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Abstract

In this thesis we extend the dynamically typed language Yon with a static type system, allow-

ing checking the program at compilation. The dynamic language semantics are largely kept

unchanged. The type system is structural and supports generics, inheritance and limited type

inference.

Keywords: programming languages, type system, subtyping, polymorphism
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Abstrakt

V tejto práci rozšírime dynamicky typovaný jazyk Yon o statický typový systém, umožňujúci

kontrolu programu počas kompilácie. Pritom z vel’kej časti zachováme dynamickú sémantiku

jazyka. Typový systém je štrukturálny a podporuje generické typy, dedičnost’ a limitované

automatické odvodzovanie typov.

K ’lúčové slová: programovacie jazyky, typový systém, podtypy, polymorfizmus
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Introduction

Programming language designers face a dilemma: should the type system be static, or

dynamic? In other words, should type checking be done at compile time, or run time?

Dynamic type systems are said to allow faster prototyping, and enable various other features.

However, the safety provided by static type systems helps to detect many errors early.

Yon [2] is a multi-paradigm programming language similar in semantics to dynamically

typed languages such as Python and Lua. Though Yon is, for the most part, dynamically

typed, here we extend it with a static type system, while attempting to keep keep the desirable

properties of dynamic languages. Accordingly, the type system needs to be expressive (so

that it can faithfully represent complex scenarios) and yet succint (so that it does not get in

the way when it is not needed).

Though Yon already had an older static type checker, it turned out to be unsatisfactory

for multiple reasons. One is that it didn not support parametric polymorphism (generics),

so it could not infer or check types of items in Arrays etc. Another disadvantage of the old

algorithm was that it was unable to operate on a per-file basis. The whole program had to be

reprocessed if any module was modified.

The new type system is structural – type compatibility and equivalence is determined not

by how a type is named, but its actual features. If different classes support the same set of

methods, they are considered to be the same type. And a class does not have to explicitly

declare it is implementing an interface – simply implementing the methods specified by the

interface is enough.

The rest of this thesis is structured as follows:

Chapter 1 provides an overview of Yon and its runtime semantics, as implemented by the

virtual machine.

Chapter 2 introduces the new type system used by Yon, and describes the relationships

between types.

Chapter 3 details the class system built on top of the type system from Chapter 2, and

explains Yon’s support for object-oriented programming.

Chapter 4 gives an overview of the type checker’s implementation and internal data

structures.
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Chapter 1

Overview of Yon

Yon [2] is an experimental programming language created by Michal Antonič in 2011. This

chapter provides a short overview of its features and semantics.

Yon programs are first compiled into bytecode and then run by a virtual machine. This

overview focuses on the runtime semantics of Yon, as implemented by the virtual machine.

Yon’s syntax and type system are discussed elsewhere.

A Yon program manipulates various values, or objects. Yon uses these terms synony-

mously – every Yon value is an object. Objects can be given names by assigning them to

variables. Assignment does not create a copy of an object, only a reference to it. The same

object can be in multiple variables.

Some languages distinguish between records (also called structs) and other values. In

Yon, every object is a record – it contains a collection of slots, or fields, which hold other

objects. Slots are unordered. They are indexed by identifiers, and can be assigned to. For

instance, an object representing a person may have a slot named age which can be assigned

to by writing person.age := 7.

Functions in Yon are also objects. Calling a function with the right number of arguments

yields a return value. Because a function is an object, it can have slots. For example, sqrt is

a function and sqrt.string is a string describing it.

Other objects can be callable as well. For example, classes (see Chapter 3) are also callable

first-class objects. Calling a class creates an instance of that class. p := Person("John

Smith") looks up the value of the variable Person (the class), calls it with a string argument,

and stores the result (the new person object) in p.

The majority of a normal Yon program consists of reading and assigning to variables and

slots, constructing literals (including function literals or lambdas) and calling functions or

other callables. There are no bytecode instructions for calling a method or using an operator.

Calling a method such as person.move("London") is just accessing the person.move

slot and calling the value retrieved from the slot with one string argument. And operators

2



CHAPTER 1. OVERVIEW OF YON 3

such as “+”, “-”, “!=” are just specially named methods with a different syntax. From the

virtual machine’s point of view, they are called like any other. This includes the array access

operators “[]” and “[]:=”. The bytecode generated for the expression “arr[idx] := val”

reads the []:= slot of arr, and then calls the slot value with two arguments, idx and val.

1.1 Operations

The operations of an object are the things that can be done to it. We have seen that objects

are records with named slots. So if an object has a slot named s, accessing (reading from or

writing to) that slot is an operation. Calling a callable object is also an operation. The list of

an object’s operations does not directly include method calls, because method calls are not

something the virtual machine knows about – calling a method is just reading a slot and then

by calling the retrieved value. But those two are operations of their own.

Here are some examples:

• {10, 20, 30} is a list of numbers. It has a slot named size. Thus, accessing a slot

named size is one of the operations it supports.

• sqrt is a function. Calling it with one argument is one of its operations. It also supports

other operations, such as accessing a slot named string, because functions are records

too.

• 3 is a number. The programmer can read its slot named + and call the slot value with

another number, yielding their sum. So accessing a slot named + is one of 3’s operations,

and the operations of the slot’s value include being called with one argument.

• 3 is a number. It is not callable, but it is a record – it has slots such as +, - and many

others. Furthermore, built-in functions provided directly by the virtual machine, such

as sqrt, can access its actual unboxed value and do computations with it. Therefore,

we count “accessing the primitive numeric value” amongst its operations.

Even if the programmer constructs a “fake number” object that has exactly the same

slots as numbers, built-in functions such as sqrt can recognize that it is not really a

number. Only the virtual machine can construct real number objects.

