
Comenius University, Bratislava
Faculty ofMathematics, Physics and Informatics

Short Distance non-GPS-based Localization of
Mobile Devices

Bachelor Thesis

2013

Ladislav Bačo

Comenius University, Bratislava
Faculty ofMathematics, Physics and Informatics

Short Distance non-GPS-based Localization of
Mobile Devices

Bachelor Thesis

Study programme: Computer Science

Study field: 2508 Computer Science, informatics

Department: Department of Computer Science

Supervisor: RNDr. Tomáš Kulich, PhD.

Bratislava, 2013

Ladislav Bačo

98071198

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Ladislav Bačo
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: 9.2.1. Computer Science, Informatics
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Short Distance non-GPS-based Localization of Mobile Devices

Aim: Develop mobile application for short distance localization of mobile devices
without using GPS system

Supervisor: RNDr. Tomáš Kulich, PhD.
Department: FMFI.KI - Department of Computer Science
Vedúci katedry: doc. RNDr. Daniel Olejár, PhD.

Assigned: 16.10.2012

Approved: 24.10.2012 doc. RNDr. Daniel Olejár, PhD.
Guarantor of Study Programme

Student Supervisor

98071198

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Ladislav Bačo
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: 9.2.1. informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický

Názov: Lokalizácia mobilných zariadení na malé vzdialenosti nezaložená na GPS

Cieľ: Vytvoriť systém na lokalizáciu mobilných zariadení na malé vzdialenosti bez
použitia GPS

Vedúci: RNDr. Tomáš Kulich, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: doc. RNDr. Daniel Olejár, PhD.

Dátum zadania: 16.10.2012

Dátum schválenia: 24.10.2012 doc. RNDr. Daniel Olejár, PhD.
garant študijného programu

študent vedúci práce

Acknowledgement

I would like to thank my supervisor RNDr. Tomáš Kulich, PhD. for his help and advices.

v

Abstract

My purpose is to develop an application for short distance non-GPS-based localization of

mobile devices. Localization should work both in exteriors and interiors and should have

minimal prerequisites for its functionality. It also should be precise enought for users to

locate searched objects. Proposed method will be based mainly on the communication over

the WiFi and with sound; sound will be analyzed by Fourier transform. In this thesis I also

performed many experiments and discussed results and the accuracy of the proposed method.

Keywords: localization, smartphone, sound, Fourier transform, Android

vi

Abstrakt

Ciel’om práce je navrhnút’ metódu na lokalizáciu smartfónov na malé vzdialenosti bez pou-

žitia GPS. Lokalizácia by mala fungovat’ v otvorených aj uzavretých priestoroch a mala by

mat’ minimálne požiadavky potrebné pre funkčnost’. Tiež by mala byt’ dostatočne presná,

aby používatel’ vedel určit’ polohu hl’adaných objektov. Použitá metóda bude využívat’

hlavne na komunikáciu pomocou WiFi a zvuku, pričom analýza zvuku bude založená na

Fourierovej transformácii. Súčast’ou práce je aj vykonanie mnohých experimentov, vyhod-

notenie ich výsledkov a presnosti zvolenej metódy.

K ’lúčové slová: lokalizácia, smartfón, zvuk, Fourierova transformácia, Android

vii

Contents

Introduction 1

1 Basic principles and ideas 3
1.1 Choosing the right approach . 3

1.2 First ideas . 4

1.2.1 Sound intensity . 4

1.2.2 Audio pings and time . 8

1.3 Description of my concept . 9

2 Theoretical background 11
2.1 Clock synchronization . 11

2.1.1 Cristian’s algorithm . 12

2.1.2 Berkeley algorithm . 13

2.1.3 Network Time Protocol . 14

2.2 Sound analysis . 14

2.2.1 Fourier series . 15

2.2.2 Fourier transform . 17

2.2.3 Fast Fourier transform . 18

2.2.4 Implementation . 18

3 Android application 22
3.1 Architecture . 22

3.2 Bluetooth and WiFi . 24

3.3 Audio recording and playing . 26

3.4 Message loop . 28

3.5 Communication protocol of measurement 29

3.6 Experiments and problems . 30

3.7 Enhanced protocol and results . 31

Conclusion 35

viii

List of Figures

1.1 The Circles of Apollonius . 5

1.2 Construction of triangle, SSS postulate . 6

1.3 Principle of audio ping . 9

2.1 Berkeley algorithm for clock synchronization 13

2.2 Conversion from analog to digital signal 14

2.3 First partial sums of the Fourier series for a square signal. 17

2.4 Identical sampling of the different sine signals 19

2.5 Comparison of my Fourier transform and Minim’s FFT 20

3.1 User interface of my application . 23

3.2 Application schema . 23

3.3 The number of measurements and impact on the inaccuracy 32

3.4 The distance between smartphones and impact on the inaccuracy 33

ix

List of Listings

2.1 Fourier transform . 19

2.2 Detection of the audio pings . 21

3.1 Finding out local WiFi IP address . 25

3.2 Client socket . 25

3.3 Server socket . 25

3.4 Audio recording . 26

3.5 Audio playing . 28

3.6 Thread with message loop . 28

3.7 Interaction with Handler . 29

x

Introduction

Nowadays we can meet new technologies almost everywhere. Many people have note-

books, tablets, smartphones. Especially smartphones bring to us many advantages from

Dream World. Not long ago we can only dream about everyday using of technologies devel-

opped for space race or military purposes.

Today, GPS localization is a common part of our lives. Almost every smartphone and

tablet has GPS receiver ready to use whenever we want. GPS is a great invention, it has

application in various ways, from hiking to navigation around the world. But there are still

some limitations by using this type of localization. GPS does not work well in buildings and

its precision is not as good for civil purposes.

Next I introduce you typical scenarios, in which GPS based localization is inappropriate.

