
Univerzita Komenskeho v Bratislave
Fakulta Matematiky, Fyziky a Informatiky

Katedra Informatiky

Fakulta Matematiky, Fyziky a Informatiky

OpenGL kniºnica pre £asticové systémy

Bakalárska práca

2012

Michal Bubnár



Univerzita Komenskeho v Bratislave
Fakulta Matematiky, Fyziky a Informatiky

Katedra Informatiky

Fakulta Matematiky, Fyziky a Informatiky

OpenGL kniºnica pre £asticové systémy

Bakalárska práca

�tudijný program: Informatika

�tudijný odbor: 2508 Informatika

�koliace pracovisko: Katedra Informatiky

�kolite©: RNDr. Martin Samuel£ík

Bratislava, 2012

Michal Bubnár



79165321

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE 

Meno a priezvisko študenta: Michal Bubnár
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: 9.2.1. informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: slovenský

Názov: OpenGL knižnica pre časticové systémy

Cieľ: Cieľom práce je naprogramovanie C, C++ knižnice na definovanie a
efektívne zobrazovanie časticových systémov. Aktualizácia systému v čase sa
bude uskutočňovať pomocou OpenGL rozšírenia EXT_transform_feedback.
Podobne vykreslenie bude čo najefektívnejšie s pomocou najnovších
prostriedkov OpenGL.

Vedúci: Mgr. Martin Samuelčík, PhD.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky

Dátum zadania: 05.10.2011

Dátum schválenia: 26.10.2011 doc. RNDr. Daniel Olejár, PhD.
garant študijného programu

študent vedúci práce



Po¤akovanie

Týmto sa chcem po¤akova´ vedúcemu práce RNDr. Martinovi Samuel£íkovi za podporu a poskytnutie

odborných konzultácií.

i



Abstrakt

Autor: Michal Bubnár

Nazov bakalárskej práce: OpenGL kniºnica pre £asticové systémy

�kola: Univerzita Komenskeho v Bratislave

Fakulta: Fakulta matematiky, fyziky a informatiky

Katedra: Katedra informatiky

Veduci bakalárskej prace: RNDr. Martin Samuel£ík

Rozsah práce: 49 strán

Bratislava, jún 2012

V práci sa zaoberáme £asticovými systémami, rozoberáme ich vlastnosti a pokusíme sa v²etky

poznatky implementova´ viacerými spôsobmi, ktoré následne porovnáme, aby sme zistili, ktoré

sú najvhodnej²ie a najrýchlej²ie. Z technickej stránky pouºívame otvorený ²tandard OpenGL,

presnej²ie jeho verziu 3.3, ktorá obsahuje pokro£ilú funkcionalitu na prácu s gra�ckou kartou

a gra�ckým procesorom, v¤aka £omu vieme efektívne implementova´ £asticový systém a rýchlo

vykresli´ a spracova´ ve©ké mnoºstvá £astíc. Na základe týchto poznatkov vytvoríme kniºnicu na

vykres©ovanie £asticových systémov a API, pomocou ktorého sa £asticové systémy budú da´ ©ahko

integrova´ do aplikácie koncového uºivate©a.

K©ú£ové slová: �asticový systém, OpenGL, GPU, Shader, Transform Feedback, Rendering
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Abstract
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In this work we deal with particle system, we examine their properties and then we will try

to implement the knowledge with multiple techniques, that will be compared in order to �nd

out, which ones are the best and fastest. From technical point of view we use open standard

OpenGL, more precisely version 3.3, that includes advanced functionality to work with graphics

card and graphical processing unit. With it, we can e�ectively implement particle system and

quickly render and update big amounts of particles. Based on this knowledge we will create a

library for rendering particles and API, that will deploy particle systems in end-user application

easily.

Key words: Particle System, OpenGL, GPU, Shader, Transform Feedback, Rendering
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Introduction

Particle systems play important role in modern graphics and computer games. They are used to

model e�ects, which natural behavior is chaotic, irregular and hard to model using math functions,

because of their irregularity and complexity. To such e�ects belong �re, explosions, electric sparks

etc. Their usage is not only this, they are also used for simulating �uids ad several others physically

based simulations. All these e�ects have one thing in common - in order to simulate them, we

must work with thousands of small particles, update them and render them to achieve desired

e�ect.

The aim of our this work is to create usable and portable C++ library, that will handle particle

systems creation, updating and rendering. It must be as �exible as possible, so that user of this

library can use it to �t any of his needs. And at top of all, it must be as e�ective and fast as

possible. To achieve this, we will use the latest graphics programming paradigms, so that we can

utilize GPU computational power to deal with particle updating and rendering. This library will

also be written in platform-independent manner, it won't use any system-speci�c calls. However,

demo applications will be written under Windows. We'll use OpenGL for rendering, because it's

cross-platform, free, and it is supported by most graphics card vendors.

For users not having graphic card that supports some of the latest OpenGL extensions, there

are also simpler implementations of particle system in this library, that run mainly on CPU. We

will also do a comparison of di�erent implementations of particle systems to see which one performs

best.

Together with this library, we will also prepare additional library with some basic e�ects, so

that user can create them as straightforwardly as possible.
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This work builds on Transform Feedback Particle System tutorial, which is available at [TFtut]

and extends it to the level where user can create arbitrary number of particle generators with

speci�c settings.
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Chapter 1

OpenGL

To actually implement our particle system library, we will use OpenGL for rendering and updating

particles. OpenGL is open, standard speci�cation de�ning a cross-language, cross-platform API

for writing applications that produce 2D and 3D computer graphics. OpenGL was developed

by Silicon Graphics Inc. (SGI) in 1992, and today is managed by the non-pro�t technology

consortium Khronos Group ([Khronos]). It is widely used in industry, as well as video games for

data visualization.

It is a common mistake to think that OpenGL is a library for computer graphics. Even though

we use it like that, OpenGL itself is just a speci�cation - a set of functions along with their

associated parameters and constants, through which we can produce graphics. And it is up to

graphic card vendors to actually implement the speci�cation in the their products while taking

advantage of their hardware to achieve maximum performance. All major graphic card vendors,

like AMD and nVidia support OpenGL to their latest versions (currently it's 4.2), and almost all

minor vendors implemented at least part of OpenGL speci�cation into their graphic cards, so we

can be sure that our implementation of particle system will run almost anywhere. And because

OpenGL is supported on all major operating systems (Windows, Mac, Linux), our library will be

cross-platform. There are also software implementations of OpenGL speci�cation (Mesa3D is the

most known), but they're much slower than hardware implementations.

The programmer usually creates a system dependent window to render into, then creates

OpenGL rendering context within that window in order to be able to call OpenGL functions.

This approach makes porting OpenGL applications along platforms very convenient.
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1.1 Evolution of OpenGL

OpenGL has gone a long way, since its �rst introduction in 1991. Prior to OpenGL version

2.0 (further referred as old OpenGL), most of the its functionality was �xed. This basically

means, that only features, that are implemented in according to speci�cation into the graphics

hardware, could be used. OpenGL back then was practically �xed-function state machine with

built-in variables, such as projection and transformation matrices, that we could freely read and

modify. But because GPUs started to become more and more �exible and programmable, so must

have done OpenGL. This eventuated into OpenGL as an interface with complex data-�ow, that

includes several application-programmable stages. Not only that, the performance of OpenGL has

increased in many important raw graphics operations.

Today, OpenGL is a modern API, being maintained by Khronos Group, a non-pro�t organization

that is focused on creation of open standards and free APIs. Its members are leaders and innovators

in computer graphics �eld, employees of leading companies like nVidia and AMD and many other

experts in the �eld of 3D graphics. Another advantage is, that OpenGL has many variants for

other devices than just computers, like OpenGL ES (embedded systems), so it shouldn't be a

problem to port the particle system library to mobile devices with operating systems that support

OpenGL ES, like Android or iPhone.