Operations are important because they describe the external interface of objects. An object

can be replaced with another one with the same set of operations, even if their origins or

implementations differ. Though the above description of operations is still only on the level

of the virtual machine, and the type checker uses a modified definition of operations, this

principle is still preserved. Whether a value belongs to a type depends on its operations, not

on the implementation of its methods or other factors. Section 2.2 goes into more detail.
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1.2 Functions

Some languages have a separate namespace for functions and for variables – a function and a

variable can have a same name and yet be different things. But Yon functions are first-class

values stored in variables. A Yon expression such as sqrt(PI) involves reading the global

variables sqrt and PI and calling the value of sqrt (a function) with the value of PI (a

number) as an argument.

Functions can defined and named using function literals:

function add_five(x:Number)->Number

print "adding five"

x + 5

But this is actually syntactic sugar for declaring a variable, creating an anonymous function

and assigning it to the variable:

var add_five (function(Number)->Number)

add_five := function (x:Number)->Number

print "adding five"

x + 5

The above examples also contain type annotations that specify the type of the argument x,

the type of the function’s return value, and the type of the add_five function itself. Yon’s

type system is the subject of Chapter 2.

Yon functions are lexical closures, as seen in Scheme [4] and other languages. When a

function is created, it keeps a reference to the lexical environment it was created in, and can

read and assign to its variables. The following Yon code implements the classic example of a

counter made with closures:

function makeCounter()->function()->Number

var value := 0

return function ()->Number

value := value + 1

return value

var c1 := makeCounter()

var c2 := makeCounter()

c1() # returns 1



CHAPTER 1. OVERVIEW OF YON 5

c1() # returns 2

c1() # returns 3

c2() # returns 1

c1() # returns 4

Each call of makeCounter creates a new stack frame with a new lexical environment, in

which the variable value is created. The anonymous function is then bound to this enviroment,

returned and stored in either c1 or c2. Thus, c1 and c2 are functions with the same body, but

bound to different environments with different values in them.

By default, a function returns the value of its last expression. One can return from a

function early by using a return expression, analogous to return statements in other languages.

When return e is evaluated, the execution of the function stops and e becomes its return

value.

The yield keyword provides support for coroutines. Evaluating yield e suspends the

function and returns e to the caller. When the suspended function is called again, execution

resumes after the yield instead of starting at the beginning.

The expressions return e from f and yield e from f allow returning values from

other functions deeper on the call stack. Further discussion is in the original thesis [2].

1.3 Prototypes

The old version of Yon presented in Michal Antonič’s thesis used a prototype-based inheritance

model. In this model, every object could be linked with a prototype. When reading a non-

existent slot of an object, that slot access would be delegated to the object’s prototype. If the

prototype also did not contain such a slot, its prototype would be checked in turn, etc.

Here is an example to clarify the behavior of objects with prototypes. We start with two

empty objects o and p, with p being o’s prototype.

o.a := 10 # slot "a" is created in o

o.b := 20 # slot "b" is created in o

p.b := 30 # slot "b" is created in p

p.c := 40 # slot "c" is created in p

o.a # evaluates to 10

o.b # evaluates to 20

o.c # evaluates to 40 -- the value of p.c,

# because slot "c" is not present in o

p.a # evaluates to nil (the slot is not found)

o.d # evaluates to nil (the slot is not found)
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o.c := 50 # slot "c" is created in o, but

# the value in p remains unchanged

o.c # evaluates to 50

p.c # still evaluates to 40

p.d := 60 # slot "d" is created in p

o.d # evaluates to 60 (the slot is now found in p)

Though the language internally used prototypes, this was mostly invisible to the program-

mer. Yon programs used a class-based system built on top of prototypes.

However, because of the requirements of the new type system, prototypes had to be

replaced with another mechanism – proxy assignments. Though the programmer can still

use a similar class-based model, it now uses proxy assignments instead of prototypes as a

different building block.

1.4 Proxy assignment

For the most part, Yon uses the call-by-value evaluation strategy. When evaluating an

expression composed of subexpressions, the subexpressions are evaluated first. For example,

when calling a function, the function and the arguments are evaluated before the function is

called. Similarly, for classic assignments of the form lvalue := expression (where the

lvalue is either a variable or an object slot) the expression is evaluated and then stored in the

lvalue.

There are some exceptions to this rule. The if expression has three subexpressions: the

condition, the “then” clause and the “else” clause. Only the condition is evaluated immediately,

and the result of this evaluation decides which of the other clauses is evaluated then.

Proxy assignment is another such exception. It is similar to classic assignment, but the

assigned expression is not evaluated until the lvalue is read. With classic assignment, the

right-hand expression is evaluted and its value is stored. Reading the variable or slot returns

the value, until it is overwritten with another assignment. With proxy assignment, the right-

hand expression is not evaluated before storing it. Instead, every time the variable or slot

is read, the right-hand expression is evaluated again, until the variable is overwritten again

(using either classic or proxy assignment).

Although there is an instruction for proxy assignment in Yon’s bytecode, the facility is

not directly available for the programmer. There is no syntax that would produce the proxy

assignment instruction. It is only created indirectly as part of class definitions. But even if

proxy assignment has no syntax, it is helpful to invent a way of writing it for the purposes of

this text, so that its semantics can be better explained and demonstrated. Therefore, we will

write proxy assignment as lvalue :=& expression.
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We will now show an example of proxy assignment behavior.

var a (Number)

var b (Number)

a := 2

b :=& a + 1 # the addition is not evaluated yet

b # evaluates to 3 (by computing 2 + 1)

b # evaluates to 3 (computing 2 + 1 again)

a := 5

b # evaluates to 6

b := 11 # b was overwritten -- no longer linked to a

b # evaluates to 11

a := 7

b # still evaluates to 11

function logged(x:Number)->Number

print "hello"

x

b := logged(a)

b # prints "hello" and returns 7

b # prints "hello" again and returns 7

b :=& b

b # loops forever

The reader may notice that the delayed evaluation caused by proxy assignment behaves

similarly to function literals. The body of a function is only executed when it is called – and

similarly, the right-hand expression of proxy assignment is only executed when the variable is

read. This is actually how proxy assignment is implemented. With classic assignment, the

virtual machine evaluates the right-hand expression and stores it in the variable. With proxy

assignment, the virtual machine stores an anonymous function, marked as a proxy, in the

variable. Then, when the virtual machine reads a variable and finds a proxy in it, it calls it and

returns its return value instead of the proxy.