First, we imagine a large music festival with thousands of visitors. When visitor A wants

to meet visitor B, what are his possibilities? He could phone to B, but it is difficult for B

to say the precission location. Naturally, they can arrange a meeting at some well-known

orientation point, but it is not so comfortable. Another possibility is GPS: B shares with A

his coordinates and A goes to B. But this approach has also disadvantage in low precision of

GPS for distinguish visitor B in overloaded stage with visitors.

Another typical scenario is a large conference or exhibition like CES or Campus Party.

When visitor A wants to find visitor B in a large hall with many people, it is not so easy. In

this case GPS is useless because lack of signal in buildings. And phone message to arrange

the meeting is not what we want in this situation.

Assignment. I want to propose a method suitable for short-distance localization of mobile

devices without using Global Positioning System. This method should be suitable for usage

with minimal prerequisites and without any external resources. I also want to determine

accuracy of proposed method.

In this thesis I want to introduce the concept to solve problems in mentioned scenarios and

develop mobile application for Android smartphones which demonstrates practical usability

1

LIST OF LISTINGS 2

of this concept. This includes dealing with minimal prerequisites, theoretical description of

physical principles and algorithms used in my concept, implementation of the theoretical

knowledge and development of demonstrative application with understanding fundamentals

of mobile application programming and practical experiments with discussion and results.

Chapter 1

Basic principles and ideas

1.1 Choosing the right approach

Localization without GPS. . . Okay, but what can we use for determining location, dis-

tances, directions? There are various technologies like a WiFi, Bluetooth, GSM cells, ac-

celerometer, compass and others. In this section I briefly describe their advantages and

disadvantages.

GSM cells. Every GSM cell has a unique ID, so when the phone is connected to the cell,

by knowing this cell’s ID and accessing to database of cell’s IDs, phone knows cell location.

These locations could be used to determine phone’s location, but precision is less then preci-

sion of GPS. Moreover, this approach requires an internet connection (for database access).

WiFi. We have two possible approaches using WiFi. First, we can use strength of access

points and with online database we have similar functionality like with GSM cells with all of

its disadvantages. Second, we can create own access point from our smartphones and with

other spectators we can use the strength of the signal to determine distances between access

points and spectators. That sounds good, but older smartphones do not have the capability

of creating access points. Moreover, Android developer reference [Goo13e] in description

of WifiInfo class says that the API for RSSI (received signal strength indicator) of current

802.11 network is not normalized, but should be. Nice try, but if it is not normalized, how

can I interpreted these values and determine its accuracy?

Accelerometer and compass. Theoretically, accelerometer and compass could be used

for determining changes in location and direction. Then we could compute trajectory of

smartphone’s motion, but it is not what we want. Computing trajectory could be difficult

problem due to inaccuracy of devices, and moreover, we must know some fixed point on the

3

CHAPTER 1. BASIC PRINCIPLES AND IDEAS 4

trajectory for compute relative location to other smartphones.

Bluetooth. Bluetooth is the relatively good choice for short-distance communication be-

tween two devices, but I have no idea how determines locations and/or distances by blue-

tooth. Maybe I could measure the time between transmitting and receiving message, but

because high speed of this interface it is quite impossible for short distances.

Sound. Using a microphone and speaker for receiving and transmitting audio pings can

be a good idea. Speed of sound is not so high and for short distances smartphones could

measure travelling time of the message. Another approach can be based on the intensities of

captured sound.

1.2 First ideas

1.2.1 Sound intensity

Sound intensity is defined as the sound power per unit area. We can imagine a sphere with

an area A and the source of sound with power P in its center, then sound intensity I on this

sphere is I = P/A. If I know the power of the source and I measure sound intensity, I could

compute area and radius of the sphere, which is also the distance between the sound source

and sound detector on sphere.

This theoretical idea is nice, but in application to my situation, the power of sound source

(smartphone’s speaker) is unknown. And neither as this power will be known, it comes

with many problems. For example, when you have your smartphone in a pocket, the sound

is suppressed by clothes. Or when you hold the phone in a hand, you could block out its

loudspeaker and muffle the sound. Similarly, sound damping also depends on position of

device on the desk, e.g. if it is turned upside down or not.

However, theoretical dependencies of intensity and radius could be useful in another ap-

proach. Because area A is proportional to squared sphere’s radius r and intensity is inversely

proportional to the area, sound intensity is inversely proportional to r2, or in other words,

intensity is proportional to r−2.

Imagine that we have three smartphones (with labels A, B, C) in the plane. Phone A plays

sound, phones B and C listen to it and determine its intensity IB, resp. IC. Let the sound

CHAPTER 1. BASIC PRINCIPLES AND IDEAS 5

power of phone A is PA, then next equations hold:

IB =
PA

4πr2
AB

, IC =
PA

4πr2
AC

.

Now we can simply determine the ratio of distances rAB and rAC from the ratio of intensities

IB and IC without value of PA:
rAB

rAC
=

√
IC

IB
. (1.1)

Assume that position of smartphones B and C are fixed and known. Where is the locus of

smartphone C? Can we determine a set of points, which are the possible locus of smartphone

C? The answer is obviously yes, desired set of points really exists and its name is the Circle

of Apollonius when rAB/rAC , 1 and the perpendicular bisector of the segment BC otherwise.

Nice synthetical proof describing Circle of Apollonius is given in [Cox69], but I presented

here another shorter proof based on analytical geometry.

Theorem 1.2.1 (The Circle of Apollonius). Let B,C be two points in the plane and k a

positive real number other then 1. Then set of points A such that |AB|/|AC| = k is a circle

with center on line BC.