1.2 OpenGL Shading Language

This is the most important feature in modern hardware era. OpenGL Shading Language (further

referred as GLSL) is a language for writing shaders, allowing us to execute our custom per-vertex

(along with additional geometry creation) and per-fragment operations directly on GPU. It's

derived from C language and resembles C++ in many ways. GLSL has many built-in variable

types and functions, that are commonly used in 3D graphics, for example matrices - there's a

di�erent variable type for matrix dimensions up to 4x4, vertices - there are 2D, 3D and 4D vectors

available. The functions that are fundamental for 3D graphics are also available. To those belong

functions like dot product, cross product, smooth interpolation between values, all goniometric

functions and much more. In this work, I'll be using only GLSL version 3.30, that comes along

with OpenGL 3.3. The whole language speci�cation can be found at [GLSLref].
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1.2.1 OpenGL Rendering pipeline

The whole process of transforming input data into �nal 2D image is quite complex, but one can

imagine it as a rendering pipeline, where at the entrance there are de�nitions of vertices and

their attributes along with polygons that they form, texture data and other resources needed for

rendering and on the end there's a �nal 2D image, that is displayed on the screen. Older OpenGL

provided only �xed vertex and fragment processing. A simpli�ed rendering pipeline is shown in

Figure 1.1:

Figure 1.1: OpenGL rendering pipeline

Vertex processing is usually responsible for transforming vertices into window coordinates, but

it can calculate and output additional vertex info, such as its position in eye-space coordinates.

After polygon rasterization, fragment processing takes place. This is done by fragment shader,

which is executed on every single pixel, or fragment. Here OpenGL deals with hidden surface

removal using the depth bu�er. This means, that everytime a new polygon comes, every pixel

it should occupy has its depth calculated, and this depth is checked against the values already

in depth bu�er. Depending on depth test properties, only values that meet certain criteria (but

basically lower values are taken, which means less depth and thus closer to us) will pass and depth

bu�er is updated. Only fragments, that passed depth test will qualify for further processing,

which usually includes applying right color depending on material properties, texture used, lighting

parameters etc.

The Geometry �eld and Rasterization �eld can be replaced by our own programs now. Starting

from OpenGL 3.3, where all �xed functionality is removed, it's obligatory and we must program
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these parts of rendering pipeline. Even though it may not seem so at �rst glance, this approach

has many advantages for us. For example, there may not be always need for matrices, if we are

only to render simple static 2D graphics, we can write a shader that will take data directly in

window coordinates, and output them right away. This way we can save some processing power.

We can customize the rendering pipeline to exactly �t our needs. In this work, GLSL version 3.3

will be used.

1.2.2 Shader types

There are currently 3 basic shader types - vertex shaders, fragment shaders and geometry

shaders. In this work. We will shortly describe each one of them:

• Vertex Shader - This shader processes input vertices and their associated attributes, and

passes results further into OpenGL rendering pipeline (geometry shader, if it's present)

• Geometry Shader - In this shader we can group vertices and form triangles from them, or

we can discard them to save some processing power. This type of shader is used to tesselate

complex mathematical shapes for example, but can be used for more general purposes. It

will be very important in this work.

• Fragment Shader - Takes care of producing �nal image, gets called for each pixel (fragment)

and is used for creating lighting e�ects or interpolating colors among vertices.

1.2.3 Shader programs

Single shader itself isn't enough to replace pipeline parts - in order to make it work, we must

compile one or more shaders and then link them together to create a Shader program. One

can think of a shader as a single source code �le. And when compiling more source �les together,

the linkage must be done. Additionally, every shader type - vertex, fragment or geometry must

have a main method, just like in C or C++, even though can be comprised of multiple source �les

(we can just have a �le with some custom function de�nitions which are used in multiple shader

programs). After we have successfully linked a program, we can �nally use it. We can have several

shader programs, as they can serve di�erent purposes, and then quickly switch between them in

our application.
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Starting from OpenGL 3.1, we don't set vertex positions, colors or its texture coordinates.

They're are referred to as vertex attributes and it is upon us to decide which attribute will represent

position, color and so on. Each of vertex attributes has an index, so we can assign position to index

0, texture coordinates to index 1 and so on. We setup all these generic vertex attributes before

rendering. There's a keyword layout in GLSL to assign input variables with vertex attributes

coming to shader. Here is an example of a very simple shader program, consisting of one vertex

shader, that just sends incoming vertex positions further into rendering pipeline, geometry shader

that creates a triangle from every 3 vertices passed and one fragment shader, that produces red

fragments.

#version 330

in vec3 inPosition;

void main(void)
{

gl_Position = vec4(inPosition, 1.0);
}

Listing 1.1: Trivial vertex shader
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#version 330

layout(triangles) in;
layout(triangles) out;
layout(max_vertices = 3) out;

void main()
{

gl_Position = gl_in[0].gl_Position;
EmitVertex();
gl_Position = gl_in[1].gl_Position;
EmitVertex();
gl_Position = gl_in[2].gl_Position;
EmitVertex();

EndPrimitive();
}

Listing 1.2: Trivial geometry shader

#version 330

out vec4 outColor;

void main(void)
{

outColor = vec4(1.0, 0.0, 0.0, 0.0);
}

Listing 1.3: Trivial fragment shader

1.2.4 Variable modi�ers

Usually, we want the subsequent shaders in pipeline to communicate with one another, especially

vertex and fragment shader often share many data. This can be done using variable modi�ers,

that GLSL has built-in. If we want a variable from one rendering stage to be passed to another,

we do it using in and out variable modi�ers. To ensure the consistency, a variable that has an

out modi�er in one stage must have the in modi�er and same name in another pipeline stage.

There are also special quali�ers for communication between vertex and fragment shader, to resolve

ambiguity. Because vertex shaders are executed once per vertex and fragment shaders once per

fragment, we need to feed the fragment shader data not only in the vertices, but also among the

whole rasterized polygon. There are several modi�ers to do that. If we declare output variable

from vertex shader with smooth keyword, then in the subsequent stage of rendering pipeline their

values will be interpolated throughout all fragments that the polygon covers. It means, that the
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closer particular fragment to source vertex is, the more from its value is present in the fragment.

This is useful for interpolating colors, but also normals to achieve per-pixel lighting. Another

possible modi�er is flat, that doesn't perform interpolation, but takes the value from a single

vertex instead and puts it all over rasterized polygon. The vertex that acts as a source of this

data is called Provoking Vertex. It's usually either �rst or last vertex of polygon.

There are situations, in which we need to communicate with shader program from our main

program. GLSL has built mechanism for doing exactly this. There is a variable modi�er uniform,

that allows us to change its value from within our program. The word uniform represents the

variable's attribute characteristic - that its value is uniform - i.e. it doesn't change during

execution of vertex program. We must set its value before calling any rendering function, and then

throughout rendering, its value remains the same. The example usage of this variable modi�er is

for setting modelview and projection matrices from within our program to transform our vertices

properly. Uniform variables can't be changed from within the shader, they're read-only there.

Listings 1.4 and 1.5 are an example of a shader program, that transforms vertices using modelview

and projection matrix, and smoothly interpolates colors throughout whole polygon.

#version 330

layout (location = 0) in vec3 inPosition;
layout (location = 1) in vec3 inColor;

smooth out vec3 theColor;

void main()
{

gl_Position = vec4(inPosition, 1.0);
theColor = inColor;

}

Listing 1.4: Color vertex shader

9



#version 330

smooth in vec3 theColor;
out vec4 outputColor;

void main()
{

outputColor = vec4(theColor, 1.0);
}

Listing 1.5: Color fragment shader

In our work, we'll rely heavily on shaders, as most particle system computations will be

performed on GPU and will be implemented in shaders. For the GLSL manual and speci�cation,

refer to [GLSLref].

1.3 Geometry rendering

Rendering geometry in OpenGL now is di�erent than rendering back then before shaders. The

early versions of OpenGL used so-called immediate rendering mode, in which user explicitly

declared vertices and their attributes using OpenGL functions like glVertex or glTexCoord.

The sample triangle render with a texture applied onto it is shown in Listing 1.6.

glBegin(GL_TRIANGLES);
glTexCoord2f(0.0f, 0.0f); glVertex2f(-10.0f, 0.0f);
glTexCoord2f(1.0f, 0.0f); glVertex2f(10.0f, 0.0f);
glTexCoord2f(0.0f, 0.5f); glVertex2f(5.0f, 5.0f);

glEnd();

Listing 1.6: Triangle in immediate render mode

But as the GPUs were evolving, this approach turned out to be slow because the constant

�ow of identical data from CPU to GPU was causing a bottleneck on CPU - GPU had to wait

for CPU to send data before it could perform rendering. Because of that, OpenGL 1.5 introduced

Vertex Bu�er Objects (VBOs) - the data storage bu�ers residing in GPU memory instead of client

memory. This allows us to upload arbitrary data to GPU, and then, instead of rendering using

immediate mode, we just have to tell OpenGL the way data is stored in the VBO (for example

byte o�sets between two consecutive vertices, order of attributes etc.) and call one drawing

function, like glDrawArrays. Prior to OpenGL 3.0, vertex attributes were set using functions as

glVertexPointer, glTexCoordPointer, or glNormalPointer. However, these functions

were deprecated and removed from OpenGL 3.1 core, while replaced with a more general Vertex

10



Array Objects.

