
Comenius University, Bratislava
Faculty of Mathematics, Physics and Informatics

User Profile Module for matfyz.sk Portal
Bachelor’s Thesis

2014 Mária Šormanová



Comenius University, Bratislava
Faculty of Mathematics, Physics and Informatics

User Profile Module for matfyz.sk Portal
Bachelor’s Thesis

Study programme: Computer Science
Study field: 2508 Computer Science
Study department: Department of Computer Science
Supervisor: doc. RNDr. Zuzana Kubincová, PhD.
Consultant: RNDr. Martin Homola, PhD.

2014 Mária Šormanová



65511495

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT 

Name and Surname: Mária Šormanová
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: 9.2.1. Computer Science, Informatics
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: User Profile Module for matfyz.sk Portal

Aim: The goal of the thesis is to propose, develop and implement a profile module
of the portal matfyz.sk. The main challenge in this project is to design suitable
integration patterns of the profile module with the other existing parts of the
portal and associated applications. The profile should serve the purpose of
unifying the whole matfyz.sk portal and thus the logging users in and out of
the system will be taken over by it. It will also collect and visualize the data
from all of the associated applications providing the reader with the newest and
actual information about user's activity at the portal (apart from the personal
information and enrolled courses, e.g. recently published blog posts, comments
or wiki contributions, articles read lately, latest course activities, etc.). Since it
will also show badges and achievements collected by the user as well as her
progress in study, the profile could serve as a tool for motivation boosting in
students.

Supervisor: doc. RNDr. Zuzana Kubincová, PhD.
Consultant: RNDr. Martin Homola, PhD.
Department: FMFI.KZVI - Department of Informatics Education
Head of
department:

doc. RNDr. Zuzana Kubincová, PhD.

Assigned: 28.10.2013

Approved: 29.10.2013 doc. RNDr. Daniel Olejár, PhD.
Guarantor of Study Programme

Student Supervisor, Consultant



Acknowledgements
I would like to thank my supervisor doc. RNDr. Zuzana Kubincová, PhD. and consul-
tant RNDr. Martin Homola, PhD. for all their help, advice and support during writing
of this thesis.

iv



I hereby declare I wrote the thesis User Profile Module for matfyz.sk Portal by
myself, only with the help of the referenced literature, under the careful supervision of
my thesis supervisor.

Mária Šormanová

v



Abstrakt

Cieľom tejto práce bolo vytvoriť a včleniť nový subportál profile.matfyz.sk do existu-
júceho komunitného portálu Fakulty matematiky, fyziky a informatiky UK - matfyz.sk.
Používateľské dáta, ktoré boli predtým ukladané na rôznych subportáloch vo viacerých
kópiách, sú teraz uložené centrálne na jednom mieste - v databáze tohto subportálu, kde
sa zobrazujú na profilovej stránke používateľa. Aby bol presun efektívny, spravili sme
analýzu a kategorizáciu používateľských dát. Subportály, ktoré si doteraz dáta, ktoré
využívali, spravovali sami, teraz potrebujú prístup k užívateľským dátam uloženým na
profile. Na tento účel sme navrhli a vytvorili rozhranie, pomocou ktorého vedia sub-
portály pristupovať k dátam o používateľoch a taktiež ohlasovať aktivitu používateľa
na danom subportáli. Aktivity sa zobrazujú na jeho profile a slúžia na prepojenie celého
portálu a zvyšovanie záujmu o ostatných používateľov. Na profile sa taktiež zobrazujú
nadobudnuté ocenenia a odznaky, ktoré používatelia získavajú za svoju aktivitu na
portáli, čím sa ich snažíme motivovať k tvorbe hodnotného obsahu. V práci sme na-
vrhli metódu, ako implementovať tento mechanizmus. Subportál profile.matfyz.sk
taktiež prebral funkciu prihlasovania a odhlasovania používateľov. Zavádza jednotné
prihlásenie do všetkých subportálov naraz (single sign-on) a tým spríjemňuje prácu s
celým systémom. Na tento účel sme implementovali protokol OAuth 2.0, ktorý sme
prispôsobili a rozšírili tak, aby vyhovoval našim potrebám. Implementácia celej práce
je dostupná na webovej stránke subportálu: http://profile.matfyz.sk a na prilože-
nom CD.

Kľúčové slová: centalizácia, užívateľské dáta, single sign-on, gamifikácia

vi

http://profile.matfyz.sk


Abstract

The goal of this thesis was to create and incorporate a new subportal profile.matfyz.sk
into the existing community portal of Faculty of Mathematics, Physics and Informatics
of Comenius University - matfyz.sk. The user data, which was previously stored on
different subportals in multiple copies, is now stored centrally in one place - in the
database of this subportal, where it is displayed on the profile web page of the user.
The analysis and categorization of the user data was conducted to make this transfer
effective. Subportals, which until now took care of the user data they operated on and
required for their work, now need to get an access to the user data stored on pro-
file. For this purpose, an application programming interface was designed and created,
through which the subportals can access the data and also report the users’ activity
on particular subportal. Activities are consecutively shown on the profile web page
and thus interconnect the whole portal and encourage users to be engaged in other
users on the portal. On the profile web page also achievements and badges are shown,
which users earn for their activity on the portal and are thus motivated to create valu-
able content. We came up with the method to implement this mechanism. Subportal
profile.matfyz.sk also took over the logging users in and out. In order to make the
portal more convenient, the single sign-on solution was designed, which enables users
to log in at once to all the subportals. For this purpose the protocol OAuth 2.0 was
adjusted and extended to fit our requirements. Implementation of the whole thesis is
available at http://profile.matfyz.sk and on the attached CD.

Keywords: centralization, user data, single sign-on, gamification

vii

http://profile.matfyz.sk


Contents

Introduction 1

1 Portal Matfyz.sk 3
1.1 What is it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Current condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Userdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Single Sign-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 Other profile functions . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6
2.1 Single Sign-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Available Implementations: CoSign, Shibboleth, OAuth2 . . . . 7
2.1.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.5 OAuth 2.0 - detailed . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Gamification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Proposed solution 17
3.1 The OAuth adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 User data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 API for subportals to get information . . . . . . . . . . . . . . . 20

3.3 Profile website . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 User activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Badges and achievements . . . . . . . . . . . . . . . . . . . . . . 21
3.3.3 API for subportals to send information . . . . . . . . . . . . . . 21
3.3.4 Users lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Single sign-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

viii



Contents Contents

3.4.1 Time out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 Single Logout-out . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Data model and API 26
4.1 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 SSO data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 User data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.3 General user data . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.4 Subportal-specific user data . . . . . . . . . . . . . . . . . . . . 28

4.2 API model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1 API for subportals to get the information . . . . . . . . . . . . . 31
4.2.2 API for subportals to send the information . . . . . . . . . . . . 32

5 Implementation 34
5.1 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 The subportal profile.matfyz.sk . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Homepage of profile.matfyz.sk . . . . . . . . . . . . . . . . . . . 36
5.2.2 User profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.3 Administration . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.4 Single sign-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.5 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Conclusion 45

Bibliography 46

ix



Introduction

The community portals on universities, where students can meet and share their knowl-
edge, experience and notions have become commonplace. The Faculty of Mathematics,
Physics and Informatics of Comenius University is not an exception and provides stu-
dents with the portal matfyz.sk. The portal is developed exclusively as parts of Bache-
lor and Master Thesis of the students of the faculty and serves two main purposes: it is
a tool for teachers to facilitate the teaching of their courses and a place where students
can express their notions by writing a blog post or a wiki article. The portal consists
of more subportals, each running one of the mentioned services.

What the subportals have in common are the registered users. The subportals share
a small amount of the user data, but generally they store the pieces of information
about users independently, which can lead to inconsistency and is insufficient for the
correct operation of such a large portal. Therefore a new system for storing and
sharing the user data needed to be developed. This thesis introduces and describes
the new categorization and division of the user data among subportals. The new
subportal profile.matfyz.sk was implemented and incorporated to matfyz.sk to store
the general user data. The user data is presented on the profile website of the user,
where they can edit it centrally in one place and the change takes effect on all the
subportals. The method and way of accessing and exchanging this data needed to be
developed as well, since otherwise the other subportals could not display and operate on
the data. The profile subportal thus provides the other subportals with the application
programming interface (API), through which they can access the information they need
about the particular user.

One of the main goals of profile.matfyz.sk is also to unify the whole portal. To
reach this goal two new features are presented on the profile webpage of the user:

Achievements and Badges Rewards earned by the user for their activity and en-
gagement on the portal. They should serve as a motivation for the user to create
valuable content on the subportals.

Activities The newest and up-to-date information about the activities of the user on
the portal. It should interconnect the subportals and encourage the interaction
among users. For collection of this information from the subportals, the API
includes endpoints to post the user’s activity on their user profile webpage.

1



Introduction

The other tool which unifies and makes the portal more usable, is the single sign-on
solution, designed and implemented as a part of this thesis. The single sign-on enables
the users to log in only once at the beginning of their work with the system and not
to fill in their credentials, to every subportal they want to visit, separately.

In the first chapter, we explain the current condition of matfyz.sk portal and identify
the problems. We formulate the requirements on the new subportal. In the second
chapter, we explain the principles of the single sign-on and gamification, analyse the
available solutions and compare them to choose the one best suited for our portal. In
the third chapter, we describe the designed structure of the user data administration
and our single sign-on solution’s technique of operation. In the fourth chapter, we
introduce the data model and API for accessing and providing information about users.
And in the last chapter, we present the implementation of this thesis, which is available
on http://profile.matfyz.sk and on the attached CD.