A

B C S

rAB rAC

(a) k = 2

A

B C S

rAB rAC

(b) k = 2.5

A

B CS

rAB rAC

(c) k = 3

Figure 1.1: The Circles of Apollonius

Proof. Assign to A, B and C Cartesian coordinates (Ax, Ay), (Bx, By) and (Cx,Cy), respec-

tively. Then condition |AB|/|AC| = k is equivalent to the equation:√
(Ax − Bx)2 +

(
Ay − By

)2
= k

√
(Ax −Cx)2 +

(
Ay −Cy

)2
(1.2)

Squaring both sides, combining terms and dividing by (k2 − 1) , 0 we can write

A2
x +

2Bx − 2k2Cx

k2 − 1
Ax +

k2C2
x − B2

x

k2 − 1
+ A2

y +
2By − 2k2Cy

k2 − 1
Ay +

k2C2
y − B2

y

k2 − 1
= 0 (1.3)

CHAPTER 1. BASIC PRINCIPLES AND IDEAS 6

We can normalize Cartesian coordinates in the way that By = Cy = 0, so points B and C lie

on x-axis. Then we can rewrite equation 1.3 to next equation:

A2
x +

2Bx − 2k2Cx

k2 − 1
Ax +

k2C2
x − B2

x

k2 − 1
+ A2

y = 0 (1.4)

which is equation of a circle with center on x-axis.

On the other side, if point A satisfies 1.4, then also equation 1.2 holds. Thus also condi-

tion |AB|/|AC| = k is satisfied. So point A satisfies ratio condition if and only if lies on the

circle with equation 1.4, resp. 1.3. This circle is called Apollonius circle.

�

However, it is no so accurate if I limited locus of the smartphone A only to the Circle of

Apollonius or bisector of the segment BC. Using this approach, I need at least three fixed

points B,C,D to determine locus of A with better accuracy. Using three fixed points and two

ratios of distances, I have two circles (or bisectors) with up to two intersectors. But having

at least three fixed points is so strong prerequisite.

What about determining all three ratios of distances in case with three smartphones? The-

oretically it is possible with minimal effort. Due to dependency 1.1 only thing the smart-

phones must do, is play some sound and measure sound intensities of other smartphones.

Now I have all three ratios and I can parametrically describe two distances with third dis-

tance as the parameter, e.g rAB = c1rBC, rAC = c2rBC. According to the SSS postulate these

three lengths determines two possible triangles ABC (one in each halfplane). So if I have

two fixed points (e.g. B, C), I can limited the locus of A to one of two possible points in two

plane. If I have no fixed points, my reconstructions of the positions of the points A, B, C will

be image of real positions in some geometrical similarity (e.g. dilatation, reflection, rotation

and translation).

B C

A1

A2

Figure 1.2: Construction of triangle, SSS postulate

CHAPTER 1. BASIC PRINCIPLES AND IDEAS 7

Next, assume that there are n ≥ 3 smartphones in the plane and all ratios of distances

among them are known. With at least three fixed points I can reconstruct real positions of all

the points (with two fixed points we can construct two possible triangles using SSS postulate

as the intersections of two circles, and with third fixed point as the center of third circle we

figure out unique intersection as the locus). Thanks to fixed points I can extract real distances

from ratios. With these lengths and three fixed points it is easy to geometrically construct

positions of the other points, because each point lies on three distinct circles with exactly

one intersection.

With less fixed points, I will not be able to reconstruct the exact real situation, but it is

still not bad: with two fixed points real situation will be one of two possible reconstructions

which are reflected in a line connecting fixed points. And with one fixed point or without

fixed points my reconstruction will be image of the real situation in some geometrical simi-

larity. This is because if I take some real situation and scaled all lengths by factor k, then all

measured intensities will be scaled by factor k2. Thus ratios of the intensities will be same

as before.

Otherwise, in practice there will be smartphones placed into the space, not the plane. What

is the difference? First, the locuses of points will be determined by spheres, not a circles.

And three spheres do not figure out unique intersection(only in special cases). I need at least

four spheres for constructing exactly one intersection as a locus of searched point. Hence if

I want to reconstruct the exact situation with real distances and positions, I will need at least

four fixed points. Without fixed points, my reconstruction will be image of reality in some

shape-preserving transformation in the space.

Soon I realized that in practice I have another problem: sensitivity of the microphone.

Sensitivity of various devices is not the same and if I place two different smartphones in one

place and measured intensity of the sound transmitted by third smartphone, I will get dif-

ferent results. Maybe this trouble can be solved by implementation variable for microphone

sensitivity. . .

Thinking about this problem brings to me another idea. I can describe each device by

four, resp. five numbers: coordinates (2D or 3D), apparent sound power P and microphone

sensitivity S (factor expressing relation between real intensity and measured intensity at

given frequency). If smartphone A = (xA, yA, zA, PA, S A) capture sound from smartphone

B = (xB, yB, zB, PB, S B), measured intensity IA can be described as

IA = S A
PB

4π
(
(xA − xB)2 + (yA − yB)2 + (zA − zB)2

)

CHAPTER 1. BASIC PRINCIPLES AND IDEAS 8

Thus for n mobiles I have 4n, resp. 5n variables and
(

n
2

)
equations for intensities. With

greater n I have more equations than variables, maybe I could find the unique solution of this

system of the nonlinear equations. Indeed it is not so easy, and moreover, this system does

not have the unique solution. If I double all the powers and half all the sensitivities, I have

another solution of this system. Or if I scaled all the powers, sensitivities and coordinates by

the factor k, all the equations will be satisfied.

I found one attempt of implementation this method with intensities in [Liu10], but it is only

something like an unfinished draft with basic ideas and not describing the transformation of

the intensities to the distances. It is not so encouraging, but this approach may be good with

a couple of prerequisites (e.g. number of the fixed points).

In theory, it seems to be fine, it can correctly reconstruct the real situation with small

amount of the fixed points, or without fixed points it can reconstruct image of the real sit-

uation in some shape-preserving transformation. But in the practice, there always will be

inaccuracy in the measured intensities and computed ratios of the distances. So during my

geometrical construction there will be some kind of errors like not only one intersection of

the circles or spheres. It will be needed to apply some postprocessing and error correction

method. E. g. heuristics that moves each point in the direction of largest error and repeat this

until error will be less than some threshold.