1.3.1 Vertex Array Objects

Vertex Array Object (VAO) is OpenGL state object, adopted to core OpenGL in version 3.0.

It stores bindings between vertex attributes and their associated VBOs. Vertex attributes are

completely arbitrary and they're indexed with numbers. It is up to us to decide which index

represents position, texture coordinate, normal, color or any other attribute that we come up

with. These attributes come as in variables into vertex shader. To set concrete vertex attribute,

function glVertexAttribPointer is used. With it, we set attributes index, data type (�oat,

integer etc.), o�set between two consecutive attributes and byte o�set from start of VBO, where

�rst occurence of this attribute is located. For detailed explanation and usage, see [VertArray].

There are also additional bu�er object types in OpenGL, though we don't need them in this work

- pixel bu�er, texture bu�er, framebu�er, renderbu�er, uniform bu�er transform feedback bu�er

and some other. See [GLregistry] for more.

1.4 GLM

GLM is a library for OpenGL mathematics. Because all �xed funcionality was removed, we

cannot use glu (OpenGL utility library) functions anymore to setup basic things like perspective

projection. This library is free to use and is a decent descendant of glu. It has all fundamental

data types and functions when working with 3D graphics - vertices and matrices and all common

operations with them. In addition, it has all function alternatives that were in �xed functionality,

like glTranslate, glRotate, gluLookAt etc. We will use this library in our work very often.

For documentation and example usage, refer to [GLM].
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Chapter 2

Particle Systems

2.1 Particle System

Particle system is a technique to simulate certain e�ects or phenomena, that are otherwise very

di�cult to reproduce using conventional rendering techniques. Examples of such e�ect are �re,

sparks, dust, moving water, smoke, explosions etc. All these objects have something in common

- they do not have smooth, well-de�ned surfaces; instead they are very complex and irregular.

The idea to simulate these "fuzzy" phenomena is to create many small particles, that act as

independent units, and then render them together to create desired e�ect.

Typically, particle system's position and motion are controlled in 3D space by what is re�ered

to as emmiter, or generator. It acts as a source of particles, and it's position in 3D space determines

the position of particles generated by it. Furthermore, a certain set of parameters is set to an

emitter. These parameters usually include initial particle velocities, or directions they will be

moving to, initial color or texture, initial lifetimes and spawning rate, or how many particles to

generate. To make the whole thing irregular and "fuzzy", instead of de�ning a precise value for

newly generated particles, a particle system designer usually speci�es a central value and some

degree of randomness on either side of the center. For example the lifetime of a new particle may

be 1 second +- 0.2 seconds. With uniform random distribution, the average lifetime of particle is

thus 1 second. And if apply this randomness to all parameters (color, velocities), the �nal e�ect

has an irregular, hard to de�ne behavior, which is actually what we want. For more detailed

overview and general information about particle systems, see [REE83] and [REY87].
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2.2 Basic Model Of Particle System

In each frame where particle system is used, 4 basic steps are performed:

1. Generation of new particles - we create some particles and set their initial parameters

2. Rendering - particles are rendered to framebu�er

3. Updating living particles - every particle that is still "alive", i.e. still has a lifetime is moved

and transformed according to its dynamic properties

4. Removing old particles - every particle that has an expired lifetime is removed from system

2.2.1 Generation of new particles

Each new frame, new particles are added to a system. The number of particles is important,

because it strongly in�uences density of the fuzzy object that is being modeled. It is up to particle

system designer to determine the optimal number of particles to achieve particular e�ect. If we

set the number of particles, let's say N , with a variance v (so that actual number of new particles

is in interval < N − v,N + v >), then every frame (or speci�ed time interval) the count of added

particles is:

Nadded =
(N+rand()∗V )∗telapsed

tint

Where rand() is a function returning value from interval < −1.0, 1.0 > and telapsed is the time

elapsed since previous frame. If the time between two frames or number of particles is too low,

then it's possible that Nadded will be less than 1, which is undesired, because number of particles

added must be integer. To avoid this, we can use a �oating point variable for Nadded and whenever

this variable exceeds 1.0, we convert it to integer and add that many particles.

Now after the number of generated particles is known, the particle system must determine the

values for their attributes. The most common attributes are particle position, velocity, size, color,

transparency, or lifetime. These attributes can be ranging from very simple to very complex -

depending on the complexity of the phenomenon.

There are also several parameters of particle system that control initial position of generated

particles. A Generator has a position in 3D that de�nes its origin, and a generation shape, which

de�nes the region around origin into which newly generated particles can be placed, for example

spherical region. The number of control attributes of particle system is limitless and it's up to a

designer to choose those which will �t his model most.
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2.2.2 Rendering

In this phase frame data are generated according to particles data. This phase mostly a�ects

overall performance of particle system and thus it is crucial to implement this phase as e�ective as

possible. The rendering of particles is generally equally computationally expensive as rendering of

polygons, because particle can overlap, be transparent and also cast shadows on other particles.

Furthermore, particles can intersect objects modeled by primitives in our scene. With this in mind,

there is no point in trying to simulate all these things, because of great computational expense.

For these reasons, we will assume, that we don't need to write depth values of particles against to

framebu�er, only test them against it. Also, we will consider each particle to be a point light, so

that every pixel the particle will have its intensity increased, depending on color and transparency

of particle.

2.2.3 Updating living particles

Each frame, all living particles are updated. Their velocity is added to their position, lifetime is

decreased and also color may change. To add more complexity, particle system designer may also

add an acceleration factor as parameter of particle system to alter velocity of each particle from

frame to frame. This allows to simulate e�ects like gravity and make particles move not only along

lines, but also parabolic and other curves.

2.2.4 Removing old particles

Upon generation, particle is given certain lifetime. This lifetime is decreased every frame, and

when its below a certain threshold (usually zero), particle is destroyed. Generally, we either

remove particle data from memory, or set its �ag as dead, so that this particle can be reinitialized

in subsequent frames. The second approach is better, because actual removal of particle from

memory can have a performance penalty.

2.3 Generating particles

Particle system implemented in this work will consist of multiple generators with di�erent properties,

that emit particles. Whenever generator is transformed, so are all of its descendant particles. All

properties of particles are also set according to their parent generator settings. Also the number

of new particles generated by particle system is dependent on parent generator generation rate.
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There are already several solutions implementing particle systems, such as Flint ([FLINT]) for

Adobe Flash or SPARK for both DirectX and OpenGL ([SPARK]).
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Chapter 3

Implementation

In this chapter, we will discuss the way library is implemented. We'll go through most important

parts of code and explain them. We'll also go through the API and explain what is each function

used for.

Library itself consists of 2 parts - one is a relatively low level API for creating particles and

particles generators through which user can create variety of e�ects to �t any of his needs. The

second one is a collection of preprogrammed particle e�ects, which are commonly used anywhere,

such as �re, explosion, smoke etc. Even though these e�ects have only several parameters to control

and thus they are not as �exible as the low level API, they are quite handy and may reduce the

code overhead for simple applications, where these pre-programmed e�ects are su�cient.

The name of particle system library is Blaze Particle System Library. It is available at website

[BLAZE] under open source license.

3.1 Library types

In general, there are two library types: those that link statically and those that link dynamically.

We will explain these terms in few words, and will talk about advantages and disadvantages of

both:

3.1.1 Static linking

Static linking is the method used to combine the library routines with the application in a way,

that when program is being built, the linker will search all the libraries for the unresolved functions
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called in the program and if found, it will copy the corresponding object code from the library

and append it to the executable. The linker will keep searching until there are no more unresolved

function references. This is the most common method for linking libraries. This method boasts of

ease of implementation and speed but will generate bulky executable. However, �nal executable

isn't now dependent on any other �les, because all used parts have been copied into it.

3.1.2 Dynamic linking

In dynamic linking, the required functions are compiled and stored in a library. On Windows

systems, such libraries have .dll extensions, which stands for Dynamically Linked Library. Unlike

static linking, no object code is copied in to the executable from the libraries. Instead of that,

the executable will keep the name of the library in which the required function resides. And when

the executable is running, it will load the library and call the required functions from it. This

method yields an executable with small footprint, but have to compromise on speed a little, but

on modern systems, we can say that this tie is negligible. The main advantage of this method is

the reusability of code. If the same library is used within multiple applications, the space savings

become clearly visible. Not only that, if there is a new version of particular library, applications

using the ones statically linked must be recompiled in order for new version to take e�ect, whereas

in dynamic linking, we only replace library old version with new one.