2

http://profile.matfyz.sk


Chapter 1

Portal Matfyz.sk

1.1 What is it
Matfyz.sk is an unofficial homepage of the Faculty of Mathematics, Physics and In-
formatics of the Comenius University. It is a project which was and is being created
by students as parts of their Bachelor and Master theses. More about the matfyz.sk
portal can be found on [7]. At the moment, the portal facilitates more subportals:

blog.matfyz.sk The community portal for former and present students and graduates
from the faculty. The ambition is to gather the people interested in events and
activities going on at the faculty in one place, and provide them with the informal
environment, where they can share and exchange their thoughts and opinions not
necessarily only about the faculty.

courses.matfyz.sk E-learning platform which facilitates some courses offered by the
faculty.

wiki.matfyz.sk Community wiki, whose content is created by the students, offers
additional information to the official faculty and university websites.

beania.matfyz.sk,... Websites of various students’ activities.

In the future there is a plan to include more subportals which will meet the philos-
ophy of matfyz.sk, and transform it into the large community portal.

1.2 Current condition
The individual subportals coexist on the same domain - matfyz.sk. To get the full use
of each of them, user has to create an account and log in when visiting. However, as
they were created successively by different people to fulfil different requirements, they
work as relatively independent units. The greatest amount of the user data is saved

3



1. Portal Matfyz.sk 1.3. Requirements

in the blog’s database, and the other subportals have only the information user has
given them by filling out the registration form. This means that each portal has it’s
own database of user data. It is an unwanted state mainly because of the two reasons:
data can be inconsistent - user can fill in different data on different subportals, and the
change of the information is very inconvenient - user has to make the desired change
on every portal separately that can possibly lead to already mentioned inconsistency.

Single sign-on (for explanation see: 2.1) is present and implemented via shared
cookie. That is a technique where more subdomains use the same session-cookie. They
check, whether the session-cookie is present and thereby determine which user is cur-
rently logged in. However, this solution only works across subdomains of one domain
because of the same-origin policy. The Same-origin policy restricts browsers to allow a
document retrieved from one site to access some document from the site of a different
origin (origin is defined [16] as scheme, host, and port of the URL). Since there is a
possibility of incorporating also third-party portals (hosted on different domains) into
matfyz.sk in the future, this solution is no longer sufficient.

1.3 Requirements
The problem with the scattered user data and single sign-on resulted in the need of
a new subportal, which would take care of both these problems. Since the linkage to
the “user” and the information about them, we chose the name “profile” for this new
subportal of matfyz.sk.

Figure 1.1: profile.matfyz.sk logo

We have divided the requirements on the profile portal into three categories:

1.3.1 Userdata

1. The userdata, used on all the subportals, would be stored in the central database
maintained by profile subportal. The analysis of this data is required to determine
which data is general and used across all the subportals and which is subportal-
specific.

2. Other subportals would access this data via API provided by profile subportal.

4



1. Portal Matfyz.sk 1.3. Requirements

3. The webpage with user data would be created. Each user would be assigned
a subdomain username.profile.matfyz.sk, where a webpage consisting of user’s
profile information would be placed. There would be a possibility to edit the
data by the user.

1.3.2 Single Sign-on

1. Logging users in and out of the portal and other issues around single sign-on.

2. Registering new users to the system

1.3.3 Other profile functions

1. Implementation of giving and receiving of badges and achievements as a gamifi-
cation element for the portal (see 2.2).

2. The list of the best users, according to the badges, achievements, and teachers’
decisions would be put together.

3. On the profile webpage of the user, the activities of the user in the other parts
of the portal would be shown (see 3.3.1).

5



Chapter 2

Background

2.1 Single Sign-on

2.1.1 Motivation

Imagine having a university website consisting of more internet services, which the site
provides to students and employees. For example, it could offer webmail, calendar,
library website, schedule etc. These services are practically independent from each
other and offer users a functionality which needs two following attributes to function
correctly and properly:

authentication Who the user is. This is standardly done by giving user the username
and password combination. When authenticating themselves, user logs in via
these assigned credentials. The site consecutively knows which data from the
database belongs to this particular user.

authorization What the user is allowed to do. In the terms of the site - which data
from the database is the user authorized to manipulate on.

This would usually get to the point that every service has it’s own database and it’s
own set of users (actually the sets are very similar, since almost everybody uses all the
services at the university). This system leads to users having many different usernames
and passwords combinations - one for each service. They have to remember all these
combinations and furthermore, to preserve security, passwords have to be changed
often, which makes it impossible to keep them in memory. Users than write passwords
down and so make them vulnerable to being stolen and abused. This is not the only
problem of this approach. Both users and IT managers are having hard time. For IT
manager it is cumbersome to create all the accounts needed, once a new user has to be
added to the system. Deleting a user from the system is also causing a problem, since
one needs to delete not just one but several accounts scattered around. Users become

6



2. Background 2.1. Single Sign-on

frustrated by the tedious login processes and tend to pay less attention to it, which is
a potential security risk as well.

2.1.2 Specification

Single sign-on (SSO) solves the problem with users having to remember many pass-
words, by giving them just one universal. The identity of the user is checked centrally
against the authorization server and only once at the beginning of the work with the
system. The user is assigned an electronic identity, which is then automatically trans-
ferred to all the services in the same system. This means that the user, once logged
in to the central system, is automatically logged in to all the services and does not
have to authenticate themselves with the username and password when entering an-
other service. Single sign-on simplifies the administration of the user accounts, since
in this approach user credentials are stored in one central database, which is much
easier to administrate, and reduces the risks of the passwords being captured, as they
are passed to the system just once. Other userdata and permissions can be also stored
centrally and exchanged automatically between the central database and the other
services. However, the single sign-on has its drawbacks as well; the advantage of the
universal password means that when this password has been corrupted, the attacker
gains access to the whole system in the name of the user whose password has been
stolen. In the system without single sign-on, only one part of the system in the name
of one user would be impacted by the leaked password.

2.1.3 Available Implementations

There are many implementations at disposal. They vary from commercial products, free
and open-source software, to plain protocols which we could decide to implement. For
the purpose of matfyz.sk we have considered several options which could be suitable
for our purposes. The closely considered options were as follows (open-source, free
software and protocols):

CoSign

CoSign is an open source project developed at the University of Michigan [12], originally
created to provide single sign-on for the university. It is based on two types of cookies:
login and service cookie. Login cookie is created by the CoSign server and it is the
central cookie, which says that the particular user is logged in. Service cookies are
issued when user logs in to a new service (service is the part of the system to which
the user can log in). CoSign consists of three components:

7



2. Background 2.1. Single Sign-on

CGI script The central script responsible for logging users into each service. It creates
the login cookie and ties it up with the service cookies, each time user logs into
new service.

Daemon The central daemon responsible for keeping track of all cosign sessions on
the server.

Filter Resides on a service server and knows which parts of the service website are
protected by CoSign. If the user wants to access protected part, filter checks
if the user is authenticated and gets their username, authentication realm, IP
address etc. It creates the service cookie.

The flow of the authentication is as follows: User tries to access protected resource
on the service server. The filter on the server finds out that there is no service cookie
present and so redirects user to the main CGI script on the CoSign server. The CGI
finds out that there is no login cookie present and so shows the login page, where user
is prompted to authenticate themselves by username and password. CGI verifies the
credentials, and if they are correct the login cookie is set and the user is redirected
back to the service (when user tries to log in to other service, login cookie will already
be present, and so the authentication part will be skipped). Service filter afterwards
creates the service cookie and redirects to the CGI, which registers the service cookie
with the login cookie and redirects back (the central daemon needs to keep track of all
the services user is logged into). In the last step, the filter verifies the service cookie
and allows user to access the protected resource.

Shibboleth

Shibboleth is an open-source software package for Single sign-on [14]. It implements
Security Assertion Markup Language, which is an XML-based open standard data for-
mat for authorization and authentication data exchange. The adherence to standards
is the main advantage of Shibboleth, since it can cooperate also with services outside
of the user’s organization. The elements which appear in the authorization flow are:

Web Browser Represents the user.

Resource Content that user wants and which has restricted access.

Service Provider Element which facilitates the SSO process for the resource.

Identity provider Element which provides the authentication of the client.

The authentication flow, similar to that of a CoSign, works as follows: The user
accesses the protected Resource. The monitor responsible for this resource finds out
that the user does not have any active session. To get one, monitor redirects the user

8



2. Background 2.1. Single Sign-on

to the Service Provider. Service Provider issues an Authentication request, which is
subsequently sent along with the user to the Identity provider. The Identity Provider
checks for a session (this is an Identity Provider’s session and so not the same one as the
monitor has checked for). If it is present, Identity Provider skips the authentication
part and continues to the next step. Otherwise, user is prompted to authenticate
themselves (f.e. with their credentials). When successful, session is created. Having
the user identified, the Authentication response and the user are sent back to the
Service provider. Service Provider validates the response and creates the session for
the user. The handling is given back to the Resource, which again, as in the beginning,
checks if the user has an active session and since this time they do, the requested data
will be sent to them.

OAuth 2.0

Unlike the previous two options, OAuth is not a software package, but a mere protocol.
It is the second evolution of the OAuth protocol [8]. The “auth” in the name stands for
authorization (and not authentication) and it was designed to solve a different problem,
though close to the one of the single sign-on. Still it can be used for the purpose of the
SSO as well.