1.2.2 Audio pings and time

The speed of sound is approximately 340 meters per second. It is not so high, thus for short

distances travelling time is measurable. Travelling time is a time delay between transmitting

sound at one place and receiving it at another place. For example this feature is used in active

sonar in submarines, when sonar uses sound transmitter and receiver for emitting sound ping

and listening for echo (reflection). Then computes distance from the time delay between

these two events.

For localization of mobile devices I can use similar principle as active sonar. One smart-

phone creates a short pulse and second smartphone detects it. If both smartphones have

synchronized clocks, then difference in times of these events corresponds to distances be-

tween smartphones. Because one audio ping can be detected by all smartphones within

range, it seems to be quite effective for determining many distances during one round with

only one audio ping. And if all mobiles sequentially send audio pings (or concurrently, but

with distinct frequencies), they can compute distances between all the pair of them.

CHAPTER 1. BASIC PRINCIPLES AND IDEAS 9

distance r

Audio ping=⇒

Figure 1.3: Principle of audio ping

After obtaining all the distances I can use one of method described in previous subsec-

tion for geometrical reconstruction of real situation with all its benefits and disadvantages.

Because now I work with real distances (not only ratios of distances), without fixed point

my reconstruction will be the image of the real situation in some Euclidean transformation

that preserves distances between every pair of points. Thus this approach gives better results

than previous one. But still I will not be able to avoid errors and inaccuracies, so for exact

reconstruction it will be needed to apply postprocessing and error correction.

1.3 Description of my concept

In the previous section I introduce two approaches based on sound. Former approach can

be more influenced with noise and sound absorbency and its prerequisites are worse than

prerequisites of the latter approach.

My concept is based on audio pings. In this concept audio ping means short audio message

(e.g "beep") transmitted from one smartphone and received on another smartphone. When

these smartphones have synchronized clocks, I can easily determine travelling time of audio

ping and hence I can determine the distance between transmitter and receiver by multiplying

time and the speed of the sound. For communication between devices I will try Bluetooth

interface, which is designed for exchanging data over short distances.

Clock synchronization can be based on Bluetooth communication using some protocol

for time synchronization. After synchronization, one smartphone sends audio ping and other

smartphones will be listening and searching for this audio ping. Next it will be needed to ana-

lyze captured sound and decompose it to particular frequencies. This is exactly what Fourier

transform does, so I will analyze sound using Fourier transform (resp. Fast Fourier trans-

form). When the application recognizes audio ping, measures travelling time and distance.

With more cooperative smartphones I could reconstruct their relative positions.

CHAPTER 1. BASIC PRINCIPLES AND IDEAS 10

In this thesis I would like to create an application for measuring distances between two

smartphones, but with potential to reconstruct real positions of more smartphones. My ap-

plication will be running on Android smartphones. I choose Android because it is open and

I can easily programming Android applications in Java on desktop with Linux. This is in my

opinion the great advantage of Android, because every developer can create Android applica-

tion and this mobile platform does not prefer any desktop operating system as significantly

as other platforms, e.g. iOS and Windows Phone. Moreover, Google creates quite good

Android developer reference with many tutorials, so it is easy to start with programming

Android applications.

It is a brief description of my initial concept and my decisions about choosing the right

approach and mobile platform. I present further information about clock synchronization,

sound analysis and Android programming in the next chapters.

Chapter 2

Theoretical background

2.1 Clock synchronization

In my concept all the participating smartphones must have the synchronized clocks. Not

necessarily all devices must share the correct UTC time, but every clock should be adjusted

to same time (e.g. local time of one smartphone, average time of the clocks of the smart-

phones,. . .). Well, time will never be the exactly same, there will be always inaccuracy, but

this inacuraccy has to be less than a few milliseconds because with greater inaccuracy in the

time there will be greater inaccuracy in the evaluate distance. With sound speed approxi-

mately 340 meters per second the time inacuraccy of few milliseconds is acceptable.

According to [DP90] there are various methods for time synchronization with more than

sufficient accuracy. Some of them are shown in the table below.

Method Accuracy
High-frequency radio time services 1-10 milliseconds

Omega navigation and VLF communication signals 2-10 microseconds

Loran-C several microseconds

GPS 100 nanoseconds

Table 2.1: Time dissemination

Nevertheless, all of these methods require external or internal receiver, and moreover,

some of them are not working in buildings. I would like to miminalize hardware prerequisites

of my concept only to smartphones, so none of them are suitable for me. I would like to

synchronize clocks using network communication (via Bluetooth or WiFi). So now I focus

to examining network protocols for clock synchronization. My description is based on the

Clock synchronization lecture on distributed systems [Krz09].

11

CHAPTER 2. THEORETICAL BACKGROUND 12

2.1.1 Cristian’s algorithm

First idea about clock synchronization between two devices A and B is simple. A sends

the message to B with timestamp T of the A’s clock and B sets its clock to time T . However,

this is not very reliable due to network delays.

Cristian’s algorithm offers better approach and attempts to compensate these delays. It

measures travelling time of message sending from A to B and back from B to A with local

clock of A. It is expected that network delays in each direction will be almost the same.

This is usually true for Ethernet networks, but 3G networks have different download and

upload speed. However, we can assume that A and B are two identical devices with identical

network connection so it does not matter which of downlink or uplink is a bottleneck, this

is same for both directions of communication. Vecause of our expectation, we assume that

device B measured its time approximately in the middle of time interval between sending

and receiving time. So how exactly Cristian’s algorithm works, if A wants to set the local

clock to time of B’s clock?