Because proxy assignment creates an anonymous function, all the behavior exhibited by

functions (as detailed in Section 1.2) is present. The right-hand side of proxy assignment (the

body of the anonymous function) can access local variables from the environment, because

functions can be closures.
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1.5 Old type system

The original thesis on Yon by Michal Antonič presented a type checker based on the Cartesian

Product Algorithm [1]. The set of types considered by this algorithm is simply the set of

classes in the program. Every value has a specific type. However, the algorithm still supports

a form of generics and polymorphism by allowing variables to contain values of different

types. Instead of inferring one type for each variable and then making sure only that type

is ever assigned to it, the algorithm infers the set of all types the variable can hold during

program execution. Function arguments can have multiple types too, and the return type of a

function can also change depending on the argument types.

For instance, consider “function add(x, y) [x + y]”. The arguments x, y can hold

various types. For instance, one part of the program might use add(1, 2) and another

might use add("hello ", "world"). CPA correctly infers that for the first invocation, the

result is a number, while for the second one, it is a string. Thus, add exhibits a degree of

polymorphism.

One of the problems of this algorithm is that it cannot check modules or libraries one by

one. The whole program must be checked at once. To compute the type set information for a

function, the CPA algorithm must process every place the function is called from.

Incremental compilation is one of the main reasons for splitting a program into modules

and libraries. In C and similar languages, the compilation happens in two steps: first, each

source file is compiled to an object file, then, the object files are linked together. When a

single file changes, the build time is much less than what would be needed to rebuild the

whole program. All that is needed is to rebuild the changed module and link everything

together.

Even languages with type inference, such as ML or Haskell, generally run their type

inference algorithms separately for each source file. When compiling a module, all type

information of its dependencies is already known, but the module cannot rely on information

given by other modules that depend on it.

But for Yon’s old CPA-based type checker, something like this is impossible, or at least

very difficult. If even a single file changes, this can change the type information of its

dependencies. CPA cannot be used incrementally, module by module.

Support for incremental type checking is one of the main goals for the new type checker.

Further motivation is explored in Section 2.1.



Chapter 2

New type system

The main aim of this thesis is to replace the CPA-based type system with a new static type

system. Though the details are specific to Yon, the lessons learned can be applied to other

languages with similar semantics.

2.1 Goals

In the old type system, there was no interface inheritance, only class-based single inheritance.

There were also no type schemes and generic classes such as Array<T>. A type was simply

a class name. But this inflexibility with regard to the allowed definitions of types and their

relations allowed the use of a type inference algorithm.

The new type system takes a different set of tradeoffs. Though it requires explicit type

annotations, it provides a richer “language of types”. The design goals of the new type system

are as follows:

• Though Yon’s semantics can be changed when necessary, we want to preserve them as

much as possible. Yon is a dynamic language, and the runtime allows even things such

as modifying a method of a class or a specific instance. It is important to preserve as

much of this dynamic behavior as possible and provide type checking for it.

• As already mentioned, a big disadvantage of the old type system is its inability to run

incrementally, module by module. The new type system must be able to do this.

• Support for polymorphic functions is a must. But we cannot typecheck the body of a

function again every time it is used with new argument types, as was done in the old

type checker. Since values now have specific types instead of type sets, the type system

has to be able to express universal type.

• Generic classes and interfaces (type schemes) must also be supported.

9
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2.2 Types

The purpose of a static type checker is to detect a certain class of program errors without

needing to run the program. Of course, static program analysis tools cannot detect all errors,

because the halting problem is undecidable.

Yon’s type checker cannot find infinite loops or off-by-one errors, but it can still verify that

the operations (as introduced in Section 1.1) used by the program are valid for the values they

are performed on. The programmer has to prove to the type checker that every slot access and

function call in the program is valid. In other words, if the program attempts to read p.name,

the type checker verifies whether p contains a slot named name. If it cannot prove that such a

slot exists using the information given, the program will be rejected.

Most values support many operations. If the program accesses p.name, p.age and

p.location, the programmer has to prove that p has all three slots. Because “the set

of values whose operations include accessing slots named name, age and location” is

needlessly long, Yon allows the programmer to give a symbolic name to this list of operations

and simply use “the set of all Persons”. This is called defining a type.

A type is the binding of a type name (such as Person) to a type definition – a list of

operations. This list of operations defines a set of values that belong to the type. A value

belongs to a type if and only if it supports all the operations specified by the type definition. It

can also support other operations. So with a Person type defined as above, the values that

belong to type Person are those that have a name, an age and a location, and optionally

support other operations (they can have other slots, or they might be callable, etc).

Yon does not have type aliases – a type name cannot just point to a different type. Every

type has a name and a definition. The namespace of type names is separate from the namespace

of variables. A type and a variable can have the same name.

Usually, a type name is simply an identifier – a string of letters and numbers, such as

Person. Unlike variable names, type names can also contain dots. But in later sections, we

will see complex type names such as Pair<String,Number>. In this case, the whole string

Pair<String,Number> is the type name, not just Pair.

When the programmer declares a variable (or a function argument), they have to specify

its type. The type checker uses this information to ensure all operations with the variable are

correct:

var p (Person)

print p.name # valid

print p.namw # invalid!