We will demonstrate the principles of the protocol on the example of a website
which offers a photo depository, where some user created more photo albums. Another
site offers photo lab service for printing and editing photos. The user wants to use this
service to print out one album from their photo depository website. To make it easy for
them, they do not have to download the photos from the depository site and afterwards
upload it to the photo lab. The photo lab just asks them to give them their username
and password for the depository site and downloads the album directly to its server
on their behalf. What is bad about this approach? By giving their credentials to the
third party, they do not only expose all the information they have on the depository
site (f.e. all the other photos or their personal details), but they also give third-party
an access to do what they want on their behalf. The third-party can now even change
their password and prevent the user from ever getting their account back. Although
the idea of relieving the user of the cumbersome procedure of first obtaining and then
giving away the data they want is great, this implementation is definitely not a good
way to do so. User do not want to give some third-party the full access to their data;
they want to give it only a partial one - to the data, which the service really needs and
operates on (in the example above, this would be the particular photo album). And
this is exactly the problem OAuth solves. User can grant access to their resources to
another site, without sharing other information about themselves.

We will now briefly explain the principles of the protocol; the complete explanation
can be found in the protocol’s specification [5].

9



2. Background 2.1. Single Sign-on

There are four roles in the protocol:

resource owner The entity capable of granting access to a protected resource (this
is the user).

resource server Server hosting protected resources.

client An application (e.g. website) which gains access from the resource owner and
makes a request to the resource server on behalf of the resource owner.

authorization server Entity which authenticates the resource owner and, with their
permission, issues access to some protected resources to the client. Authorization
and resource servers are usually the same one.

The main concept used in this protocol is the principal of access tokens. Instead of
giving client resource owner’s credentials, an access token is issued by the authorization
server, with which the client can request protected resource from the resource server.
There are many advantages of this approach, besides others: the grant can be easily
restricted by invalidating the token, tokens can have time-limited validity, and they
are issued to have only a limited scope.

The protocol flow is as follows: The client requests an authorization from the
resource owner (preferably via authorization server). Client receives the authorization
grant (there are four types in the protocol, some of them will be explained in 2.1.5),
which expresses resource owner’s authorization for the client to access the protected
resource. The client then authenticates itself with the authorization server and presents
authorization grant from the resource owner. Based on these two credentials (they are
both verified), authorization server issues an access token to the client. With this
access token, client is now authorized to access the protected resource of the resource
owner.

This idea can be used for a single sign-on as well, for we can set the tokens to have
short lifetime (as long as usual idle time-out) and issue them only after the user has
successfully logged in to the authorization server. The tokens will be issued to the
individual services (clients) from this central server. Once they get the token, they
know that a user must have been logged in (because the access was granted to them)
and they create a local session. With the possession of the token, clients get all the
information they need about this particular user from the central resource server (the
same as authorization server in this case).

2.1.4 Comparison

CoSign and Shibboleth are ready made software solutions, which require only configu-
ration and installation, while the last one is a protocol which has to be implemented

10



2. Background 2.1. Single Sign-on

(some libraries which facilitates the basic functionalities are available). From the short
description above, we have seen that all of them offers the single sign-on functional-
ity. More differences among the solutions arise with single log-out (the opposite of the
single sign-on, where user is logged out of all the participating services with one click).

The Shibboleth’s flow does not give a place for the single log-out, because after
the Identity provider creates the Authorization response, it gives the handling back to
the Service provider; hence the Service provider is the only one with the information
that the particular user is logged in to this Service. Identity Provider does not have a
possibility to force Service providers to log users out. CoSign offers this functionality,
since Filters check regularly, if the user has not logged out; however, log-out of only
one service is not possible. Either the user is logged in to all the services or none
of them. In OAuth solution, we can implement this as we please. Single log-out is
possible via restricting all the access tokens issued in the session, deleting the session on
Authorization server and requesting clients to log out their users in their local sessions.
Also logout of only one client could be implemented - the access token belonging to
this client would be confined and the client would be given notice to log the user out
of the local session on the client.

CoSign and Shibboleth are products for single sign-on and so support prevalently
only this functionality, whereas when choosing OAuth, created for the authorization
issue, we can manage, apart from single sign-on and single log-out, also the exchange of
the data between the Resource server and clients, which we need for the other part of
the profile subportal - the management of the userdata (see 1.3.1) and thus solving two
issues with one protocol. The final decision was, consequently, to implement OAuth
2.0 protocol.

2.1.5 OAuth 2.0 - detailed

To build further on this protocol we first need to understand more in detail, what
entities take part in the protocol workflow, what their roles are, and how do they
interact. Only the parts which are relevant for the purpose of this thesis will be
explained (complete explanation can be found in the OAuth 2.0 specification [5]).

As mentioned before, the four roles in the protocol are: resource owner (RO),
resource server (RS), authorization server (AS) and client. Client obtains authorization
grant from the resource owner via authorization server.

Grant types

There are four types of the authorization grant, from which we will have a closer look
at two :

11



2. Background 2.1. Single Sign-on

Authorization code The client directs the resource owner (their user-agent) to an
authorization server. RO authenticates themselves and gives the AS authoriza-
tion (e.g. via dialog form where the resource owner is asked to confirm the extent
of access which would be given to the client). The RO is then directed back to
the client with the authorization code. RO is authenticated only with the AS
and so the credentials do not pass through the client.

Client credentials Every client has its own pair of credentials called client_id and
client_secret (clients get these upon registration to the Authorization server).
With this pair, client can be directly granted access from the AS without the
intermediary of the RO. This grant type is usually used when client is acting on
its own behalf (when client is also RO), or for protected resources for which client
is authorized upon previous agreement with the AS.

Having obtained the authorization grant, client exchanges it for the access token.
Access token is a string, usually opaque to the client, representing the authorization.
Access token represents specific scope and duration of access granted to the client.

Endpoints

The AS has two endpoints to which requests and user-agent redirections are made by
the client:

Authorization endpoint Used by the client to obtain authorization code (with au-
thorization of the RO) via user-agent redirection.

Token endpoint Client exchanges the authorization grant (e.g. authorization code)
for the access token here.

The client’s endpoint is called redirection endpoint, where the AS sends its responses.

Authorization code request

The request for an authorization code is done by constructing URI in ”application/x-
www-form-urlencoded” (as defined in [11] ) to the authorization endpoint with following
parameters (All the following requests will have similar structure. We will hence list
only the parameters):

response_type Set to “code”.
client_id Client identifier.
redirect_uri For security purposes. This must match the URI registered to the

client on AS. It is required to prevent false requests, and access tokens being sent
to attackers’ URIs.

12



2. Background 2.1. Single Sign-on

scope The requested scope of the access token. Supported scopes are defined by the
AS.

state Value used to prevent cross-site request forgery (An attacker sends client the ac-
cess token associated with their protected resource rather than with the victim’s.
That results in client using attacker’s access token when manipulating victim’s
data. E.g. the client sends some private information to the attacker’s protected
resource rather than the victims and so the attacker can easily access them on
their own behalf.) This value is included when redirecting back to the client so
the client can check that the response is really the response to their request and
so that the access token origins from the authorization server and not from an
attacker.

An example request(extra line breaks are added for better orientation):

GET / a u t h o r i z e ? response_type=code
&c l i e n t _ i d=s6BhdRkqt3&s t a t e=xyz
&r e d i r e c t _ u r i=ht tps%3A%2F%2F c l i e n t%2Eexample%2Ecom%2Fcb
HTTP/1 .1

Host : s e r v e r . example . com

When the request was successfully verified and the RO gives the authorization, the
authorization code is delivered as a parameter in a query component of the redirec-
tion_uri:

code It is valid for a very short period of time, since the purpose is only to exchange
it for the access token.

state The state parameter, as described before.

When the request was not verified or when the RO denies access the error response
is sent to the redirection_uri. The parameters are as follows:

error The values of this parameter can be: invalid_request - request does not have de-
sired form; unauthorized_client - client is not authorized to request an authoriza-
tion code; access_denied - RO has denied the access; unsupported_response_type
- AS does not support this response type; invalid_scope - unknown or invalid
scope; server_error - unexpected server error; temporarily_unavailable - server
is unavailable.

error_description Human readable additional information about the error
state The state parameter, as described above.

13



2. Background 2.1. Single Sign-on

Access token request

Exchanging Authorization code

The parameters are sent in HTTP request entity-body (request is sent via POST
method):

grant_type Set to “authorization_code”.
code The obtained authorization code.
redirect_uri As described above.
state As described above.
client_id Client identification.
client_secret To authenticate the client.

When the request was successful, the following response is returned:

access_token The access token issued by the AS.
token_type “Bearer” token type will be used throughout the project. This token type

means that the token is a string, which is the “key” to the protected resource
without any further verifying.

expires_in The lifetime of the token in seconds.
refresh_token Refresh token is a token used to gain new access token after the first

one has expired.
state As described above.

When the request is not accepted, the error response, in the form of the one de-
scribed above, is sent back to the client. The error parameter can have following
values: invalid_request, invalid_client, invalid_grant, unauthorized_client, unsup-
ported_grant_type, invalid_scope.

Exchanging Refresh token

The client can ask for a new access token also with the valid refresh token. Refresh
tokens are sent with the access tokens, to give client option to prolong the access. The
request is sent to the token endpoint with the following parameters:

grant_type Set to “refresh_token”.
client_id Client identification.
client_secret To authenticate the client.
refresh_token The refresh token.

The answer is either an access token or an error response, as described sooner in this
section.

14



2. Background 2.2. Gamification

Client credentials grant type

In this grant type no middle-step before acquiring the token is present. This grant type
is usually used when the client is acting on its own behalf and not on behalf of some
RO. The request is created by adding following parameters to the HTTP entity-body
and sent to the token endpoint:

grant_type Set to “client_credentials”.
client_id Client identification.
client_secret To authenticate the client.
scope As described above.
redirect_uri As described above.

Afterwards either access token response or error response is sent as described sooner
in this section.