1. A sends a request to B at the local system time T0

2. B receives requests and sends to A response with its own local timestamp T

3. A receives B’s response at the local system time T1

4. A sets its own clock to time T + T1−T0
2

Let the Tmin is the minimum travelling time for sending and receiving messages between

A and B (either direction). Then for timestamp T holds inequality T0 + Tmin ≤ T ≤ T1 −

Tmin. The width of this interval is T1 − T0 − 2Tmin, so the accuracy of Cristian’s algorithm

is

±

∣∣∣∣∣T1 − T0

2
− Tmin

∣∣∣∣∣ .
Accuracy highly depends on system loads and it varies from a few milliseconds to hun-

dreds of milliseconds. However, we could repeat Cristian’s algorithm several times and use

the one with minimal difference T1 −T0. Thus this is the way how we can improve accuracy.

Also if we know the interrupt handling time of B needed for processing request, we could

improve accuracy even more.

The problem of Cristian’s algorithm is the unavailability of the clock synchronization due

to server failure. Nevertheless, in case of my application this is not a problem, because I do

not have only one server. Instead, I my application the server could be dynamically elected

or simply the server could be the same device, which start the location query.

CHAPTER 2. THEORETICAL BACKGROUND 13

2.1.2 Berkeley algorithm

The Berkeley algorithm for clock synchronization is designed for networks without pre-

cise time source. The basic idea of this algorithm is obtaining average time from all par-

ticipating nodes and synchronizing them to this average time. In contrast with Cristian’s

algorithm in this algorithm server (or master node) synchronizes itself to the average time of

clients.

One of the machines in the network is elected to be a master, other machines are slaves.

Master periodically asks slaves for their time (for example by Cristian’s algorithm due to

network delays). In one round master obtains times from all slaves, computes average time

(including its own time) and sends to slaves time difference between this average and their

local times. Using offsets instead of average time is better, because it minimizes inaccuracies

caused by network other delays.

The Berkeley algorithm hopes that the average time of the all participants helps to min-

imize and cancels out the inaccuracies of single clock, e. g. running faster or slower than

precise time source. Moreover, clients with great deviation can be ignored in computing the

average, which can minimize inaccuracies even better.

Figure 2.1 illustrates the principles of Berkeley algorithm. There are three nodes in the

network with times 4:00, 3:55 and 4:20. The machine with time 4:00 is elected to be the

master. Master asks other two machines (slaves) for their local time. They answer 3:55,

resp. 4:20. Then the master copmutes average time (4:05) and differences between average

time and all local times. Next master sends to each device time offset for adjustment of their

clocks.

4 : 00

3 : 55 4 : 20

master

slaves

time? time? 4 : 00

3 : 55 4 : 20

master

slaves

3:55 4:20 4 : 00

3 : 55 4 : 20

master

slaves

+0:05

+0:10 -0:15

Figure 2.1: Berkeley algorithm for clock synchronization

The advantage of Berkeley algorithm is the server fault tolerance. In case of the server

fault any slave could be elected to be a new master.

CHAPTER 2. THEORETICAL BACKGROUND 14

2.1.3 Network Time Protocol

The Network Time Protocol (version 3) is a standard (RFC 1305) for network synchro-

nization to Universal Coordinated Time despite network delays. Also provides protection

against interference and authenticates the reliability of data and their source.

This protocol is too complicated for my purposes, I included it to this list of clock syn-

chronization algorithms only for information and because it is the internet standard for clock

synchronization.

2.2 Sound analysis

Sound analysis is an important part of my application. I need to detect the presence of

certain frequencies in recorded sound, and I want to do this detection almost real-time.

Recorded data from microphone is nothing else than a sequence of bytes (or short inte-

gers or floats) periodically captured with some specific frequency called sample rate (usually

44100Hz, 22050 Hz, 11025Hz,. . .). This is the way how from a continuous signal (ambient

sound) to make a discrete signal (digital data in machine).

The conversion from analog to digital signal and sampling rate is illustrated in the Figure

2.2. The light blue curve is the analog signal and black dots with red lines are digital signal

(sampled signal). It is obvious that this conversion is not lossless. Also it is obvious that

higher sampling rate is better, but high sampling rates are resource intensive and we are lim-

ited by performance of hardware such as audio card and CPU. For more detailed description

of sampling rate and audio recording see section 3.3.

s(t)

t

Figure 2.2: Conversion from analog to digital signal

Source: http://en.wikipedia.org/wiki/File:Analog_digital_series.svg

CHAPTER 2. THEORETICAL BACKGROUND 15

Subsection about Fourier series is based on the lecture Základné matematické metódy

[BK11] and my handwritings from this lecture, subsections about Fourier transforms are

based on [Wei13d], [Wei13e], [Wei13a] and [Wei13b].

2.2.1 Fourier series

There are many periodical phenomenons in the real world. For example oscillations of

the springs, sound, heat engines,. . . These phenomena can be usually described with periodic

function f (t) with the least period T such that:

f (t + T) = f (t) (2.1)

Sometimes it is advantageous to decompose complicated functions into series of elemen-

tary funcions. For example Taylor series is the decomposition of function into the power

series. We have two elementary periodical functions: sine and cosine. Now we can try

decompose every periodical function to series of sines and cosines:

f (t) = c0 +

∞∑
i=1

(ci cos(ωit) + di sin(ωit)) (2.2)

For clarity we use sin(ωit) and cos(ωit), where ωi = 2π
Ti

is angular frequency and Ti is

period of this elementary periodic function. And we have fundamental frequency, resp.

fundamental angular frequency ω = 2π
T correspinding to the least period T of function f .

