool fetchForRender);

8 void ReleaseTexture ();

9 private:

10 Shader* plainShader;

11 Shader* shadowMapShader;

12 IRenderTarget* renderTarget;

13 mat4 lightMatrix;

14 };

Listing 4.2: CShadowMapping class

What most programmers want is an easy-to-use interface for working with

a class. Such usage is shown in Listing 4.3.

1 CShadowMapping sm(24, 2048, 2048);

2 void RenderScene () {

3 CLight light (...);

4 // first pass , render shadow map

5 sm.StartRendering(light);

6 scene.Render ();

7 sm.EndRendering ();

8

9 // second pass , render scene with shadows

10 sm.FetchTexture (1, false);

11 scene.Render ();

12 sm.ReleaseTexture ();

13 }

Listing 4.3: CShadowMapping usage
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The class CLight contains light information that we will need (specifically

only position and direction is required, the color values are not important

for creating the shadow map). The light’s position will be used when storing

the lightMatrix variable and also during the first pass.

In Listing 4.3, an instance of our class is created and a 2048×2048 shadow

map with 24-bit depth buffer is prepared. Then, in the function RenderScene,

which is called once every frame, we have a light with certain position and

direciton. We use this light’s values to set up the light view and projection

matrix and then we render the whole scene. We are using a plain shader

that will ignore colors or lighting computation, since we need only the depth

values for each pixel.

Then comes the second pass, where the shadow map is bound to the

second (the first has number 0) texture unit. It also selects the shadow map

shader for rendering, which contains the depth comparisons as well as color

and light computation, since it’s the final pass. Afterwards, depending on

the implementation, the shadow map might need to be released.

4.2.1 Core functions

First of all, we need an implementation of the IRenderTarget interface. We

won’t be paying attention to that since it can be implemented in many ways,

one of them described in 4.1. In the class constructor, the renderTarget

is prepared with parameters as specified and the shaders are loaded. The

renderTarget should have 0 color bits as well as stencil bits to save video

memory.

The class destructor just deletes what the constructor has allocated. The

most important functions are StartRendering and EndRendering. A simplified

implementation is shown in Listing 4.4 and Listing 4.5.

StartRendering first switches to our render target, so we can render the

shadow map into it as well as selecting the plainShader for rendering. Then,

we save the modelview and projection matrices(only to ensure that calling

StartRendering and EndRendering won’t alter them). Afterwards, we set the
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polygon offset to avoid floating point precision problems. And then we just

set the projection and modelview matrix to look from the light in the light’s

direction. We also store the light matrix for further computation (will be

needed to calculate T (see Section 2.2)).

1 void CShadowMapping :: StartRendering(const Light& l) {

2 MakeCurrent(renderTarget); plainShader.Use();

3 // Save modelview and projection matrix here

4 // Enable polygon offset

5 glPolygonOffset (2.0f, 1.0f); glEnable(

GL_POLYGON_OFFSET_FILL);

6 SetProjectionMatrix(Perspective (45.0 , 1.0, 1.0, 50.0));

7 SetViewMatrix(LookAt(l.pos , l.dir , vec3(0, 1, 0)));

8

9 // Save the light matrix for the final render

10 lightMatrix = GetProjectionMatrix () * GetViewMatrix ();

11 }

Listing 4.4: StartRendering function

1 void CShadowMapping :: EndRendering () {

2 glDisable(GL_POLYGON_OFFSET_FILL);

3 // Load saved matrices from StartRendering

4 plainShader.BackToFixedFunctionality ();

5 MakeCurrent(window);

6 }

Listing 4.5: EndRendering function

The perspective projection has Field of view (FOV) set to 45◦ and aspect

ratio to 1 since it’s the best setting for saving precision. The near and far

plane can be adjusted depending on the scene or what the user requires from

the algorithm. By setting the far plane too close to the near plane, certain

parts of the shadow map might no be rendered correctly (since what is about

to be rendered will be behind the far plane), and setting the near plane to

a number close to 0 will reduce the precision of the depth values. These

parameters should always be chosen wisely.
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EndRendering simply returns to the state before StartRendering was called

and makes the current render target the window.