Security

The OAuth protocol relies on the transport-layer security and the implementation
should thus require to use e.g. The Transport Layer Security portocol.

2.2 Gamification

2.2.1 Motivation

As stated in [17], people generally love playing and games. They have accompanied
us since the dawn of civilizations. According to Zichermann and Cunningham, the
researchers even predict that we are hard-wired to play, since they have noticed the
relationships between our brain, neural system and game play. By this mechanism,
games, alongside fun, cause children to improve their abilities and skills. Playing games
thus reminds people of the best memories of their childhood, because games imply fun
and the distraction from the “real world”. As Zichermann and Cunningham state,
turning experience into a game can cause a change in the behaviour of the person - the
game elements increase the engagement in the activity. For this reason, recently many
websites include game mechanics into their designs, which has proved to be profitable,
since users become more engaged and tend to spend more time on these sites.

2.2.2 Description

The term “gamification”, as explained in [2], describes “the use of game design elements
in non-game contexts”. This means that we take mechanics and game design techniques
from video games and bring them to, for example, a web portal which has nothing to

15



2. Background 2.2. Gamification

do with games in general. There are plenty of game elements which might be adopted
to the webportal, but we will take a closer look at three of them, which we decided to
incorporate into the matfyz.sk portal.

Achievements

An achievement is usually defined as a goal, which serves the purpose of rewarding
a user for their efforts. It is represented as a picture with the title and description,
which, upon earning, is displayed on the userprofile webpage. The exact conditions,
which need to be fulfilled in order to get a particular achievement are set. When the
user fulfil all these conditions, the achievement is automatically earned. Achievements
should arouse the engagement into the activities on matfyz.sk portal and motivate
users to be more active and creative when doing assignments.

Badges

A badge is similar to an achievement in a way, that it is also represented as a picture
with the description and title, which is displayed on the userprofile webpage. However,
badges are not generated by the system upon fulfilling certain conditions, but they are
exchanged among users. A user can give another user some badge, with the comment,
why they reward that user with this badge. Badges should arouse the interest in
other users’ content and increase interactivity among users thus encouraging the social
learning.

Leaderboards

Leaderboards, a list of users put up according to some ranking, serve the purpose of
showing the users how they stand in the comparison to the other users. The presence
of a leaderboard should elicit the desire to raise the rating and thus move up the
leaderboard, since people are by nature competitive and want to compete with their
peers.

16



Chapter 3

Proposed solution

3.1 The OAuth adjustment
In the 2.1.4, we have decided to implement the OAuth 2.0 protocol and use it for
the single sign-on and exchange of user data. The exact proposal of the additions
and changes to the protocol flow and application of it to the matfyz.sk portal will be
proposed here.

Roles

The profile.matfyz.sk subportal will become both authorization and resource server.
The server will be thus responsible for both issuing the tokens and providing protected
resources, which are user data in our case. The other subportals will become clients.
The end-users of the portal will become resource owners.

Client registration

All the subportals will need to be registered to the authorization server. On registration,
they will have to present their:

home uri For navigation purposes. This address will be linked as the subportal’s
homepage.

requests uri On this endpoint the subportal must be listening to the requests from
the profile server. The types of requests are described later in this section.

redirect uri The endpoint to which the OAuth responses will be sent.

Furthermore, the client_id and client_secret will be stored (analogue to the user-
name and password) alongside with the scope to which the subportal is authorized (at
the moment, all subportals will be authorized to all the scopes - this option is left here
for the future use). The registration of the client will be done by the administrator, for
whom a form will be provided on profile website.

17



3. Proposed solution 3.2. User data

User registration

New users will register themselves via form on the website, where they will be prompted
to choose their username and fill in some personal information.

3.2 User data
User data is all the data related to the user on a particular system. It is a large and
various amount of entries, ranging from personal information to user interaction with
the system. When the system consists of more subsystems interacting with each other,
the important thing is to keep the pieces of user data, which are being operated on
by more subportals, consistent throughout the portal. The easiest way to keep some
data consistent is to store it only in one place and let all the other parts of the system
look them up there. How to determine which data should be treated this way? The
answer is simple: all the data that is used on more than one subsystem; because the
fact that at least two different subsystems operates on the same user data, makes this
data prone to inconsistency (each subsystem can e.g. store its own copy of this user
data and thus the system do not know, when some other subsystem changes certain
value). To prevent this, the data should be stored in one place.

3.2.1 Categories

The first step to manage the user data effectively is, as described above, a good clas-
sification. According to the description in the first paragraph, we can divide our user
data into two categories:

General All the pieces of user data, which are used on more than one subportal.

Subportal-specific The user data related to the particular subportal, which are not
used on any other subportal.

Now we will analyse the data currently stored on matfyz.sk portal and divide it into
these two categories. All the data listed below is currently stored locally on particular
subportal:

• Blog

– General: username, first name, surname, email address, short text about
the user, avatar

– Subportal-specific: authority of the user, posted articles, comments, tags,
etc.

• Courses

18



3. Proposed solution 3.2. User data

– General: username, first name, surname

– Subportal-specific: courses for which the user is enrolled, specific course
data, etc.

• Wiki

– General: username

– Subportal-specific: posted articles, edited articles,...

As we can see, there are many pieces of user data, which belong to the general
category. However, the fact that each subportal stores its own values of these items
can lead to the already mentioned inconsistency (for example, the name of the user
on blog and courses - although, it is the same user, they are free to fill in different
surname to blog portal and different to courses). The user data is thus scattered to
the subportals. As described in the first paragraph of this section, this is an unwanted
state. We need to avoid having user data, which belongs to the general category to be
stored on more than one place.

It is obvious that the exact distinction between the general and subportal-specific
category of user data is critical to the improvement of the situation. When we state
clearly, which user data belongs to which category, we can let the general category
be stored only on the profile subportal and all the other subportals will ask for this
information from the profile subportal. The subportal-specific data will be stored on
subportals as before. To link the subportal-specific user data to the general user data
of a particular user, the username of the user will be used as the primary identification
of the user across the subportals. The username will so become the only intersection
of the user data stored on the subportals, which makes no place for inconsistencies,
because username cannot be changed.

General User data

Some items of the user data, which should belong to this category, were already men-
tioned. These are: username, first name, surname, avatar picture, short text about
the user and their e-mail address. However, we have agreed that we want to add some
additional information to this category, since matfyz.sk is a community portal and user
identity is an important part of it and should thus give user the opportunity to build
their portal identity more accurately. The proposed additional pieces of information
are:

occupation This will be an enum value, which determines whether the user is a
student, a teacher, or an external user (someone, who does not study or work at
the faculty).

19



3. Proposed solution 3.3. Profile website

text about the user User will be given option to write more about themselves. This
will be carried out via division of the about text into two parts: short one and
long one. Short one will be sent to the subportals as a response to the request for
the about text. And long one will be shown on the profile webpage of the user,
to give them more space for the introduction of themselves to the community.

Subportal-specific User data

All the user data, which does not belong to the general category belongs to the
subportal-specific category. The subportal is completely in charge of this data. All of
this data will be linked to the user by their username, as described above.

3.2.2 API for subportals to get information

When the user data from the general category will be stored on the profile server, we
need to provide other subportals with the facility to get the user data they need. For
this purpose an application programming interface (API) need to be present on the
profile server. There is a possibility that the subportals of matfyz.sk might be hosted
on different servers in the future, so the API should be realized e.g. via HTTP requests.
As described in 2.1.3, the OAuth protocol fits for this purpose and that is why we chose
to use it for the realization of the API.

The subportals will send requests to the profile subportal to get the particular user
data (for detailed design of the API see section 4.2) along with the username of the
user, whose user data they demand. The profile subportal will look this information
up in its database and send the response back to the subportal.

3.3 Profile website
Profile website needs to fulfil the requirements listed in 1.3.1 and in 1.3.3. According
to them we can divide the web pages of the profile website into two categories:

Userprofile web page This page will be created for each user (the URL will be:
username.profile.matfyz.sk), where all their user data from the general category
(see sec. 3.2.1) will be displayed. The user will be able to edit this data here.

Main profile web page Here the list of users, search options, sort options and list
of the best, new etc. users will be shown.

3.3.1 User activities

In order to interconnect the subportals and strengthen the feeling that all the subportals
are just parts of one big matfyz.sk portal, we have decided to collect the activities that

20



3. Proposed solution 3.3. Profile website

user does on each subportal and display them on their userprofile web page. Activity
can be, for example, that the user has posted a new article on blog. We decided to
display these activities in the so-called “card design”. This design is based on cards,
where each card represents a bit of some content with the link to the rest of it. In our
case, each activity, will be represented as one card, where a short explanation of that
activity will be present. The link will lead to the activity itself on the subportal, where it
happened. This helps to interconnect the portal as a whole, because when somebody is
browsing the user profile page of some user and gets interested in a particular activity
of this user, they can follow the link of that activity’s card and so get to the other
subportal.

There will be several types of activities on the profile. The administrator will be
responsible for adding new ones and deleting no longer needed ones via form on the
profile administration web page. Each activity type will have a source subportal, title
of the activity and identification number assigned to it. When a subportal sends the
information about some user activity, this id number will be added to this request and
thus profile will know how to handle the activity. The mechanism of posting activities
to profile will be realized via API described in 3.3.3.

3.3.2 Badges and achievements

Badges and achievements will have several types. Administrator will be responsible for
adding new types of badges and achievements to the system via form on the profile
administration web page. To each type of badge and achievement, the title, picture
and description will be required.

The actual assigned badges and achievements will be also stored on the profile
server and displayed on the user profile web page.