In this work, we will be using dynamic linking for reasons stated above. To learn more about

DLLs, refer to [MSDN].

3.2 Interface

Every library has its API - application programming interface. API is a set of public functions,

through which can user of library call functions and communicate with library. When creating

C++ library, it's a good practice to create pure virtual interface as an abstract class, which is

de�ned in header �le, and then make implemented class, that is inherited from our abstract class.

This way, user has access only to public interface of library, and the bodies of each function

is in library �le. We will also have to provide a function, that will create an instance of an

implementation, and will return a pointer to it.

The abstract interface of our library is shown in Listing 3.1.
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virtual bool initalizeParticleSystem(...) = 0;

virtual void renderParticles() = 0;
virtual void updateParticles(...) = 0;
virtual void setParticleTexture(...) = 0;

virtual UINT createPointParticleGenerator(...) = 0;
virtual UINT createSphericalParticleGenerator(...) = 0;
virtual UINT createBoxParticleGenerator(...) = 0;
virtual UINT createEllipsoidalParticleGenerator(...) = 0;

virtual bool setGeneratorColor(...) = 0;
virtual bool setGeneratorGravityVector(...) = 0;
virtual bool setGeneratorSpawnRate(...) = 0;
virtual bool setGeneratorParticleSize(...) = 0;

virtual bool setPointGeneratorPosition(...) = 0;
virtual bool setSphericalGeneratorCenter(...) = 0;
virtual bool setSphericalGeneratorRadius(...) = 0;
virtual bool setBoxGeneratorCorners(...) = 0;
virtual bool setEllipsoidalGeneratorCenter(...) = 0;
virtual bool setEllipsoidalGeneratorRadii(...) = 0;

virtual int getNumParticles() = 0;
virtual int getNumGenerators() = 0;

virtual void setProjectionMatrix(...) = 0;
virtual void setLookAt(...) = 0;

virtual bool deleteParticleGenerator(...) = 0;
virtual void clearAllParticles() = 0;
virtual void clearAllGenerators() = 0;

virtual bool releaseParticleSystem() = 0;

Listing 3.1: Interface of the library (... stands for actual parameters, see source code for full list)

All these functions are common for any of the implementation of particle system. No matter

which one user chooses, the �nal e�ect of using these functions in the same order must cause the

same e�ect.

3.2.1 Basic functions

The function initializeParticleSystem will handle all initialization of selected particle

system implementation (resource allocation, shaders loading etc.). It takes one parameter, which

is NULL by default - the pointer to initialization data. This parameter is unused yet, but is reserved

for future development. To perform rendering of all particles, we'll call renderParticles. Their

update is done with updateParticles function, which takes one parameter fTimePassed,

18



which is a time in seconds that has passed since the last rendered frame, so that particles'

update speed isn't dependent on the frame rate of application, but rather on time. Function

setParticleTexture will set the texture of a particles in a particle system. The only parameter

is texture name as unsigned integer previously generated by OpenGL.

3.2.2 Generators and particles

The main idea in generating particles and achieving desired e�ects is to create various particle

generators with di�erent settings. Our library supports 4 types of particle generators - point,

spherical, box and ellipsoidal generator. There is a function to create every generator type in the

interface - createPointParticleGenerator, createSphericalParticleGenerator,

createBoxParticleGenerator and createEllipsoidalParticleGenerator, respectively.

Then there's a couple of setting functions. These functions will take generator ID and property

that needs to be changed. The library has a built-in mechanism for detecting invalid requests, like

setting radius to a point generator. If a valid request has been made, these functions return true.

User can query for number of particles using getNumParticles function, and for number of

generators with getNumGenerators function.

3.2.3 Rendering-related functions

For proper translation, billboarding and rendering of particles, user must set several things.

setLookAt function takes the same parameters as a well-known function gluLookAt (when

using old context), or glm::lookAt (when using 3.1 and further context) - position of an eye,

a point that eye is looking upon, and the up vector.. This is important so that we can rotate

particles properly to make them face the camera. This isn't enough, user must also provide a

projection matrix to library, so that the particles can be transformed into window coordinates

properly. This is done using setProjectionMatrix. This function takes pointer to 16 �oats,

that represent 4x4 matrix in a column-major order (because that's how OpenGL stores matrices

internally). However, this function only needs to be called when dealing with OpenGL context 3.1

and beyond, which has the �xed functionality removed. In older OpenGL contexts, these matrices

were stored in OpenGL state and thus library can read them directly.
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3.2.4 Deleting-related functions

To delete speci�c generator, user can call deleteGenerator function, which takes a generator

ID to delete. User can also get rid of all generators with function clearAllGenerators and to

get rid of all particles, user can call clearAllParticles function.

Finally there's a releaseParticleSystem function, which frees all used memory and de-

initializes the library. This function should be called by user when he's �nished working with

particle system.

3.3 Particle systems

In this work, we will implement particle system using 3 di�erent methods. First won'tuse any of

OpenGL latest capabilities, but only basic rendering mechanisms from �xed functionality. This

implementation will be further referred as Simple Particle System. Second will use Point sprites.

The third implementation will use some of the latest GPU programming paradigms and will be

done using Transform Feedback extension almost entirely on GPU. We'll also prepare some demo

scenes and then make a conclusion about each implementation pros and cons. We will take into

consideration number of particles and number of generators on the scene and how they in�uence

the frame-rate. The tests will be taken on various machines with di�erent hardware components.

3.3.1 Common properties

There are some common properties for each particle system implementation. We will go through

them.

Generators

As mentioned before, there are 4 type of generators implemented in this library. All these types

have however these common properties.

• Minimal and Maximal Velocity Vector - all generated particles by this generator

will have its velocity vector taken from this range, so if VelocityMin = (-10, 2, -2) and

VelocityMax = (10, 5, 2), then emmited particles will have its velocity vector in range (-

10...10, 2...5, -2...2). If we set the same value to X, Y and Z component, then the velocity

of all emmited particles will be the same. These values are stored in fVelocityMin

and fVelocityDif, which is the di�erence between maximal and minimal velocity (we
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remember the di�erence between minimum and maximum rather than maximum, so that

when generating particles the di�erence doesn't have to be recalculated - this saves some

processing time)

• Minimal and Maximal Spawn Rate - generator will create a bunch of particles every

few seconds. Upon generator creation, next generation time is calculated. Its range will be

randomly taken from minimal spawn rate to maximal spawn rate. Recall this value is NGT .

After NGT seconds have passed from generator creation, new bunch of particles is created

and NGT is recalculated. After NGT seconds from last recalculation, another bunch of new

particles is generated and NGT is recalculated again. This goes on either forever (this is the

default behavior), or only limited amount of times, if user de�nes it. These values are stored

in fSpawnEveryMin and fSpawnEveryDif, which is the di�erence between maximal and

minimal spawn rate

• Size - every generated particle will have this size. This value is stored in fParticleSizes

variable

• Color - every generated particle will have this color. This value is stored in fColor variable

• Minimal and Maximal Lifetime - every generated particle will have its lifetime from this

range. This values are stored in fLifeDif, which is the di�erence between maximal and

minimal lifetime of particles

• Minimal and Maximal Count of Particles - every time generator generates a particles

(the NGT seconds have passed since last recalculation), the number of particles generated

will be in this range. These values are stored in in countMin and countDif, which is the

di�erence between maximal and minimal count of generated particles

• Maximal Number of Spawns - this means maximal number of spawning a bunch of

particles, or maximal number of NGT recalculations, before the generator expires. The

default value of this parameter is −1, which means generate particles inde�nitely. This

value is stored in in maxSpawns variable. The values of spawns that has already occured is

stored in numSpawns variable

• Gravity Vector - gravity vector alters velocities of each particle generated by this generator.

The default value is zero gravity vector, so particles are not in�uenced by this. This is useful

for creating e�ects like fountains. This value is stored in fGravityVector variable
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Other common properties are fNextTime, which is the time of next generation of new

particles. fPassedTime tracks the time, starting from 0.0 and if it passed NGT, that's stored

in fNextTime, new bunch of particles is generated. Integer iNewCount stores the number of

particles that will be generated next time.

