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Abstrakt

Sekvenovaním DNA zvyčajne vzniká množstvo krátkych reťazcov. Sekvenovacie dáta
môžeme zosumarizovať vo forme histogramu počtov výskytov jednotlivých podslov
pevnej dĺžky. Takéto histogramy sa dajú použiť napríklad na odhadovanie dĺžky
genómu. V našej práci skúmame algoritmus Kmerlight, ktorý počíta spomínaný his-
togram približne. Zistili sme, že Kmerlight počíta vychýlené odhady histogramov,
no podarilo sa nám navrhnúť novú verziu algoritmu Kmerlight, ktorej odhady sú už
nevychýlené. V práci ďalej teoreticky modelujeme pravdepodobnostné rozdelenie chýb
odhadov histogramu a pomocou experimentov sme overili správnosť nášho modelu.
Na záver sme použili program CovEst na výpočet odhadov dĺžok genómov z prib-
ližných histogramov a preskúmali sme, ako chyby v histogramoch ovplyvňujú presnosť
týchto odhadov. Napriek tomu, že CovEst bol navrhnutý na spracúvanie presných
histogramov, naše výsledky ukazujú, že CovEst môže byť použitý aj na približných
histogramoch, ktorých výpočet si vyžaduje menšie množstvo pamäte.

Kľúčové slová: histogram počtov k-tic, Kmerlight, odhad dĺžky genómu, CovEst
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Abstract

DNA sequencing data is typically a large collection of short strings called reads. We
can summarize such data by computing a histogram of the number of occurrences of
substrings of a fixed length. Such histograms can be used for example to estimate the
size of a genome. In this thesis we study an existing tool, Kmerlight, which computes
approximate histograms. We discover an approximation bias, and we propose a new,
unbiased version of Kmerlight. We also model the distribution of approximation er-
rors, and we support our theoretical model by experimental data. Furthermore, we use
another tool, CovEst, to compute genome size estimates with use of approximate his-
tograms, and we evaluate the precision of such estimates compared to results obtained
from exact histograms. Our results show that although CovEst was designed to work
with exact histograms, it can be used with their approximate versions, which can be
produced in a much smaller amount of memory.

Keywords: k-mer abundance histogram, Kmerlight, genome size estimation, CovEst
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Introduction

In a DNA sequencing experiment, many reads are produced from a genome. These
reads are short strings obtained from random locations of the genome, potentially with
some sequencing errors. For a genome to be analyzed, the genomic sequence must be
first assembled from the reads, but the process of genome assembly is computationally
demanding.

In previous years, several methods were devised to estimate the size of a genome and
some other genome characteristics without the need of genome assembly [6, 2, 9, 12].
To compute these estimates, a summary statistic of reads, k-mer abundance histogram
is used. In order to produce such a histogram, the sequencing reads are first processed
into k-mers (substrings of a length k). Then the histogram of the number of occurrences
of k-mers can be computed.

Most of the histogram computing methods are based on hash tables or suffix arrays
[8, 7, 11, 3] and their memory usage increases at least linearly with the number of
processed distinct k-mers. To reduce the memory requirements, k-mer abundance his-
tograms can be computed approximately. One of the newest such algorithms, Kmerlight
[12], combines the techniques of sampling and hashing to maintain a sketch of k-mers
and from the contents of the sketch computes an estimate of the histogram.

The approximate histograms were already used as an inputs for genome size estima-
tion tools [12], however the impact of the approximation errors on estimate precision
was not evaluated.

The goal of our thesis is to study the character of errors of the approximate his-
tograms and their influence on the subsequent genome size estimation.

We start with an empirical study of the approximation errors of Kmerlight algo-
rithm, and we discover that Kmerlight produces systematically biased estimates of
some histograms. We explain the source of the bias and mathematically support our
claims, and then we also propose a modification of Kmerlight which eliminates this
bias.

Next we model the distribution of Kmerlight’s errors with the normal distribution,
and we propose a formula that describes Kmerlight’s variance. We then experimentally
test our theoretical model and explore its limitations.
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Introduction 2

Finally, we use CovEst software [6] to estimate the sizes of simulated genomes from
approximate histograms produced by Kmerlight. We describe how different parameters
of the genome influence the accuracy of the estimates and we compare the estimates
based on exact histograms to the estimates based on approximate histograms.

In the first chapter we explain the essential biological vocabulary and we outline
the principles of histogram computing and of genome size estimation. In the second
chapter we study the approximation errors made by Kmerlight and in the last chapter
we investigate the accuracy of genome size estimates based on approximate histograms.



Chapter 1

Background and Problem Statement

In this chapter we firstly explain the biological context and the reason why is the
genome size estimate necessary. Then we define a k-mer abundance histogram and
present algorithms which compute this histogram exactly and approximately. Finally,
we briefly describe a method for genome size estimation and we will be able to present
the goals of our thesis.

1.1 Biological Motivation

1.1.1 DNA Sequencing

DNA molecules store genetic information in cells in the form of long linear or circular
chains of nucleotides. Four types of nucleotides can be present in DNA – adenine,
cytosine, guanine and thymine. Therefore, we can represent a DNA molecule as a
sequence of characters A, C, G, T.

The whole genetic information of an organism, stored in several DNA molecules,
is called a genome. Genome sizes range from thousands of nucleotides in viruses up
to hundreds of billions nucleotides in some plants. The length of a human genome is
known to be around 3.2 billion nucleotides.

In a sequencing process we try to obtain a nucleotide sequence of DNA from a given
biological sample. We will focus on the next generation sequencing technologies that
can read only short segments of a nucleotide chain, producing reads of length 100–1000
nucleotides (depending on the specific technology used).

In a sequencing experiment, the DNA is at first randomly fragmented to shorter
pieces. Then the ends of these pieces are sequenced, producing two reads from one
fragment. Therefore, each read originates from a specific but unknown location in the
genome. Since every read is a segment of DNA, it can also be represented as a string
of A, C, G, T characters.

3



CHAPTER 1. BACKGROUND AND PROBLEM STATEMENT 4

There are multiple factors that affect the quality of reads, but we will mostly con-
sider only one type of errors: a single nucleotide substitutions caused by sequencer
itself. Occasionally a nucleotide of DNA is read incorrectly and so it is considered to
be one of three other nucleotides. We use the term error rate to quantify the fraction of
incorrectly read nucleotides. For example, if the sum of lengths of all reads is 109 and
the error rate is 0.02, we can expect 2× 107 nucleotides in the reads to be incorrect.

1.1.2 Genome Assembly Problems

When the reads are retrieved, it is then the task for bioinformatics to assemble the
whole genome from many short fragments. The genome assembly relies on the overlaps
of reads such as in Figure 1.1: if a suffix of one read is identical to a prefix of another
read, they presumably originate from overlapping locations in the genome, and thus
can be joined to form a longer sequence.

genomic sequence: CCGACGTCCACCTGTGATCGGATG

read A: GTCCACCT

read B: ACCTGTGA

Figure 1.1: Two reads of length 8 overlapping one another in 4 nucleotides.

Without a large enough number of reads, the reconstruction of genome would not
be possible. Not only that the reads should cover the whole length of the genome,
but there should also be a sufficient number of read overlaps. In other words, each
location in the genome should be a part of multiple reads. The average number of
reads covering each nucleotide is called coverage.

Since the source locations of reads are randomly distributed over the genome, even
at high coverage some areas of the genome can remain unsequenced, thus preventing
complete assembly.

In order to estimate the number of reads necessary for a certain coverage, we must
first estimate the genome length. We can base the estimate on the known genomes of
related species. A different approach would be to sequence the genome in a prelimi-
nary experiment, estimate the coverage and the genome length and then continue the
sequencing process until a desired coverage is achieved.

But the genome assembly problems do not end with sufficiently high coverage.
For example, during the evolution, long segments of DNA can be copied to different
locations, creating multiple identical sequences in different parts of genome.

In section 1.4 we will outline a method that can estimate the genome size and also
other characteristics such as coverage and extent and multiplicity of duplicated regions
without the need of genome assembly, but this method uses a summary statistic called
k-mer abundance histogram.
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1.2 K-mer Abundance Histogram

To obtain information from reads, the reads are at first processed into k-mers. A k-mer
is a substring of length exactly k. Using a read of length r we produce r−k+1 k-mers.
The same k-mer may be produced by multiple reads. If a k-mer occurs i times among
all k-mers, we say its abundance is i.

Definition. The k-mer abundance histogram is a sequence f = f1, f2, f3, . . . fm, where
fi is the number of k-mers that occur in the input set exactly i times and m is the
maximum observed abundance.