Because function f is periodical and satisfy condition 2.1, we can write equation 2.2 in

other form:

c0 +

∞∑
i=1

(ci cos(ωit) + di sin(ωit) = f (t) =

= f (t + T) = c0 +

∞∑
i=1

(ci cos (ωi(t + T)) + di sin (ωi(t + T)))

This equality holds if and only if ωiT = 2πni, where ni ∈ N. Dividing both sides of this

condition we have ωi = ωni. Now equation 2.2 has a form:

f (t) =
a0

2
+

∞∑
n=1

(an cos(nωt) + bn sin(nωt)) (2.3)

CHAPTER 2. THEORETICAL BACKGROUND 16

Before we continue with determination of the coefficients an and bn, we solve some helpful

integrals.

∫ T

0
cos(nωt)dt =

[
sin(nωt)

nω

]T

0
= 0 (2.4)∫ T

0
sin(nωt)dt =

[
−cos(nωt)

nω

]T

0
= 0 (2.5)∫ T

0
dt = [t]T

0 = T (2.6)∫ T

0
cos(nωt) sin(mωt)dt =

∫ T

0

1
2

(
sin

(
(n + m)ωt

)
+ sin

(
(n − m)ωt

))
= 0 (2.7)∫ T

0
cos(nωt) cos(mωt)dt =

∫ T

0

1
2

(
cos

(
(n + m)ωt

)
+ cos

(
(n − m)ωt

))
=

T
2
δn,m (2.8)∫ T

0
sin(nωt) sin(mωt)dt =

∫ T

0

1
2

(
cos

(
(n − m)ωt

)
− cos

(
(n + m)ωt

))
=

T
2
δn,m (2.9)

where n,m ∈ N and symbol δn,m =

 0, if n , m

1, if n = m
is Kronecker delta.

Now we can determine the coefficients an in equation 2.3. Multiplying both sides of 2.3

by cos(mωt), integrating from 0 to T and using integrals 2.4, 2.7 and 2.8 we obtain

∫ T

0
f (t) cos(mωt)dt =

∫ T

0

a0

2
cos(mωt)dt +

∞∑
n=1

∫ T

0
an cos(nωt) cos(mωt)dt +

+

∞∑
n=1

∫ T

0
bn sin(nωt) cos(mωt)dt = 0 +

∞∑
n=1

an
T
2
δn,m + 0 =

T
2

am

am =
2
T

∫ T

0
f (t) cos(mωt)dt (2.10)

Similarly we can determine the coeficients bn. Multiplying both sides of 2.3 by sin(mωt),

intergating from 0 to T and using integrals 2.5, 2.7 and 2.9 we obtain

∫ T

0
f (t) sin(mωt)dt =

∫ T

0

a0

2
sin(mωt)dt +

∞∑
n=1

∫ T

0
an cos(nωt) sin(mωt)dt +

+

∞∑
n=1

∫ T

0
bn sin(nωt) sin(mωt)dt = 0 + 0 +

∞∑
n=1

bn
T
2
δn,m =

T
2

bm

bm =
2
T

∫ T

0
f (t) sin(mωt)dt (2.11)

The coefficient a0 we can simply obtain by integrating of the equation2.3 from 0 to T and

using integral 2.6.

CHAPTER 2. THEORETICAL BACKGROUND 17

∫ T

0
f (t)dt =

∫ T

0

a0

2
dt +

∞∑
n=1

∫ T

0
an cos(nωt)dt +

∞∑
n=1

∫ T

0
bn sin(nωt)dt

=
a0

2
T + 0 + 0 =

a0

2
T

a0 =
2
T

∫ T

0
f (t)dt (2.12)

Thanks to 2.10, 2.11 and 2.12 we can decompose every periodical function f (t) with the

least period T into the Fourier series described by equation 2.3. One example of decompos-

ing square signal into the Fourier series is given in the Figure 2.3.

Figure 2.3: First partial sums of the Fourier series for a square signal.

Source: http://en.wikipedia.org/wiki/File:Fourier_Series.svg

2.2.2 Fourier transform

Equation 2.3 can be extended to complex form using Euler’s formula eınωt = cos(nωt) +

ı sin(nωt) with complex coefficients An. Consider a real-valued periodical function f (t) we

can write:

f (t) =

∞∑
n=−∞

Aneınωt

Am =
1
T

∫ T/2

−T/2
f (t)e−ınωtdt

CHAPTER 2. THEORETICAL BACKGROUND 18

Now generalize this series for T → ∞. Let the n/T = k, replace discrete An with continu-

ous function F(k). We obtain

f (t) =

∫ ∞

−∞

F(k)eı2πktdk

F(k) =

∫ ∞

−∞

f (t)e−ı2πktdt

These equations transform function of time f (t) to function of frequency F(k) and vice

versa. The new function F(k) is known also as a frequency spectrum of the function f (t).

2.2.3 Fast Fourier transform

The Fourier transform can be generalized to case of discrete function f (t). Let the f (t) be

f (tk), where tk are sampling points of function f (t) with difference ∆. Then we can write

f (tk) = f (k∆) as fk. With N sampling points, Discrete Fourier transform of sequence fk has

a form

Fn =

N−1∑
k=0

fke−ı2πnk/N (2.13)

We want to compute all the Fn. If we compute them directly from equation 2.13, we need

O (N) steps for every Fn, so for all Fn we need O
(
N2

)
steps. This is not very real-time

processing, so we can try to optimize this computation. Considering that N is a power of

two, we can rewrite 2.13 as

N−1∑
k=0

fke−ı2πnk/N =

N/2−1∑
k=0

f2ke−ı2πn(2k)/N +

N/2−1∑
k=0

f2k+1e−ı2πn(2k+1)/N

=

N/2−1∑
k=0

fevenke
−ı2πn(k)/(N/2) + e−ı2πk/N

N/2−1∑
k=0

foddk
e−ı2πnk/(N/2) (2.14)

Idea of equation 2.14 is that instead of compute Fourier transform of length N we compute

two Fourier transforms of length N/2 and merge them with O (N) steps. Due to Master

Theorem this yields in efficiency O
(
N log N

)
, which is much better than O

(
N2

)
and can be

computed almost real-time.