Because the programmer declared that p will only contain values that belong to type

Person, the type checker knows that accessing p.name is valid and will not cause a runtime
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error. But because Person does not specify a slot named namw, programs that attempt to use

p.namw are rejected.

But what about compound expressions, such as p.name.size? The type checker can

verify that p has a name slot – accessing a slot named name is one of its supported operations.

But our old definition of operations does not specify anything about the value stored in the

slot. The type checker cannot verify that p.name is an object with a size slot.

Clearly, the original description of operations from Section 1.1 is not enough. We need to

extend it with type information. By the previous description, “accessing a slot named s” was

an operation. The operation also needs to specify the type T of the value stored in the slot.

The other kinds of operations need to be modified analogously.

By the extended definition, an operation is one of the following:

• access a slot named s containg values of type T (for reading and writing),

• call with n arguments of types a1, . . . , an, returning a value of type r,

• access primitive numeric/string/etc. object value (see Section 1.1).

The old Person type definition specified that a Person value had to have slots named

name, age and location. But the value in name could be of any type, so the type checker

could not prove that p.name.size will always be valid.

Now that we redefined operations to include type information, we can say that Person

must have slots name and location of type String and a slot age of type Number. The

type definition of Person consists of these three operations.

With this additional information, the type checker knows that if p is a Person, p.name is

a String and p.name.size is a Number (according the type definition of String, which is

built into the language).

Some types are built into the language, others are defined by the programmer. The

programmer can define new types using the interface keyword. The Person type from

above can be defined like this:

interface Person

slot name (String)

slot location (String)

slot age (Number)

The keyword interface is used to emphasize that whether a value belongs to a type

depends only on the set of operations it supports – the value’s external interface. It does not
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matter how the value was constructed or what the slots actually contain (e.g. the implementa-

tion of its functions).

Type definitions can also recursively refer to themselves, and mutual recursion between

multiple types is supported as well.

interface LinkedListOfStrings

slot value (String)

slot next (LinkedListOfStrings)

A type definition can “inherit” operations from another type, while adding more:

interface Employee(Person)

slot company (String)

This is just syntactic sugar for copying the slots of Person into the definition of Employee.

The two types do not share any special link because one was defined using the other.

This feature can be used to create something like a type alias. If an interface block

adds no new operations, both type will have the same definition. But they are still considered

to be distinct types.

Yon also provides several built-in types. Some of them, such as Number and String,

correspond to special objects created by the virtual machine that can be processed by primitive

functions such as sqrt. The type definition of Number includes the operation of “accessing

the object’s primitive numeric value”, so only objects that really have a numeric value can be

given to sqrt as an argument.

The base type is named Top. It is built-in and its definition is empty – it has no operations.

All values belong to it, but nothing can be done with a Top variable.

There is also a type named Object, but this is actually the root of the class hierarchy, as

described in Chapter 3. There are some values that are not of the type Object, but everything

belongs to Top.

Yon also provides built-in types for functions and callable objects. Until now, all the

type names we have seen were just simple identifiers like String and Person. The type

names of functions and callables have a more complex syntax. For example, the string

“callable(String)->Person” names a valid type, and the definition of this type has a

single operation: the value must support being called with a String and returning a Person.

So all callables that can accept a string and return a person belong to this type.

In general: if A1, . . ., An, R are valid type names of existing types (whether built-in or

programmer defined), callable(A1,...,An)->R is also a type name. All values that can

be called with arguments of types A1, ..., An and return a value of type R belong to it.
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For example, the standard library includes a variable named sqrt. The variable is declared

with type callable(Number)->Number. The type checker thus knows that calling the value

of this variable with a Number argument is valid, and the result will be another Number.

Type names of the form function(A1,...,An)->R behave similarly, but the definition

of such a type also contains additional slots that are present on functions, but might not be

on all callable objects. As all objects, not just functions, can be callable (see Chapter 1),

this distinction can be important. For example, the standard library gives all functions

a Boolean slot named isFrozen, which specifies whether execution of the function is

currently suspended with a yield statement. Normal Yon functions have this slot, but it is

not necessarily present in other callable objects.

2.3 Type constructors

Type constructors allow building new types from old ones. Applying a type constructor to

suitable type arguments results in a new type. The new type’s list of operations is obtained by

substituting the given types for the type arguments in the type constructor’s definition. For

instance, if the program contains the following interface:

interface Pair<A, B>

slot first (A)

slot second (B)

then Pair<Number,String> is a valid type name, and its definition has two operations:

accessing the slot first of type Number, and accessing the slot second of type String.

The type constructor is named Pair, but on its own, Pair is not a type name, or at least,

not a name of an existing type. A variable might be a Pair<Number,String>, but it cannot

be just Pair.

The arguments of a type constructor must be valid type names. Foo<Pair> is invalid,

because Pair is just the type constructor, not a full type name. But anything that is a type

name can be used, even type names that use a type constructor. Pair<Bool,Bool> is a valid

type name, so Pair<Pair<Bool,Bool>,Number> is valid too.

Some define type constructors to be anything that allows building complex types from

more basic ones. By this definition, callable(...)->R and function(...)->R described

in Section 2.2 could also be considered type constructors. We will not use this definition. In

this work, the term type constructors will only mean things like Pair, not callable and

function.
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2.4 Polymorphism

Yon supports polymorphic functions (and other callable objects). The arguments of normal

functions are expressions. Polymorphic functions also have type arguments. When calling a

polymorphic function, the caller has to provide suitable type names. The function can use the

type arguments in its body and the argument list.

Normal arguments are written in parentheses. Type arguments are written in angle brackets

before the normal argument list.

The identity function is an example of a polymorphic function:

function id<T>(a:T)->T

a

id<String>("x") # returns "x"

id<Number>(3) # returns 3

id can be used with different types being substituted for T. The type of the function id is

written as function<T>(T)->T.