Apart from estimating the genome size, several other methods in bioinformatics are
also based on k-mers. For example, during genome assembly, the overlaps of k-mers
are usually considered instead of overlaps of reads. As the k-mer abundance histogram
can be calculated quickly, it can be also used for selection of an optimal k in such
methods [1].

Also note that the k-mer abundance histogram and many algorithms used for its
computation can be generalized to a histogram of any input items. Thus the applica-
bility of this topic outreaches the field of bioinformatics.

The value of k must be set high enough to reduce the chance of two unrelated
genome locations from producing the same k-mers1. However, with higher values of
k, each sequencing error affects more k-mers, thus increasing the fraction of erroneous
k-mers which produce problems in the downstream analysis. In our thesis we always
use the value k = 21 as suggested in [2, 6].

1.3 Computing K-mer Abundance Histogram

A simple approach to compute k-mer abundance histogram would be firstly to compute
k-mer abundances – the exact number of occurrences of each k-mer – and then count
different k-mers with j occurrences for each j. Since the role of k-mer abundances is
important in bioinformatics, there exist many tools that compute them. In the next
subsection (1.3.1) we briefly summarize these algorithms.

However, counting k-mer abundances is a computationally demanding task for large
inputs. As we are only interested in the histogram, the problem of k-mer counting can
be avoided, allowing us to estimate the histogram very efficiently without an interme-
diate step.

1Under the assumption that each of A, C, G, T nucleotides occurs at each position with proba-
bility 1/4, we can expect approximately L2 · 4−k collisions in a genome of size L.
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1.3.1 Exact K-mer Abundance Counting

In a naive hashing algorithm, a hash function h would uniformly distribute strings of
length k to a hash table T . We would store the number of occurrences of a k-mer s in
the counter T [h(s)]. In a single scan through all the reads we would then increment
the appropriate counters. This solution works well for millions of k-mers, but as the
number of distinct k-mers increases, we must use larger hash tables in order to prevent
collisions. This solution becomes much slower when the hash table T becomes larger
than RAM available.

A few techniques were used to decrease the time and memory consumption. These
improvements allowed the hashing approach to be used in practice:

• Based on an observation that most of the k-mers with only one occurrence come
from erroneous reads, BFCounter [8] uses a Bloom filter to exclude rare k-mers
from the hash table, thus saving memory.

• Jellyfish [7] software uses a thread-safe hash table utilizing the advantage of
parallel computing.

• To decrease the size of the hash table, Disk Streaming of K-mers (DSK) [11]
algorithm scans the input data in more iterations, processing only a subset of
k-mers in each iteration. A second hash function is used to determine the subset
(and the iteration) for each k-mer (a similar principle is used to randomly sample
k-mers in section 1.3.2).

A different, but still memory-demanding, approach based on suffix arrays was used
in Tallymer software [3]. A suffix array is a data structure holding all suffixes of a
string sorted in a lexicographical order. Suffixes with identical prefixes of length at
least k represent different occurrences of a k-mer. Since they are stored in a sorted
order, abundances of k-mers can be computed by grouping adjacent suffixes.

1.3.2 Approximating the Histogram

As we drop the requirement to compute the exact histogram, it is no longer necessary
to store the abundance of each k-mer. This provides a way to reduce the amount of
required memory from dozens of gigabytes to hundreds of megabytes, allowing these
computations to be performed on a personal computer rather than on a cluster.

To use all available data, we still analyse every k-mer of every read, so the time
complexity of the following algorithms will still be at least linear in the number of
k-mers.
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Figure 1.2: The accuracy of the sampling method. Reprinted from the original paper
[1]. The panels reflect three datasets. Each plot shows the exact histogram curves for
k = 51 (solid black curve), k = 41 (dash-dot red curve) and k = 61 (dashed green
curve). The approximate (sampled) histogram is shown using black dots. Note that fi
is shown on a log-scale, exaggerating the differences at lower fi values.

Simple sampling from k-mers

The simplest optimization, which was used in a tool KmerGenie [1], is to sample from
k-mers. With the parameter s, we can choose a hash function ρs : {A,C,G, T}k →
{0, 1, . . . , s − 1} that uniformly distributes the k-mers to s buckets. Afterwards, we
can compute the histogram by a naive hashing approach or by any other algorithm
presented in the previous section 1.3.1 using only the k-mers that hashed to 0. Of all
the distinct k-mers, only a randomly selected fraction of 1/s is considered.

The authors used value s = 1000 in their experiments. As it can be seen from the
experimental data (Fig. 1.2), the approximation closely follows the exact histogram f

at abundances with higher values of fi, where enough of unique k-mers of abundance
i were sampled. Fewer k-mers reach higher abundances i, and thus even fewer of them
are sampled, which leads to decreased relative precision of approximation of lower
values fi. The authors did not include any analytical bounds of errors, however.

Multilevel sampling

The inspiration for the next approach comes from a class of streaming algorithms.
Streaming algorithms are used to process a sequence of items (in our context k-mers)
usually in only one pass with a limited memory and time per item. A common problem
solved by streaming algorithms is counting distinct elements in a stream [14].

These algorithms maintain an approximate summary or a sketch of the previously
viewed k-mers and with each new k-mer the sketch is updated. When all the k-mers are
processed, the sketch can be analyzed to provide the estimate of the k-mer abundance
histogram.
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In 2002 Bar-Yossef et al. presented three streaming algorithms that were able to
estimate the number of distinct elements in a stream (F0 =

∑m
i=1 fi) with theoretical

guarantees [4].
In 2014 Melsted and Halldórsson [9] implemented and extended Algorithm 2 from

the aforementioned paper [4] and used it for k-mer counting. Their algorithm Kmer-
Stream was also able to estimate the number of k-mers with abundance one, f1. Ac-
cording to the authors, this algorithm is at least three times faster than KmerGenie,
and it can use ten times less memory.

KmerStream was further improved by Sivadasan et al. in 2016 [12], and their soft-
ware Kmerlight is able to estimate the whole histogram (f1, f2, . . . , fm). The authors
also included theoretical bounds of approximation errors.

As we focus on Kmerlight in our work, we will describe Kmerlight in detail in the
next chapter, in section 2.1.

1.4 Genome Size Estimation

As we mentioned in section 1.1.2, it would be helpful to know the length of a genome
before its assembly. Furthermore, we might also be interested in other genome charac-
teristics, such as the extent and multiplicity of its duplicated regions.

In previous years there were several researches concerned with the estimation of
these characteristics without the need of computationally demanding genome assembly
[6, 2, 9, 12], using only the k-mer abundance histogram.

Let us summarize the parameters of the genome in Table 3.3. Then we will describe
how different genome characteristics influence the shape of the histogram, and how
these parameters can be estimated from the histogram. We use the assumption that
the reads are distributed uniformly across the genome.

L genome size the number of nucleotides in the genome
l read length the number of nucleotides in one read
c coverage an average number of reads covering each genome position
e error rate probability that a single nucleotide was read incorrectly

Table 1.1: A set of simple genome parameters as described in the section 1.1.1.

When we consider a genome without duplicated sequences and sequencing without
errors, we would expect the histogram to reach its maximum close to the abundance c.
Under the assumption that the reads are uniformly distributed over the genome, most
of the locations in genome are expected to be covered by approximately c reads, thus
contributing to values close to fc.
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Note that the average coverage is a fraction of the sum of lengths of all reads and
the genome size (c = n · l/L, if n denotes the number of all reads). Since the sum of
lengths of reads is known, with the knowledge of the coverage, we can estimate the
genome size, and conversely, with the knowledge of the genome size we can estimate
the coverage.

If the average coverage of the whole genome is c, then a duplicated sequence is
expected to be a part of twice as many reads as a unique sequence, and so to have
coverage 2c. A sequence copied three times in the genome is expected to have coverage
3c. The number of copies present can be thus deduced from the positions of peaks in
the histogram, expected at abundances 2c, 3c, . . . nc and the extents of copied regions
can be deduced from the relative heights of these peaks f2c, f3c, . . . fnc.

The sequencing error rates also change the shape of the histogram. With error rate
of 1% and k = 21, about 19% of k-mer occurrences are erroneous and thus unique
with high probability, creating a notable peak in the histogram at value one. From the
height of f1, the error rate can be estimated.

Furthermore, the erroneous k-mers also decrease the average effective coverage, as
some k-mers covering each location are wasted because of errors. As a result, the whole
histogram is shifted towards lower abundances.

The aforementioned characteristics lay out the basis of k-mer abundance histogram
analysis. Approaches introduced in the previous work [6, 2, 9, 12] use probabilistic
generative models that can generate the expected shape of the histogram based on
several parameters. These parameters are chosen and optimized to produce a histogram
most alike to the observed one. We will provide a more detailed description of one such
model, CovEst [6, 5], in section 3.1.