FetchTexture calculates our matrix T and sends it to the shader, which will

apply the transformations for rendered primitives to enable the application

of the shadow map. An implementation is shown in Listing 4.6.

1 renderTarget ->FetchTexture(layer);

2 if(! fetchForRender) {

3 shadowMapShader.Use();

4 shadowMapShader.SetUniform("shadow", (int32)layer);

5 }

6 if(fetchForRender)

7 return;

8 float32 bias [16] = {

9 0.5f, 0.0f, 0.0f, 0.0f,

10 0.0f, 0.5f, 0.0f, 0.0f,

11 0.0f, 0.0f, 0.5f, 0.0f,

12 0.5f, 0.5f, 0.5f, 1.0f };

13 mat4 VcInv = GetViewMatrix ().Invert ();

14 mat4 T = mat4(bias) * lightMatrix * VcInv;

15 shadowMapShader.SetUniform("shadowMatrix", T);

Listing 4.6: FetchTexture function

Lines 1, . . . , 5 set up the texture specific parameters and prepare the shader

for Shadow Mapping. The remaining part of the function calculates the

matrix T and sends it to the shader. The bias matrix just maps the corners

of the shadow map from (0. .1, 0. .1) to (-1. .1, -1. .1) and thereby stretching

the shadow map to cover the clip space. If we omitted the bias matrix, only

the top right quarter of the output image would be affected by the shadow

map, and thus would be errorneous.

If the fetchForRender flag is true, the texture (shadow map) will be fetched

for rendering, meaning it can be rendered as a normal grayscale image where

the lightness of the pixel represents the depth value.

The ReleaseTexture function is usually not needed and strongly depends

on the implementation of the IRenderTarget.
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4.2.2 Shaders

Now we will clarify what happens on the GPU side of the algorithm. The

plainShader is a very simple ”hello world - like” shader that only renders

all primitives white. It is only used for rendering the shadow map, being

otherwise quite useless.

1 // vertex shader

2 void main()

3 {

4 gl_Position = ftransform ();

5 }

6

7 // fragment shader

8 void main()

9 {

10 gl_FragColor = vec4 (1.0, 1.0, 1.0, 1.0);

11 }

Listing 4.7: Plain shader

The shadowMapShader, on the other hand, is much more complex. The actual

depth comparison occurs here and all lighting computation as well (which

we can skip).

The vertex shader in Listing 4.8 does the following: Sets the shadowCoord

variable, which will be the lookup position in the shadow map for the vertex.

By taking a closer look at line 6, this happens:

r =


xr

yr

zr

wr

 = T ·


x

y

z

1


where r is the shadowCoord variable. We transform the vertex position in

object space into the light’s clip space and therefore resulting in the shadow

map coordinates for this vertex.

Lines 7 and 8 of Listing 4.8 simply prepare the texture coordinates and

place the vertex.

35



1 uniform mat4 shadowMatrix;

2 varying vec2 texCoord;

3 varying vec4 shadowCoord;

4 void main()

5 {

6 shadowCoord = shadowMatrix * gl_Vertex;

7 texCoord = (gl_TextureMatrix [0] * glMultiTexCoord0).st;

8 gl_Position = ftransform ();

9 }

Listing 4.8: Shadow Mapping Vertex Shader

The fragment shader is a bit more complex, it has to compare the value in

the shadow map and depending on the return value to either let the fragment

as it is or apply the shadow color to it.

1 uniform vec4 shadowColor;

2 uniform sampler2D texture;

3 uniform sampler2DShadow shadowMap;

4 varying vec2 texCoord;

5 varying vec4 shadowCoord;

6 void main()

7 {

8 vec4 output = gl_Color * texture2D(texture , texCoord);

9 float val = shadow2DProj(shadow , shadowCoord).r;

10 vec3 cp = shadowCoord.xyz / shadowCoord.w;

11 if(cp.x >= 0.0 && cp.x <= 1.0)

12 if(cp.y >= 0.0 && cp.y <= 1.0)

13 if(shadowCoord.w > 0.0)

14 output.rgb = mix(output.rgb , shadowColor.rgb ,

15 shadowColor.a * (1.0 - val));

16 gl_FragColor = output;

