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Abstract
Decomposition of mathematical games to smaller parts is essential because of the

large number of possible positions. We have studied the degenerated variation of the
famous Dots and Boxes game where the winner is a player who �rst creates the �rst
box. This variation is strongly related to the original game and can often help us to
�nd a strategy for the original game. We have found and proved which player has
a winning strategy if we start from the initial empty board. For arbitrary positions
we found out that the game is being decomposed to the smaller subgames where the
winner is a player who wins the �rst of these subgames.

We have introduced w-function that assigns w-numbers to the positions of sub-
games and by combining these values we can �nd the w-number and thus who has a
winning strategy in the composite games of this type. These results allow us to �nd
solutions to these games much faster. If n is the size of the subgames and k number
of subgames then the complexity is only O(kn) in comparison to O(nk) obtained by
the standard algorithm. We used this general concept to solve the degenerated Dots
and Boxes game. However, it can be used in any other games decomposing this way.
We have also succeeded to �nd the way how to play this combination of games with
the misére play rule.

The �rst part contains known ways of adding impartial games with proofs and
many examples to help orient in this area. We have also created a combinatorial game
API to support and improve conditions in researching the combinatorial games. Al-
most all these games including the degenerated Dots and Boxes game and algorithms
for composite games are implemented in this API.

Keywords: Dots and Boxes, composite games, w-numbers
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1 Introduction
The combinatorial game theory is a quite new branch of mathematics. However, people
have been playing games for ages. It is a natural human behaviour and our basic instinct
to compete, have fun and dominate the peers. There are applications and connections
to complexity, logic, graph theory, networks, error correcting codes, distributed systems,
surreal numbers and analysis and design of mathematical and commercial games.

Uno�cially we can divide games into two categories. In the �rst there are games people
play. In the second there are games mathematicians play. The �rst category contains
challenging games that people will purchase and play. It is really hard to invent such
games. They cannot have a simple winning strategy. But at the same time the thing that
makes them very amusing and popular is that even an inexperienced player has a certain
feeling from the position. For example he can say if the position in a chess game is strong
or weak for the current player.

As Judea Pearl wrote mathematical games o�er a perfect laboratory for studying com-
plex problem solving methodologies. With a few rules, one can create complex situations
that need a huge amount of insight. Di�culty of combinatorial games can be showed by
comparing it to cryptography. In a cryptography we want to know if ∃ a cryptosystem
that ∀ attacks on it will not break him. In games we have a decision problem. We want
to know if ∃ a move for the �rst player that for ∀ opponent`s moves ∃ a move for the �rst
palyer that ∀ . . . such that the �rst player will win? What makes games even harder is that
we are not playing against a passive opponent like when we are solving NP-hard problems
like �nding Hamiltonian cycle or Travelling salesman problem. Our opponent in a game
is taking all possible actions against us. So we often need to examine the whole decision
subtree, not simply �nd a path.

But not everything is lost. Fortunately, we can do better and pro�t from the fact that we
know better structures of some games. The essential fact is that games are often composed
from more disjunctive (and simpler) parts. We can precompute some information for parts
and then add it together to �nd out the result for the whole game. It is one of the goals of
this thesis to review existing ways of adding impartial mathematical games to help other
students at undergraduate level to orient in this topic. So in the third section algorithms
can be found for how to play di�erent types of composite games with proofs and many
examples.

The next part of the thesis is more research oriented. Mr Elwyn Berlekamp, a professor
at UC Berkeley, co-author of bibles of combinatorial games [Ww01] and author of [Be00],
has proposed to me a problem in the Dots and Boxes game. The Dots and Boxes game is
a game people play, but it is examined a lot by mathematicians, as well. We have been
researching how to play degenerate variation of this game in which a player who creates the
�rst box wins. Knowledge of how to play this degenerate variation can help a lot to play
the original game. In the fourth section there are answers for how to play this degenerate
game from the initial empty board. While looking for a strategy for any arbitrary positions
we have realised that the game is being decomposed to smaller subgames, but with a rule
that a player who �rst wins one of these subgames wins the whole game. This was di�erent
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from all known ways presented in the third section. So from the concrete game we get to
the new general problem, but we managed to solve it. We introduced a new w-function
that assigns w-number to every position. Then we can combine these w-numbers to �nd
out if the �rst or the second player has the winning strategy. But these numbers represent
also the whole sum of parts. If we want to add another part to this compound we just need
to combine its w-number with the w-number of the sum obtained before. This result allows
us to �nd results much faster. We can decrease complexity from O(nk) to O(kn) where
n is a number of positions of subgame and k number of subgames. It is very important,
because n is often very high. The solution to this compound for any games is presented in
Section 5. Later it is implemented and used for solving the degenerated variation of the
Dots and Boxes game. However, this general concept can be used to �nd solutions to any
other games that decompose this way. Introduced w-numbers helped to a quite unexpected
discovery. We found the strategy how to play this combination of games with the miseére
play rule. It was unexpected, because there is no known strategy for any other types of
composite games played with the misére play rule.

Almost all algorithms are implemented and all concrete results gained by using newly
developed Combinatorial game API. It is an open and carefully designed tool created to
support and improve conditions in researching the combinatorial games. It would be almost
impossible to get and check any results without having such a tool1. The whole API with
source codes is an attachment to this thesis.

I would like to thank my thesis advisor Rastislav Krá©ovi£ for his time, valuable feedback
and a lot of advice. I would also like to thank to my family and friends for all their love
and support.

Rastislav Lenhardt

1You are as strong as your tools allow you to be.
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2 Mathematical games
Mathematical games are two-person games with perfect information and no chance moves,
and with a win-or-lose outcome. Players are usually alternatively moving until they reach
a terminal position. The terminal position is position from which no possible moves are
possible. After that one player is declared the winner and the other the loser.

2.1 De�nitions
De�nition 2.1. The game G is a mathematical (combinatorial) game if it satis�es the
following properties:

1. There are two players.

2. There is a �nite set X of possible positions of the game.

3. The rules of the game specify for both players and each position which moves to other
positions are legal moves.

4. The players alternate moving.

5. The game G ends when there is no possible move from the position for the player
whose turn it is.

6. The game ends in a �nite number of moves no matter how it is played.

De�nition 2.2. Game G is impartial if for each position x ∈ X there are the same
options (possible moves) for both players. Otherwise game G is called partizan.

De�nition 2.3. Under the normal play rule, the last player to move wins (the player
who is unable to move loses).

De�nition 2.4. Under the misére play rule, the last player to move loses.

Corollary 2.1. Impartial game G is determined by a set of positions X, including an
initial position x0 ∈ X, moving function f : X → 2X that returns positions to which a
player can move from every position x ∈ X and winning condition.

In this thesis (if not stated explicitly otherwise) we will mean by game G an impartial
game played under normal play rule. The player who starts the game will be called First
and the other one will be called Second.

Example 2.1. Cards are not a mathematical game because players do not have perfect
information about the position.

Example 2.2. Tic-Tac-Toe is a mathematical game, but it is partizan (not impartial),
because one player can make only X`s and other only O`s.
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2.2 Basic concept
De�nition 2.5. Every position in game G is either a Winning position (often called W-
position) or Losing position (L-position). Winning positions are all positions from which
player whose turn it is can force a win against his opponent.