Because all the above properties are common, we will de�ne a base class, from which all other

generator classes will be inherited. You can see how generator base class looks like in Listing 3.2.

class PSE_ParticleGenerator
{
public:

void initGenerator(float* a_fVelocityRangeMin, float*
a_fVelocityRangeMax, float a_fSpawnEveryMin, float
a_fSpawnEveryMax, int a_countMin, int a_countMax, float
a_fLifeMin, float a_fLifeMax, float a_fParticleSizes, int
a_maxSpawns = -1);

void regenerateNextTime();
void setGeneratorColor(BYTE a_r, BYTE a_g, BYTE a_b);
void setGravityVector(float* a_fGravity);
void setSpawnRate(float fNewSpawnEveryMin, float fNewSpawnEveryMax,

int iNewMinCount, int iNewMaxCount);
void setParticleSize(float a_fNewParticleSize);
bool isDead();

};

Listing 3.2: Base class of generator (only interface part)

Most functions are self-explanatory, except regenerateNextTime, which calculates next

spawning time and number of spawned particles in next generation, and isDead, which returns

true, if particle generator performed maximum number of particle generations.

Next we'll examine di�erent generator types.

• Point generator

This generator is the simplest and has one additional property. It's generator's position. All

generated particles are created at the same position.

• Spherical generator

This generator has two additional properties - center and sphere radius. Now the generated

particles' initial positions are taken randomly from within the sphere, not only from its

surface. The sphere generator with a radius 0.0 is a point generator.
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• Box generator

This generator has two parameters - arbitrary opposite corners of a desired 3D bounding

box. New particles' positions are randomly taken from the inside of a speci�ed bounding

box.

• Ellipsoidal generator

This generator has 4 additional properties - ellipsoid center and its radii in X, Y and Z

direction, respectively. Generated particles' position are randomly taken from the inside of

the ellipse.

Particles

Every generated particle has following properties: position, velocity vector, gravity vector, color,

lifetime left and size. Additionally, particles will have extra properties depending on particle

system implementation, as will be shown further in this work. The base class of particle is shown

in Listing 3.3.

class PSE_Particle
{
public:

float fPosition[3];
float fVelocity[3];
float fGravityVector[3];
float fColor[3];
float fLifeTimeSpan;
float fSize;

};

Listing 3.3: Base class of particle

Velocity means by how much will particle's position be updated when 1 second passes. Lifetime

is also in seconds and holds time before the particle expires. Gravity vector is the amount added

to velocity vector of particle after 1 second.

Memory management

Each of our particle system implementations will have dynamic array of generators. We'll use STL

vectors for this. More speci�c, we'll have a vector of pointers to generators. Everytime, when user

wants to create a generator, the system creates it somewhere in memory and adds pointer to the

vector of generators. System also must return generator ID and give it to user, so that he can
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work with it later. This ID will actually be index in the pointer array. The newly generated ID

can be one of the followings:

• either all the pointers in the array are active and their generators are working and thus the

new generator ID will be index of latest added pointer

• or some of the pointers are "dead" by now, i.e. have expired or been deleted by user, and

system retrieves the �rst index where NULL pointer is set

System internally remembers �rst unused index (further referred as FUI) and with each newly

created or deleted generator this index is recalculated. When a generator is deleted, the FUI is

a minimum from the deleted generator ID and value stored in FUI. The pointer at that place is

then deleted and set to NULL. When a generator is created, it's placed on FUI index (in case

FUI is equal to the size of dynamic array of pointers, the array is resized by one). System then

scans all further indices and sets the FUI to the �rst deleted generator (where pointer is NULL),

or to the end of dynamic array (its size), whichever comes �rst. That's why FUI recalculation

runs in O(N) time, where N is size of dynamic array, which is practically number of generators

in the particle system, and the addition of new generator runs in O(1) time with assumption

that memory allocation using new C++ keyword runs in constant time. There is a room for

improvement of this simple memory management, however this part isn't crucial for the particle

system and doesn't a�ect the framerate and overall performance of system signi�cantly.

Because this is common for all implementations, there is a derived class from

PSE_ParticleSystemEngineCommon, which implements this memory management and is

a base class for subsequent implementations. This class also implements generators altering

functions and setting of projection matrix and view properties. However, deleting of generators

isn't implemented in this class, but rather left for derived class to implement it, because deletion

of generators on GPU and server side di�ers from the deletion on CPU and client side.
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3.3.2 Simple particle system

This implementation will do all particle calculations and updating on CPU. Rendering of particles

is done using immediate rendering mode.

Rendering

We will be rendering and updating particles sequentially one by one. To achieve this, we will

create dynamic array that will store all the active particles with their properties. We'll use STL

vectors for this as well. The rendering part is done using quads rendering mode in OpenGL.

With each particle, we must send 4 vertices to the GPU. Texture coordinates are static, for each

point of quad there is a texture coordinate, concretely (0.0, 1.0) for upper-left corner, (1.0, 1.0)

for upper-right corner, (1.0, 0.0) for lower-right corner and (0.0, 0.0) for lower-left corner. The

vertex positions however must be calculated, depending on position and view vector of camera.

Everytime a user sets a view vector of camera (calls setViewVector function), two vertices,

called vQuad1 and vQuad2 are calculated using cross product. These vectors are perpendicular

to each other and they de�ne 2D plane on which the particles should be rendered. For each

particle, 4 vertex positions must be calculated using these two vectors and particle size, as shown

in �gure 3.1.

Figure 3.1: Calculation of particle vertices

For more detailed explanation of billboarding, refer to [BillboardingTut].

Before rendering takes place, we enable blending and disable writing to the depth bu�er.

Blending is turned on to make particles transparent depending on their lifetime - if a particle

has more than 1 second of lifetime left, the alpha of it's color is set to 1.0. However, if particle

has lifetime below 1 second, alpha of it's color is set to its lifetime, creating a nice fadeout e�ect.
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Depth bu�er writing is disabled, because not doing so would make particles' rendered quads clearly

visible and some particles would not even get drawn, because they may appear behind already

rendered particle, which has already updated depth bu�er values even though it is transparent

and particles behind it should be seen and taken into consideration when calculating �nal color in

the framebu�er.

Updating

Updating takes whole place on CPU. First we'll go through all the generators and call their

generateParticles function. Each generator type implements this in its own way. Additionally,

we do a check whether generator is "dead", i.e. it's already reached it's maximal number of

generations of particles. If so, the generator is deleted.

After generating phase, we'll go through all particles sequentially, one by one, and update

their properties. Particle's velocity is scaled depending on passed time and added to its position.

Lifetime of particle is decreased by the time passed since the last frame. If the lifetime drops

below 0.0, then the particle has exhausted and is deleted. Deletion of particle isn't done using

STL vector erase function, because it runs in linear time, but we do this in O(1) time. The trick

is to copy the particle that's on the last index of the array to the index of particle being deleted

and then decreasing size by 1 using pop_back function. Also, the gravity vector (scaled by time

elapsed since the last frame) is added to the velocity vector of particle. Note that the gravity

vector is also stored as a particle property. Everytime generator creates a particle, it copies its

actual gravity vector to particle. This is because user can change the gravity vector of generator

anytime he wants, so we must remember this value for every particle.

Updating particles on CPU side can be improved using multi-threading, where each thread

updates one particle at time. This would however require some synchronization objects built into

system to achieve mutual exclusion.

To retrieve the number of particles in the system, we simply check the current size of particles'

dynamic array. To get the number of generators in system, we must traverse through all pointers

and count in only non-nulli�ed ones. Clearing generators and particles here is also trivial.

3.3.3 Point sprites particle system

This implementation improves the rendering of simple particle system. Point sprites is a feature

adopted to core OpenGL in version 1.5. It's listed as GL_ARB_POINT_SPRITE and can be found
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at [?]. Although OpenGL has always supported texture mapped points, prior to version 1.5 this

meant a single texture coordinate applied to an entire point. Large textured points were simply

large versions of a single �ltered texel. But with point sprites, it is possible to place a 2D textured

image anywhere onscreen by drawing a single 3D point. Point sprites allow to render a perfectly

aligned textured 2D square by sending a single 3D vertex. This reduces the bandwidth of sending

vertices by 4, since we don't have to pass 4 vertices now like in previous case. The size of rendered

square is dependent on several settings of point sprites. Also there's no need to send down texture

coordinates anymore, because they're calculated automatically. This saves additional processing

time. To perform render, we'll use immediate render mode, while sending only vertex positions to

GPU.