17 }

Listing 4.9: Shadow Mapping Fragment Shader

First, as Listing 4.9 shows, we calculate the lit value of the pixel by combining

the texture in the first texture unit and the pixel’s base color. The resulting

color is then stored to output. Afterwards we use the built-in shadow com-

parison function shadow2DProj that performs the lookup of the shadow map.
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shadow2DProj takes 2 parameters: shadow which is a binding of the shadow map

and shadowCoord which specifies where to look. The result is a 4D vector, but

only the first value (the r component) is important, since our depth texture

has only one color channel. The result is either 0 or 1, telling us if the pixel

is shadowed or lit, respectively. As next, the normalized coordinates in the

shadow map need to be compared whether they are in range [0, 1], because

the 2D coordinate (0, 0) is one of the corners of the shadow map and (1, 1) is

the opposite corner. Therefore, values that are out of range cannot possibly

contain useful data.

Finally, depending on how the 4D vector shadowColor is specified, the color

is mixed. If the alpha component of shadowColor is 0, the shadow’s color will

not have any effect, and if the alpha is 1, the shadow’s color will completely

replace the color of pixels that are shadowed. That all is done by the mix

function.

4.2.3 Multiple lights

The implementation we showed only produces shadows for one light. Pro-

ducing shadows for multiple lights is possible with only a few minor changes

to the shaders and the program. The vertex shader has to recieve the light

view matrix for each of the lights and transform the position into the each

light’s clip space. Meaning that we will need a varying shadow coordinate

variable for each light.

There has to be one texture sampler per light as well, since we will need

to access multiple shadow maps in the fragment shader. Then, depending on

how the shadows are actually displayed (either ”absence of light” or applied

color), we apply all the shadow maps at once. There are no limitations and

no problems occur when combining shadow maps this way, therefore it is

relatively easy to implement and the results are promising.
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4.3 Parallel-Split Shadow Mapping

The implementation will be very similar to the simple Shadow Mapping in

Section 4.2, using OpenGL and GLSL. The goal is, once again, to create

a class that someone could use without knowing what happens inside the

implementation. The interface class will be very similar, but it will contain

certain changes. There will be the need to determine how many splits there

actually are, and also how many should be used (so we can change the number

of splits while running the application). It should also provide access to the

alias-controlling variable λ, if the programmer would want to attach some

aliasing adjusting. The proposed class interface is shown in Listing 4.10.

1 class CPSSM

2 {

3 public:

4 CPSSM(uint32 maxSplit , uint32 dBits , uint32 w, uint32 h);

5 void StartRendering(CLight l, uint32 s, CCamera c);

6 void EndRendering ();

7 void FetchTexture(uint32 i, uint32 l, bool fetchForRender

);

8 void ReleaseTexture(uint32 i);

9 void FetchTextures(uint32 startLayer);

10 void ReleaseTextures ();

11 uint32 activeSplits;

12 float32 lambda;

13 private:

14 array <IRenderTarget*> renderTargets;

15 Shader* plainShader;

16 Shader* pssmShader;

17 };

Listing 4.10: CPSSM class interface

The constructor only creates n render targets, where n is the maximum

number of shadow maps used. It also loads the shaders used. The plainShader

stays the same as in the simple Shadow Mapping algorithm. The destructor

cleans up all these. StartRendering and it’s pair function EndRendering will
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be used to synthesize each shadow map. Finally, FetchTextures binds those

shadow maps to different texture units so that they can be applied in the

final render. ReleaseTextures simply releases previously fetched textures (if

neccessary).

1 ...

2 pssm.activeSplits = 4;

3 for(int i = 0; i < pssm.activeSplits; i++) {

4 pssm.StartRendering(light , i, camera);

5 scene.Render ();

6 pssm.EndRendering ();

7 }

8 FetchTextures (2);

9 scene.Render ();

10 ReleaseTextures ();

11 ...

Listing 4.11: CPSSM usage

As you can see in Listing 4.11, the interface remains clean and easy to use,

very similar to the one used in simple Shadow Mapping. At first, the number

of splits used is set. Afterwards, each of the shadow maps is synthesized by

rendering the scene multiple times.