Positions of every game have following properties:

• All terminal positions are L-positions.

• If a player is able to move from position x to L-position then x is W-position.

• If a player is able to move from position x only to W-positions then x is L-position.

These properties lead to straightforward recursive implementation of algorithm. While
we have only �nitely many positions we can step by step label all of them either W-position
or L-position.

Note 2.1. While a player can lose only if he cannot move, he can secure a win by �nding
a strategy that will give him in all stages of the game at least one possible move.

Rules 2.1 (Limited Nim). Limited Nim is a game played with n coins and de�ned �nite
substraction set S ⊂ Z+. The player whose turn it is takes away k coins, where k ∈ S. If
he is unable to move he loses.

Example 2.3. Limited Nim Game with 11 coins and substraction set S = {1, 3, 4}:

n 0 1 2 3 4 5 6 7 8 9 10 11
position L W L W W W W L W L W W

2.3 The Game of Nim
The most famous mathematical game is probably the Game of Nim.

Rules 2.2 (The Game of Nim). There are n piles of coins. When it is a player`s turn he
chooses one pile and takes away at least one coin from it. If someone is unable to move he
loses (so the one who removes the last coin is the winner).

If there is only one pile, the solution is simply to remove all coins. If there are two piles
we know that the terminal position is (0, 0). We can use the power of symmetry to obtain
that only (x, x) are losing positions. If one player moves from this position, the second
player can return to this position by taking the same number of coins from another pile.
Therefore the second player has always turn so he will win.

Finding patterns for three and more piles is not so simple. The idea behind the solution
is the following equivalent game.
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Figure 1: Example of L-position in Chessboard Nim (all columns with even number of
coins)

Rules 2.3 (Chessboard Nim). Consider a chessboard with n rows. At the beginning there
are coins on some squares of the chessboard (at most one coin on one square). When it is
a player`s turn he must choose one of these coins to remove and in his move he can also
remove or add any coins in that row that are left of the removed one. If someone is unable
to move he loses.

Finding a winning strategy of the game is often about �nding an invariant
which divides positions to winning and losing ones.

Theorem 2.2. In the game Chessboard Nim losing positions are all with an even number
of coins in every column of the chessboard.

Proof. We can prove that by seeing that from every such position it is possible to move
only to the positions with at least one odd column (it is the column in which player chooses
one coin that must be removed). On the other hand if there is at least one odd column,
player can correct it by removing the coin from the most right odd column and then he can
change parity in all other columns to the left as he wants. The terminal position (empty
chessboard) has all even columns, so a player who is moving to all-even-columns positions
will always be able to move.

Remark 2.1. Every row of the chessboard is equivalent to the one pile of the Game of Nim.
The size of the pile is encoded in a binary system by the position of coins on chessboards
(the most left column is 20, then 21, 22, . . . ).

Corollary 2.3. Position of the Game of Nim with piles p1, p2, . . . pn is losing if and only
if p1 ⊕ p2 ⊕ . . .⊕ pn = 0, where ⊕ is operation xor.

Example 2.4. Position (1, 2, 3) is losing because 1⊕ 2⊕ 3 = (1)2 ⊕ (10)2 ⊕ (11)2 = 0.

Example 2.5. Position (7, 4, 1) is winning because 7⊕ 4⊕ 1 = (111)2 ⊕ (100)2 ⊕ (01)2 =
(10)2 = 2 6= 0

There are many games that are directly based on the knowledge of the Game of Nim.
To �nd out more about them we recommend to look for Turning Turtles, Staircase Nim,
Nimble or Northcott`s Game.
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3 Known ways of adding impartial games
In this chapter we will get through many ways of adding mathematical games together. It
is an essential part of studying mathematical games, because it allows us to solve a much
bigger number of games.

By adding games G1 and G2 (with position sets X1, X2) together we get a new game
G3. We can look at this new game G3 as a standard game and we can examine it in the
same way as G1 and G2. But it is not a very good idea. The number of positions |X3| in
game G3 is mostly about |X1||X2|. And in a more general case if we have k subgames with
approximately n positions each, then the number of positions in this composite game is
about nk. It is increasing exponentially and while the standard algorithm for determining
W-positions and L-positions needs to search almost all possible positions, it will be almost
impossible to �nd winning strategies by using it.

Fortunately, we can do better and pro�t from the fact that we know better a structure
of composite game. Usually we will precompute some values for every subgame and then
combine them in order to �nd out if the position is winning or losing.

3.1 Ordinary sum of games (xor)
In this subsection we will combine games G1, G2, . . . , Gn in a way that the player whose
turn it is must choose one of the games and make a move in it. A player who is not able
to move in all the games loses. This combination is called ordinary sum and we can write
G = G1 ⊕G2 ⊕ . . .⊕Gn.

First we will introduce Sprague-Grundy function g that will assign values to all positions
of all subgames.

De�nition 3.1. The Sprague-Grundy function of a game G (X, f) is a function g : X →
Z+

0 such that
g(x) = min(n ≥ 0 : n 6= g(y) for y ∈ f(x))

In words, the Sprague-Grundy function is recursively de�ned and it gives to the position
the smallest non-negative integer value that is not found among all following possible
positions to which player can move. After assigning grundy values to all positions we can
see that x is L-position if and only if g(x) = 0. It follows from these position`s properties:

1. All terminal positions are L-positions and all have g(x) = 0.

2. If at position x we have g(x) > 0 then there is at least one following position y with
g(y) = 0.

3. If at position x we have g(x) = 0 then it is not possible to move to position y with
g(y) = 0.

Example 3.1. Grundy numbers for Limited Nim Game with 11 coins and substraction
set S = {1, 3, 4}:

9



n 0 1 2 3 4 5 6 7 8 9 10 11
g(n) 0 1 0 1 2 3 2 0 1 0 1 2

position L W L W W W W L W L W W

Grundy numbers give us much more information about the game than whether a posi-
tion is winning or losing. They allow us to �nd quickly the ordinary sum of more games.
In this sum every position x in a game is equivalent to one pile in the Game of Nim of size
k, where g(x) = k. We know how to play the Game of Nim so we will be able to use it to
play any ordinary sum of any games.

Theorem 3.1. Given game G(X, f) that is the ordinary sum of n games G1(X1, f1),
G2(X2, f2), . . .Gn(Xn, fn). Position x = [x1, x2, . . . xn] is losing if and only if g(x1) ⊕
g(x2)⊕ . . .⊕ g(xn) = 0 where x ∈ X, xi ∈ Xi and ⊕ is operation xor.

Proof. The combination of n piles in the Game of Nim is the same as rules for adding n
games in the ordinary way. Therefore it is enough to prove that position xi ∈ Xi with
g(xi) = k is equivalent to the pile in the Game of Nim of size k.

In the Game of Nim if there is a pile of size k > 0 (if k = 0 it is not possible to
move) then a player is able to move to any smaller size u < k. In game Gi we are now in
position xi with g(x) = k and while u < k there must be following position y with g(y) = u
(otherwise g(xi) would be at most u). So the equivalent move to the smaller pile in the
Game of Nim of size u is to move in Gi to position y.

In Game Gi at position xi with g(xi) = k we will consider only moves to following
positions y where g(y) < k. We can do that because there is no following position of
x with g(y) = k (otherwise g(x) 6= k) and if player moves to position y with g(y) > k
his opponent can move back to another position of size k. If player moves to position y
with g(y) < k then we can also decrease the size of the corresponding pile in the Game of
Nim.