Badges will be given from one user to another by visiting the user profile web page
of the user, to whom the badge want to be given. On this page a “give badge” button
will be made visible for logged in users. They can click on the button and choose
a badge they want to give from the list of badge types. The giver can also write a
comment, why they chose to give the user this badge.

Achievements will be automatically generated by the subportals. When some user
earned an achievement on some subportal, this subportal sends a message about it to
the profile. For this purpose an API is described in the next section.

3.3.3 API for subportals to send information

In achievements and user activities the situation is similar to the one in 3.2.2 with
the difference that here the subportals need to send some information to the profile
rather than receive it. Still API is needed to offer this function. We will again use the

21



3. Proposed solution 3.4. Single sign-on

OAuth. Subportals will send requests to the post endpoint of the profile server with
the information about the activity user did on this subportal, or an achievement. The
form of the exchanged information need to be defined as well. For detailed design of
the API and format of the data see section 4.2.

3.3.4 Users lists

On the main profile web page some user lists will be places. The new users list will
consist of the fixed number of recently registered users.

Another list will be the best users list - Leaderboard (see 2.2.2). To measure who
the best users are, a simple points system will be implemented. Every achievement
and badge will be assigned a number of points. Upon receiving either of them, this
number will be added to the current number of points of the user. The users with the
highest number of points will be listed as the best users.

The last list on the page will be the random users list, where some number of
randomly chosen users will be present.

3.4 Single sign-on
The profile.matfyz.sk subportal will be the main server, where the user logs in. The
login form will be hosted here for users to fill in their credentials. After successful
verification of username and password, profile will create a session for this user which
times out, when the user is inactive for a certain amount of time. This session will
be stored in the database as well, so that the profile knows all the time, which users
are currently logged in. A subportal’s task, when the user wants to log in, is to ask
profile server for the authorization code (in order to get the access token). The standard
behaviour of an Authorization server now takes place. If everything goes fine, the profile
server stores the just issued access token to the database along with the client_id
and so knows that the user will be logged in to this subportal. The last_activity
(timestamp tied up to the session of the particular user, which says when the user
was active for the last time during this session) of the user is also set to the current
time, since the user is apparently active, although on the other subportal of matfyz.sk.
Having received the access token, subportal will know which user has logged in to the
system (or has already been logged in for some time), because this information will be
sent along in the response of the access token. The response contains two additional
parameters in comparison to the standard response described in 2.1.5:

session_id The identifier of the session, which the subportal is obliged to remember
for the time of the session.

username The username of the logged in user.

22



3. Proposed solution 3.4. Single sign-on

The subportal will then create a local session for the user with the same lifetime as
the token has. Better said: The subportal does not check whether the local session is
still active, but whether the access token has not expired yet, since the local session (e.g.
when using php sessions) could prolong its lifetime when the user is active automatically.
Although we want to implement the functionality of automatic prolonging of the session,
in the Single Sign-on this issue is more complicated, because we need to synchronize
the session expirations on more subportals. We will go through this issue in detail in
the next section.

3.4.1 Time out

Both the sessions (on profile and on subportal) will now (according to the state de-
scribed in the previous section) time out at the same time, if the user is inactive.
However, when the user is active, these two need to exchange information about it,
since we want the user to stay logged in everywhere they have logged in, when they
are active. In this case being active means to be active on either of the subportals. If
the subportals and profile would not communicate about user’s activity, the session on
one of them could time out sooner than the other and the user would then no longer be
logged in to the former one, which violates the principle of the single sign-on (the user
switches back to the profile website after spending some time on another subportal and
the session there has timed out although the user was active on the other subportal -
this is undesired behaviour). Subportal needs to notify the profile server when the user
is active there. There are two possibilities how this could be done:

1. Subportal sends notification everytime the user is active. This would probably
result in too much unnecessary traffic, since every click user makes on the subpor-
tal, would cause a request to be made to the profile server. Profile server would
afterwards have to distribute even more requests to notify other subportals where
the user is logged in that the user was active, so that they can also prolong the
lifetime of their sessions.

2. The notifications could be sent only once in the given amount of time to reduce
the amount of requests.

The second option is obviously better for our purposes, since we do not need to know
when exactly the user was active. We just need to time-out all the sessions on subportals
and profile subportal at the same time. We will solve this problem with the help of
refresh tokens (see Exchanging Refresh token of 2.1.5). We will set the default lifetime
of the profile session and access tokens (and so the local session on subportals as well)
to 2 hours. When some subportal detects that the user is active and it is less then an
hour to the expiration of the access token, subportal will ask for a new one with the

23



3. Proposed solution 3.4. Single sign-on

refresh token. This is the sooner mentioned “notification” to the profile server that the
user is active. The profile successively notifies the other subportals where the user is
logged in (the information, in which subortals the user is logged in, is acquired from
the database of issued and not expired access tokens tied up with the particular user)
to prolong their sessions as well. These requests are done to the requests_uri endpoint
of the subportals. The following parameters will be sent in the HTTP entity-body of
this request:

request Set to ”prolong”.

session_id Set to the id of the session, which should be prolonged.

username Username of the user, whose session should be prolonged.

After receiving the request to prolong the session, the subportals will ask for a new
access token upon presenting the refresh token. However, we do not want an endless line
of prolong requests to follow (after each refresh token request, all the other subportals
are notified that the sessions should be prolonged and these subportals all send refresh
token requests etc.). In order to prevent this the additional attribute response, set
to “true” is added to the refresh token request, which gives server the information,
that a new access token is desired only because the prolong request was received and
not because the user was active on that subportal. By this whole mechanism all the
subportals will be synchronized again to time out their sessions at the same time along
with the profile server session of the user.

3.4.2 Single Logout-out

We need to implement the single log-out functionality as well. We agreed that we want
a user to be able to logout either from only one subportal, or from all the subportals
to which they have logged in. This will be implemented via redirection to the logout
endpoint of the profile server. The user, who wants to logout clicks on the logout
button (either on profile website itself or other subportal). If user is logging out of some
subportal the client_id of this subportal is added as the last element of the path of
the redirect uri. After redirection profile server asks the user, whether they want to
logout of only this particular subportal (server knows the name of the portal from the
URI) or from all the subportals to which they are logged in (these will be listed there).
Depending on the user decision the logout requests are sent to the affected subportals
to their requests uri with the following parameters in the HTTP entity-body:

request Set to “logout”.

session_id Set to the id of the session, which should be prolonged.

24



3. Proposed solution 3.4. Single sign-on

username Username of the user, whose session should be prolonged.

Having received this request, the subportal is obliged to destroy the particular
session and so log the user out. The profile server destroys the access tokens issued
for these subportals and if the “logout from all the subportals” option is chosen by the
user, destroys the session on the profile as well.

25



Chapter 4

Data model and API

4.1 Data model
As proposed in 3.2.1, all the user data from the general category needs to be stored on
the profile subportal. Apart from this data, also subportal-specific user data for the
profile subportal and all the data needed for the SSO will be saved on the profile. For
this purpose a data model has to be designed. We will introduce it in this section.

4.1.1 SSO data

We decided to use the oauth2-server-php library, which is a PHP library developed by
Brent Shaffer and available on https://github.com/bshaffer/oauth2-server-php.
This library implements the basic work flow of the OAuth protocol on which we can
further build our application. There are 6 default tables used by this library, which
we will need for our application. They all have the prefix oauth_ to easily tell them
apart from the rest of the tables in our data model. Here only the parts, which were
extended by us, or which are important for the further understanding are introduced,
the rest can be found in the documentation to the library [13].

The oauth_clients table stores the information about the client - in our case
subportal: client_id, client_secret, redirect_uri, grant_types, scope. To these
default fields, we have added:

home_uri The URI, to the home page of the subportal, which will be used for the
navigation. User will be redirected to this uri upon clicking on the subportal’s
button in the navigation bar on the website of the profile.

requests_uri As described in 3.1, this is the URI to which prolong and logout re-
quests will be sent.

The next three tables are: oauth_authorization_codes - here the issued autho-
rization codes are stored, oauth_access_tokens - here the issued access tokens are

26

https://github.com/bshaffer/oauth2-server-php


4. Data model and API 4.1. Data model

Figure 4.1: Data model of user data

stored, oauth_refresh_tokens - here the issued refresh tokens are stored. To every
token (or authorization code) in all of these three tables the user_id, client_id,
expiration time and scope are stored as well. The oauth_scopes table stores the
information about defined scopes.

The last table is oauth_users where the user_id, username and password of the
user are stored. The user authentication is not part of the library. That is why we
were free to implement it our way. We chose to store passwords in an encrypted form
(we will store only the hash of the actual password) to increase security using bcrypt
[10] key derivation function for passwords. The user credentials are thus stored only
in this table and they are also verified against it. The rest of the data will be stored in
the tables, where the user_id will be the key to link the data to the particular user.

4.1.2 User data

The tables, which store user data and do not belong to the SSO solution will have
the prefix profile_ to easily tell them apart. On the Fig. 4.1 is the complete data
model of the profile without previously mentioned oauth_ tables. Only two of them
(oauth_users and oauth_clients) are present in the figure, since they contain foreign
keys for the other tables with user data. The individual tables will be introduced in
this subsection.

The user data stored in the profile database can be divided into two groups: general
and subportal-specific for the profile subportal:

27



4. Data model and API 4.1. Data model

Figure 4.2: profile_general table

4.1.3 General user data

The general user data, is the data which will be shared across the whole portal. Special
table called profile_general will be used for this purpose. The primary key is the
id_user which is a foreign key, referencing the id_user field in the oauth_users table.
The occupation field is an enum, with three possible options: student, teacher and
other. Other value is provided because matfyz.sk is an open community portal not only
for students and teachers, but for anybody interested in our faculty. The rating field
contains the sum of the points collected from the received badges and achievements.
According to this value a list of users will be put together. The registration field
contains the timestamp when the user registered to the system. The other fields are
self-explanatory and are shown on the Fig. 4.2.