If we were to modify the class to incorporate the Scene-Dependent projec-

tion, which tries to create a tighter bounding box, the StartRendering function

would require another parameter, an array of scene nodes contained in the

current split. The modification would not be very complex.

4.3.1 Core functions

As shown in listing 4.11, there are 4 important public functions that are used

in the class.

StartRendering is the most complex. It has to calculate the light’s view

matrix for the current split, as well as the split’s near and far plane. It also

stores the values calculated since they will be needed in the final render.

First, the view frustum for the current split is calculated and the 8 corners
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of this frustum are calculated.

Then, a light view-projection matrix is created to look from the light’s

point of view in the specified direction. Afterwards, the frustum planes are

adjusted to encapsulate all the 8 corners of the split’s frustum. This results

in a view-projection matrix that (when applied) will surely render everything

that is contained in the current split.

Finally, the render target is changed and the light’s view-projection ma-

trix is applied. The plainShader is also activated to decrease rendering time.

Polygon offset needs to be used once again to get rid of inaccuracies. A

simplified StartRendering function is shown in Listing 4.12.

EndRendering only disables polygon offset and makes the window the cur-

rent render target.

1 // Retrieve the split positions i and (i + 1)

2 float32 split1 = GetSplitPosition(i, near , far);

3 float32 split2 = GetSplitPosition(i + 1, near , far);

4 CCamera camera2 = camera1;

5 camera2.SetNearFar(split1 , split2); // sub -frustum

6 vec3 corners [8]; // Frustum

corners

7 camera2.GetFrustumCorners(corners);

8 BoundingBox b; // Bounding box in light ’s clip

space

9 for(uint32 i = 0; i < 8; i++) {

10 b.AddPoint(lightViewProj * corners[i]);

11 }

12 // Clamp BoundingBox to (-1, 1) interval

13 float32 newFar = b.max.z;

14 // Construct crop matrix from BoundingBox x and y extents

15 lightProj = crop * lightProj * lookAtMatrix;

16 plainShader ->Use(); // select shader

17 MakeCurrent(rt[i]); // select render target

18 // Enable Polygon Offset

19 // Set lightProj matrix

Listing 4.12: StartRendering function
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FetchTextures performs almost the same as FetchTexture from the simple

Shadow Mapping algorithm, only it does it for each of the shadow maps. It

also sends each matrix Ti(i = 0, . . . , n − 1) to the shader, where Ti is the

same matrix as the one in 2.2 only that the camera view frustum is now not

the whole frustum, but the subfrustum for the split i.

The function also has to send the information about how many splits are

currently active and what the split positions actually are. This is needed

since fragment shader has to decide which shadow map should it look into,

and that is done through a depth lookup. The depth of the fragment will be

exactly the distance from the camera’s near plane and therefore, the values

have to be delivered to the shader in a way.

4.3.2 Shaders for final render

With the CPU side of the algorithm explained, the only missing part is the

pssmShader that renders the final scene. To keep it simple, only the crucial

parts of the shaders are listed here.

1 const int MAX_PSSM_SPLITS = 9;

2 uniform mat4 pssmMatrix[MAX_PSSM_SPLITS ];

3 uniform int pssmCount;

4 varying vec4 pssmCoord[MAX_PSSM_SPLITS ];

5 void main()

6 {

7 for(int i = 0; i < pssmCount; i++)

8 pssmCoord[i] = pssmMatrix[i] * gl_ModelViewMatrix *

gl_Vertex;

9 gl_Position = ftransform ();

10 }

Listing 4.13: PSSM Vertex Shader

As you can see, the vertex shader is simple. It differs from the simple Shadow

Mapping only by looping through all the splits and calculating the texture

coordinates for each split separately.
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1 const int MAX_PSSM_SPLITS = 9;

2

3 uniform float pssmSplit[MAX_PSSM_SPLITS + 1];

4 uniform int pssmCount;

5 uniform vec4 pssmShadowColor;

6 uniform sampler2DShadow pssmMap[MAX_PSSM_SPLITS ];

7

8 varying vec4 pssmCoord[MAX_PSSM_SPLITS ];

9 void main()

10 {

11 vec4 output = texture2D(texture0 , texCoord);

12 float distance = -pssmCoord [0].z;