Note 3.1. Operation ⊕ on games is associative, commutative and g(G1 ⊕G2) = g(G1)⊕
g(G2).

3.2 Union of games (or)
In this subsection we will combine games G1, G2, . . . , Gn in a way that the player whose
turn it is must choose at least one of these games and make one move in every chosen one.
A player who is not able to move loses. This combination is called union of games and we
can write it as G = G1 ∨G2 ∨ . . . ∨Gn.

Rules 3.1 (Game of Queens). Game of Queens is played on an n × n chessboard2 . At
the beginning there are some queens at some squares on the chessboard (there can be more

2Everything in this chapter works of course for all impartial games. We are using board ones only
because it is much more simple to show numbers at positions on a chessboard than having a complicated
game tree of an arbitrary game.
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queens on one square). When it is player`s turn he must choose at least one queen and
move with her in west, north or north-west direction.

First we can notice that it will be the same situation if every queen has her own
chessboard. After that it is obvious that Game of Queens is a union of games with only
one queen on each chessboard. Following theorem shows us solution.

Theorem 3.2. Given game G(X, f) that is union of n games G1(X1, f1), G2(X2, f2),
. . .Gn(Xn, fn). Position x = [x1, x2, . . . xn] is losing if and only if ∀i g(xi) = 0 where
x ∈ X, xi ∈ Xi.

Proof. Terminal position is L-position. At position y which has g(y) = 0 we can move only
to positions with non-zero grundy numbers. Therefore if ∀i g(xi) = 0 and while a player
must move at least in one subgame he will move to a new position where at least one of
her subgames will have g(xk) 6= 0.

On the other hand if there is at least one subgame with a position in which the grundy
number is non-zero, the player can choose all subgames for which g(xi) 6= 0 and move in
them to g(xi) = 0.

0 1 2 3 4 5 6 7
1 2 0 4 5 3 7 8
2 0 1 5 3 4 8 6
3 4 5 6 2 0 1 9
4 5 3 2 7 6 9 0
5 3 4 0 6 8 10 1
6 7 8 1 9 10 3 4
7 8 6 9 0 1 4 5

Figure 2: Grundy numbers for 8× 8 Game of Queens

To solve instances of Game of Queens, �rst we need to precompute grundy numbers as
in Figure 2. If all queens are at squares with grundy number 0 then the player whose turn
it is will lose otherwise he can win by moving all of them to 0 positions.

3.3 Selective compound (almost or)
In this subsection we will combine games G1, G2, . . . , Gn in a slightly di�erent way from
one used in union. The player whose turn it is must choose at least one of these subgames,
but he cannot choose all of them and then make one move in every chosen one. A player
who is not able to move loses. This combination is called selective compound of games and
we can write it as G = G1 ]G2 ] . . . ]Gn.

Example 3.2. An example of such a game is a slightly changed variation of Game of
Queens, where a player cannot choose all the queens to move.
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Theorem 3.3. Given game G(X, f) that is selective compound of n games G1(X1, f1),
G2(X2, f2), . . .Gn(Xn, fn). Position x = [x1, x2, . . . xn] is losing if and only if g(x1) =
g(x2) = . . . = g(xn) where x ∈ X, xi ∈ Xi.

Proof. Terminal position is L-position, because ∀i g(xi) = 0. In L-position ∀i g(xi) = u
and while a player cannot move in all subgames, after move ∃xk g(xk) = u. But while
a player has to move at least in one subgame there will be at least one position with
g(xl) 6= u.

Let m = min(g(xi)) through all positions xi. If player is in W-position then all sub-
games cannot have the same grundy number. Therefore a player can always make a move
by decreasing g(xi) to m in all positions xi with g(xi) > m.

Theorem 3.3 shows us how to play the game from Example 3.2. If all queens are at
squares with the same grundy numbers (we can use grundy numbers from Figure 2) it is
L-position. Otherwise a player can move all of them to the same grundy number (which
is the minimum among grundy numbers of current positions in subgames).

3.4 Conjunctive compound (and)
In this subsection we will combine games G1, G2, . . . , Gn in a way that the player whose
turn it is must make a move in every subgame. A player who is not able to move loses.
This combination is called conjunctive compound of games and we can write it as G =
G1 ∧G2 ∧ . . . ∧Gn.

We will start with an example game used also in the 9th chapter of [Ww01]. The name
of the game is All the King`s horses and it is very similar to Game of Queens.

Figure 3: Possible moves (jumps) for horse in All the King`s horses game.

Rules 3.2 (All the King`s horses). Game is played on an n× n or quarter-in�nite chess-
board. At the beginning there are some horses at some squares on the chessboard. There
can be more than one horse at one square. When it is a player`s turn he must move with
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all the horses. A player who cannot move loses. Horses move (jump) like knights in chess
but at most only to four positions 3 with a lower sum of row and column coordinates.

We can look at this game as it is a conjunctive compound of n subgames played on n
chessboards with exactly one horse on every chessboard. In turn a player must move in
every subgame. Assume for a while that we have only one chessboard with only one horse.
We can use a standard algorithm for dividing positions to W-positions and L-positions.
The result of this algorithm for n× n board is shown in Figure 4.

L L W W L L W W
L L W W L L W W
W W W W W W W W
W W W W W W W W
L L W W L L W W
L L W W L L W W
W W W W W W W W
W W W W W W W L

Figure 4: All the King`s horses on 8× 8 chessboard with only one horse

Note 3.2. When it is a player`s turn he must play in all subgames, therefore if he can
force a win in all of them he will win this game, because he will always be able to move.

Except the previous simple case it can happen that in some subgames there is in
winning position First and in the others Second player. Winning subgames are good for
both players, because they cannot lose because of them. Therefore both players will win
all their subgames they can. Only losing subgames are dangerous for them and while rules
say "Player not able to move loses", the winning strategy is for both of them to win quickly
and lose as slowly as possible.

De�nition 3.2. Remoteness function r tells us how many moves the game will last if a
player who can force a win will try to win as soon as possible and the losing player will try
to lose as slowly as possible.

Remark 3.1. L-positions have even remoteness and W-positions have odd remoteness.

Theorem 3.4. Remoteness value of position x:

1. r(x) = 0 if x is terminal position.

2. r(x) = 1+ least even number r(k), k ∈ f(x) if such exists.

3. r(x) = 1+ greatest odd number r(k), k ∈ f(x) if there is no even number r(k).
3as it is shown in Figure 3
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Proof. 1. If position x is terminal position it is obvious.

2. If we have the option to move to a position with even remoteness (losing position)
we are in a winning position. We want to win as soon as possible so we will choose
the losing position k ∈ f(x) with smallest remoteness and move to it.

3. We cannot move to an even remote (losing) position, therefore we are in a losing
position. We want to play as long as possible so we will choose the position k ∈ f(x)
with the highest remoteness and move to it.