1.5 Problem Statement

The main goal of our thesis is to determine whether the approximate histograms pro-
duced by Kmerlight can be used as inputs for CovEst to estimate the genome size. We
mainly focus on preserving the accuracy of CovEst’s estimates, and we focus less on
the processing time and memory consumption.

In order to achieve our goal, in chapter 2 we study the qualitative and quantitative
character of inaccuracies introduced by Kmerlight with the aim to model or predict
the distribution of the estimates of fi. We discover that Kmerlight can be modified
to produce more accurate histograms and we present a model of Kmerlight’s errors
distribution.

In chapter 3 we we study the performance of CovEst on approximate histograms.
After providing a more detailed description of CovEst software we experimentally eval-
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uate the effects of various coverages, error rates and genome sizes on precision of genome
size estimates. We find that CovEst is robust with respect to Kmerlight’s errors and
that CovEst’s estimates based on approximate histograms maintain a sufficient preci-
sion.



Chapter 2

Analysis and Improvement of
Kmerlight

In this chapter we first present a detailed description of an existing algorithm Kmerlight
[12] which computes an approximated k-mer abundance histogram.

Afterwards we investigate the character of inaccuracies of the estimated histogram,
and we present a novel estimate of error variance. As we discover a systematic estima-
tion bias, we alter Kmerlight to produce unbiased histogram estimates.

2.1 Kmerlight

The input expected by Kmerlight is a collection of ACGT sequences (reads). Kmerlight
transforms reads into k-mers, as it was described in 1.2 and then processes a stream of
k-mers. Kmerlight maintains a sketch of previously processed k-mers and updates the
sketch with each k-mer. The estimates of F0 (F0 =

∑m
i=1 fi) and fi are computed from

the content of the sketch in the end. The output consists of values F̂0, f̂1, f̂2, . . . , f̂m.
Kmerlight’s sketch consists of W = 64 levels. There is a hash table Tw at each level

w with r counters Tw[0], Tw[1], . . . , Tw[r − 1]. Each counter c stores its value Tw[c].v

(the number of elements stored in the counter) and an auxiliary information Tw[c].p

from within a range 0, . . . , u− 1.

Update

• For a distinct k-mer, its level is selected so that the probability of selecting level
w is 1/2w. In particular, the k-mer is hashed into an integer of W bits and the
number of trailing zeroes determines the level w. Thus all occurrences of the
same k-mer will be placed to the same level w.

• Next, using a different hash function h : {A,C,G, T}k → {0, . . . , r − 1} ×
{0, . . . , u− 1}, the k-mer is hashed into a pair (c, j).

11
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– If the counter c at level w is empty, its value is increased to 1 and j is stored
as an auxiliary information Tw[c].p.

– If the counter Tw[c] is not empty, but the auxiliary information in Tw[c].p is
equal to j, the counter value Tw[c].v is increased.

– Finally, if Tw[c].p 6= j, the counter is marked as dirty with value -1. Dirty
counters are not modified by future updates.

Note that all occurrences of the same k-mer will be stored in the same counter, and the
value of the counter should correspond to the abundance of this k-mer. Since two or
more different k-mers may hash into the same counter at the same level Tw[c], collisions
may occur. The auxiliary information helps to detect some of these collisions.

In the analysis we will always assume that both hashing functions perform uniform
hashing, though only pairwise independent hashing is used in the implementation of
the algorithm.

Estimator of F0 Since on average F0/2
w distinct k-mers are hashed into level w, the

probability that a counter at level w remains empty is approximately p = (1− 1
r
)F0/2w .

In this estimate and in all subsequent analysis we assume that the number of distinct
k-mers at level w is exactly F0/2

w, although in fact it is a binomial random variable
with this number as mean1.

The expected number of empty counters at level w is thus r · p. Let us denote the
number of observed empty counters at level w as t0. Using the assumption t0 ≈ r · p
we can easily derive the estimator of F0:

F̂0 = 2w · ln(t0/r)

ln
(
1− 1

r

) (2.1)

To estimate the number of distinct k-mers, we choose one level of the sketch w∗, so
that the number of empty counters at this level (t0) is closest to r/2. This estimator
of F0 was first presented in the article by Bar-Yossef et al. in 2002 [4] and it has
been shown that selecting this level provides a bounded error of F̂0 with guaranteed
probability.

Estimator of fi The expected number of distinct k-mers with abundance i hashed
to level w is fi/2w. When a k-mer is hashed into level w, the probability that it is
stored in a collision-free counter is (1− 1

r
)F0/2w−1, which is the probability that no other

1An exact value of p is (1 − 1
r·2w )F0 , which considers that any of F0 k-mers may cause a collision

at level w. The approximate value of p is almost equal to the exact value for r, F0 used, however, and
the calculations with the approximate p are much simpler.
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k-mer from level w will get hashed into the same counter. Thus we can estimate the
number of collision-free counters with value i as

ti ≈ fi/2
w ·
(

1− 1

r

)F0/2w−1

(2.2)

If we denote the number of observed collision-free counters with value i as ti, we can
derive the estimator of fi:

f̂i = ti · 2w ·
(

1− 1

r

)1−F0/2w

(2.3)

Again, one level w∗ is selected to estimate fi, so that it maximizes ti – the number
of observed collision-free counters with value i. This decision was not discussed by the
authors, but it seems to be a reasonable choice to achieve the highest accuracy, since
higher levels would contain fewer counters with value i and lower levels would contain
fewer collision-free counters.

Undetected collisions We use an assumption that if a counter holds a value i,
it must originate from a k-mer with abundance i, but hashing collisions can occur.
With the collision detection mechanism in place, most of the counters with collisions
are discarded, but some collisions can remain undetected. The value ti is based on
the number of non dirty counters, but these include both true positives (collision-free
counters) and false positives (counters with an undetected collision).

The authors have shown that the expected number of false positive at one level
is at most r/u and that parameter u can be set to make false positives negligible2.
As with 2k bits per counter we would be able to retain the whole k-mer stored in
this counter and thus detect all collisions perfectly, the parameter u only provides an
effective trade-off between memory usage and accuracy.

In our analysis we will ignore the effect of false positives and we will use an as-
sumption that all collisions are being detected.

Median amplification To further decrease the variance of estimates and to make use
of multiprocessing, t independent instances of Kmerlight’s sketch are run concurrently.
Estimate F̂0 is then selected as median of F̂ (1)

0 , . . . , F̂
(t)
0 , and estimates of fi are also

selected as medians from t instances.

Accuracy and complexity The parameters r, u ant t can be altered to achieve a
viable memory-accuracy trade-off. The algorithm uses O(t · r · log(F0)) memory words

2We note that the expected number of false positives does not depend on the number of distinct
k-mers F0. With increasing F0 more collisions take place, but also more collisions are detected and
these two effects cancel each other out. The proof can be found in Lemma 4 of Appendix D of [12].



CHAPTER 2. ANALYSIS AND IMPROVEMENT OF KMERLIGHT 14

by t instances of sketches with W = logF0 levels with r counters each. An update of t
sketches (processing of one k-mer) requires O(t) time.

The authors have shown that the algorithm computes estimates F̂0 and f̂i for
sufficiently large fi (fi ≥ F0/λ) with a bounded relative error (1 − ε)F0 ≤ F̂0 ≤
(1 + ε)F0, (1− ε)fi ≤ f̂i ≤ (1 + ε)fi with probability at least 1− δ, when the parame-
ters are set as follows: t = O(log(λ/δ)), r = O( λ

ε2
) and u = O(λF0

ε2
).

Due to the loose constants in the asymptotic estimate, these values of t, r, u cannot
be directly used in practice to guarantee the error bounds. The accuracy of this algo-
rithm was tested experimentally with arbitrary parameters t = 7, r = 216, 218, u = 213.

2.2 Empirical Study of Approximation Errors

To study the character of approximation errors, we first made several experimental
observations on generated data.

2.2.1 Data Generation

Since we will later use the approximated histogram to estimate a genome size, we will
mainly study Kmerlight’s performance on data that are to some degree biologically
plausible. We will base our data generation on a sequencing process as it was described
in section 1.1.1.

As the Kmerlight’s input data consist of genome reads, we first generate a genome
g1g2g3 . . . gL: a random sequence of length L consisting of characters A,C,G, T each
with probability 1/4 at every position.

Afterwards we generate reads, each of length l = 100. Instead of creating an explicit
number of reads, we choose a parameter c (coverage) and generate c ·L/l independent
reads.

To generate a single read we uniformly select a random starting position s in genome
from a range 1, . . . , L− l+ 1 and then the read consists of characters gsgs+1 . . . gs+l−1.
Finally, to simulate sequencing errors, we change each read character with probability
e/3 (e denotes error rate) into a one of the three other characters.