We can use bounded quantification to limit the range of types that can be specified in a

type argument:

interface NamedThing

slot name (String)

function verboseId<Z is NamedThing>(a:Z)->Z

print a.name

a

The type checker will ensure that callers of verboseId always use a Z that is a subtype

of NamedThing. Subtypes will be defined in Section 2.6.

The type checker allows accessing a.name because it knows a is a NamedThing. The

type of the function verboseId is function<Z is NamedThing>(Z)->Z.

We have seen that function type names are of the form function(A1,...,An)->R. Now

that we have polymorphic functions, we extend this to function<T1 is B1,...,Tm is

Bm>(A1,...,An)->R, where T1,...,Tm are identifiers and B1,...,Bm,A1,...,An,R are

other type names. The “is Bi” quantification bounds are optional. Polymorphic callables

are similar, with the keyword function replaced by callable.

Polymorphic function types are also called “universal types”. id is a polymorphic function

that, for all types T, accepts T and returns T. In polymorphic lambda calculus, this would be

written as ∀T : (T,T )→ T ).
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A polymorphic function call, such as id<String>("x") in the example above, is actually

a composition of two operations: a type instantiation (also called type application), which

turns a polymorphic function such as function<T>(T)->T into a specific callable type such

as callable(String)->String, followed by a normal call.

(The result of instantiation is always just callable, never function – see below. This

was done for ease of implementation and to avoid edge cases where instantiating function

would cause problems.)

A type instantiation changes the type of an expression, but for the virtual machine, it is

a no-op. It has no bytecode instruction. The virtual machine considers id and id<String>

to be the exact same object – they only behave differently during type checking. id cannot

be directly called, and id<String> cannot be instantiated with a different type argument

anymore.

As type instantiation is a thing that can be done to some values and cannot be done to

others, it is clear that the definition of operations from Section 2.2 needs to be extended

once again. Normal function calls were already included – they are now joined by type

instantiation.

Yon does not support polymorphic objects. More precisely, although the value that is

being type instantiated can be an object (because after all, functions are also objects), the result

of type instantiation is always just a “callable(...)->...”. The type checker “forgets”

about the slots the objects had.

Consider an object c which can be called as in c<Number>(5) and also has a slot c.s.

Because c<Number> is of type callable(Number)->Number, which does not have a slot s

in its definition, writing c<Number>.s would cause a type error.

2.5 α-equivalence

It is sometimes necessary to compare type names (as opposed to their definitions). However,

type names that only differ in the specific identifiers used for quantification should be regarded

as the same. This notion is captured by the α-equivalence relation.

Two type names are α-equivalent if both can be transformed to the same type name by

repeatedly substituting fresh variables for variables bound in quantifiers.

For example, the types callable<X,Y>(X)->Y and callable<Y,X>(Y)->X are α-

equivalent.



CHAPTER 2. NEW TYPE SYSTEM 16

2.6 Subtyping

If a type S is a subtype of type T, all values that belong to S also belong to T. The subtype

relation is denoted as “S <: T”.

Subtyping is used for checking assignment and similar cases. If the program tries to

assign the result of an expression of type Employee to a variable of type Person, the type

checker can prove the validity of the assignment. Even though the types are not the same, if

Employee is a subtype of Person, the type checker knows that the value of the right-hand

side expression will be a Person and thus can be stored in a Person variable. Similarly, if a

function expects an argument of type Person, it is sound to give it a value of type Employee.

In Yon, the definition of the subtyping relation is as follows: S <: T if and only if, for

each operation in the definition of T, S also has the operation, or an α-equivalent one.

For example, function<T>(T)->Number is a subtype of callable<Q>(Q)->Number.

The latter only supports one operation – it can be type instantiated with a type Q, yielding a

function that receives a Q value and returns a number. function<T>(T)->Number can also

do this. The type argument is named differently, but α-equivalence takes care of that.

function<T>(T)->Number also supports other operations, such as accessing a Bool

slot named isFrozen (see Section 2.2). The definition of callable<Q>(Q)->Number

does not contain such a slot. Therefore, callable<Q>(Q)->Number is not a subtype of

function<T>(T)->Number.

Yon’s definition of subtyping is more restrictive than usual. Other type systems, such as

System F<: [3], have different definitions of subtyping.

Yon supports record width subtyping: adding more fields to a record (more slots to an

object) produces a subtype. But it does not have record depth subtyping. If a slot x exists

in both S and T, it must have the exact same type in both. The type names must match as

well (barring α-renaming). If the types of S.x and T.x have the same definition, but different

names, that is enough for S and T not to be subtypes of each other.

This was done to avoid issues with recursive types. Consider the following type definitions:

interface LinkedListA

slot data (Number)

slot next (LinkedListA)

interface LinkedListB

slot data (Number)

slot next (LinkedListB)

In a system that compares the structure of the slots, not just the names, the two types
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should clearly be considered equivalent. But a naive implementation of this equality check

would loop infinitely:

pseudocode of function typesEqual(t1, t2):

if some slot exists in t1 but not in t2:

return no

if some slot exists in t2 but not in t1:

return no

for each slot s of type t1:

if not typesEqual(t1.s, t2.s):

return no

return yes

If there is a finite number of types, checking their structural equivalence can be reduced to

determining the equivalence of two regular languages. [3] However, Yon has type constructors

(see Section 2.3) and so the number of types can be infinite. (For instance, an interface

Foo<T> might contain a slot with type Foo<Array<T>>.)

The Java programming language solves this problem differently: it requires all interfaces

to specify the interfaces they implement. Thus, the programmer gives the compiler the

complete subtyping relation, and the compiler only needs to check whether the relation is

self-consistent.

For Yon, it was decided to support a limited version of structural subtyping. Thus, the

programmer does not need to declare which types are subtypes of which. Whether one type

is a subtype of another is determined by comparing their structure – the operations they

support. But beyond the “first level”, the comparisons are based on type names instead of

their structure.