0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3
1 1 1 1 3 3 3 3
1 1 1 3 3 3 3 5
2 2 3 3 4 4 5 5
2 2 3 3 4 4 5 5
3 3 3 3 5 5 5 5
3 3 3 5 5 5 5 6

Figure 5: Remoteness values for All the King`s horses on 8× 8 chessboard

Theorem 3.5. Given game G(X, f) that is conjunctive compound of n games G1(X1, f1),
G2(X2, f2), . . .Gn(Xn, fn). Position x = [x1, x2, . . . xn] is losing if and only if min(r(x1),
r(x2), . . . r(xn)) is even, where x ∈ X, xi ∈ Xi.

Proof. From the de�nition of conjunctive compound we have that the �rst �nished game
determines the winner. First �nished game will be the game with the least remoteness, so
if this remoteness is even First will lose this game and therefore he will lose conjunctive
compound, as well.

Corollary 3.6. Remoteness value of position x = [x1, x2, . . . xn], r(x) = min(r(x1), r(x2),
. . . r(xn)) where position x is position of conjunctive compound of positions x1, x2, . . . xn.

Note 3.3. Operation ∧ on games is associative, commutative and r(G1∧G2) = min(r(G1),
r(G2)).

3.5 Continued conjunctive compound (also)
In this subsection we will combine games G1, G2, . . . , Gn in a way that the player whose
turn it is must make a move in every subgame he can and the game ends and a player
loses only if he cannot move anywhere. This combination is called continued conjunctive
compound of games and we can write it as G = G1 4G2 4 . . .4Gn.
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Example 3.3. Consider All the King`s horses game with slightly changed rules where a
player must move only with the horses he can. And he loses only if he cannot move with
all.

The winning strategy is a parody to one used in conjunctive compound of games. It is
the same for players that only subgames they will lose are dangerous. But in this case it
does not matter if player loses subgame if there are other not �nished subgames. Therefore
a player will try to �nish losing subgames as soon as possible and play winning subgames
as long as possible. This time the winner is determined by the last �nished subgame.

De�nition 3.3. Suspense function s tells us how many moves a game will last if player
who cannot force win will try to lose as soon as possible and winning player will try to play
as long as possible.

Remark 3.2. L-positions have even suspense number and W-positions have odd suspense
number.

Theorem 3.7. Suspense number of position x:

1. s(x) = 0 if x is terminal position.

2. s(x) = 1+ greatest even number s(k), k ∈ f(x) if such exists.

3. s(x) = 1+ least odd number s(k), k ∈ f(x) if there is no even number s(k).

Proof. Almost the same as proof of Theorem 3.4.

0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3
1 1 1 3 3 3 3 3
1 1 3 3 3 3 5 5
2 2 3 3 2 4 5 5
2 2 3 3 4 4 5 5
3 3 3 5 5 5 5 5
3 3 3 5 5 5 5 6

Figure 6: Suspense numbers for changed All the King`s horses on 8 × 8 chessboard from
Example 3.3

Theorem 3.8. Given game G(X, f) that is continued conjunctive compound of n games
G1(X1, f1), G2(X2, f2), . . .Gn(Xn, fn). Position x = [x1, x2, . . . xn] is losing if and only if
max(s(x1), s(x2), . . . s(xn)) is even, where x ∈ X, xi ∈ Xi.

Proof. Almost the same as proof of Theorem 3.5.
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Corollary 3.9. Suspense number of position x = [x1, x2, . . . xn], s(x) = max(s(x1), s(x2),
. . . s(xn)) where position x is position of continued conjunctive compound of positions x1,
x2, . . . xn.

Note 3.4. Operation4 on games is associative, commutative and s(G14G2) = max(s(G1),
s(G2)).

4 The Dots and Boxes game
The Dots and Boxes is a pen and pencil game for two players. It starts with an empty
grid of dots. Players alternatively move by adding a vertical or horizontal line between
two unjoined adjacent dots. If a player completes the fourth side of the box he earns one
point and takes one more turn. The game ends when there is no additional move left and
the player with more points is the winner.

A lot of information about the game and strategies can be found in [Be00]. Figure 7
shows example of simple game on 3× 3 board where First player won 3:1.

First‘sÃmove Second‘sÃmove First‘sÃmove

Second‘sÃmove First‘sÃmove Second‘sÃmove

First‘sÃmove Second‘sÃmove

S

First‘sÃmove

S F

F F

Figure 7: Example of 3× 3 Dots and Boxes game
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4.1 Degenerate variation
In this chapter we will study a degenerate variation of the Dots and Boxes game. It is
similar to the original one with the rule that it ends after someone completes the �rst box
and the player who made that box wins.

The reason why we study a degenerate variation is that it is closely related to the
original Dots and Boxes. Dots and Boxes is a game that can be played at more levels and
players who know how to play it at a higher level than their opponents can usually win
it easily. At these higher levels it is mostly about taking control of the game. Usually if
there are su�ciently many chains of length at least 3 and loops of length at least 4, it often
happens that a player cannot hope to win unless he captures the next box. Although that
is not always su�cient, its necessity forces a player to make moves consistent with winning
moves in the degenerate game. So it can be a very strong constraint and this degenerate
game can be very helpful in �nding a winning move in the original version (or proving that
no such move exists).

4.2 Solution for starting positions of degenerate variation
De�nition 4.1. Degenerate m×n Dots and Boxes game is played on the board that consists
of m rows and n columns of dots where m,n ≥ 2.

First we can consider 2× n degenerate games. All vertical moves except the most left
and the most right divides the playing board into two parts. An idea that could come to
an experienced readers mind could be to use symmetry, because it is one of the strongest
weapons (although sometimes hard or impossible to use) that is used in combinatorial
game theory.

Now imagine for a while that we are in a little bit di�erent situation. First player made
a vertical line that has divided the game into two equal parts (it is possible for odd n).
Now we have two independent games. If we use ordinary sum (that player who can not
move loses) for these two games, it is a winning situation for First. For him it is enough to
wait for the opponent`s move and then just copy it to another game. So First will always
have the possibility to move so he will win such a game.

Now go back to 2× n degenerate game. It is only a little bit more di�cult for First to
win if n is odd. Similarly to the previous case he will start the game by joining two dots in
the center. So the board is divided into two equal parts (subgames). If someone completes
the box in either left or right part he will win this game. After splitting the game into two
parts it is Second player`s turn. The best response to every Second`s move is to

• complete the box (make a winning move) if possible

• copy Second`s move into another subgame (make a symmetric move) otherwise.

Second player cannot win, because when it is his turn left and right subgames are the
same. So if he had the possibility to complete a box in one of the subgames then First
would have the same possibility in his last move in at least one subgame.
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We will generalize this symmetric concept for even n and also for m > 2. It is quite
clear that this works for games which are divided by a set of lines to two equal subgames.
As we will see from the following theorem it will work also for games without this delimiting
set of lines.

Theorem 4.1. If m + n is even Second player can win all degenerate m × n Dots and
Boxes games.

Proof. If m + n is even there are two possibilities. Both m and n are odd or both m and
n are even. In the �rst case the center of symmetry of m× n board S is in the middle of
the center box and in the second case it is in the central dot. In both cases every line a
has its own twin line a′ which is its image in the symmetry by S. We claim that if Second
wants to win it is enough for him to

• complete the box (make a winning move) if possible

• make a symmetric move to First`s move (So if First added a line a Second will add
its twin line a′).