13 for(int i = 0; i < MAX_PSSM_SPLITS; i++) {

14 if(i >= pssmCount)

15 break;

16 if(distance < pssmSplit[i + 1]) {

17 float val = shadowLookup(i);

18 if(val > 0.0)

19 output = applyShadow(output , pssmShadowColor ,

val);

20 break;

21 }

22 }

23 gl_FragColor = output;

24 }

Listing 4.14: PSSM Fragment Shader

The fragment shader is also looping through the splits. Since the first split

(having the number 0) is the closest and each other is further away, a depth

check has to occur. It is used to determine in which subfrustum the current

pixel is (and thus which shadow map should be used). If we already find a

corresponding shadow map, we break the loop to increase performance.
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Chapter 5

Results

We are going to compare the output images of the two algorithms described

in Chapters 2 and 3. We will be using a few test scenes. The first one will

be the Stanford Bunny, the second one will be the Dragon and the final one

will be some basic geometric objects. All the scenes are shown in Figure 5.5.

5.1 Quality Comparison

(a) Shadow Mapping (b) Parallel-Split Shadow Mapping

Figure 5.1: SM and PSSM - Shadows far-away from camera

We will now compare the quality of the rendered shadows. As seen in

Figure 5.1, the difference is not visible when the camera is far away from
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the objects. Shadow Mapping in Figure 5.1(a) uses one 2048× 2048 shadow

map, while the Parallel-Split Shadow Mapping in Figure 5.1(b) uses 3 splits,

each of them 1024x1024 and λ = 0.5.

(a) Shadow Mapping (b) Parallel-Split Shadow Mapping

Figure 5.2: SM and PSSM - Shadows close to camera

The difference becomes noticable when the camera is close to the objects

and the light is far enough. A huge leap in quality is seen between pictures

in Figure 5.2. This is what Parallel-Split Shadow Mapping is best at. The

first split is small enough and therefore the precision is much better than the

simple Shadow Mapping algorithm.

(a) Precision change (b) Zoom-in

Figure 5.3: PSSM - Jump in precision
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PSSM retains a constant quality of shadows thanks to the sampling being

unaffected by the camera’s position. But there is one quality problem, which

is the jump in precision on the split planes.

As shown in Figure 5.3, you can see the change in precision and therefore

recognize the split. The question is if a player would notice this in a video

game. It can be altered by changing λ, but when λ is close to zero or to one,

the average sampling makes even bigger jumps on the split planes.

A good example of how λ alters the output quality, close-up screenshots

with λ = 1.0 (corresponding to the logarithmic split scheme) and λ = 0.0

(corresponding to the uniform split scheme) are shown in Figure 5.4.

(a) λ = 0.0 (b) λ = 1.0

Figure 5.4: PSSM - λ quality change

5.2 Performance

The performance of both algorithms is crucial, since video games need to

maintain a high frame rate, otherwise they are unplayable. The optimal way

is to find a solution that retains good precision, but is still quick enough.

The machine for testing was a Lenovo G560 Notebook with Intel Core

i3 330M 2.13 Ghz and an NVIDIA GeForce 310M. All tests were performed

in fullscreen in native 1366 × 768 resolution. No hidden-surface removal

techniques or frustum culling were used, rendering to texture was done using
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P-buffers and scene rendering was done through vertex arrays (no Vertex

Buffer Objects were used).

The quality was measured only visually and after compared to each other,

the best and the worst were chosen.

1024× 1024 2048× 2048

Test scene Triangles FPS Quality FPS Quality

Primitives 1300 328.3 Medium 180.0 Medium - High

Stanford Bunny 2947 320.0 Medium 161.3 Medium - High

Dragon 47826 75.9 Low 71.0 Medium

Table 5.1: SM - Different resolutions comparison

In Table 5.1, we compare Shadow Mapping with a 1024 × 1024 shadow

map and Shadow Mapping with a 2048×2048 shadow map. The results show

that there is not a big difference in quality between the two resolutions, but

on simpler objects like the Primitives or the low-poly Bunny, decreasing the

precision doubles the performance.

The shadow quality is lower for the Dragon, which does not have smooth

edges like the other two scenes tested. Low quality means that it would

strongly distract the player of the game.