2.2.2 Error Characteristics

In this section, we compare the exact k-mer abundance histogram produced by Jellyfish
software [7] with approximated histograms computed by Kmerlight (with parameters
t = 7, r = 215, u = 213 using 60MB of RAM). We ran Kmerlight in 50 trials on the
same input data, and we investigate means and standard deviations of the estimates
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Figure 2.1: The exact values fi produced by Jellyfish software (blue) and approximated
values f̂i produced by Kmerlight averaged from 50 trials (orange). The errorbars
express the standard deviation of each estimate. Note that columns for i = 1, 2 were
trimmed, having values approximately 107, 106 respectively.

f̂i. We demonstrate three error characteristics on a genome generated with parameters
L = 106, c = 50, e = 0.02. In all our experiments we use value k = 21.

Overestimation In Figure 2.1 it is clearly visible that Kmerlight systematically
overestimates values of fi. Mean errors for abundances around 25 reach absolute values
of 4000, which is 5% relative error. Lower accuracy is expected, since these values fi
are considerably smaller than the number of all k-mers F0, and Kmerlight guarantees
high accuracy only for high values of fi. But the clear bias of the estimate towards
higher values (E(f̂i) > fi) is unexpected and unexplained yet.

In the following sections we clarify the source of this bias (2.3), and we present
means to make the estimator f̂i unbiased (2.4).

Higher relative errors and higher relative variance with lower fi Another
characteristic of the errors is a trend of increasing relative variance and relative error
of the estimates for lower values fi3. In Figure 2.2 we visualize mean and standard
deviation of relative errors (f̂i − fi)/fi of fi estimates. Kmerlight guarantees bounded
errors only for the most frequent k-mers, those with high fi/F0 ratio, but a theoretical
quantitative analysis of the error distribution was not presented in the previous work
[12, 9].

3Note that the absolute mean error (f̂i − fi) and absolute variance decrease with decreasing fi, as
it can be seen in Figure 2.1. However, if the errors are considered proportionally to fi, as (f̂i− fi)/fi,
these relative errors and their variance increase with decreasing fi.
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Figure 2.2: The mean and standard deviation of relative errors (f̂i−fi)/fi for columns
sorted by decreasing fi (increasing F0/fi). The drop in both statistics at values λ = 105

is caused by Kmerlight’s insensitivity to infrequent k-mers.

We provide a quantitative estimate of the variance in section 2.5 and then we use
this knowledge to set Kmerlight’s parameters to achieve a desired error in 2.6.

Insensitivity to lowest fi Since the hash tables of Kmerlight’s sketch are smaller
than the number of all k-mers, many k-mers collide. When fi, the number of distinct
k-mers with abundance i, reaches a specific boundary (in Figure 2.3 it seems to be
5 × 102), the probability that at least one k-mer with abundance i becomes stored in
a collision-free counter at any level approaches to zero.

As a result, the estimates f̂i for the lowest fi may be based on none or very few
counters with value i. If no k-mer survives the collisions (ti = 0) then f̂i = 0. If very
few k-mers survive the collisions, the estimator multiplies the number collision-free
counters by factor 2w

∗ , and the estimate may overestimate fi drastically if a higher
level w∗ was selected.

This effect is expected, but we point it out as it may limit the usage of the approx-
imated histogram to some applications.

2.2.3 Explanation of the Histogram Shape

Kmerlight guarantees precise estimates of those fi that have values close to F0. Unfor-
tunately, in the sequencing data, sequencing errors often create many unique k-mers,
and thus we have f1 close to F0 and the remaining fi (for i > 1) are much smaller
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Figure 2.3: The exact (blue) and average approximated (orange) histograms, identical
to those in Figure 2.1, but displayed in a logarithmic scale with values i = 1, 2 included.
Note the lack of orange columns where blue columns reach lower values – due to hashing
collisions, Kmerlight cannot estimate fi lower than 5× 102.

than F0.
For example, with sequencing error rate of 2%, 35% occurrences of 21-mers are

erroneous and thus unique with high probability. As a result, 35% of all input k-mers
are concentrated in f1, and 65% of k-mers are distributed to other fi.

Furthermore, to increase f1 by one, only one k-mer occurrence is needed, but to
increase f10 by one, ten error-free occurrences of the same k-mer must be present in
the input stream. As a result, 65% of error-free k-mer occurrences constitute a much
smaller fraction of all distinct k-mers4.

These effects explain, why the value of f1 is approximately a hundred times larger
than the values of fi for i > 10 in the presented experimental data in figures 2.1 and
2.3.

2.3 The Source of Approximation Bias

To calculate an estimate of fi, the level w∗i is chosen by Kmerlight to maximize t(w)i –
the number of collision-free counters with value i at level w.

4If we take a hundred k-mer occurrences, 35 of them are expected to be erroneous, and so they
produce 35 distinct unique k-mers. If the remaining 65 k-mers contribute to abundance 10, we are
left with approximately 41 distinct k-mers from which 35 are unique.
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t
(w)
i = |{Tw[c].v = i | c ∈ {0, . . . , r − 1}}| w∗i = arg max

w
t
(w)
i

Then the number of counters at this level is converted into the estimate of fi by

multiplying it by 2w
∗
i ·
(
1− 1

r

)1−F0/2
w∗
i

.
The reason for selecting level w∗i by this criterion is not clearly stated in Kmerlight’s

original paper [12]. We believe that the authors hoped to minimize the variance of the
estimator f̂i by including as many k-mers in the estimate as possible.

2.3.1 Analytical w+

In order to get insight into which levels w∗i are selected by Kmerlight, we will analyti-
cally find the levels w+

i that maximize E(t
(w)
i ) – the expected number of collision-free

counters with value i.
As it was derived in (2.2), E(t

(w)
i ) = fi/2

w ·
(
1− 1

r

)F0/2w−1. The value of w+
i at

which E(t
(w)
i ) is maximized can be obtained by differentiation ( d

dw
E(t

(w)
i ) = 0) or by

using the discrete inequalities E(t
(w+
i −1)

i ) ≤ E(t
(w+
i )

i ) ≤ E(t
(w+
i +1)

i ). By manipulating
the inequalities we get

1

4
≤
(

1− 1

r

)F0/2
w+
i

≤ 1

2
(2.4)

and finally we can calculate w+
i :

lgF0 + lg lg
r

r − 1
− 1 ≤ w+

i ≤ lgF0 + lg lg
r

r − 1

Symbol lg denotes the binary logarithm.
As w+

i denotes a Kmerlight’s level, it should always be a positive integer. In rare
cases there can be two solutions w+

i = blgF0 + lg lg r
r−1c, w

+
i = dlgF0 + lg lg r

r−1e. For
some values of F0 the optimal value of w+

i may be less than one, but in these cases
we choose w+

i = 1. In practice, w+
i can be simply computed by a for-loop through

w = 1, . . . ,W , choosing w that maximizes E(t
(w)
i ).

Note that the choice of the optimal level w+
i does not depend on values of i or fi,

but only on values of F0 and r. Since w+
1 = w+

2 = · · · = w+
m, from now on we will refer

to this level simply by w+. As the level w+ maximizes E(t
(w)
i ) for any non-zero value i,

this level also maximizes the expected number of all non-empty collision-free counters
E(t(w)) =

∑m
i=1E(t

(w)
i ) = F0/2

w ·
(
1− 1

r

)F0/2w−1.

2.3.2 Explanation of Bias

Since the ratio fi/F0 is typically very low for higher values of i, and this ratio determines
the value of t(w)i (the number of collision-free counters holding the value i), each fi is
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represented by only a relatively small number of collision-free counters at each level of
Kmerlight’s sketch. Therefore t(w)i have high relative variances.

By examining the levels w+ − 1 and w+ + 1 we learn that the number of collision-
free counters at these levels is similar to the number of collision-free counters at level
w+. From (2.2) we can see that there are two times more k-mers hashed into the level
w+− 1 than k-mers hashed into w+, but also more collisions happen at w+− 1. These
two effects partially cancel each other out and maintain similar values of E(t(w)) for
w = w+ − 1, w+, w+ + 1.