To prove the theorem we will prove that after Second`s move either game has �nished
(so Second won) or every box has at most two lines and the board is symmetric. At the
beginning this statement is true. First can add line a in the way that either one box will
have three lines or not. In the �rst case Second player will complete this box and win the
game. In the second case Second player will add twin line a′. There are two possibilities
again. If a and a′ are not part of the same box then while the board is symmetric and
after adding a there was no box with three lines there is no such box also now. If a and a′

are part of the same box it means that S is in the center of this box. After Second`s move
the board is symmetric so this center box has either two or four lines. If four then Second
won otherwise this box has only two lines.

Theorem 4.2. If m + n is odd First player can win all degenerate m× n Dots and Boxes
games.

Proof. If m + n is odd then either m is even and n is odd or m is odd and n is even. In
both cases the center of symmetry of m × n board S is in the center of one line l. Every
other line a has its own twin line a′ which is its image in symmetry by S. First player
can force a win by starting the game by adding line l. After that we have the situation in
which the board is symmetric, every box has at most two lines and for every free line a
there is its twin line a′ that is free, too. So we are in the same situation as in the second
part of proof of Theorem 4.1.
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5 w-numbers
In the previous section we explained solution to empty boards of degenerated Dots and
Boxes game. During looking for strategies for any other positions in this game we noticed
that it often happens that the whole game is divided into subgames like in Figure 8.

Figure 8: Position in the degenerated Dots and Boxes game

In Figure 8 we can see that the board is divided into three independent parts bordered
by lines or edges of the board. When it is a player`s turn he can choose one of these
subgames and add a line into it. If he creates a box he will win not only that particular
subgame but also the whole game which is a combination of these three parts.

After that we decided to look more deeply into how to play a combination of games
where the rule is that if someone wins �rst game he will win the whole combination of
games. Because of that we started to call this type of compound game a WTIA game,
where WTIA stands for The winner takes it all4. In this section we will provide our results.

De�nition 5.1. WTIA game G is a game that is a combination of n subgames G1, G2, . . . Gn.
If it is a player`s move he chooses one of the subgames and makes move in it. A player
who loses one of the subgames Gi loses the whole game G.

First observation how it does work was done in the previous section. If we have a
WTIA game G that consists of the two same subgames it is a losing position. We can
simply extend our strategy used in Subsection 4.25 to show it.

If a WTIA game G consists of the standard Game of Nim subgames it is not a good
research model for us, because First player can easily take all the coins from any of the
piles and immediately win. After some experiments we have found a good model game.
We named it Level Nim and it has helped me to �nd a solution how to combine games in
a WTIA way.

Rules 5.1. The game of Level Nim is played with n superpiles of coins. A superpile of
coins consists of several piles of coins which are located on the each other. When it is a

4maybe it is also because I like that famous song
5make winning move if possible or copy opponent`s move otherwise
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player`s turn he chooses one superpile and takes at least one coin from the most top non-
empty pile of this superpile. After someone takes the last coin of the superpile a game is
�nished and that player is declared the winner.

Example 5.1. Lets have Level Nim with two superpiles. The �rst superpile has piles with
the sizes 3, 7, 2 and the second superpile consists of piles 4, 6. Now when it is a player`s
turn he is either able to take away up to 2 coins from the �rst superpile or up to 6 coins
from the second superpile. A player can take coins from lower piles only if all higher ones
are empty.

Notice that there are some special positions in the Level Nim. If one of the superpiles
is empty then game is �nished and we will call this position superlosing (If we add any
other superpiles we will keep being in losing position). As opposite to them there are
positions from which players can win in one move. We will call them superwinning. All
the positions in Level Nim which are not superlosing and have at least one superpile with
only one non-empty pile are superwinning, because a player whose turn it is can win by
removing all the coins from this superpile.

1. After dividing all the positions to superlosing, superwinning and normal we can see
that if at least one superpile has only one non empty pile then a game is in a super
position else it is in a normal position.

2. If we are in a super position we know how to play. If we are in a normal position we
can move to normal positions or to superwinning ones (Not to superlosing, because
if we were able to then we would be in a superwinning position, not normal).

3. But nobody wants to move to a superwinning position, because he will lose in next
move after that. So for players it is the same situation as if there were no moves to
superwinning positions.

4. Therefore if a game G is in a normal position then the �rst player who will not be
able to move in a normal positions will have to move to a superwinning position and
he will lose. So we can reduce our problem to the ordinary sum of games where
subgames are superpiles without the most bottom piles.

In the next subsection we will generalize this result for all WTIA games.

5.1 Algorithm
We will introduce w-function that gives w-number to every position of the game G and
then use it to divide all the positions to winning and losing ones.

De�nition 5.2. All possible w-numbers are all non-negative integers extended by special
values SL6 and SW 7.

6stands for superlosing
7stands for superwinning
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De�nition 5.3. Let G(X, f) is a game. We will assign w-number to every position x ∈ X.
1. w(x) = SL if x is a terminal position

2. w(x) = SW if exists a terminal position u ∈ X and u ∈ f(x)

3. w(x) = min(n ≥ 0 : n /∈ M) where M = {w(u) : u ∈ f(x), SW 6= w(u) 6= SL}
Note 5.1. In words, we assign SL to the superlosing positions, SW to the superwinning
positions and then assign other w-numbers in the same way as by the Sprague-Grundy
function considering only a normal positions subset of X.
Corollary 5.1. Given game G(X, f). The position x ∈ X is losing if and only if w(x) =
SL or w(x) = 0.
Proof. If w(x) = SL or SW it is clear. If w(x) > 0 it is possible for a player to move
to w(y) = 0 (L-positions). If w(x) = 0 player can move only to the positions y where
w(y) = SW or w(y) > 0 (W-positions).
Theorem 5.2. Given WTIA game G(X, f) that is a compound of subgames G1(X1, f1),
G2(X2, f2), . . . Gn(Xn, fn). The position x = [x1, x2, . . . xn] is losing if and only if at least
one of these conditions is held:

1. (∃i) w(xi) = SL

2. (∀i) w(xi) /∈ {SL, SW} and w(x1)⊕ w(x2)⊕ . . .⊕ w(xn) = 0

where x ∈ X and xi ∈ Xi.
Proof. We will check if our division of positions is correct. All the terminal positions x
have one subgame xi that is superlosing (w(xi) = SL), because if not then a player would
be able to move.

If a player is in a losing position then w(x) = SL or w(x1)⊕ w(x2)⊕ . . .⊕ w(xn) = 0.
The �rst case we did as a part of the terminal positions. If a player moves in any subgame
k then either he moves to the superwinning position in that subgame or to the position y
with w(y) 6= w(xk). In both cases he can move only to winning positions.

If a player is in a winning position then w(x) = SW or w(x1)⊕w(x2)⊕ . . .⊕w(xn) 6= 0.
In the �rst case while w(x) = SW there exists subgame xk such that w(xk) = SW . A
player can move in this subgame to superlosing position. If xor among all w(xi) 6= 0 then
a player can easily move to change it to 0. He can do it in the same way as in the Game
of Nim.
De�nition 5.4. We will de�ne operation ⊕w on games G1, G2 as a combination of games
G1 and G2 in a WTIA way.
Remark 5.1. Operation ⊕w on games is associative, commutative and w(G1 ⊕w G2) is
equal to

1. SL if w(G1) = SL or w(G2) = SL

2. SW if w(G1), w(G2) 6= SL and if w(G1) = SW or w(G2) = SW

3. w(G1)⊕ w(G2) otherwise
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5.2 Relationship between w-numbers and Grundy numbers
When using functions that assign values to the positions, like the Sprague-Grundy, remote-
ness, suspense function or w-function we are still working with the same game G. These
functions just allow us to look at the game from di�erent views and use the one we need
to combine it with the other games.