2.7 Bottom and Nil

The special built-in type Bottom is defined to be a subtype of all other types. Values of type

Bottom can be assigned to any variable and used as any other type.

The built-in function error has a return value of type Bottom. This is safe, because the

function never really returns. It stops the whole program with an error. Thus, the type checker

can safely allow using the return value of error in any context. return expressions also

have the Bottom type, for the same reason.

Yon has a null value called nil. The virtual machine uses it as the default value of newly

defined variables and non-existent slots. Because any variable might contain nil, the type
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checker does not check for nil-related errors and leaves them to be found at runtime. The

nil constant also has the type Bottom, so assigning v := nil is valid regardless of the type

of v.

Implementation-wise, nil is an instance of a class named Nil. It has the same slots as its

parent, Object. See Chapter 3 for a general description of classes.



Chapter 3

Classes and methods

Classes provide infrastructure for creating objects. Though an object can be created without

using a class, the class-based approach is usually more convenient – especially when many

similar objects are to be created.

This chapter will show how to use Yon classes, and how they are implemented using the

primitives introduced in previous chapters – mainly Section 1.4 and Chapter 2.

3.1 Normal slots

We start with the following class definition:

class Person

slot name (String) := "Anonymous"

slot location (String)

slot age (Number)

The programmer would like a simple way to create Person objects and their default name

should be the string "Anonymous".

var p (Person) := Person()

p.name # evaluates to "Anonymous"

p.location # evaluates to nil

p.age := 7

p.age # evaluates to 7

How does the compiler implement the class definition? How could it be done by hand?

First, we create the interface Person, needed so that the programmer can declare a

variable p like in the above example. The definition is similar to the original class definition,

but of course, the name slot no longer has a value.

19
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interface Person

slot name (String)

slot location (String)

slot age (Number)

Next, we need a object that will represent the class. It will be stored in the global variable

Person and calling it will create a new instance. The type of this object will be named

Person.class.

That is, the type of the variable named p is Person, and the type of the variable named

Person is Person.class. This is a bit confusing, but it would be more confusing if the type

of p was something different, like Person.instance.

Person.class needs to be callable. The way to do this is to give it a slot named call

containing the appropriate function. The function itself will only call Person.alloc(),

which will actually create the new instance.

interface Person.class

slot alloc (function()->Person)

slot call (function()->Person)

slot prototype (Person.prototype)

We will also need an object that stores the default values for the instance slots (in this

case, the string "Anonymous"). Storing them in a separate object will make it easier to deal

with inheritance. This second object will be called Person.prototype and its type will also

be Person.prototype.

interface Person.prototype

slot name (String)

The other slots do not have a default value, so they do not need to be in the prototype

interface.

Now that we have all the interfaces, we can create the actual objects. We will use the

built-in function createempty. Calling createempty<T>() will create a new empty object

of type T. Its slots will all be nil. Or rather, it will have no slots, and the virtual machine will

default to returning nil when a missing slot is looked up.

var Person (Person.class)

Person := createempty<Person.class>()

Person.prototype := createempty<Person.prototype>()

Person.prototype.name := "Anonymous"
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All that is left is to define Person.alloc and Person.call.

Person.alloc := function ()->Person

var s (Person) := createempty<Person>()

s.name := Person.prototype.name

s

Person.call := function ()->Person

s.alloc()

We can use createempty to create a Person, just like we used it to create Person.class

and Person.prototype before.

This can be further improved by using :=& proxy assignment to initialize s.name. Then,

a new Person instance will track changes in Person.prototype until it gets a name of its

own.

var p1 (Person) := Person()

var p2 (Person) := Person()

p1.name # "Anonymous"

p2.name # "Anonymous"

Person.prototype.name := "suomynonA"

p1.name # "suomynonA"

p2.name # "suomynonA"

p1.name := "Joe"

p1.name # "Joe"

p2.name # "suomynonA"

3.2 Method slots

Method slots are a way to give a class dynamic slots that have different values depending on

which instance they were read from.

class Person

slot name (String) := "Anonymous"

slot location (String)

slot age (Number)

method slot twiceMyAge (function(Person)->Number) :=

function (self:Person)->Number

self.age * 2
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var p (Person) := Person()

p.age := 87

p.twiceMyAge # evaluates to 174

This time, p.twiceMyAge and Person.prototype.twiceMyAge will be of different

types: the first is a Number, and the second is a function(Person)->Number that will be

called with p when p.twiceMyAge is accessed.

This can be implemented with a small change to the existing system:

interface Person

# ...old slots...

slot twiceMyAge (Number)

interface Person.prototype

# ...old slots...

slot twiceMyAge (function(Person)->Number)

Person.alloc := function ()->Person

var s (Person) := createempty<Person>()

s.name :=& Person.prototype.name

s.twiceMyAge :=& Person.prototype.twiceMyAge(s)

s

Because of the proxy assignment, every time s.twiceMyAge is read, the virtual machine

will call Person.prototype.twiceMyAge(s), which will return s.age * 2.

Of course, Person.prototype.twiceMyAge can be overridden with a different value

of type function(Person)->Number, just like Person.prototype.name was overridden

at the end of Section 3.1.

In other languages, twiceMyAge would probably be called a property. The reason this

mechanism is called “method slots” is because it also allows defining methods:

class Person

# ...old slots...

method slot greet (function(Person)->function(String)->Nil) :=

function (self:Person)->function(String)->Nil

function (other:String)->Nil

print "Hello " + other + ", I am " + self.name + "."
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var p (Person) := Person()

p.greet("Jane")

Person.prototype.twiceMyAge is a function that takes a self argument and returns

the “visible value” of self.twiceMyAge. Similarly, Person.prototype.greet is a func-

tion that takes a self argument and returns the “visible value” of self.greet. But in the

second case, it is another function. The function is then called with a string argument.