As we substitute bounds from (2.4) into (2.2), we learn that

F0

2w+ ·
1

4
·
(

1− 1

r

)−1
≤ E(t(w

+)) ≤ F0

2w+ ·
1

2
·
(

1− 1

r

)−1
and if we do the same for the level w+ − 1 we get:

2 · F0

2w+

(
1

4

)2(
1− 1

r

)−1
≤ E(t(w

+−1)) ≤ 2 · F0

2w+

(
1

2

)2(
1− 1

r

)−1
Finally, for the level w+ + 1 we get:

1

2
· F0

2w+

(
1

4

)1/2(
1− 1

r

)−1
≤ E(t(w

++1)) ≤ 1

2
· F0

2w+

(
1

2

)1/2(
1− 1

r

)−1
If we substitute c = F0/2

w+ · (1− 1/r)−1, we can summarize the similarity of levels
as follows:

E(t(w
+)) ∈

〈
1

4
c,

1

2
c

〉
E(t(w

+−1)) ∈
〈

1

8
c,

1

2
c

〉
E(t(w

++1)) ∈
〈

1

4
c,

1

2
√

2
c

〉
(2.5)

As a result of low values and high variances of t(w)i and similar values of E(t(w
+−1)),

E(t(w
+)) and E(t(w

++1)), any of these levels could hold the maximal t(w)i and become
chosen by Kmerlight as its w∗i .

Kmerlight always chooses the level which maximizes t(w)i and this freedom of choice
leads to values of t(w

∗
i )

i consistently higher than values of E(t
(w∗
i )

i ) which consequently
biases the estimator f̂i towards higher values.

We extracted the values w∗i for different fi from one Kmerlight run and we present
them in Figure 2.4. For each i there are up to seven values of w∗i , each selected by
one instance of seven Kmerlight’s sketches5. The most of selected levels follow the
analytical w+ = 9; however, Kmerlight often chooses level 8 or 10 to maximize t(w)i .
Note that for 3 ≤ i ≤ 15 and i ≥ 40, the values of fi are low, and thus t(w)i have high
relative variance (as it was presented in section 2.2.2). The maximal t(w)i can thus also
be reached at levels more distant from the analytical w+ = 9.

5If there are no counters holding the value i in the whole sketch, Kmerlight’s instance does not
choose any level and estimates fi as zero.
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Figure 2.4: Each column shows at most seven levels w∗i that were selected by one of
seven instances of Kmerlight. If a level was chosen by more instances for a specific i,
its circle is darker. Kmerlight was run with the same parameters and on the same set
of reads as in experiment in section 2.2.2.

2.3.3 The Content of Counters

To provide an insight into the relations presented in (2.5), let us now briefly investigate,
how the numbers of empty, collision-free and colliding counters vary across levels.

As we focus on a single level w, let us denote as pcf the probability that a single
counter is non-empty and collision-free. In other words, pcf is the probability that
exactly one of F0/2

w k-mers was hashed into that counter.
The number of distinct k-mers hashed into one counter (X) follows a binomial

distribution, X ∼ Bin(F0/2
w, 1/r), so pcf can be expressed as follows:

pcf = P [X = 1] =
F0

2w
· 1

r

(
1− 1

r

)F0/2w−1

.

(2.6)

Similarly, we can derive the probability pe that a counter is empty and the probability
pc that a counter holds a collision:

pe = P [X = 0] =

(
1− 1

r

)F0/2w

pc = P [X > 1] = 1− pe − pcf

Note that the expected number of non-empty collision-free counters at one level is
E(t(w)) = r · pcf .

In order to further demonstrate the similarity of E(t(w)) at the levels close to w+

we display the values of pcf = E(t(w))/r, pe, pc for different levels in Figure 2.5. These
probabilities represent the fractions of non-empty collision-free, empty and collided
counters respectively.

The presented settings show one of the worst possible situations. Since E(t(8)) ≈
E(t(9)), Kmerlight very frequently chooses the level w∗i from {8, 9} (as it can be seen
at Figure 2.4), but it always prefers the one with the highest value of t(w). Thus
E(t

(w∗
i )

i ) > E(t(8)) ≈ E(t(9)), which results in overestimation.
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Figure 2.5: The values of pe, pcf , pc represent the theoretical fractions of empty,
collision-free and collided counters in each level respectively. To make these the-
oretical values comparable to the experimental results from section 2.2.2, we set
F0 = 1.2× 107, r = 215.

If there was a greater difference betweenE(t(w
+)), E(t(w

+−1)) and E(t(w
++1)), Kmerlight

would choose the level w+ much more often than the other levels and so it would have
a smaller chance of choosing t(w

∗
i )

i > E(t(w
+)).

2.4 Unbiased fi Estimation

Based on our observations in the previous section we will alter Kmerlight to produce
unbiased estimates of fi (under the assumption that there are no undetected collisions).

To achieve an unbiased estimate of fi we will use the level that maximizes the
expected number number of collision-free counters, instead of the level that maximizes
the number of collision-free counters. We will base our estimates of fi on the level w+,
instead of w∗i . Our modified Kmerlight thus loses the ability to choose the maximal
t(w), and the estimates will be now based on values of t(w+) which are expected to
vary evenly around their mean E(t(w

+)), reaching both higher and lower values than
E(t(w

+)).
Note that the value of f̂i will be calculated from the same level for every abundance

i. Level w+ will be calculated using only the estimated number of all distinct k-mers
(F0) and the number of counters at each level (r).

Modified Kmerlight first processes all the k-mers in the same way as the original
Kmerlight. Then F0 is estimated from all Kmerlight’s instances6 and the value w+

6 The value of F0 is estimated in the original way as presented in (2.1). Note that the estimate
depends on the value of t(w)

0 , E(t
(w)
0 ) = r·pe. Number of empty counters reach high values (t(w

∗)
0 ≈ r/2)
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is calculated to maximize the expected number of collision-free counters as it was
described in section 2.3.1. Finally, values of fi are estimated from the observed counts
of collision-free counters at level w+ by (2.3).

In figures 2.6 and 2.7, we present a comparison of the original Kmerlight and the
modified Kmerlight. We ran both versions of Kmerlight on the same data as described
in 2.2.2 in 300 trials. Our new algorithm removes bias and maintains the same accuracy
(variance) of the estimates.

Figure 2.6: Mean errors of estimates (f̂i − fi) produced by original (blue) and mod-
ified (orange) Kmerlight in 300 trials. While the original Kmerlight overestimates fi
significantly in an average run, modified Kmerlight achieves E(f̂i) ≈ fi.

Figure 2.7: Standard deviation of estimates (f̂i − fi) produced by original (blue) and
modified (orange) Kmerlight in 300 trials. Our modification of Kmerlight does not
change the variance of estimates.

thus t0 has low relative variance and so the effects that biased f̂i do not occur here or they cause a
smaller scale differences. We do no challenge the unbiasedness of the estimator F̂0 in our work.
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Decreased memory consumption Note that we used only one of 64 Kmerlight’s
levels to compute estimates for all fi. We cannot decrease the overall memory con-
sumption by a factor of 64, however. To compute F̂0, more levels are needed, but still,
we can compute the estimate of F0 separately from the estimates of fi.

If we roughly guess F0 from the size of sequencing data, we might be able to
estimate F0 with a lower number of levels. It might be also sufficient to estimate F0

with smaller arrays of counters at each level (smaller parameter r). Also a completely
different method might be used for F0 computation.

We did not inquire deeper into the topic of decreasing the memory consumption,
but we believe that at least a tenfold improvement might be achieved in this direction.

2.5 Evaluation of Approximation Variance

In this section we will derive a rough quantitative estimate of variance of f̂i and then
support its credibility by experimental results.

2.5.1 Derivation of V ar(f̂i)

Using the observation that values w∗i chosen by Kmerlight often correspond to the an-
alytical w+ and that the value of analytical w+ is a constant for all i = 1, 2, . . . ,m, we
will approximate Kmerlight’s variance by a variance of t(w

+)
i . This variance approxi-

mation will be even more accurate for our modified Kmerlight. In this section we will
denote w+ simply as w, since we will not use any specific property of w+.

The number of collision-free k-mers is equal to the number of collision-free counters
as each collision-free counter stores a single k-mer. Thus we will use the symbol t(w)i to
denote both quantities and from (2.2) it holds that E(t

(w)
i ) = fi/2

w · (1− 1/r)F0/2w−1.

Sampling View In order to approximate the variance of estimator f̂i, we will con-
sider t(w)i to follow a binomial distribution Bin(fi, ps), where ps = 1/2w ·(1−1/r)F0/2w−1.
This simplification corresponds to a simple sampling process in which we sample each
of fi k-mers with probability ps (sampling probability), and we discard each k-mer with
probability 1− ps. Note that this approach ignores the fact that the events of k-mers
remaining collision-free are not independent.

Since a random variable following Bin(n, p) has variance of np(1− p), V ar(t(w)i ) =

fi · ps · (1− ps). The estimate of fi is obtained as ti/ps, so

V ar(f̂i) = V ar

(
ti
ps

)
=

1

p2s
· V ar(ti) =

fi · (1− ps)
ps

(2.7)
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Effect of Medians Kmerlight chooses the estimate f̂i as a median of estimates of t
independent sketches: f̂i = med(f̂

(1)
i , . . . f̂

(t)
i ).