Therefore if position in game G is losing then it is losing in all the views from
which we are looking at it.

Corollary 5.3. In game G(X, f) w(x) = 0 or w(x) = SL if and only if g(x) = 0.8

Note 5.2. We know that w(x) = 0 ⇒ g(x) = 0. Notice that it does not work the other
way and g(x) = 0 ⇒ w(x) = 0 is not true.

This property from Corollary 5.3 is sometimes very useful. Consider game G = (A⊕w

B ⊕w C) ⊕ D and that number of positions in all the games is about k. We want to
�nd out if G is a losing position. Trivial algorithm can solve our problem in time O(k4)
by searching through all the possible positions. We can do better, O(k3), by noticing
that g(G) = g(A ⊕w B ⊕w C) ⊕ g(D). But if we are happy we can try to compute
w(A⊕w B⊕w C) = w(A)⊕w w(b)⊕w w(C) and if it is equal to 0 then we can deduce from
that g(A⊕w B ⊕w C) = 0 and then whole our algorithm will take only O(k) steps.

5.3 Application in games
In this subsection we will demonstrate using of w-numbers on simple examples. Their
application on degenerated Dots and Boxes game is in the next section.

We will start with calculation of w-numbers for Limited Nim with substraction set
S = {1, 3, 4}:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
w(n) SL SW 0 SW SW 1 2 0 2 0 1 3 1 2 0 2 0 1 3
g(n) 0 1 0 1 2 3 2 0 1 0 1 2 3 2 0 1 0 1 2

Example 5.2. Lets have three Limited Nim games with this substraction set and with
sizes 5, 8, 6 with the rule that the overall winner will be one who wins �rst of these
games. A player whose turn it is in a winning position, because w(5)⊕w w(8)⊕w w(6) =
1 ⊕w 2 ⊕w 2 = 1.9 If the sizes of piles were 4, 6, 11 then a player will be in a winning
position, too, because w(4)⊕w w(6)⊕w w(11) = SW ⊕w 2⊕w 3 = SW .

Note 5.3. In above table for Limited Nim we can see that Corollary 5.3 really works. We
can also see that both w-numbers and grundy numbers become periodic. It is because
value for position x depends only on last k values where k is the maximum number in
substraction set.

8We can create similar equivalences for the other functions as well
9by n in w(n) we mean the Limited Nim position of size n
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Now consider All the King`s horses game with slightly changed rules. A player whose
turn it is must choose one horse and move with him. The player who �rst moves any horse
home (to left-up 2×2 corner from which horses are unable to move) is declared the winner.

This game is a WTIA combination of the games with only one horse on each chessboard.
Figure 9 shows us w-numbers that will help us to determine the winner. To �nd out who
is the winner of a game it is enough to use the operation ⊕w among the positions of all
the horses that are placed on chessboard.

SL SL SW SW 0 0 1 1
SL SL SW SW 0 0 2 1
SW SW SW SW 1 2 3 2
SW SW SW 1 2 1 2 1
0 0 1 2 0 0 1 2
0 0 2 1 0 0 2 1
1 2 3 2 1 2 1 2
1 1 2 1 2 1 2 0

Figure 9: w-numbers for 8× 8 All the King`s horses modi�cation

Note 5.4. Like we are combining di�erent games using Grundy numbers we can combine
di�erent games also using w-numbers. For example All the King`s horses modi�cation with
Limited Nim games from Example 5.2. We just put together their w-numbers in a usual
way.

5.4 Misére play rule
In the previous subsections we explained the strategy for the WTIA games played under
the normal play rule. Now we will share our strategy for the WTIA games played under
the misére play rule10. In the degenerated Dots and Boxes, it means, that now we have a
strategy how to force our opponent to create the �rst box. All other sums of the games pre-
sented in this thesis does not have known strategies for misére play rule and therefore this
discovery of strategy for WTIA games was quite unexpected. Probably newly introduced
w-numbers helped a lot.

The di�erence between the WTIA sum of games played under the normal play rule
and the WTIA sum of games played under the misére play rule is that now all terminal
positions are superwinning, nobody wants to move to them, because they mean immediate
lose. Therefore it is the same as if a player will not have the possibility to move to them.
Only if a player cannot move in normal positions he must move to a superwinning one.
Therefore our problem is reduced to the ordinary sum of the games played on the subgraphs
without the terminal (SW) positions. And while we know how to play the ordinary sum

10The player who �rst wins (�nishes) the �rst subgame is declared the loser
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of the games we know how to play the WTIA sum of the games played under the misére
play rule.

De�nition 5.5. Let G(X, f) is a game. The function wm will assign each position x ∈ X
non-negative integer or the value SW :

• if x is a terminal postion then wm(x) = SW

• else wm(x) = min(n ≥ 0 : n /∈ M) where M = {wm(u) : u ∈ f(x), SW 6= wm(u)}
Note 5.5. In words, we assign SW to the superwinning positions and then assign other
w-numbers in the same way as by the Sprague-Grundy function considering only a normal
positions subset of X.

Corollary 5.4. Given game G(X, f) played under the misére play rule. The position
x ∈ X is losing if and only if wm(x) = 0.

Now we can use that we have knowledge of w-numbers and operation ⊕w to provide
simpler way to identify losing positions.

Theorem 5.5. Given WTIA game G(X, f) that is a compound of subgames G1(X1, f1),
G2(X2, f2), . . . Gn(Xn, fn) and that is played under the misére play rule. The position
x = [x1, x2, . . . xn] is losing if and only if wm(x1)⊕w wm(x2)⊕w . . .⊕w wm(xn) = 0, where
x ∈ X and xi ∈ Xi.

Proof. If we are in a terminal position, one of the games has already �nished, wm(x) = SW ,
so we are in a winning position. If we are not in a terminal position and wm(x) > 0 it
means we can move to the losing position u for which wm(u) = 0, therefore we are in a
winning position. If wm(x) = 0 it means we cannot move to another position u for which
wm(u) = 0, so we can move only to the positions which wm value is SW or higher than 0.
All these positions are winning so we are in a losing position.
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6 The Dots and Boxes game reloaded
In this section we will go back to the degenerated Dots and Boxes game. We will use the
fact that now we have a new tool introduced in the previous section: w-numbers.

We could examine smaller games by using the standard winning-losing algorithm by
searching through the all positions of the game. The problem is that this would take
huge amount of time for bigger games. If we have m × n Dots and boxes game, it has
m(n−1)+(m−1)n lines, so it has almost 2m(n−1)+(m−1)n positions. If we want to examine
all of them the complexity of the standard algorithm will be O(2m(n−1)+(m−1)n) that is
almost the same as O(22mn). Because of that nowadays it takes about a minute to examine
4× 4 position of the game, about a half of the day to examine 4× 5 position and about a
year to examine 5× 5 position.

Fortunately we can pro�t from the fact that we know better the structure of some
positions and that they are just a WTIA combination of subgames. We will describe an
algorithm in the second part of this section.