To reiterate: Person.prototype.greet is a function that returns a function. The first

function (which receives a Person argument) is called internally in the proxy assignment in

Person.alloc. It always has exactly one argument, and its type is the class being defined.

The second function is called by the user. In this case, it received one String argument, but

different methods can have different arguments.

Because the first function is common to almost all method slots, there is an easier way to

create them. When the programmer uses just method instead of method slot, the wrapper

with a self argument is created for them. The following example is equivalent to the previous

ones:

class Person

# ...old slots...

method twiceMyAge (Number) := self.age * 2

method greet (function(String)->Nil) :=

function (other:String)->Nil

print "Hello " + other + ", I am " + self.name + "."

3.3 Class slots

The class object we created above only contains call, alloc and prototype. It is often

useful to give it more slots. This can be used for factory methods, and various functionality

that should be grouped with the class, but does not need an instance to operate on (as opposed

to methods).

class Person

# ...old slots...

class slot loadFromFile (function(String)->Person) :=

function (filename:String)->Person

var contents (String) := String.readFromFile(filename)

var lines (Array<String>) := contents.lines

var p (Person) := Person()
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p.name := lines[0]

p.location := lines[1]

p.age := lines[2].number

p

The implementation of class slots is straightforward. The type of the class slot is simply

added as-is to interface Person.class and the value is assigned to the class along with

the other functions (Person.alloc, etc.).

interface Person.class

slot alloc (function()->Person)

slot call (function()->Person)

slot prototype (Person.prototype)

slot loadFromFile (function(String)->Person)

Person.loadFromFile := function (filename:String)->Person

# ...the function body...

3.4 Constructors

Some classes may wish to customize the process of creating a new instance. While creating

the instance itself and doing the requisite proxy assignments is done by Person.alloc, many

classes need more control over the process.

We allow classes to define a constructor, a function that is called with every newly created

instance of the class. This function must be stored in a class slot named init. Its first

argument will always be an instance of the class. If it has other arguments, they can be given

when creating the class.

If a class does not define init, it cannot be instantiated.

Here is how init might look like for our Person class:

class Person

# ...old slots...

class slot init (function(Person,String,String,Number)->Top) :=

function (self:Person, name:String, location:String,

age:Number)->Top

self.name := name

self.location := location

self.age := age
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The implementation of classes shown in Section 3.1 used two functions for creating new

objects: call and alloc. We will add a third: create. It will allocate the new object by

calling alloc and then pass it to init.

interface Person.class

slot init (function(Person,String,String,Number)->Top)

slot alloc (function()->Person)

slot create (function(String,String,Number)->Person)

slot call (function(String,String,Number)->Person)

slot prototype (Person.prototype)

# ... create the class and prototype ...

Person.create :=

function (name:String, location:String, age:Number)->Person

var s (Person) := Person.alloc()

Person.init(s, name, location, age)

s

Person.call :=

function (name:String, location:String, age:Number)->Person

Person.create(name, location, age)

var p (Person) := Person("Richard", "Earth", 64)

# the above line calls Person.alloc()

# and Person.init(p, "Richard", "Earth", 64)

init is a class slot intead of a method to allow subclasses to define another init with

different arguments.

3.5 Inheritance

Classes can inherit from each other:

class Employee(Person)

slot company (String)

method greet (function(String)->Nil) :=
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function (other:String)->Nil

Person.prototype.greet(self)(other) # super method

print "And I am from " + self.company + "."

class slot init (function(Employee,String,Number)->Top) :=

function (self:Employee, name:String, age:Number)->Top

Person.init(self, name, "ACME HQ", age)

self.company := "ACME"

When a class inherits from another, the code generated from the above class definition

changes as follows:

interface Employee(Person)

slot greet (function(String)->Nil)

interface Employee.class

slot init (function(Employee,String,Number)->Top)

slot alloc (function()->Employee)

slot create (function(String,Number)->Employee)

slot call (function(String,Number)->Employee)

slot prototype (Employee.prototype)

interface Employee.prototype

slot name (String)

slot twiceMyAge (function(Employee)->Number)

slot greet (function(Employee)->function(String)->Nil)

var Employee (Employee.class)

Employee := createempty<Employee.class>()

Employee.prototype := createempty<Employee.prototype>()

Employee.prototype.name :=& Person.prototype.name

Employee.prototype.twiceMyAge :=

function (self:Employee)->Number

Person.prototype.twiceMyAge(self)

Employee.prototype.greet :=
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function (self:Employee)->function(String)->Nil

function (other:String)->Nil

Person.prototype.greet(self)(other) # super method

print "And I am from " + self.company + "."

Employee.alloc := function ()->Employee

var s (Employee) := createempty<Employee>()

s.name :=& Employee.prototype.name

s.twiceMyAge :=& Employee.prototype.twiceMyAge(s)

s.greet :=& Employee.prototype.greet(s)

s

# Employee.init, Employee.create, Employee.call

# are created as before

interface Employee inherits from interface Person, but Employee.prototype

is not a subtype of Person.prototype. This is because the method slots inside them are

not compatible. For example, the twiceMyAge slot of Person.prototype is a value of

type function(Person)->Number, while in Employee.prototype, it has a different type:

function(Employee)->Number. The first argument is always the instance of the class that

is being defined.

Because of this, Employee.prototype.twiceMyAge and other inherited method slots

must be wrapped in another function whose self self argument has the right type.

Inherited normal slots (such as name) use proxy assignment, so that if the value stored in

Person.prototype.name changes, it will spread to Employee.prototype.name and all

the Employee instances.

Class slots are not inherited at all.

The root of the class hierarchy is named Object. It provides several basic slots, such

as “=”, the equality operator. All other classes inherit from another class. If a class does not

specify its parent, it defaults to Object.