Rendering

The main setting of point sprites implemenation is point size attenuation depending on point

from camera distance. We de�ne 3 types of attenuations - constant, linear and exponential.

We must also tell OpenGL, that we want to use point sprites. This is done by calling

glEnable(GL_POINT_SPRITE_ARB). We also must tell it to replace the texture coordinates

with point sprites texture coordinates by changing the texture environment. It's done with calling

glTexEnvf(GL_POINT_SPRITE_ARB, GL_COORD_REPLACE_ARB, GL_TRUE). Because

each particle has its own size, we must set it as well with each particle rendered. The problem

is, that size setting function glPointSize cannot be called between glBegin and glEnd

functions. So instead of changing the size from particle to particle we'll rather remember last

rendered particle size. If it's same, we don't have to do anything, otherwise we'll stop drawing,

change the size and then continue it.

As in simple particle system, we must enable blending and disable writing to the depth bu�er

for the same reasons.

Updating

Updating part is exactly the same as in simple particle system.
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3.3.4 Transform feedback particle system

This implementation will be completely di�erent from the previous two and will use the latest GPU

programming paradigms. It will rely on shaders and the transform feedback OpenGL extension,

which comes with OpenGL 3.0 and further. This implementation won't use any of the �xed

pipeline from the previous two implementations (they're marked as deprecated in OpenGL 3.0

and are removed from OpenGL 3.1). The previous two implementations relied heavily on the

CPU - most of the work has been done there, while GPU was waiting for CPU to �nish its job

before it could render. But this implementation will leave most of the work on the GPU, and

CPU will only control GPU. Because modern GPUs have several shader units, the processing of

particles can run parallel, as on CPU we were doing this sequentially.

Transform feedback

Transform Feedback is the process of altering the rendering pipeline so that primitives processed

by a Vertex Shader and optionally a Geometry Shader are written to bu�er objects. This allows

to preserve the post-transform rendering state of an object and resubmit this data multiple times.

This feature exposes GPU parallelism possibilities easily and allows us to put any kind of work

to GPU and then read the results of the work from the VBO that transform feedback has �lled.

This is ideal for creating particle system. It's listed as GL_ARB_transform_feedback3 and

can be found at [TransFB].

The idea is to create two shader programs - one for particle generation and updating (referred

further as generator program), and one for rendering. The particle generation program will consist

of vertex and geometry shader and no fragment shader, because we aren't rendering yet. Vertex

shader will process the vertices, which will actually be particles and vertex attributes will be

associated particle attributes. These vertices will be further sent to geometry shader, which will

do the updating and will emit as many vertices, as many alive particles there are. The second

shader program will process only rendering of particles.

In OpenGL, transform feedback is treated as an object, so �rst we must generate

one and remember its name (unsigned int assigned by OpenGL). This is done using

glGenTransformFeedbacks, which takes as parameter number of transform feedback

objects we want to generate and where to store them. For whole particle system, we need only 1

transform feedback object. In order for transform feedback to work, we must tell it where to store

the recorded data. This is done by function glBindBufferBase. We will pass there name of
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vertex bu�er object, where the data from transform feedback will be recorded. This bu�er must

be large enough to be able to store all the data generated by geometry shader. These data will be

reused for rendering next frame. In our case, every generator will have two VBOs - one used for

reading of output particles and one for writing of particles. The maximum number of particles on

the scene at once for a given generator is calculated as follows:

int iMaximumParticles = countMin+int(((fLifeMin+fLifeDif)/
fSpawnEveryMin)*float(countMin+countDif));

This assumes the worst case scenario, that random number function will return maximum

count of particles with maximal lifetime as often as possible. In average case, this array will

never be used at its full capacity. But it's large enough to hold all particles. We must de�ne one

additional property for particles on GPU - whether its a normal particle, or generator. What we

want is that the generator program generates particles exactly once. Because generator is coming

to generator program geometry shader as an ordinary particle, we need to di�erentiate it from

other particles. That's why we'll use inherited class PSE_ParticleGPU, which will also have

type in addition to other particle properties, as shown in listing 3.4.

class PSE_ParticleGPU : public PSE_Particle
{
public:

int iType;
};

Listing 3.4: GPU particle class

Type 0 will represent a generator, and type 1 will represent particle. With this we'll make sure,

that all the particles that come into our generator program will be processed with their values,

and exactly once the shader will check if it's time to generate particles and, in case, generate them,

because there will always be exactly one incoming particle of type 0.

Because generators in this implementation di�er from the generators that were running only on

CPU, we will create inherited class PSE_ParticleGeneratorGPU, which will wrap all additional

properties, as shown in listing 3.5.
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class PSE_ParticleGeneratorGPU : public PSE_ParticleGenerator
{
public:

void initGPUResources();

void useProgram();
virtual void setSpecificGeneratorParameters() = 0;
void generateParticles(float fTimeElapsed);
void renderParticles();
void setShaderPrograms(CShaderProgram* a_spGeomGen, CShaderProgram*

a_spRender);
void setQueryID(UINT a_uiQuery);
int getNumParticles();

void requestDelete();
bool canBeDeleted();

void deInitGenerator();
void clearAllParticles();

};

Listing 3.5: GPU particle generator class (only interface part)

All the initalization speci�c for GPU generators is done in function initGPUResources.

We allocate VBO large enough to hold all particles and create a VAO object that describes

data layout of particles in VBO. VBO is initalized using function glBufferData with proper

size, but NULL pointer speci�ed. This call just allocates memory on GPU. The drawing hint is

GL_DYNAMIC_DRAW which hints OpenGL driver, that the content of this bu�er will be changed

often, so that it can optimize the performance. Additionally, the �rst particle, that is actually a

generator, because it's type is set to 0, is uploaded to VBO, using function glSubBufferData.

Function setShaderProgram sets generator program name. This is important,

so that generator can set program's uniform variables. The only abstract function

setSpecificGeneratorParameters sets all the properties that are speci�c for each generator

type, like radius of a spherical generator. For retrieval of particle count, we must use a

query object, as will be explained later. But it's enough to have one global query object,

created by particle system implementation and then passing it to each generator. This is

done using function setQueryID. Three functions deal with particle and generator deletion -

requestDelete, canBeDeleted and clearAllParticles. Their purpose is explained later.

Function deInitGenerator serves as function that frees all used memory on GPU (VBO and

VAO).
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Generator program

As mentioned before, generator program will consist only of vertex and geometry shader. Vertex

shader will simply pass incoming data to geometry shader. It is shown in listing 3.6.

#version 330

layout (location = 0) in int iType;
layout (location = 1) in vec3 vPosition;
layout (location = 2) in vec3 vVelocity;
layout (location = 3) in vec3 vColor;
layout (location = 4) in float fLifeTime;
layout (location = 5) in float fSize;

out int iTypePass;
out vec3 vPositionPass;
out vec3 vVelocityPass;
out vec3 vColorPass;
out float fLifeTimePass;
out float fSizePass;

void main()
{

iTypePass = iType;
vPositionPass = vPosition;
vVelocityPass = vVelocity;
vColorPass = vColor;
fLifeTimePass = fLifeTime;
fSizePass = fSize;

}

Listing 3.6: Generator program vertex shader

The geometry shader will be responsible for particles updating and generation. However, we

must tell it how many seconds have passed since the last frame in order to function properly.