4.1.4 Subportal-specific user data

The rest of the data on profile has to do with the other functions of the profile subportal.
The structures of badges and achievements are similar to each other - see Fig. 4.3.

Badges and achievements

We will distinguish two terms: reward type (either achievement or badge type) and
the actual reward assigned to some user (achievement or badge). Each reward type
has title, description, assigned value and picture. Achievement type has additional
attribute - maximum amount of this particular achievement type one user can obtain.
Two tables called profile_achievement_types and profile_badge_types deal with
this data. Each added reward type is assigned a number, which serves as a foreign
key for the other two tables: profile_achievements and profile_badges, where
the actual rewards will be stored. These two tables are slightly different from each
other. The profile_achievements table contains following fields: id_achievement
- the primary key, and id of this particular achievement, achievement_type - the

28



4. Data model and API 4.1. Data model

Figure 4.3: Rewards datamodel

foreign key referencing the achievement_type from the profile_achievement_ty-
pes, id_user - foreign key referencing the id_user of the user to whom the achieve-
ment was given, time - timestamp saying when the achievement was assigned and
source_name -name of the course or subportal on which the user has earned the achieve-
ment. This field is left up to the giving entity to fill in their name as they please. The
profile_badges table has fields, which have the same function as the correspond-
ing ones in the profile_achievements table: id_badge, badge_type, id_user, time
and additional two: id_user_who_gave_it which is a foreign key that references the
id_user of the user, who gave this badge and comment field, where the comment from
the giver can be added.

Activities

As introduced in 3.3.1, the activities of the user on the whole portal will be displayed
on the profile. We designed a similar model to the badges and achievements model as
can be seen on the Fig. 4.4.

Figure 4.4: Activities data model

29



4. Data model and API 4.1. Data model

In the table profile_activity_types we will store the types of activities which
exist on the subportals. For example on the blog subportal an activity “written articles”
may exist. This means that a user can make an activity (in this example, post an
article) on the subportal and this information will be then passed to the profile. The
table contains three fields: activity_type - the id of this activity type, client_id
- foreign key referencing the client_id of the subportal on which this activity exists
and a activity_title - the title of the activity. The actual performed activities will
be linked to these types.

The subportals will generate an HTML code, in which the more detailed description
of the activity will be present. This HTML code must adhere the agreed form. The
code consists of div elements, each with the following id attributes:

ac_title REQUIRED The title of the activity, preferably with a hyper-link to the
actual activity on the subportal (nested in the div element as an a element)

ac_picture OPTIONAL In this div an img element with the picture corresponding
to the activity can be added.

ac_description REQUIRED A closer description of the activity or short extract.

These activities will be stored in another table profile_activities (see Fig. 4.4)
with the following fields: id_activity - the primary key and the id of the individual
activity, activity_type - the foreign key referencing the type of the activity in the
profile_activity_types table, id_user - foreign key referencing id of the user who
did the activity, time - timestamp of the time when the activity was performed and a
field called activity - the HTML code with the description of the activity as described
above.

Roles

We needed to add some permission mechanism to distinguish which users are allowed
to administrate the profile website, add badge, achievement and activity types, select
best users, etc. For this purpose the profile_roles table was designed with only two
fields: id_user - foreign key referencing the id of the user and role - integer value,
which specifies what permission the user has. However till now only the distinction
between administrator and standard user was needed, so the administrators are added
to the table with the role value “1”. If we need more permission levels in the future,
the scale can be easily extended.

30



4. Data model and API 4.2. API model

4.2 API model
If we want to collect the user related data in one place (on the profile subportal),
we need to enable the other subportals to access and update these data. In order to
provide them with this possibility two APIs will be made available for the subportals.
One for receiving information about the users and one for sending information about
them. Both will utilize OAuth protocol, which is described in 2.1.5. The subportals
will be able to get and send the data upon presenting valid access tokens. The valid
access token will be in this case acquired via Client credentials grant type, where the
access token is issued to the subportal upon presenting, apart from other information,
their client_id and client_secret to the token endpoint of the profile server.

4.2.1 API for subportals to get the information

The subportals need to access all the user data stored on the profile subportal. We
have analysed in what kind of forms the subportals need to get the information. We
have come up with the conclusion that it may vary from single strings, like first name
or e-mail address of the user, to more complex data like HTML code with the short
profile of the user, which can be placed on the destination subportal. To facilitates all
these requirements, we have designed the following endpoints:

get_firstname returns the first name of the user

get_surname returns the surname of the user

get_whole_name returns the whole name of the user in one string

get_photo returns the URI, where the picture of the user is accessible

get_about returns the short version of the about - about_short

get_email returns the e-mail address of the user

get_is_student returns TRUE if the user is student, otherwise returns FALSE

get_is_teacher returns TRUE if the user is teacher, otherwise returns FALSE

get_profile returns an HTML code with the user profile, which can be placed on
the destination website. The form of the code is following:

<div id=” u s e r p r o f i l e ”>
<a h r e f=”path to the u s e r p r o f i l e ”>
<h3>Whole name o f the user </h3>
</a>
<img s r c =”path / to / the / p i c t u r e ” width=250 / > ’.

31



4. Data model and API 4.2. API model

<p>sho r t v e r s i o n o f about </p>
</div>

get_profile_short returns the small version of the profile of the user, where only
name and picture is present. The form of the code is as follows:

<div id=” u s e r p r o f i l e _ s h o r t ”>
<img s r c =”path / to / the / p i c t u r e ” width=50 />
<a h r e f=”path to the u s e r p r o f i l e ”>
<h5>Whole name o f the user </h5>
</a>
</div>

The requests for the information will be realized via POST requests to the wished
endpoint of the profile server. The URI to which the request should be sent will be con-
structed from three segments as follows: profile.matfyz.sk/resource/endpoint/
username, where endpoint is the desired endpoint and username is the username of
the user, whose user data the subportal wants to obtain. The parameters of the request
are encoded into the HTTP entity-body and are following:

client_id The id of the subportal, which is sending the request

redirect_uri The URI on the subportal to which the response should be sent

access_token The valid access token to prove the right to obtain the requested data

When the request is verified (when the access token is valid) the response is sent
to the redirect_uri from the request. The response contains a message parameter
encoded into the HTML entity-body, which contains the return value as described
above. When the request is not verified or when it does not contain required parameters
the error response is sent as described in 2.1.5.

4.2.2 API for subportals to send the information

The subportals need to send profile information about user activities, earned achieve-
ments and badges. The API works similarly to the API 4.2.1. Again requests are
sent to the endpoints with the POST method and the parameters are encoded into the
HTTP entity-body of the request. These parameters are client_id, redirect_uri
and access_token. The URI consists of three segments: profile.matfyz.sk/post/
endpoint/username, where endpoint is one of the below listed available endpoints and
username is the username of the user to whom the information in the request belongs.
To each endpoint the required additional parameters will be listed:

32

profile.matfyz.sk/resource/endpoint/username
profile.matfyz.sk/resource/endpoint/username
profile.matfyz.sk/post/endpoint/username
profile.matfyz.sk/post/endpoint/username


4. Data model and API 4.2. API model

activity The required additional parameters are:

activity_type the type of the activity the user has done

timestamp timestamp of the time when the activity was performed

message the HTML code of the performed activity. The code must adhere to
the following format:

<div id=” a c _ t i t l e ”>
The t i t l e o f the performed a c t i v i t y −
a hype r l i nk to the a c t u a l a c t i v i t y i s recommended
</div>
<div id=”ac_de s c r i p t i on”>
The d e s c r i p t i o n o f the a c t i v i t y −
h y p e r l i n k s are recommended
</div>
<div id=”ac_pic ture”>
t h i s i s an o p t i o n a l d iv element ,
which may conta in an img tag with a h o t l i n k
to the p i c t u r e d e s c r i b i n g the a c t i v i t y
</div>

achievement The required additional parameters are:

achievement_type the type of the achievement we want to give to the user

timestamp timestamp of the time when the achievement was earned

source the name of the subportal or course, which gives the achievement - this
parameter is left to be filled out freely by the subportal

When the request is not verified the error response, as described in 2.1.5 is sent.
When the additional parameters are not present, the response is sent with the status
parameter set to the description of the error. When the request is valid and the required
additional parameters are present the response with the status parameter set to “OK”
is sent.

33



Chapter 5

Implementation

5.1 Technologies
PHP

For the implementation, we chose to develop in PHP [9], which is a an open source
general-purpose scripting language, widely used for developing interactive web applica-
tions. The PHP code is embedded into HTML, but the execution of the code is done
on the server and only the outputted HTML is sent to the client. Therefore the client
does not know what the code which had generated the particular output was.

Codeigniter

There are many available frameworks built on the top of the PHP language, which
facilitates the programming of the web applications, as they offer generic functionality,
which can be reused and expanded to create new software. Since our project is bigger
web application we opted for using some framework. Some of the other subportals
of matfyz.sk (e.g courses [15] [1]) are developed in Codeigniter framework [4]. That
was the reason we also chose to use Codeigniter. This framework provides a rich set
of libraries for commonly needed tasks in web applications. It is based on the MVC
(Model-View-Controller) design pattern. MVC is a software pattern used for user in-
terfaces. It divides the application into three interconnected components: Model, View
and Controller. Model represents the data of the application and provides interface to
access it for the controller. View is the output representation of the model, presented to
the user. Controller serves as the link between user and the system; it collects the input
from the user, satisfies their requirements, with the help of the model, and passes the
output to the view, which presents it to the user. The Codeigniter framework follows
this structure, and so will we.