6.1 Values for smaller games
In Figure 10 we can see some randomly chosen positions of the degenerated Dots and Boxes
game. We have analyzed these positions and have found w-numbers by using an algorithm
described in the previous section.

w(d)=SW w(e)=1 w(f)=0

w(a)=1 w(b)=0 w(c)=2

Figure 10: Positions in degenerated Dots and Boxes game

Now we can compare these results with "look and see" approach:

1. It is obvious that the position d (in Figure 10) is superwinning, because a player will
win by adding any new line.
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2. While we were proving Theorem 4.1 we proved that all the symmetric positions with
at most two lines in any box are losing ones. Therefore the position b is losing. On
the other hand the positions a and c are winning, because a player can add a line to
make them symmetric with at most two lines in any box.

3. A player can add an upper right horizontal line in the position e to make all of the
boxes to have exactly two lines. So his opponent will have to move to a superwinning
position and therefore the position e is winning.

6.2 Computation of values for bigger games

w(a)=1

+

w(e)=1

=

w(p)=0

Figure 11: Sum of the positions in degenerated Dots and Boxes game

Example 6.1. While the position p (in Figure 11) is a WTIA sum of the positions a and
e (which we have already met in Figure 10) w(p) = w(a)⊕w w(e) = 1⊕w 1 = 0.

Similarly we can divide every degenerated Dots and Boxes game to independent parts,
compute w-number for every subgame and then combine it together. This can extremely
improve our ability to �nd if a certain position is winning (losing).

Our new algorithm that is determining if the position x is winning (losing) will work
in the following way:

1. The position x is losing i� w(x) = 0 or w(x) = SL.

2. To compute w(x) we will start by dividing x into independent parts. We can do this
by performing BFS11 that will take about O(mn) operations where the position x
has the size m× n.

3. We will recursively calculate w-numbers for every independent part and then combine
them together.

Very important fact is that m and n are much smaller (exponentially) than a number of
positions in a game. In practice we are interested in computing values for up to 5×6 games.

11Breadth-�rst search
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Although BFS for every position will slow us down about mn times, we are interested in
games where mn is only about 30, so we can look at it as at small constant.

On the other hand we will gain much more. In Figure 11 we needed only about 212

operations to calculate and combine values for the positions a and e. If we used the
standard algorithm to �nd a value for the position p we would need about 227 operations.
We are calculating w-numbers recursively for the subgames so we will get the results even
faster as an additional bonus.

w(s)=2 w(t)=1 w(u)=0

+ +

w(v)=3

=

Figure 12: Sum of the positions in degenerated Dots and Boxes game

Example 6.2. Figure 12 shows us how to divide the position v into the subgames s, t and
u. While v is a WTIA combination of them we obtain that w(v) = w(s)⊕w w(t)⊕w w(u) =
2⊕w 1⊕w 0 = 3. So now we know much faster that the position v is a winning one. And
much more we know that we can �nd a winning move in the subgame s and decrease its
w-number to 1 to obtain overall sum equal to 0. All boxes in the position s except two at
the bottom has two lines. If we add to one of these two a bottom line our opponent will
have to add the second one (or move to a superwinning position that means an immediate
lose for him). So if we take one of these two bottom lines we will change its w-number to
1.
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7 API for combinatorial games
The goal was to create a supporting tool for the research of mathematical (combinatorial)
games. It is especially for the impartial games with the normal play rule, but it is planned
to be extended to support also partizan games and games with the misére play rule in the
future.

There is a similar and more complex existing solution of combinatorial game suite12,
developed mainly by Aaron Siegel, that is quite �exible, written in Java, with nice envi-
ronment that is similar to the Maple and Mathematics. It has support for plug-ins for
new games and its own interpreted programming language. On the other hand while it is
quite complex it is needed to implement a lot of interfaces that are not necessary need or
develop programs in a non-standard language, so it is not so simple to connect it with an
external environment.

7.1 Overview
During designing and developing this API we keep emphasis on open, simple and easily
extensible solution. Because of that we used all advantages of object oriented programming
and many design patterns like Strategy, Decorator and Visitor that helped me to achieve
this goal.

Figure 13: UML class diagram for the class Position

It is whole based on an abstract class Position that represents a position in a game.
To create a concrete position we must implement two basic methods. Method getAllPos-
sibleMoves() should return the positions to which we can move from the current position
and method isFinal() should return true i� our position is terminal.

These two methods specify the game tree in a way it is de�ned and used in this thesis.
Therefore we can use the corresponding algorithms introduced in the previous sections,
independent from the types of games, that operate on these game trees:

• isWinning() - returns if the current position is winning
12it can be downloaded from http://cgsuite.sourceforge.net/
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• isLosing() - returns if the current position is losing

• getGrundyNumber() - returns Grundy number for the current position

• getWTIANumber() - returns w-number for the current position

• getRemoteness() - returns remote function value for the current position

• getSuspense() - returns suspense function value for the current position.

Using Strategy pattern, all these algorithms are implemented in their own classes (see
Figure 14) and abstract class Position is just calling them by default. Of course they can
be overridden if we are creating our game by extending the class Position and know from
the structure of the game how to compute any of these values faster. We will return back
to this option later on.

All algorithms support built-in caching to improve performance and not to compute
anything twice. But if we want to use it we have to tell the computer when two positions
are equal. To implement this we have to override methods equals(Object o) and hash-
Code(). While implementing them keep in mind that according to Java contract if two
objects that are equal they must have the same hashcode13.

The last method of the Position class is draw(PositionVisitor v). This method in-
troduces a design pattern Visitor to our class Position. By invoking it it calls the method
draw on PositionVisitor and provides him whole position as a parameter. Therefore if user
wants to get information about the current position he just needs to implement interface
PositionVisitor and call method draw with it as a parameter. This implementation decou-
ples any output about the current state from the logic of the position behaviour. We have
also freedom to have multiple visitors for one game: one to generate text output to the
console or graphical swing, html, . . . For example we have created metapost PositionVisitor
(see Figure 16) for the Dots and Boxes game to generate pictures of the positions for this
thesis.

7.2 More details of technical design
An idea was to create an environment that will allow us to create games as a compound of
the other games and perform all operations on them like if they were simple games. On the
other hand we want to pro�t from the fact that we know the structure so we can compute
some values like for example Grundy numbers much faster. In Figure 15 it can be seen
how it is implemented. We used design pattern Decorator that allows us to "decorate14"
simple games to create composite games and access them just like they were simple ones.

The Decorator pattern allows us to create any combination of di�erent simple or com-
posite games. For example we can create a game G =WTIAPosition(LimitedNimPosition(),
OrdinarySumPosition(BoardPosition(), LimitedNimPosition())). This notation

13equals should be also re�exive, symmetric, transitive and consistent
14pack
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means that we are playing two games with the winner takes it all rule where the �rst game
is a Limited Nim game and the second one is a composite game that contains two other
games played together as an ordinary sum. If somebody asks what is grundy number of
the game G we will call the standard algorithm which looks at our composite game as
at a one big game tree. However, if we want to know w-number of the game G we can
use our knowledge about WTIA games and compute it as a w-number of Limited Nim
⊕w w-number of an ordinary sum of those two games. To achieve this goal we have just
overridden getWTIANumber() method in a WTIAPosition class. Therefore in this case
it will compute w-number in a more clever way and if a game is not a WTIAGame it
will use the standard algorithm (WTIAAlgorithm.getWTIANumber()) that always works.
Similarly we can override method getGrundyNumber() in OrdinarySumPosition class and
methods isWinning() and isLosing() in all the classes where we can �nd the answers faster
by using for example Grundy numbers.