3.6 Generic classes

A normal class such as Person creates instances of interface Person. Generic classes use

type constructors (introduced in Section 2.3) instead. For example, a class LinkedList<T

is Person> creates instances of interface LinkedList<T>.

class LinkedList<T is Person>
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slot data (T)

slot next (LinkedList<T>)

slot rank (Number) := -1

method size (Number)

class slot favoriteNumber (Number) := 7

class slot init (function<T is Person>(LinkedList<T>)->Top)

The preceding class definition expands into the following interfaces:

interface LinkedList<T>

slot data (T)

slot next (LinkedList<T>)

slot rank (Number)

slot size (Number)

interface LinkedList.class

slot init (function<T is Person>(LinkedList<T>)->Top)

slot alloc (function<T is Person>()->LinkedList<T>)

slot create (function<T is Person>()->LinkedList<T>)

slot call (function<T is Person>()->LinkedList<T>)

slot prototype (LinkedList.prototype)

slot favoriteNumber (Number)

interface LinkedList.prototype

slot name (String)

slot size (function<T is Person>(LinkedList<T>)->Number)

Though LinkedList.class and LinkedList.prototype are still regular interfaces,

not type constructors, many of their slots are now polymorphic functions. Namely, the auto-

generated class slots (alloc, create and call) and the method slots in the prototype now

take a type parameter <T is Person>.

Keeping the above interface definitions in mind, modifying the process from the previous

sections to also work for generic classes is mostly straightforward. The template stays the

same, except for the additional type instantiations.

It should be noted that a generic class can inherit from another generic class, and they

don’t have to have the same type arguments.



Chapter 4

Implementation

This chapter provides an overview of the implementation of the type checker.

Michal Antonič’s Yon codebase [2] included a Yon compiler written in Yon. This compiler

was modified to compile the new version of Yon, and extended with the type checker. However,

the compiler itself is still written in the old Yon.

4.1 Compiler phases

The compilation of a Yon source file has the following phases:

• scanner.yon: The program is tokenized. This phase is mostly unchanged from the

original Yon.

• parser.yon: The token stream is parsed into an abstract syntax tree. The parser now

also does local type inference for nodes whose types can be computed without any

additional information, such as number, string and function literals. Types of variables

and slots initialized with such literals do not need to be specified.

• compiler.yon: The tree is scanned for import statements that request loading other

files. They are compiled recursively.

• analyzer.yon: The interfaces of the file are analyzed and interface inheritance is

resolved. The compiler now has the complete definition of all available interfaces.

• transformer.yon: Various transformations are performed on the abstract syntax tree.

Most importantly, class definitions are translated into equivalent code based on :=& and

createempty, as outlined in Chapter 3.

• checker.yon: The type checker processes the tree. It derives the resulting type of

each node, and verifies that they are consistent.

29
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• The top-level variable declarations of the file are collected so that they can be imported

into other modules.

The last phase is handled by generator.yon, which has also seen little change. After all

files are compiled, the generator processes the abstract syntax trees into bytecode and returns

it as the compiler’s output.

4.2 Data structures

The data structures used by the compiler and type checker provide a formalization of the

concepts and descriptions from Chapter 2.

Though the compiler is written in the old Yon, this summary uses the same interface

syntax used in the rest of this work.

interface TypeName

slot name (String)

slot polynames (Array<String>)

slot polybounds (Array<TypeName>)

slot args (Array<TypeName>)

slot rettype (TypeName)

A TypeName object represents a type name.

For simple type names such as Bool, only the name is used, and the other slots are empty

(i.e. either empty arrays or nil).

For types built with type constructors, such as Pair<Bool,String>, the name is the

identifier specifying the type constructor (such as Pair), and args are the type names that

are its arguments.

For callables and functions, the name is either callable or function, the polynames

are the names of the type arguments (T1,...,Tm in Section 2.4), the polybounds are their

bounds (B1,...,Bm), the args are the function arguments (A1,...,An) and rettype is the

type of the return value.

interface TypeDefinition

slot slots (Dictionary<String,TypeName>)

slot primitives (Dictionary<String,Bool>)

slot polycall (TypeName)

A TypeDefinition is a type’s list of operations, as described in Section 1.1 and Sec-

tion 2.2. slots contains the slot access operations this type supports. If slots[s] = T, the
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type has a slot named s of type T. primitives are the primitive object values supported by

this type. And if an object is callable (or instantiable), polycall contains a TypeName that

specifies its args, rettype, etc.

interface DefinitionSet

slot defs (Dictionary<String,TypeDefinition>)

slot args (Dictionary<String,Array<String>>)

slot get (function(TypeName)->TypeDefinition)

The DefinitionSet holds information about all the interfaces and type constructors in

the program. The args dictionary contains the argument names of type constructors, while

the defs dictionary contains the TypeDefinitions themselves. function and callable

types are not in defs, but are generated by the get method as needed.



Conclusion

We have augmented the semantics of Yon to be more amenable to type checking and detailed

them in the first chapter. We have then described a type system for the new version of Yon,

and demonstrated its usability by building a class system on top of it to provide facilities for

object-oriented programming. We have also created a working implementation of the type

checker and summarized its high-level design.

The type checker met its goals outlined in Section 2.1. It can compile program modules

one by one, and it is flexible enough to be able to express entities such as type constructors

and polymorphic functions.

The class system built on top of the type system supports generic classes and inheritance,

and allows class methods to be switched to another implementation even after instances of

the class have been constructed.

Future work

Though this thesis has met its goals, avenues for future work remain. Some of them are:

• Explore the relation between Yon’s type system and well-studied formal systems such

as System F and System F<:.

• Add support for more types, such as variant types and existential types.

• Study type inference algorithms and evaluate their potential to be included in a language

like Yon.
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