To incorporate the effect of medians, we will use the claim that for a continuous
random variable with a density function f(x) and mean x̄ its sample median from a
sample of size n is asymptotically7 normal [13]:

med(x) ∼̇ N

(
x̄,

1

4nf(x̄)2

)
(2.8)

As the binomial distribution of t(w)i is a discrete distribution and does not have a
density function, we will approximate Bin(fi, ps) with N(µ = fips, σ

2 = fips(1− ps)).
The density function of normal distribution in its mean µ is 1√

2πσ2
e−

(µ−µ)2

2σ2 which is
1√
2πσ2

.
Using the two previous approximations (2.7), (2.8), variance of f̂i selected as a

median of t instances can be derived as follows:

V ar(f̂i) ≈

(
4t

1

2πV ar(f̂
(l)
i )

)

)−1
=

2π

4t
V ar(f̂

(l)
i ) =

π

2t

fi · (1− ps)
ps

(2.9)

2.5.2 Comparison With Experiments

In order to validate our estimate of variance, we compare our theoretical model of the
distribution of f̂i with the experimentally obtained distribution.

We ran our modified Kmerlight with t = 7 instances in 300 trials on the data
presented in section 2.2.2. In Figure 2.8 we present histograms of values of f̂i for
multiple values of i selected to represent a range of fi values8. In Figure 2.9 we present
empirical cumulative distribution functions of the same data.

We compare these histograms with two normal distributions. The best normal fit is
a Gaussian with its mean and standard deviation obtained directly from the observed
values of f̂i. The plotted theoretical prediction uses the exact value of fi as its mean
µ and the variance σ2 is calculated according to (2.9) with the use of exact values of
fi and F0.

Note first that for this dataset, w+ = 9 and thus the sampling probability ps

(introduced in the previous section 2.5) is approximately 1/29 · 1
2
≈ 1/1000 when we

use the upper bound from (2.4).
7Rider [10] has shown that even for a sample of only 7 observations, the relative error of this

approximation is only circa 6% for a normal random variable.
8The values i = 6, 10, 13, 16, 32, 23, 2, 1 were selected as follows. We sorted the values fi in increas-

ing order, and then we selected each eighth value. Since the values of f1, f2 differ from other fi by
orders of magnitude, we decided to also include i = 1, 2.
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Figure 2.8: Empirical probability densities (blue histograms), the best normal fits
(orange lines) and theoretical estimates (green) of distributions of f̂i for multiple abun-
dances. Histograms come from 300 runs of modified Kmerlight. Horizontal axes display
the values of estimates f̂i.

Figure 2.9: Empirical cumulative distribution functions (blue), the best normal fits
(orange), theoretical estimates (green).

The lowest fi values, E(ti) = fi · ps < 1 For the lowest values of fi (i.e. f6, f10),
no k-mers survive the collisions at level w+ and thus ti = 0 and f̂i = 0. As f10 = 140

is only approximately ten times lower than ps, we might expect at least one k-mer to
survive collisions in some of 300 trials. But since the final estimate is selected as a
median of seven instances, at least one k-mer must survive in at least four instances in
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order to produce ti = 1. Thus f̂i = 0.
Since the estimates f̂i are always zero, our estimates of variances for these fi are

very imprecise.

Low fi values, E(ti) = fi · ps ≈ 1 For low values of fi (i.e. f13, f16), a very small
number of k-mers hash into collision-free counters at level w∗i or w+. Therefore the
estimator f̂i can reach only a limited set of discrete values (f̂i = 0 if no k-mer survives
collisions, f̂i = 1/ps ≈ 1000 if one k-mer is in collision-free counter, f̂i = 2/ps ≈ 2000

if two k-mers survive, . . . ), as it can be seen in Figure 2.8.
The approximation with normal distribution is not precise for these values fi, since

the distribution of f̂i is clearly discrete, but Figure 2.9 shows that our approximation
can be used to estimate the empirical distribution functions (and thus approximate
p-values).

High fi values, E(ti) = fi · ps � 1 For higher fi, the estimator f̂i takes on various
values, and the approximation with normal distribution seems reasonable, as it can be
seen from the bottom rows of figures 2.8 and 2.9.

We have also applied Kolmogorov-Smirnov tests to test the normality of f̂i. Dis-
crete values of f̂i create steps in the cumulative distribution functions, and therefore
these tests reject normality hypotheses for columns with few k-mers. KS tests reject
normality for fi < 20 000 with our dataset of 300 trials and the significance level of
5%.

From previous observations we conclude that the distribution of f̂i can be approx-
imated by Gaussian with variance calculated by (2.9), although we are also aware of
the limitations of this approximation.

Notes on experimental design Our theory does not model the mean value of
Kmerlight’s estimates. We assume that the estimates f̂i are unbiased, and therefore we
simply use µ = fi and we focus on modified Kmerlight in the presented experiment. If
we used one of the observed estimates f̂i as the parameter µ, the fluctuation of f̂i would
shift the plotted theoretical curves to the side and thus it would make the comparison
less clear.

In practice, estimates of fi and F0 will be used to calculate the variance. We also
might have used estimates f̂i, F̂0 from a single trial to calculate the variance estimate,
but by using the average f̂i (fi) we investigate the average estimate of variance.

We also used the original Kmerlight to produce the values f̂i in another experi-
ment. Since we do not model the bias of Kmerlight’s estimates, to make the histogram
comparable to our theory, we had to use the sample mean of f̂i as the parameter µ.
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With this adjustment we were able to observe the same phenomena as those presented
in figures 2.8, 2.9 and described above.

Finally we present the comparison of Kmerlight’s variance and its theoretical predic-
tion in Figure 2.10. Although our theoretical approximation is based on the analytical
value of level w+, it can also be used to predict the variance of the original Kmerlight
algorithm.

From the experiment we know that we can estimate standard deviation of Kmerlight’s
estimates with error less than 5% even for lower fi ≈ 1000 ≈ 1/ps. The experiment
further suggests that an accurate estimate of variance for the lowest values of fi < 100

would be zero.

Figure 2.10: The blue and orange points show standard deviations of relative errors
(f̂i − fi)/fi of estimates f̂i computed by original and modified Kmerlight respectively
in 300 runs on dataset from 2.2.2. The green line represents the approximation of
standard deviation calculated using (2.9). If σ2

i is the variance of f̂i, the standard
deviation of relative errors can be calculated as

√
σ2
i /f

2
i . The figure on the right is

only a magnified view of the the same plot for fi > 103.

There is one more interesting thing that can be noticed in Figure 2.10: the difference
of variances between original and modified Kmerlight’s estimates for fi ∈ (100, 1000) .
The original Kmerlight searches for a level w that maximizes t(w)i so even if only one
k-mer with abundance i survives the collisions at any level of the sketch, Kmerlight will
use it for estimation of f̂i. We did not include this effect into the variance estimation,
hence the estimates for these fi are not precise for the original Kmerlight.

2.6 Choice of Kmerlight’s Parameters

As we have noted in section 2.1, the authors of the original paper about Kmerlight
[12] have provided us theoretical bounds of Kmerlight’s errors in the following form:
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Kmerlight computes estimates f̂i (and F̂0) for sufficiently large fi (fi ≥ F0/λ) with an
error (1− ε)fi ≤ f̂i ≤ (1 + ε)fi with probability at least 1− δ.

It is unclear, however, how to set the parameters r (the number of counters at one
level) and t (the number of sketch instances from which a median will be selected).

In this section we use the approximate distribution of Kmerlight’s errors (derived
in the previous section) to set the parameters in order to achieve desired error bounded
by ε with probability 1 − δ (under the assumption that f̂i is distributed according to
our approximation; Kmerlight’s authors do not make such assumptions).

Prediction/confidence interval To obtain the error bounds in the aforementioned
form, we derive a two-sided prediction interval of f̂i.

By standardization we get (f̂i − fi)/σ ∼̇N(0, 1) and so it holds that

P

[
−u
(α

2

)
≤ f̂i − fi

σ
≤ u

(α
2

)]
≈ 1− α

where u
(
α
2

)
is the critical value of the normal distribution, for significance level α

2
.

This formula can be simply manipulated to yield the bounds for f̂i:

P
[(

1− u
(α

2

)
σ/fi

)
fi ≤ f̂i ≤

(
1− u

(α
2

)
σ/fi

)
fi

]
≈ 1− α

From this form we can see that error bound ε can be computed as ε = u
(
α
2

)
σ/fi.

Simultaneous intervals Since we would like to compute the estimates for multiple
(m) values of fi, to achieve the bounded error with probability at least 1 − δ, we set
α = δ

m
following Bonferroni correction.

Let us finish this section by describing the method that can be used to choose the
suitable parameters r, t for Kmerlight to produce estimates with relative errors bounded
by ε with probability at least 1− δ.