34



5. Implementation 5.2. The subportal profile.matfyz.sk

MySQL

For storing data, we chose to use the MySQL open source relational database manage-
ment system. The queries, run against the database, are written in SQL - Structured
Query Language. It is most widely used solution for non-profit web projects and the
integration between Codeigniter and this type of database is also very well.

CSS

Cascading Style Sheet (CSS) is a style sheet language, which is used for formatting
and graphical presentation of the markup language document. The matfyz.sk portal
is formatted in this language and for our project we will use and extend1 the design
developed by Roman Janajev as a part of his Master thesis [6].

5.2 The subportal profile.matfyz.sk
The whole subportal is written in Slovak language, therefore also the screenshots in
this chapter will be in Slovak language. The localization to the English language will
be done in the future in order to make the whole matfyz.sk bilingual (for the time
being blog portal is already bilingual). For better orientation and understanding of the
screenshots, the Slovak equivalents of English terms will be put in the parentheses.

On the top of each web page on profile subportal, a header with the links leading
to all the subportals of matfyz.sk is placed along with the possibility to either log in,
and register (when nobody is logged in - see Fig. 5.1), or to log out and the name of
the currently logged in user.

Every user has a subdomain in the form of username.profile.matfyz.sk. However,
these are only aliases for the profile.matfyz.sk, so the controllers have to resolve the
URI by themselves to find out whose subdomain was called.

We will now, step by step, describe each controller we used in our project, since they
are the elements which are accessible from outside and thus are good to demonstrate the
implemented structure. The associated views and models will be described alongside
them. In Codeigniter, the controllers are accessed via their name, written as the first
segment of the resource part of the URI. The second segment indicates the function
of the controller which will be called. When no second segment is present, the index
function will be called.

In this section we will use the term “visitor”, when referring to the visitor of the
profile subportal.

1Some of the used icons are created by Freepik from www.flaticon.com under the Creative commons
licence.

35



5. Implementation 5.2. The subportal profile.matfyz.sk

5.2.1 Homepage of profile.matfyz.sk

Profile controller

This controller is responsible for the homepage of profile.matfyz.sk (see Fig. 5.12) along
with the profile model and view. The page (presented via the view) is divided into
two columns. Left column serves as the navigation for searching users. The search box
is placed on the top, where the name, username, or some part of them can be written
and the corresponding user will be found. The users can be also sorted alphabetically
according to their surname (“podľa priezviska”). The last search option is to sort users
according to their rating (“podľa ratingu”). In the right column, by default, the three
lists of users are shown (the central part of the web page). First list is a leaderboard
consisting of the 10 users with the highest rating (“Používatelia s najvyšším ratingom”).
The next is the list of the 5 newest users according to their registration time. And the
last one consists of the 5 randomly chosen users.

Figure 5.1: Homepage of profile.matfyz.sk

5.2.2 User profile

There are two controllers directly related to the user profile: userprofile controller
and edit_userprofile controller.

2The users and their avatars are fictional and only for illustration purpose

36



5. Implementation 5.2. The subportal profile.matfyz.sk

Userprofile controller

The userprofile controller resolves the URI to find out whether some user profile
should be loaded. When there is no username in front of the .profile in the URI, the
profile controller is called. If some username is found, the respective profile is loaded
and presented to the visitor of the web page with the help of the userprofile model
and view. The web page (presented via the view) consists of two columns. In the left
column, the picture of the user, their occupation and short version of the about (short
text, the user has filled in about them) is present. When the currently logged in user
browses their own user profile, the link to edit the user data is also accessible.

In the right column, the main content of the web page is present, which is divided
into three parts, represented as tabs, among which the visitor can switch:

Profile (“Profil”) This tab is loaded as a default option after the user profile web
page is visited. It is the summary of the other two tabs. In the left column,
the longer version of about and email address are present and the last 6 earned
rewards are exhibited. However, only the small pictures and titles of the achieve-
ments (“ocenenia”) and badges (“odznaky”) are shown here, but both reward
types sections include a link to all the rewards (“Všetky”) which takes user to
the next tab - About (“O mne”), where the rewards are exhibited more in detail.

Figure 5.2: Userprofile

37



5. Implementation 5.2. The subportal profile.matfyz.sk

Also the link to give a badge to the user (“udeľ mi odznak”) is shown above the
earned badges, which leads the visitor to the give controller (described later in
this section), where the visitor (when logged in) can award the user with some
badge. The described parts and the general layout of the user profile web page
is shown on the Fig. 5.2

About (“O mne”) Here the long version of about and email address is shown. All
the earned rewards are exhibited with large pictures, on which the title of the
particular reward is written. The description and the time when the reward was
earned are present. Next to the achievement, the source of it is stated. Next to
the badge, the comment and the username of the user who had given this badge
is written (see Fig. 5.3). Also the link allowing to give a badge is present.

Figure 5.3: Badge - detail

Activities (“Aktivity”) Here the detailed view of each user activity is shown as one
card. The card consists of the time, type of activity, subportal, title, description,
and optionally a picture, as can be seen on Fig. 5.4.

Figure 5.4: Activity card

38



5. Implementation 5.2. The subportal profile.matfyz.sk

Edit_userprofile controller

The controller resolves the URI and when the username in the URI matches the user-
name of the currently logged in user, the Edit_userprofile controller gives user the
opportunity to change their information stored in the system. In the left column, a
form for changing the password is located. In the main part of the web page, the forms
for changing the avatar picture and changing the other information is placed. The ac-
tual change of the information in the database is done via membership_model, which
provides functions to do so.

Give controller

The give controller resolves the URI and when username is present, this controller
enables logged in visitors to give the user, on whose subdomain they are, badges. The
form with existing badge types as a radio option list is in the central part of the web
page along with the text area to place a comment. Upon submitting the form the
userprofile_model is called to store the just given badge to the user.

5.2.3 Administration

For viewing the administration web pages, the user needs to be logged in and have
a record in the profile_roles table in the database with the value “1” in the role
field. Only after checking these two conditions, the content of these pages is loaded.
Otherwise, the user is redirected to the not_permitted controller.

Edit controller

Here the administrator have the opportunity to alter or add content to the profile
subportal. The links in the list, each adds the second segment to the URI, which
specifies which function of the edit controller should be called. The links are :

subportals Upon clicking, the clients function of the controller is called (because
subportals have the clients role in the OAuth protocol - see Roles in 3.1). In this
function the edit_viewis called, which presents the form in which the information
about the new client can be filled in. The submitted data is stored into the
database with the help of the edit_model.

achievements Upon clicking, the achievements function is called, which shows the
form (with the help of the edit_view and edit_achievements_view), in which
the existing types could be deleted or a new type can be added.

badges The same as in the previous link, just the called function and used view are
called differently: badges function and edit_badges_view.

39



5. Implementation 5.2. The subportal profile.matfyz.sk

Figure 5.5: Editing of the achievement types

activities Upon clicking, the activities function is called, which loads the edit_ac-
tivity_view. This view presents a form where, similarly to achievements and
badges, the existing activity types can be deleted or a new one can be added.

Not_permitted controller

This controller loads the view which says that the user does not have a permission to
view the requested page. The user is redirected to this controller upon requesting a
page for which they lack the appropriate permissions.

5.2.4 Single sign-on

We have already mentioned in 4.1.1, that we chose to use the oauth2-php-server PHP
library for the OAuth implementation. This library is listed as one of the available
PHP implementation on the official website of the OAuth community [5]. For sending
the HTTP requests described in 3.1, we chose to use the Guzzle PHP HTTP client, de-

40



5. Implementation 5.2. The subportal profile.matfyz.sk

veloped by Michael Dowling [3], which contains HTTP adapters, by which the requests
can be sent easily.

First, we will describe more in detail how the login and logout of the user looks like,
and than we will describe the mentioned controllers.

The detailed workflow of the login

When user visits any subportal and wants to log in, they click on the login button. To
log the user in, subportal creates the request for an authorization code, as described
in 2.1.5 to the profile.matfyz.sk/authorize endpoint, which calls the authorize
controller. The user-agent is then redirected to the profile server alongside the request.
The authorize controller takes the request and validates it. If the request is found
acceptable the process of user authentication is initiated:

1. Check if there is some session opened and whether some user is logged in. If true,
go to step 5.

2. If no user is logged in, redirect to profile.matfyz.sk/login - login controller
is made. The return URI to the authorize endpoint alongside with the request
made by the client (encoded into this URI) is encoded as a parameter into this
redirect URI.

3. The user is here prompted to fill in their username and password to authenticate
themselves.

4. If successfully authenticated, the user is redirected back to the return URI -
authorize controller.

5. The authorize controller revalidates the request (to check if it was not changed).

6. If the request is not valid, the error response is sent. If the request is valid,
the authorization code is issued and sent back to the client’s redirect_uri with
additional parameter username (as an extension to the normal response described
in 2.1.5). Where username is the username of the currently logged in user. The
session_id is also sent as a parameter, to bind the sessions on clients to the
session on profile server.

The detailed workflow of the logout

When the user wants to logout, they click on the logout button in the subportal from
which they want to log out. The subportal redirects the user-agent to profile.matfyz.
sk/login/logout/subportal, where “subportal” segment is the client_id of the
subportal from which the client wishes to logout. The logout process is then initiated:

41

profile.matfyz.sk/authorize
profile.matfyz.sk/login
profile.matfyz.sk/login/logout/subportal
profile.matfyz.sk/login/logout/subportal


5. Implementation 5.2. The subportal profile.matfyz.sk

1. The login controller’s function logout is called.

2. The controller checks whether the third segment is present in the URI and if yes,
than it asks the user whether they want to logout only from this subportal or
from all the subportals.