In Table 5.2, we compare Parallel-Split Shadow Mapping using 3 maps

and λ = 0.5. Two resolutions were chosen, 512× 512 and 1024× 1024. The

lower resolution had worse results than the 1024×1024 Shadow Mapping due

to the strong ”shaking” of the shadows. The higher resolution, on the other

hand, had much nicer results while retaining a quite good performance.

One paradox occured with the Dragon, and that was that the lower reso-

lution achieved the same average FPS as the higher resolution. This is prob-

ably due to the fact that sending large amounts of triangles to the graphics

card was the bottleneck of the rendering, and therefore the actual render-

ing became unimportant. If we used some optimization techniques such as

Vertex Buffer Objects to reduce the CPU - GPU transfer, the results would
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3× 512× 512 3× 1024× 1024

Test scene Triangles FPS Quality FPS Quality

Primitives 1300 231.0 Low - Medium 162.7 High

Stanford Bunny 2947 214.3 Medium 147.2 High

Dragon 47826 36.9 Low - Medium 36.9 High

Table 5.2: PSSM - Different resolution comparison

certainly differ.

The second part of the tests uses percentage-closer filtering to filter the

shadow map with a simple 7 × 7 convolution kernel. Such a convolution

decreases performance rapidly, since for every fragment, the shader has to

read 49 values from the shadow map instead of 1 value. But the shaking in

PSSM is decreased strongly and the overall quality increases. The results are

shown in tables 5.3 and 5.4

1024× 1024 2048× 2048

Test scene Triangles FPS Quality FPS Quality

Primitives 1300 68.0 Medium 55.0 Medium

Stanford Bunny 2947 70.3 Medium 61.0 High

Dragon 47826 42.0 Low 38.0 Medium

Table 5.3: SM - 7× 7 Percentage closer filtering

3× 512× 512 3× 1024× 1024

Test scene Triangles FPS Quality FPS Quality

Primitives 1300 55.0 Low 53.0 High

Stanford Bunny 2947 65.0 Medium 51.2 High

Dragon 47826 27.5 Medium 24.3 High

Table 5.4: PSSM - 7× 7 Percentage closer filtering
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Notice in the Figure 5.5, that the dragon’s shadow is not as smooth as the

shadows of the bunny or the geometric primitives. This causes the shadows

for the dragon to require better shadowing techniques, otherwise the details

will be lost and the results will be more distracting than in the other two

test scenes.

Figure 5.5: Test scenes used
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Conclusion and Future Work

In this thesis, we have presented two algorithms that render real-time shad-

ows fast and efficient, while trying to reduce the error and improve the visual

appearance to be as realistic as possible.

The first approach is Simple Shadow Mapping, which incorporates the

rendering to an off-screen depth texture from the light’s point of view. That

way, we have a lookup texture that contains distance information for all

the objects that are visible from the light’s position (and thus are the only

ones lit). Our implementation uses OpenGL and GLSL and only uses one

light source casting shadows. The algorithm is easily extendable to support

multiple light sources while retaining a low number of rendering passes.

The second approach is Parallel-Split Shadow Mapping, a technique that

was presented in [Zhang06], which uses multiple shadow maps for one light

source to increase precision. The camera’s viewing frustum is split into a

few parts using split planes parallel to the near and the far plane and one

shadow map is used for each subfrustum. The algorithm is more complex

than simple Shadow Mapping and decreases peformance, but it is a good

quality enhancement.

In the future, a combination of some other Shadow Mapping improve-

ments and the Parallel-Split Shadow Mapping would be possible. These

include filtering of the shadow maps to achieve better results, because there

are lots of techniques that work better and faster than percentage-closer fil-

tering. If we were to produce soft shadows, we could incorporate another

rendering pass after the shadows are synthesized and before the final scene
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is rendered. Making a simple convolution on each of the shadow maps would

provide us with soft shadows, but the performance drop would be similar to

percentage-closer filtering.

Packing the shadow maps into one could also provide some performance

increase. Maybe even allow us to reduce the number of rendering passes.

But a more straightforward approach is to incorporate the geometry shader

as mentioned before to reduce the number of rendering passes.
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