2.2.4 Implementation

If we want extract frequency ω from sampled function f (t), we need to sample f (t) with

sampling rate at least 2ω. This corresponds to Nyquist frequency - "is the highest frequency

that can be coded at a given sampling rate in order to be able to fully reconstruct the signal"

[Wei13c]. This is because the samples of different sine signals can be same when one signal

has a frequency greater than half of the sample rate. An example is given in the Figure 2.4.

CHAPTER 2. THEORETICAL BACKGROUND 19

Figure 2.4: Identical sampling of the different sine signals

Source: http://en.wikipedia.org/wiki/File:CPT-sound-nyquist-thereom-1.

5percycle.svg

Because of the Nyquist frequency, in the implementation of the Fourier transform access

is provided only to first half of Fk. Moreover, these Fks are not exact frequencies, but the

frequency bands centered on given frequency. The number and width of frequency bands

depends on the size of sample and on the sampling rate. Let the size of sample be N and

sampling rate ω. Due to Nyquist frequency we can reconstruct N/2 frequencies below ω/2,

so the size of frequency band is ω/N.

According to these facts, I write a simple implementation of the Fourier transform. With

given sample in mSampleData with length mSampleSize function getBand(int index)

computes amplitude of complex coefficient Findex.

1 p u b l i c f l o a t getBand (i n t i n d e x) {

2 f l o a t N = mSampleSize ;

3 f l o a t a = 0 ;

4 f l o a t b = 0 ;

5 f o r (i n t n = 0 ; n < N; n++) {

6 a += mSampleData [n] ∗ Floa tMa th . cos (2 ∗ Math . PI ∗ n ∗ i n d e x / N) ;

7 b += mSampleData [n] ∗ Floa tMa th . s i n (2 ∗ Math . PI ∗ n ∗ i n d e x / N) ;

8 }

9 f l o a t a m p l i t u d e = Floa tMa th . s q r t (a ∗ a + b ∗ b) ;

10 re turn a m p l i t u d e ;

11 }

Listing 2.1: Fourier transform

This is the Fourier transform with a complexity of O
(
N2

)
. Basic optimization can be done

by precomputing values of sin and cos, but even more optimization can be done by using

the Fast Fourier algorithm. I could implement it, but there is a good library with FFT called

Minim (http://code.compartmental.net/tools/minim/).

CHAPTER 2. THEORETICAL BACKGROUND 20

Real-time processing of captured audio signal can be done using relatively short samples

(sometimes called windows): recorded stream is divided to samples with given size N (a

power of two) and then the Fourier transform is applied to each sample. This is the way how

I can real-time detected presence of signal with some special frequency (audio ping). I need

to appropriately choose the value of N, because with greater N my processing will not be so

real-time, but with lesser N will be the number of frequency bands lesser and thus resolution

will be worse. Good values for me are between 512 and 8192.

In the Figure 2.5 there is a comparison of the results from Minim’s FFT and my Fourier

transform. There was a large ambient noise with very silent sound with frequency 17640Hz

(nobody from ten human test subjects has heard this sound with this volume). Sound samples

was recoded with my Sony Ericsson Xperia X10 mini smartphone with sample rate 44100Hz

and then processing by Fourier transforms with window size N = 8192. The first graph

shows processing of one window, the second graph shows processing of ten windows with

computed average amplitudes of each frequency. (Graphs are scaled and shifted for better

comparison.)

-2

0

2

4

6

8

10

12

14

0 5000 10000 15000 20000 25000

Minim 1 window
My Fourier 1 window

0

2

4

6

8

10

12

14

0 5000 10000 15000 20000 25000

Minim 10 windows
My Fourier 10 windows

Figure 2.5: Comparison of my Fourier transform and Minim’s FFT

We can see that computing averages is a good idea, because it reduces the background

noise and audio ping can be easily detected. However, recorded sample with size 8192 with

sample rate 44100Hz is not as real-time as I want. I experimented with different window

size, and even with N = 512 I obtained quite good results with computing averages.

After several days of experiments I estimated the best approach of detecting the audio

pings for me. Amplitudes obtained from FFT are scaled to logarithmic scale (similarly as

in the graphs above). For minimize measurement error and ambient noise fluctuations I

compute the ratio between amplitude of the frequency of the audio ping and sum of the

amplitudes over the whole frequency spectrum. This minimizes positive detection fail in

CHAPTER 2. THEORETICAL BACKGROUND 21

case of rapid increasing in ambient noise. So I analyze these ratios. I also compute the

floating average of last ten values due to minimize errors caused by fluctuations.

When I detected significantly increasing in ratio in comparison with an average ratio (more

than 33%) and there is no significantly decreasing in ambient noise (below 66% of average),

there is a very good chance of audio ping. During experiments this detects almost 95% of

transmitted audio pings with no false positive errors.

Here is a snippet of code for audio ping detection. Variable bandSum is for sum of the

apltitudes over the whole spectrum, field mBand is an array with frequencies (resp. bands) of

expected audio pings, fields mBandSumAverage and mBandAverage is for storing floating

average of last ten values. When audio ping is detected, controller receives frequency of this

audio ping and also a time when this sample has been captured.

1 p r o t e c t e d void p ro c e s s R e su l t sF r om F F T (long c a p t u r e T i m e) {

2 / / a v e r a g e t o t a l i n t e n t i s i t y o f whole s p e c t r u m

3 f l o a t bandSum = 0 ;

4 f o r (i n t i = 0 ; i < mFFT . s p e c S i z e () ; i ++) {

5 f l o a t a m p l i t u d e = mFFT . getBand (i) ;

6 f l o a t v a l u e = (f l o a t) Math . log10 (a m p l i t u d e ∗ a m p l i t u d e + 1) ; / / +1

f o r s a f e domain o f l o g

7 bandSum += v a l u e ;

8 }

9 . . .