This combinatorial game API contains:

• basic framework (Position, PositionVisitor and algorithms classes)

• composite games support (OrdinarySumPosition, WTIAPosition, ANDPosition)

• Limited Nim game implementation

• degenerate Dots and Boxes game implementation

• board games implementation

If a user wants to create a new game he can do it very fast and Limited Nim is a very
simple example. He just need to extend Position class and implement methods getAllPoss-
sibleMoves() and isFinal(). If he wants to use caching then do not forget to implement
equals() and hashCode() methods. After that he is �nished and he can call on his game
any algorithm he wants and combine it with any other games.

Board games covers (except many other games) all variants of Game of Queens and All
the King`s horses. These games are very good for any experiments.

Finally, there is attached an implementation of the degenerate Dots and Boxes game.
As it can be seen in Figure 16 there are two classes DotsAndBoxesPosition and DotsAnd-
BoxesSmallPosition. The �rst one covers only positions of rectangular shape. The second
one extends the �rst one by optional disabling the boxes we do not want to be a part of
the position. It is essential when we are decomposing big games to smaller ones. Note that
they share their cache and by careful implementation of equals() and hashCode() methods
they can share their results15. To have a debugging output there is implemented a Text
visitor and to have a nice MetaPost output there is a MetaPost visitor.

15DotsAndBoxesSmallPositions with no disabled boxes are the same as DotsAndBoxesPositions if the
board of both is the same
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Figure 14: UML class diagram for the games NimLimited and Board Games on the left
and class diagrams of algorithms in package sk.lenhardt.game on the right
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Figure 15: UML class diagram for the classes of composite games in sk.lenhardt.sum
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Figure 16: UML class diagrams for the Dots and Boxes game
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8 Conclusion
The most important result of this thesis is �nding the way how to play the composite games
where the winner is the player who wins the �rst subgame. We have introduced a new
w-function and an algorithm that can help us solve such composite games. Because of that
now we can analyse these composite games in O(kn) time in comparison to O(nk) obtained
by the standard algorithm, where n is the size of particular subgames and k number of
subgames. We have discovered also the way how to play it with the misére play rule.

We have found out all this while looking for a winning strategy for the degenerated
Dots and Boxes game. Now we can say that we have found this strategy. It can be used
and be very helpful for the players of the original Dots and Boxes game. However, it cannot
be used every time. So it opens a new question how to pro�t from it as much as possible
to become closer to the solution to the original game. As it is said in [Be00] a player could
not know everything about Dots and Boxes until he knew everything about NimString16.
Similarly we can say that if we had not know how to play the degenerated variation, we
would not know everything about Dots and Boxes. So this is another part of the puzzle
called Dots and Boxes solution.

One of the goals of this thesis was also to create an introduction to (composite) mathe-
matical games for students at undergraduate level. Therefore we have presented �ve known
ways of adding impartial games with proofs and many examples. Almost all these games
and algorithms are implemented in a new created Combinatorial game API. This API pro-
vides an environment to experiment with the impartial games. While almost all algorithms
presented in this thesis are implemented, researching a new game can be easily started. It
is needed only to implement a simple interface to provide what are possible moves from
the position. After that the user can start combining the games and �nding out values for
the positions like Grundy numbers, w-numbers, remoteness, suspense, . . . . We used it a
lot to gain and check the results and produce all the �gures and tables. In the future the
API could be extended to support games with misére play rule and also partizan games.

In this thesis we are limited to games with a win-lose outcome. From a general point
of view, another challenging task would be to �nd out if it is possible to apply some of
these results to games where we have more possible outcomes. There are games where also
draws are possible. And there are many games that consist of parts and the �nal outcome
is the sum of outcomes from the subgames. Finding out that would have great applications
in Economics, as well. We know how to �nd out outcomes for simple games by using the
standard algorithms like min-max and alpha-beta pruning. One of the possible ways could
be to reduce them to win-lose outcome games. For example we would declare the player
A the winner i� he scores at least n. By trying all possible n we could �nd out how many
points he could secure by playing optimally.

16The NimString is a variation of Dots and Boxes where the winner is a player who creates the last box
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A CD attachment
An attached CD contains whole Combinatorial Game API as a project. It includes all
source codes, javadoc and compiled classes.
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Abstrakt

Dekompozícia matematických hier na men²ie £asti je nevyhnutná kvôli ve©kému po£tu
pozícií. V práci sa venujeme degenerovanej verzii známej hry Dots and Boxes, v ktorej sa
ví´azom stane hrá£, ktorý ako prvý vytvorí ²tvor£ek. Táto verzia úzko súvisí s orginálnou
hrou a £asto nám pomôºe nájs´ aj v nej ví´aznú stratégiu. Objavili a dokázali sme, ktorý
hrá£ má ví´aznú stratégiu z po£iato£nej prázdnej hracej plochy. Pre rozohraté hry sme si
v²imli, ºe sa samotná hra rozde©uje na men²ie hry, kde ví´az celej hry sa stane hrá£, ktorý
ako prvý vyhrá jednu z podhier.

Tento typ zloºených hier sme následne skúmali vo v²eobecnosti. Zaviedli sme w-funkciu,
ktorá jednotlivým pozíciam v podhrách prira¤uje w-£ísla, ktoré vieme spája´ a zisti´ tak
aj w-£íslo celej zloºenej hry. Na jeho základe vieme poveda´, £i je daná pozícia vyhrávajúca
alebo prehrávajúca. Tieto výsledky nám umoºnili nájs´ rie²enia hier ove©a rýchlej²ie. Ak
n je ve©kos´ jednolivých hier a k po£et hier, tak zloºitos´ ná²ho algoritmu na zistenie
výhernosti pozície je len O(kn) v porovnaní s O(nk) získaných pouºitím ²tandardného
algoritmu. Tento v²eobecný poznatok sme následne pouºili na h©adanie ví´azných stratégií
v degenerovanej verzii hry Dots and Boxes. Samozrejme, môºe by´ pouºitý aj v kombinácii
©ubovo©ných iných hier. Na²li sme tieº spôsob ako hra´ túto kombináciu zloºených hier s
pravidlom, ºe hrá£, ktorý vyhrá prvú z podhier, celkovo prehrá.

Prvá £as´ práce slúºi ako úvod do problematiky a obsahuje známe spôsoby kombinácie
hier s dôkazmi a mnohými príkladmi. Vytvorili sme tieº API pre matematické hry na
podporu a zlep²enie moºností výskumu v oblasti matematických hier. Umoº¬uje jednodu-
cho a rýchlo zade�nova´ herný strom, nad ktorého abstrakciou fungujú naimplementované
algoritmy. API sme pouºívali a pomocou neho získavali výsledky a aj obrázky. Takmer
v²etky hry, zah¯¬ajúc aj degenerované Dots and Boxes, sú v ¬om aj naimplementované.

K©ú£ové slová: Dots and Boxes, zloºené hry, w-£ísla
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