3. User clicks on the link according to their decision.

4. Depending on the choice of the user, the controller either sends the logout requests
with the help of the Guzzle client, to all the subportals to which the user is logged
in and destroys the session on profile as well or it sends the logout request only to
the one particular subportal, leaves the session on profile server untouched, and
redirects the user back to the subportal from which they just logged out.

5. When the user wished to logout from all the subportals, they are redirected to
the index function of the login. Otherwise, they have already been redirected it
the previous step.

Login controller

The web page which is viewed upon calling this controller consists of two columns. In
the left column, the small lists with the pictures of the best users are shown. In the
right column, the main content of the page is placed. On Fig. 5.6 on the right, the
login form is placed and on the left, the best users lists is located 3

The login controller checks whether some user is logged in or not. When no user is
logged in, it shows the login form with the possibility to log in or create an account,
as on the Fig. 5.6. In the opposite case, the controller loads a view which says that
the user is already logged in. When user fills in their credentials and tries to log
in, the membership_model’s function validate_credentials is called, which checks
whether the username-password combination is present in the database. If the answer
is positive, the controller creates the session for the user.

When the signup is present as the second segment of the URI, the signup_form
view is loaded, where a form to fill in the required information for the registration of a
new user is presented.

When logout is present as the second segment of the URI, the controller’s logout
function checks whether some user is logged in, and if yes, it asks the user whether
they want to logout from all the subportals (or from one particular subportal, when the
third segment of the URI is present). Upon clicking on the button, the logout process
continues as described above.

3The users and their avatars are fictional and only for illustration purpose

42



5. Implementation 5.2. The subportal profile.matfyz.sk

Figure 5.6: Login form

Authorize controller

This controller serves as the authorize endpoint for the OAuth protocol and thus its
behaviour is described in 3.4. It uses token_model to manipulate the data associated
with the tokens, authorization codes etc. Upon issuing an authorization code, it stores
the session_id of the current session of the user who is logged in to this code, so that
it can be stored to the respective token as well. The session_id needs to be stored in
the database, since tokens are issued via requests and not redirection. The controller
thus does not have an access to the session_id stored in the cookie. Without the
record in the database, the controller would not know what the session_id was.

Token endpoint

This controller serves as the token endpoint for the OAuth protocol and thus the
behaviour is descibed in 3.4. When the request is received by this controller, it checks
what kind of a request it is and whether it is valid. If the request is valid, it issues the
access token and sends back the HTTP response. With the help of the token_model
it stores additional information to the token to the database - the session_id (if the
authorization code grant type was used). When the grant type was refresh token, it
checks the response parameter of the request and if it is not present or is set to “false”,
the controller sends the prolong requests to other subportals with the help of Guzzle.

43



5. Implementation 5.2. The subportal profile.matfyz.sk

5.2.5 API

For the implementation of the API, designed in 4.2.1 and 4.2.2 we have created two
controllers: post and resource.

Resource controller

The resource controller serves the purpose of the API to get the information. It
contains the functions as designed in 4.2.1, which are called via URI, where the second
segment is the name of the function the subportal wants to call. The third parameter
is the username of the user, whose data the subportal wants to access. In the request,
also the valid access token must be attached as the parameter. The controller checks
whether the token is valid, and if it is, than it constructs the designed answer with the
help of the userprofile_model. This answer is sent as a response via Guzzle.

Post controller

The post controller functions similarly to the resource controller. It provides the sub-
portals with the functions described in 4.2.2 - achievement and activity. The functions
are also called via URI, in which the name of the function is written as the second
segment, and the username of the user to whom the sent data should be assigned is the
third parameter. Again the valid access token must be present, so that the controller
can check whether the request is valid and relevant. If the request is valid, the sent data
is stored to the database with the help of the userprofile_model and the response
with the status parameter set to “ok” is sent back to the subportal.

44



Conclusion

In our thesis we dealt with two main topics: the administration of user data on
matfyz.sk portal and single sign-on solution for the portal.

Firstly, we have analysed the condition of matfyz.sk portal - above all, the user data
storage. We have divided the data into two categories: General and Subportal-specific
user data. General user data is the data shared across all the subportals and thus
we moved this data to the new subportal profile.matfyz.sk. Now it is stored only in
one place and other subportals access the data via application programming interface,
which we have designed and described in this thesis. This API also enables subportals
to post information about user activities, which are then stored and shown on the
user profile web page. The rewarding mechanism for users was also designed - the
users can now earn badges and achievements by being active on the portal, which, we
hope, will increase their interest and engagement in the portal. For storing of all these
information about users, the data model was designed. Each user is now assigned a
subdomain username.profile.matfyz.sk, where the personal information, rewards, and
activities of the user are shown; the profile thus consists of pieces of content from all
the subportals and serves the purpose of unifying the whole portal.

In order to take over the logging of users in and out of the whole portal, we have first
analysed the available solutions for the single sign-on for web sites, and then chosen
the OAuth 2.0 protocol. We have designed the changes and additions to the protocol
to fit the needs of matfyz.sk portal and implemented it.

All the designed parts have been successfully implemented and are available on the
profile.matfyz.sk as a part of the portal matfyz.sk. The source code is also available
on the attached CD.

This thesis creates the design and implements the user profile with all the mentioned
features. However, the list of user-related information could be expanded and many
additions to the current condition of the profile subportal could be proposed and added
in the future.

45

profile.matfyz.sk


Bibliography

[1] Adam Bilisics: Electronic Notes, Bachelor Thesis, Comenius University in Bratislava,
2014.

[2] Sebastian Deterding et al.: From game design elements to gamefulness: defin-
ing gamification, in: Proceedings of the 15th International Academic MindTrek
Conference: Envisioning Future Media Environments, ACM, 2011, pp. 9–15.

[3] Michael Dowling: Guzzle, 2014, url: http://guzzlephp.org.

[4] EllisLab, Inc.: Codeigniter/EllisLab, 2014, url: http://ellislab.com/codeigniter.

[5] Dick Hardt: The OAuth 2.0 authorization framework, RFC 6749, Internet Engi-
neering Task Force, Oct. 2012, url: http://tools.ietf.org/html/rfc6749.
html.

[6] Roman Janajev: Customizable and Usable Layout of blog.matfyz.sk Portal, Master
Thesis, Comenius University in Bratislava, 2014.

[7] matfyz.sk team: about, Nov. 2007, url: http://www.matfyz.sk.

[8] OAuth: OAuth:Introduction, Sept. 2007, url: http://oauth.net/about.

[9] PHP Community: What is PHP?, cited on 15.5.2014, url: http://www.php.
net/manual/en/intro-whatis.php.

[10] Niels Provos, David Mazieres: A Future-Adaptable Password Scheme. In: USENIX
Annual Technical Conference, FREENIX Track, 1999, pp. 81–91.

[11] Dave Raggett, Arnaud Le Hors, Ian Jacobs, et al.: HTML 4.01 Specification, in:
W3C recommendation 24 (1999).

[12] Regents of the University of Michigan: CoSign: Collaborative single sign on, Aug.
2012, url: http://weblogin.org/.

[13] Brent Shaffer: OAuth 2.0 Server PHP, url: http://bshaffer.github.io/
oauth2-server-php-docs/.

[14] Shibboleth: How Shibboleth Works, 2014, url: https : / / shibboleth . net /
about/basic.html/.

[15] Jakub Čulík: Integrovaný LMS systém, Bachelor Thesis, Comenius University in
Bratislava, 2013.

46

http://guzzlephp.org
http://ellislab.com/codeigniter
http://tools.ietf.org/html/rfc6749.html
http://tools.ietf.org/html/rfc6749.html
http://www.matfyz.sk
http://oauth.net/about
http://www.php.net/manual/en/intro-whatis.php
http://www.php.net/manual/en/intro-whatis.php
http://weblogin.org/
http://bshaffer.github.io/oauth2-server-php-docs/
http://bshaffer.github.io/oauth2-server-php-docs/
https://shibboleth.net/about/basic.html/
https://shibboleth.net/about/basic.html/


Bibliography Bibliography

[16] W3C: Same origin policy, Jan. 2010, url: http://www.w3.org/Security/wiki/
Same_Origin_Policy.

[17] Gabe Zichermann, Christopher Cunningham: Gamification by design: Implement-
ing game mechanics in web and mobile apps, O’Reilly Media, Inc., 2011.

47

http://www.w3.org/Security/wiki/Same_Origin_Policy
http://www.w3.org/Security/wiki/Same_Origin_Policy

	Introduction
	Portal Matfyz.sk
	What is it
	Current condition
	Requirements
	Userdata
	Single Sign-on
	Other profile functions


	Background
	Single Sign-on
	Motivation
	Specification
	Available Implementations: CoSign, Shibboleth, OAuth2
	Comparison
	OAuth 2.0 - detailed

	Gamification
	Motivation
	Description


	Proposed solution
	The OAuth adjustment
	User data
	Categories
	API for subportals to get information

	Profile website
	User activities
	Badges and achievements
	API for subportals to send information
	Users lists

	Single sign-on
	Time out
	Single Logout-out


	Data model and API
	Data model
	SSO data
	User data
	General user data
	Subportal-specific user data

	API model
	API for subportals to get the information
	API for subportals to send the information


	Implementation
	Technologies
	The subportal profile.matfyz.sk
	Homepage of profile.matfyz.sk
	User profile
	Administration
	Single sign-on
	API


	Conclusion
	Bibliography