This is done using uniform variables. Additionally, all generator properties are stored as uniform

variables. Point generator geometry shader is shown in listing 3.9. Other types of generators have

similar geometry shaders, but with di�erent particle generating algorithms. However, all common

properties of generators and updating of particles is de�ned in other shader �les, because they

are the same and they are added to shaders using #include keyword. This is not o�cial GLSL

keyword, however we implemented this in the loadShader function to actually copy content of

another �le and paste it into location of include (similar as in C++). In the listing 3.7 you can

see common gemerator shader program properties, that are included into each generator geometry

shader. There is also our own random function, because GLSL doesn't have one. From the client

side, we only need to set random number generator seed, so that it generates di�erent numbers
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each frame. It returns �oating point value from 0.0 to 1.0.

layout(points) in;
layout(points) out;
layout(max_vertices = 40) out;

in vec3 vPositionPass[];
in vec3 vVelocityPass[];
in vec3 vGravityPass[];
in vec3 vColorPass[];
in float fLifeTimePass[];
in float fSizePass[];
in int iTypePass[];

out vec3 vPositionOut;
out vec3 vVelocityOut;
out vec3 vGravityOut;
out vec3 vColorOut;
out float fLifeTimeOut;
out float fSizeOut;
out int iTypeOut;

uniform float fDeltaTime;
uniform vec3 vGenVelocityMin, vGenVelocityDif;
uniform vec3 vGenColor;
uniform vec3 vGenGravityVector;
uniform float fLifeMin, fLifeDif;
uniform float fTimeLeft;
uniform int iNumToGenerate;
uniform float fGenSize;
uniform int iGenerate; // It’s used as bool

vec3 vLocalSeed;
uniform vec3 vSeed;

float rand()
{

uint n = floatBitsToUint(vLocalSeed.y * 214013.0 + vLocalSeed.x *
2531011.0 + vLocalSeed.z * 141251.0);

n = n * (n * n * 15731u + 789221u);
n = (n >> 9u) | 0x3F800000u;
float fRes = 2.0 - uintBitsToFloat(n);
vLocalSeed = vec3(vLocalSeed.x + 147158.0 * fRes, vLocalSeed.y*

fRes + 415161.0 * fRes, vLocalSeed.z + 324154.0*fRes);
return fRes;

}

Listing 3.7: Common generator properties in geometry shader

In the listing 3.8 there's a code that's common for all generators and performs updating of

each particle.
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vLocalSeed = vSeed;

vPositionOut = vPositionPass[0];
vVelocityOut = vVelocityPass[0];
if(iTypePass[0] != 0)vPositionOut += vVelocityOut*fDeltaTime;

if(iTypePass[0] != 0)vVelocityOut += vGravityPass[0]*fDeltaTime;
vGravityOut = vGravityPass[0];
vColorOut = vColorPass[0];
fLifeTimeOut = fLifeTimePass[0]-fDeltaTime;
fSizeOut = fSizePass[0];
iTypeOut = iTypePass[0];

Listing 3.8: Common generator update code

The geometry shader will work as follows. First, it checks whether incoming particle is a

generator. If so, it will emit it back into particle stream (store it in VBO) using function

EmitVertex and EndPrimitive, because each primitive is now only a single point, which

represents a particle. Then there's a check if it isn't time to generate particles. If it is, it will emit

as many particles as it has this time. However, if the generator has expired (reached its limit of

generating times), it shouldn't generate more particles. That's why there's iGenerate uniform

variable, which is used as bool, to tell shader not to emit particle anymore.

If the incoming particle wasn't generator, but only normal particle, geometry shader will do

all the necessary particle updates using particle data that came from vertex shader. Shader will

re-emit particle only if it's lifetime isn't over yet. If it is, shader simply won't emit the vertex and

in the next frame, the particle won't be there. This way, we have put the whole updating process

on GPU. CPU only tells all important data, like time passed from the last frame and generator

properties.
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#include "generator_common.geom"

uniform vec3 vGenPosition;

void main()
{

#include "generator_update.geom"

if(iTypeOut == 0)
{

EmitVertex();
EndPrimitive();

if(fTimeLeft < 0.0 && iGenerate == 1)
{
for(int i = 0; i < iNumToGenerate; i++)
{

vPositionOut = vGenPosition;
vVelocityOut = vGenVelocityMin+vec3(vGenVelocityDif.x*rand(),

vGenVelocityDif.y*rand(), vGenVelocityDif.z*rand());
vGravityOut = vGenGravityVector;
vColorOut = vGenColor;
fLifeTimeOut = fLifeMin+fLifeDif*rand();
fSizeOut = fGenSize;
iTypeOut = 1;
EmitVertex();
EndPrimitive();

}
}

}
else if(fLifeTimeOut > 0.0)
{

EmitVertex();
EndPrimitive();

}
}

Listing 3.9: Point generator geometry shader

To make the transform feedback work, we must tell OpenGL which data we want to record

from transformation process and where to store them. First task is done using function

glTransformFeedbackVaryings, where we specify names of output variables from geometry

shader, given its present, or vertex shader. This function must be called before the program is

linked, so that OpenGL can check whether all required variables are present ion shader program.

The second task is done using function glBindBufferBase, which takes a name of VBO and

adds it to currently bound transform feedback object on speci�ed index. Index is used if we wanted

to record data to more than just one VBO. But in this case, we need data to be recorded only into
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one VBO, so this index is alwasy 0. This bu�er must be assigned for each generator separately,

as they all have their own for storing particles.

If the particle updating is being done �rst time for a given generator, the input data stored

in VBO contain only one particle with type 1. We proceed with "rendering" one point - particle

generator, to start particle updating process. The next frame, this bu�er will contain data from

transform feedback. The number of output particles can be queried using OpenGL query object

by calling glGetQueryResultiv. This way we'll know the number of particles that have been

recorded to the VBO. When updating particles, we don't want rasterization to be enabled, so we

disable it using glEnable(GL_FRAGMENT_RASTERIZATION_DISCARD).

If a user wants to delete a generator, it cannot be done right away in this implementation,

because generator object may still have some particles in the scene, that are alive. So instead of

immediately deleting generator, we rather set a �ag that generator should be deleted, and as soon

as all the particles from this generator fade away, we can safely delete it. The request is done

using requestDelete function. When a �ag to delete generator is set, iGenerate variable

is set as well to prevent shader program from emitting additional particles. When the generator

has a request for deletion and number of its particles is 0, then it can be really deleted and used

memory can be freed. All these checks are done in function canBeDeleted.

To retrieve the number of particles for speci�c generator, we just have to look for number

of recorded particles in VBO, and subtract 1 from it because of the generator present in VBO

as particle with type 0. Clearing particles is done di�erently now, what we do is that we set the

number of particles that were recorded by transform feedback to 1, so that we leave only generator

there.

Rendering

Rendering is done in a similar manner as on CPU. However, we won't be calculating anything

on client side, like billboarding in a simple particle system. This time, we have all particles

and their associated data stored in generator's VBO. We also know their count. So the only

thing left to do is to set rendering shader program, and begin rendering particles as points by

calling glDrawArrays(GL_POINTS, 0, iNumParticles). The rendering program will be

same for all generator types, because it only deals with already updated particles rendering.

Before rendering takes place, we must set the modelview and projection matrix to this program,

as well as the vertices of a billboarding plane. We also must re-enable rasterization using
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glDisable(GL_FRAGMENT_RASTERIZATION_DISCARD).

The rendering program now has all 3 type of shaders - vertex, geometry and fragment. Vertex

shader is responsible only for passing data of particles further. It di�ers from the vertex shader of

generator program in only 2 things - there is no velocity and gravity vector of particles, because

they are important only for updating, not rendering. Vertex shader is shown in listing 3.10.

#version 330

layout (location = 0) in int iType;
layout (location = 1) in vec3 vPosition;
layout (location = 3) in vec3 vColor;
layout (location = 4) in float fLifeTime;
layout (location = 5) in float fSize;

out float fSizePass;
out float fLifeTimePass;
out int iTypePass;
out vec3 vColorPass;

void main()
{

gl_Position = vec4(vPosition, 1.0);
fSizePass = fSize;
fLifeTimePass = fLifeTime;
iTypePass = iType;
vColorPass = vColor;

}

Listing 3.10: Vertex shader of rendering program

With these data, geometry shader can continue with creating billboarded quads. However,

quads rendering mode is no longer supported, so we'll use triangle strip instead, but change the

order of emitted vertices. To render a quad using triangle strip, we'll use the vertex ordering as

shown in �gure 3.2.
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Figure 3.2: Order of vertices in TRIANGLE_STRIP render mode

The input type of primitive to geometry shader is point, and the output type is triangle strip.

The geometry shader is shown in listing 3.11.
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#version 330

uniform struct Matrices
{

mat4 mProj, mModel, mView;
} matrices;

uniform vec3 vQuad1, vQuad2;

layout(points) in;
layout(triangle_strip) out;
layout(max_vertices = 4) out;

in float fSizePass[];
in float fLifeTimePass[];
in int iTypePass[];
in vec3 vColorPass[];

smooth out vec2 vTexCoord;
flat out vec4 vColorPart;

void main()
{

if(iTypePass[0] != 0)
{

vec3 vPosOld = gl_in[0].gl_Position.xyz;
float fSize = fSizePass[0];
mat4 mVP = matrices.mProj*matrices.mView;

vColorPart = vec4(vColorPass[0], fLifeTimePass[0]);

vec3 vPos = vPosOld+(-vQuad1-vQuad2)*fSize;
vTexCoord = vec2(0.0, 0.0);
gl_Position = mVP*vec4(vPos, 1.0);
EmitVertex();
vPos = vPosOld+(-vQuad1+vQuad2)*fSize;
vTexCoord = vec2(0.0, 1.0);
gl_Position = mVP*vec4(vPos, 1.0);
EmitVertex();
vPos = vPosOld+(vQuad1-vQuad2)*fSize;
vTexCoord = vec2(1.0, 0.0);
gl_Position = mVP*vec4(vPos, 1.0);
EmitVertex();
vPos = vPosOld+(vQuad1+vQuad2)*fSize;
vTexCoord = vec2(1.0, 1.0);
gl_Position = mVP*vec4(vPos, 1.0);
EmitVertex();
EndPrimitive();

}
}

Listing 3.11: Geometry shader of rendering program
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The last part is only fragment shader, which only applies colored texture into the �nal image.