Standard deviation σ can be calculated by the equation (2.9) using F0, fi, r, t. Note
that σ depends logarithmically on F0 and thus a very rough estimate of F0 should
be sufficient for parameter setting. We can demand the bounded precision only for
sufficiently large fi by setting fi = F0/λ (λ = 1000 for example). The estimates of
larger fi will be more precise. Finally, using the relation ε = u

(
α
2

)
σ/fi we can now

directly calculate error bound ε for a given probability δ and the parameters r, t, λ.
This result allows us to explore various values of the parameters r, t and their

influence on approximation errors without the need to actually run any computationally
demanding program. For example, with the use of procedure described above, we can
find the combination of parameters r, t, which minimizes the approximation errors for
a fixed memory limit.



Chapter 3

Use of Histograms for Genome Size
Estimation

In the beginning of this chapter we provide a more detailed description of a probabilistic
model that can be used to estimate genome characteristics using only k-mer abundance
histogram. This model was presented in [6, 5] and was implemented in a software
CovEst.

Next we present our work. We study the accuracy of CovEst estimates based on
approximate histograms, and we improve the accuracy by using our new modified
version of Kmerlight.

3.1 CovEst

CovEst uses a k-mer abundance histogram f = f1, f2, . . . , fm as its input, and finds
the parameters θ = (c, e)1 that maximize the likelihood of the observed histogram
L(θ) = P (f | θ).

Using parameters θ, CovEst, in fact, first generates the expected histogram shape
p1, p2, . . . pm, where pi denotes the probability that a distinct k-mer occurs with abun-
dance i. Then the likelihood of this shape is evaluated and thus different sets of
parameters θ, θ′ can be compared.

Generative model While the average coverage of a single nucleotide in the genome
is c, the average coverage of a k-mer is lower, since to produce a k-mer, a read must
cover the whole k-mer. CovEst thus internally uses a value ck = (r − k + 1)/r · c to
describe the average coverage of a k-mer. This is the only assumption made which
involves the reads.

1Coverage and error rate, as described in the introductory section 1.4. In a more advanced version,
θ also includes parameters related to the extent of repeated regions.

29



CHAPTER 3. USE OF HISTOGRAMS FOR GENOME SIZE ESTIMATION 30

In the following text, we will consider the k-mers to be uniformly distributed over
the genome. This assumption enabled the authors to model the abundance of a k-mer
with a Poisson distribution with mean ck. Since k-mers with abundance zero are never
observed, it is important to use a zero-truncated Poisson distribution, which leads to
the following formula for pi:

pi = Poi0(i; ck) =
cike
−ck

i!(1− e−ck)
The authors assume that at sequencing, the probability that a nucleotide will be

read correctly is 1 − ε, and the probability that it will be read as a specific different
nucleotide is ε/3. Therefore, if the Hamming distance of two k-mers is s, the probability
that one was obtained by reading another one is (ε/3)s(1− ε)k−s. The distribution of
the k-mers produced by s errors can be therefore modelled with Poisson distribution
with mean λs = (ε/3)s(1−ε)k−s · ck and to compute pi we would use a mixture of these
distributions:

pi =
k∑
s=0

αs · Poi0(i;λs)

where the coefficients αs sum to one (
∑k

s=0 αs = 1) and they correspond to fractions of
k-mers produced by s errors. From one k-mer

(
k
s

)
3s different k-mers can be obtained

as a product of s errors and the probability, that at least one of these k-mers will
be observed is (1 − e−λs). Therefore the coefficients αs will be set to have values
corresponding to αs ∝

(
k
s

)
3s(1− e−λs).

The authors also modelled the repeats by adding together the contributions made
by k-mers that were copied once, twice. . . which can be again expressed as a mixture
of distributions. We will not describe the repeat modelling, since we will not use this
extension in our thesis, but the details can be found in the original work [6, 5].

Likelihood computation To evaluate the validity of the parameters θ, the theoreti-
cal shape of the histogram is compared to the observed histogram by likelihood compu-
tation L(θ) = P (f | θ) = P (f1, f2, . . . fm | p1, p2, . . . , pm). In order to compare two his-
tograms, the authors assume that vector (f1, f2, . . . , fm) is sampled from a multinomial
distributionMult(F0, p1, p2, . . . pm) and thus the likelihood of the observed histogram is

F0!
f1!·f2!·...fm!

pf11 p
f2
2 . . . pfmm . Since we are interested only in maximizing the likelihood, log-

likelihood is used and the constant terms are omitted, leaving the following expression
to be maximized:

l(θ) =
m∑
i=1

fi log pi (3.1)

Note that this method maximizes the likelihood for the multinomial distribution,
and thus assumes that the height of i-th column of histogram follows distribution
Bin(F0, pi).
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Parameters optimization As a starting point for parameter optimization, CovEst
uses a very simple model to produce an initial guess of θ. This model assumes that every
erroneous k-mer has abundance one and thus the histogram shape can be modelled as
a mixture of two distributions of erroneous and error-free k-mers. The simplicity of
this model allows us to compute the optimal c, e only by the Newton method.

Then a standard optimization algorithm L-BFGS-B is used to find the parameters
θ that maximize the likelihood of the observed histogram, using the full model and the
likelihood computation explained above.

Experimental evaluation The authors evaluated the precision of CovEst on gen-
erated genomes [6] and concluded that CovEst can estimate the coverage (and thus
the genome size) within 1% of the true value for the common parameters. Moreover,
CovEst produces reasonable estimates even for the datasets with coverage less than
one or with error rate of 10%. Limited evaluation on a real sequencing reads was also
performed.

3.2 CovEst’s Performance on Kmerlight’s Histograms

In this section we compare the accuracy of CovEst estimates based on exact histograms
with estimates based on approximate histograms produced by the original and modified
Kmerlight. We find that the approximate histograms can be used for genome size
estimation and that our modified Kmerlight significantly increases the accuracy of
CovEst estimates compared to the estimates based on the original Kmerlight.

In all experimental results we focus on the estimates of coverage ĉ. From these
estimates, estimates of genome size can be produced simply by multiplying ĉ by the
amount of input data, thus the relative accuracy of the coverage estimate is the same
as the relative accuracy of the genome size estimate.

For each set of genome parameters (c, e, L) we performed 50 trials. In every trial
we generated a genome and a set of reads with the procedure described in 2.2.1. Then
we computed the exact histogram using Jellyfish software [7] and two approximate
histograms using the original and the modified version of Kmerlight. Finally we ran
CovEst on these three histograms and we collected the estimates of coverage ĉj, ĉok, ĉmk.

As the default parameters we used genome size L = 106, coverage c = 10 and error
rate e = 0.01, and in each of three experiments we altered the value of one parameter,
while the two other parameters remained fixed.

In figures 3.1, 3.2, 3.3 we present boxplots of absolute errors of coverage estimates
(ĉ− c). The blue, orange and green boxes describe the distributions of errors from the
histograms computed by Jellyfish, original Kmerlight and modified Kmerlight respec-
tively. Vertical axes display values of absolute estimate errors. Note that these axes
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use different scales since the estimate errors span across multiple orders of magnitude
in different datasets.

Each box corresponds to 50 coverage estimates produced by CovEst. Kolmogorov-
Smirnov tests do not reject normality with p-values higher than 0.4 for most boxes,
and so we assume that CovEst estimates follow the normal distribution. The bottom
borderline, the middle line and the top borderline of a box denote 25%, 50% and 75%

sample quantiles (or the first quartile, median and the third quartile) respectively. In
normal distribution the mean is very close to median and approximately 70 per cent
of data are located within one-σ-range of the mean. Therefore we can consider the
middle line as a good approximation of mean and an inter-quartile-region size as a
rough approximation of standard deviation.

In the end of this section we also present tables with mean errors and standard
deviations of the coverage estimates, so the absolute values of these statistics can be
compared.

Figure 3.1: Distributions of coverage estimate errors for multiple sequencing error rates
(each subfigure corresponds to one error rate). Each boxplot represents 50 estimates
of the coverage on different generated genomes. Blue, orange and green boxes describe
the estimate errors with Jellyfish, original Kmerlight and modified Kmerlight used to
compute the k-mer abundance histogram.

Effects of error rate on precision In the first experiment (Figure 3.1) we in-
vestigate the effect of increasing sequencing error rates on the accuracy of coverage
estimates.

On exact histograms CovEst produces unbiased estimates of coverage with their
variance increasing with error rate. Estimates based on approximate histograms are
clearly less accurate but still achieve a relatively good precision. Standard deviations of
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ĉok and ĉmk are similar, and they are approximately five times larger than the standard
devations of ĉj.