It's shown in listing 3.12.

#version 330

uniform sampler2D gSampler;

smooth in vec2 vTexCoord;
flat in vec4 vColorPart;

out vec4 FragColor;

void main()
{

vec4 vTexColor = texture2D(gSampler, vTexCoord);
FragColor = vec4(vTexColor.xyz, 1.0)*vColorPart;

}

Listing 3.12: Fragment shader of rendering program

3.4 E�ects library

Along with the particle system library, we created a library with some pre-programmed e�ects.

This library simpli�es creation of e�ects in the user application even more, because user just needs

to call a single function to create a �re e�ect for example. The interface of e�ects library is shown

in listing 3.13.

namespace BlazeEffects
{

void setParticleSystemEngine(...);

UINT createFire(...);
UINT createFireRing(...);
UINT createFireGrid(...);

bool deleteEffect(...);

bool deleteAllEffects();
};

Listing 3.13: Interface of e�ects library (... stands for actual parameters, see source code)

Using this library is easy - only thing we need to do is set already existing Blaze particle system

engine object with function setParticleSystemEngine. There are currently 3 available e�ects

now - �re, �re ring, and �re grid, created with functions createFire, createFireRing and
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createFireGrid, respectively. All these methods return an identi�er of e�ect. Using this

identi�er, user can later delete the e�ect by calling deleteEffect with previously generated

e�ect ID. To delete all e�ects at once, user can call deleteAllEffects function.
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Chapter 4

Evaluation

In this chapter, we'll cover and explain the usage of the library. We'll create 3 di�erent demo

scenes, each with miscellaneous generators and settings. All 3 demos will be able to be run

with all 3 implementations of the particle system. We will also compare the performance of each

implementation at speci�c demos. These demos will be tested on 3 di�erent machines:

Low-end machine:

• Processor: Intel Core 2 Duo

• Memory: 4GB Ram DDR2

• Graphics Card: nVidia GeForce 9300m

• Operating System: Windows Vista

Mid-end machine:

• Processor: Intel Core 2 Quad

• Memory: 4GB Ram DDR2

• Graphics Card: nVidia GeForce GT440

• Operating System: Windows 7

High-end machine:

• Processor: Intel Core i5 Quad
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• Memory: 8GB Ram DDR2

• Graphics Card: AMD Radeon HD5850

• Operating System: Windows 7

The demos will run in 1440x900 resolution.

4.1 Fire Demo Scene

This scene contains one �replace, 3 �re rings, and a grid of �re. The average number of particles

in this scene is around 30000.

Initialization

First, we need to initialize our particle system library in the initScene function of demo. After

that, we'll call functions from the Blaze e�ects library to create desired e�ects. When this is done,

we'll set �re texture to the particle system.

void prepareFireDemoScene()
{

BlazeEffects::setParticleSystemEngine(psEngine);

BlazeEffects::createFire((float*)glm::value_ptr(glm::vec3(148, 0.0f,
-148.0f)), (float*)glm::value_ptr(glm::vec3(4.0f, 0.0f, 4.0f)),
200, 64, 0);

BlazeEffects::createFireRing((float*)glm::value_ptr(glm::vec3(-50.0f
, 0.0f, 50.0f)), 20.0f, 20, 51, 189, 255);

BlazeEffects::createFireRing((float*)glm::value_ptr(glm::vec3(50.0f,
0.0f, -150.0f)), 30.0f, 30, 255, 128, 0);

BlazeEffects::createFireRing((float*)glm::value_ptr(glm::vec3(-150.0
f, 0.0f, -150.0f)), 10.0f, 15, 255, 0, 0);

BlazeEffects::createFireGrid(glm::vec3(0.0f, 28.0f, 120.0f), 50.0f,
4, 255, 128, 0);

psEngine->setParticleTexture(tFireTexture.getTextureID());
}

Listing 4.1: Initialization of �re demo scene

Rendering

The actual rendering is in the renderScene function, and it consists of these function calls:
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void renderScene(COpenGLControl* oglControl)
{

//...

psEngine->setProjectionMatrix(glm::value_ptr(*oglControl->
getProjectionMatrix()));

glm::mat4 mLook = cCamera.look();
psEngine->setLookAt(cCamera.vEye.x, cCamera.vEye.y, cCamera.vEye.z,

cCamera.vView.x, cCamera.vView.y, cCamera.vView.z, cCamera.vUp.x,
cCamera.vUp.y, cCamera.vUp.z);

float fTimePassed = appMain.sof(1.0f);
psEngine->updateParticles(fTimePassed);
psEngine->renderParticles();

//...
}

Listing 4.2: Rendering with Blaze particle system

The setting of matrices is needed only if we're using shaders to perform rendering. In our case

it's when using transform feedback particle system engine and OpenGL Context 3.3. Rendering

is common for all demo scenes, so it's listed only in listing 4.2.

Results

In the table 4.1, you can clearly see, that transform feedback implementation runs best - it's

number of frames generated per second (FPS) is highest.

Implementation / Test Machine Low-end Mid-end High-end

Simple 60 FPS 76 FPS 121 FPS

Point Sprites 56 FPS 42 FPS 68 FPS

Transform Feedback 48 FPS 51 FPS 81 FPS

Table 4.1: Fire demo scene evaluation

The screenshot from �re demo scene is shown in �gure 4.1.
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Figure 4.1: Fire demo screenshot

4.2 Space Demo Scene

This scene is in space and user can shoot "missiles" with left mouse button, which explode after

a little time. The average number of particles in this scene is around 7000.

Initialization

Initialization consists only of creating a path of blue particles.

Results

In the table 4.2, you can see the average number of FPS with each implementation.

Implementation / Test Machine Low-end Mid-end High-end

Simple 60 FPS 206 FPS 217 FPS

Point Sprites 52 FPS 254 FPS 268 FPS

Transform Feedback 47 FPS 70 FPS 117 FPS

Table 4.2: Space demo scene evaluation

The screenshot from �re demo scene is shown in �gure 4.2.
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Figure 4.2: Space demo screenshot

4.3 Fountain Demo Scene

This scene contains a pool with fountain. Average number of particles here is 60000, although

there is a small number of generators.

Initialization

Initialization consists of creating a spherical generator in the middle with large particle generation

rate and several smallers around it.

Results

In the table 4.3, you can see the average number of FPS with each implementation.

Implementation / Test Machine Low-end Mid-end High-end

Simple 58 FPS 85 FPS 114 FPS

Point Sprites 31 FPS 46 FPS 80 FPS

Transform Feedback 41 FPS 88 FPS 127 FPS

The screenshot from �re demo scene is shown in �gure 4.3.
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Figure 4.3: Fountain demo screenshot
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Conclusion

In this work we implemented particle system both on CPU and GPU using OpenGL. We could

clearly see, that modern GPUs excel at parallelization tasks, because of many independent shader

units they have. Particle updating and rendering belong to such tasks. However, with too many

generators on scene, our GPU implementation su�ered from constant data source rebindings,

causing a slowdown, whereas CPU implementations didn't have such problems, because they're

not making any changes when dealing with data from multiple generators, because they all shared

common bu�ers for particle storage. But for normal usage, our GPU implementation is de�netely

a lot faster than CPU one.

Future work

The development of this library will continue with adding new features into it. All generators

should have their own transformation matrix, so that they don't have to be aligned only along X,

Y and Z axis. Also there are features in OpenGL 4.0 and beyond, that extend transform feedback

functionality, like pausing and resuming it, and could push the performance of transform feedback

implementation even further. CPU implementation can be upgraded to multi-threaded, which

should improve performance approximately by number of cores on processor. Particles will be

in�uenced by more forces, so that more complex physical simulations will be possible.
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