Mean errors are consistently lower for modified Kmerlight than the errors of the
original Kmerlight. Note that to prove the statistical significance of the difference
between ĉok and ĉmk it is not sufficient to compare the confidence intervals presented in
boxplots (as boxplot notches), since ĉok and ĉmk are clearly correlated. Pair Student’s
t-tests reject hypotheses mean(ĉok− ĉmk) = 0 for three of four presented datasets, with
exception of the dataset with e = 0.05 where the p-value is 0.3. Thus we conclude that
the estimates based on modified Kmerlight’s histograms are significantly better than
the estimates based on original Kmerlight’s histograms.

With modified Kmerlight, CovEst produces estimates with relative mean errors
approximately <0.1%, <0.1%, 1%, 4% for sequencing error rates of 0, 0.01, 0.05, 0.1

respectively, and we consider these estimates sufficiently accurate.

Figure 3.2: Distributions of coverage estimate errors for multiple coverages.

Effects of coverage on precision In the second experiment (Figure 3.2) we study
the estimate accuracy for different coverages.

All CovEst estimates ĉj in our experiment range in 30%, 6%, 0.3%, < 0.1% intervals
around the true coverage for coverages of 0.5, 2, 10 and 50. The variance of ĉj is
comparable to variance of ĉok, ĉmk for two lower coverages but with increasing coverage,
estimates based on approximate histograms become less accurate. However, since the
maximal errors reach values of only 0.3, which is less than 1% of the true coverage
c = 50, we also consider these estimates as useful.

Modified Kmerlight significantly (verified by t-tests) outperforms the original Kmerlight
on all four presented datasets.
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Figure 3.3: Distributions of coverage estimate errors for multiple genome sizes.

Effects of genome size on precision With increasing genome size, CovEst’s es-
timates become more precise on exact histograms, and estimates on approximated
histograms maintain a roughly constant precision (for the examined genome sizes).

As the coverage estimate errors are bounded by 1% for all datasets, we also consider
the approximate histograms sufficiently accurate for the genome size estimation.

Modified Kmerlight reaches smaller mean error on first two datasets than the orig-
inal Kmerlight, while the difference of estimates for the largest genome is insignificant.

With approximate histograms used, CovEst still maintains errors bounded by 1%2.
Therefore we conclude that Kmerlight’s histograms can be used for sufficiently precise
genome size estimation.

With increasing error rate, coverage and genome size, the number of unique k-
mers F0 increases. Note that F0 is the main factor influencing Kmerlight’s absolute
precision, since based on F0, the level w+ (and expectedly also levels w∗i ) is selected,
which directly influences the sampling probability ps. With increasing L the ratios
of fi/F0 do not change very much, and thus the relative accuracy of Kmerlight’s f̂i
estimates do not change as significantly as with increasing error rate and coverage.
Therefore, also the precision of the coverage estimates remains approximately constant
with varying genome size for Kmerlight.

Note that we used Kmerlight with parameter r = 215 ≈ 30 000 (arrays of only
30 000 counters) to process histograms with approximately 107 unique k-mers. There
are, of course, seven instances of sketch and 64 levels of these counters in each sketch3,
but as we mentioned in discussion in the end of section 2.4, the factor of levels can be
reduced. While all exact methods need to use O(F0) memory (to store all k-mers or at

2For all but extreme cases. For e > 0.05, c = 2 are the errors are bounded by 10%.
3As a result, approximately 1.5× 107 memory words are used, which is approximately 60MB.
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least to prevent hashing collisions), with 10-100 times smaller memory requirements,
Kmerlight is able to produce histogram estimates from which a genome size can be
estimated with 1% precision.

Furthermore, our observations suggest that these Kmerlight’s settings may be suf-
ficient to produce precise estimates even for larger genomes.

Tables of the experimental results

Mean error Standard deviation
Dataset ĉj − c ĉok − c ĉmk − c ĉj − c ĉok − c ĉmk − c

e = 0 0.001 0.015 0.000 0.002 0.015 0.014
e = 0.01 0.001 0.031 0.011 0.007 0.030 0.034
e = 0.05 0.002 -0.118 -0.093 0.036 0.140 0.124
e = 0.1 -0.002 1.934 -0.380 0.189 0.842 0.747

Table 3.1: Mean errors and standard deviations of CovEst estimates based on three
types of histograms (in columns for Jellyfish, original Kmerlight, modified Kmerlight)
for various error rates (in rows).

Mean error Standard deviation
Dataset ĉj − c ĉok − c ĉmk − c ĉj − c ĉok − c ĉmk − c

c = 0.5 -0.010 0.133 0.072 0.065 0.030 0.029
c = 2 -0.001 0.042 0.019 0.031 0.022 0.020
c = 10 0.001 0.031 0.011 0.007 0.030 0.034
c = 50 0.008 -0.360 0.024 0.014 0.141 0.147

Table 3.2: Mean errors and standard deviations of CovEst estimates on three types of
histograms for various coverages.

Mean error Standard deviation
Dataset ĉj − c ĉok − c ĉmk − c ĉj − c ĉok − c ĉmk − c

L = 105 0.006 0.059 0.022 0.024 0.028 0.032
L = 106 0.001 0.031 0.011 0.007 0.030 0.034
L = 107 0.000 -0.008 -0.008 0.002 0.025 0.032

Table 3.3: Mean errors and standard deviations of CovEst estimates on three types of
histograms for various genome sizes.



Conclusion

The objective of our thesis was to study the character of errors of the approximate
histograms, and to determine whether these histograms can be used for sufficiently
precise genome size estimates.

We focused on software Kmerlight [12], since it is, to our knowledge, the fastest
and most memory efficient algorithm for k-mer abundance histogram approximation.

From the experimental observations, we discovered that Kmerlight’s estimates of f̂i
are biased towards higher values for histogram columns with low fi/F0 ratio. We iden-
tified the source of bias: Kmerlight chooses levels w∗i that maximize t(w)i , the number of
collision-free counters with value i; and we proposed and tested a modification which
successfully eliminated the bias under the assumption that all hashing collisions can be
detected. Our modified version of Kmerlight uses only one level w+ which maximizes
E(t

(w)
i ). To select w+ we only need an estimate of F0 and therefore, we believe that a

more memory-efficient method of histogram approximation can be devised by further
improvement of Kmerlight.

As we could compute histograms with zero mean estimation error E(f̂i−fi) = 0, we
focused on the variance of approximation errors. We were able to precisely model the
distribution of Kmerlight’s errors with normal distribution for sufficiently high values
of fi and we produced a quantitative estimate of errors’ variance for all reasonable
values of fi (those fi for which E(t

(w+)
i ) > 1).

Using the estimate of errors, we proposed a method for selecting suitable parameters
for Kmerlight, and generally, we believe that the ability to estimate the extent of
Kmerlight’s errors without the actual histogram computation, makes a more practical
tool. Since Kmerlight can be generalized to approximate an abundance histogram of
any items, not only of k-mers, the applicability of our work is thus not limited to the
bioinformatics context.

With the first part of our objective successfully fulfilled, we turned our attention
towards the genome size estimation and CovEst software. To investigate the precision
of genome size estimates based on approximated histograms, we performed experiments
on simulated genomes.

We examined the influence of genome parameters on the accuracy of coverage esti-
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mates. With increasing error rate and coverage, the number of unique k-mers increases
and thus the histogram approximations produced by Kmerlight are less precise. There-
fore also the estimates of the coverage are less precise. The genome size does not seem to
significantly influence the relative precision of coverage estimates based on Kmerlight’s
histograms. Since the ratios of fi/F0 change only slightly with various genome sizes,
relative errors of Kmerlight also do not change much.

Our experimental evaluation showed that even with approximated histograms, an
estimation error of less than 1% can be achieved for most usual datasets (sets of reads
with c > 2 and e < 0.05), and also that estimates based on modified Kmerlight’s
histograms achieve lower mean errors than the estimates of the original Kmerlight.

We note that we did not test CovEst estimates on real genomes, but only on sim-
ulated genomes. A future work may clarify how other biological phenomena influence
CovEst’s estimates.
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Appendix A – Software and Scripts

The source codes of used software and scripts can be found at GitHub:

• Scripts that were used to generate the experimental data and figures: https:

//github.com/maaario/bachelor-thesis-scripts

• Our modified version of Kmerlight software: https://github.com/maaario/

kmerlight . The most important modification, the new method of selecting the
level w+, is implemented in function computeFJ_modified in the file
src/CountSketchInstance.h.

The original version of Kmerlight can be downloaded from https://github.

com/nsivad/kmerlight.

• CovEst software [6] can be downloaded from https://github.com/mhozza/covest.
Apart from using CovEst to compute coverage estimates, we also used scripts
from the folder tools/simulator to generate simulated genomes and reads.
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