10 / / check a u d i o p ing a t i n t e r e s t i n g f r e q u e n c y

11 f o r (i n t i = 0 ; i < mBand . s i z e () ; i ++) {

12 / / i g n o r e s i g n i f i c a t n l y d e c r e a s e n o i s e

13 i f (bandSum / mBandSumAverage > 2 / 3) {

14 f l o a t a v e r a g e R a t i o = mBandAverage . g e t (i) / mBandSumAverage ;

15 f l o a t c u r r e n t R a t i o = i n t e n s i t y [i] / bandSum ;

16 / / i n c r e a s e i n r a t i o i n d i c a t e t h e p r e s e n c e o f a u d i o p ing

17 i f (c u r r e n t R a t i o / a v e r a g e R a t i o > 1 . 3 3) {

18 m R e c o r d e r C o n t r o l l e r . s i g n a l F o u n d (mFrequency . g e t (i) , c a p t u r e T i m e) ;

19 }

20 }

21 }

22 }

Listing 2.2: Detection of the audio pings

Chapter 3

Android application

3.1 Architecture

This section is based mainly on [Goo13f], [Kon12] and my own experiences.

The elementary part of Android application is a unit called Activity. We can simply imag-

ine that Activity is like a controller or presenter from MVC/P design patterns. However, this

is not entirely true. Although the task of the Activity is obtaining data from lower levels of

application (models) and displaying them to the user, the Android application does not have

a classical view from MVC/P. Activity is something between the view and the controller/p-

resenter and we could say that Activity is the presentation layer of the application.

Another elementary unit of Android applications is the View. If the Activity is something

like controller/presenter from web MVC/P, then View is something like HTML. The View

can be created programmatically or can be written in XML file. Activity creates all its view

and then uses them for displaying and obtaining data.

With Android 3.0 Honeycomb Google has introduced Fragments. Fragments can be used

as a part of application layout for better modularization. It is especially helpful for designing

layout suitable both for tablets and smartphones. Fragments can encapsulate some logi-

cal unit, such as Views with methods related to them. Activity can use many fragments to

achieve responsive design and better user interface. Fragments bring a new layer between

Views and Activities. But I require that my application must be compatible with older ver-

sions of Android (especially Android 2.1 because my Xperia X10 mini has this version of

operating system). Fortunately, Google published Support Library which brings some of

the new API for the older platform versions. In case of fragments, this library comes with

support from API level 4 (Android 1.6). This is a good message for me and my requirements.

22

CHAPTER 3. ANDROID APPLICATION 23

In my application I use only one Activity which creates LocationFragmentwith the user

interface and methods for displaying and obtaining data. View associated with this fragment

presents to user basic status info about connection and also displays log messages from other

components of the application. The user can clear the log and start location query with a

remote device with two buttons. The user interface of my application is really simple in this

demo version. I chose the default light theme for design, the results are shown in the Figure

3.1.

(a) Android 2.1 (b) Android 2.3.3 (c) Android 3.0 (d) Android 4.2.2

Figure 3.1: User interface of my application

Model part of my application provides services such a managing network connection,

recording and playing audio, detecting the audio pings, computing distances between smart-

phones and application logger for writing logs to the file and/or display them to the user via

LocationFragment. I have used for this LocationManagerwith components AudioRecorder,

AudioPlayer and Logger. LocationManager handles network connection and communi-

cation according protocol itself.

MainActivity

LocationFragment LocationManager

AudioRecorder

AudioPlayer

Logger

View + Controller Model

Figure 3.2: Application schema

CHAPTER 3. ANDROID APPLICATION 24

3.2 Bluetooth and WiFi

Important part of my application is the communication between smartphones for short

distances. I do not need Internet and moreover, the Internet is not suitable for my purposes,

because not everyone user has an Internet connection (Edge or 3G or LTE) in his smartphone.

The prizes of roaming in abroad are too high and using the Internet with other than own

operator is not cheap.

My first choice is the Bluetooth. Bluetooth has been designed for exchanging data over

short distances, so it could be appropriate for me. But after more detailed examination of this

technology, I discovered many disadvantages for me. Here I briefly describe these problems.

Bluetooth networks are called piconets with master-slave structure. In each piconet there

is one master and up to 7 slaves. So in one piconet can be up to 8 devices connected through

master. This is not very usable for communication between each pair of nodes. In the

future, I like to use my application for localization of smartphones in networks with many

devices (scenarios from Introduction). So I will need Bluetooth network with more than 8

nodes. Bluetooth as a large-scale ad hoc networking technology is discussed in [VGSR05].

Available solutions are too complicated for my purposes. Moreover, with many piconets

in the same location there will be increasing in probability of mutual interference, this is

discussed in [How03].

Another problem is pairing devices. When connection is made for the first time, pairing

request is automatically presented to the user. And without user’s confirmation of pairing

there is no official way for creating Bluetooth communication channel between two devices

with older Android than v2.3.3 (API 10).

In API 10 there has been added a support for insecure RFCOMM BluetoothSocket with

BluetoothDevice’s method createInsecureRfcommSocketToServiceRecord(uuid)

[Goo13c]. But as I mentioned before, I want to support devices with API 7 and latter.

Because these big disadvantages I decided to forget about Bluetooth. So I have to make

connection via WiFi. I hope that at least one device in test scenario has a capability for

creating WiFi Hotspot (support has been added in Android 2.2) or there is an available WiFi

network. Note: I do not use WiFi Direct due to lack of the support on Android older than

v4.0.

In my application the LocationManager is responsible for managing communication

between devices. First of all, I check if the device is connected to a WiFi network. If yes, I

CHAPTER 3. ANDROID APPLICATION 25

find out the local IP address[Goo13e] and present it to the user via LocationFragment and

View.

1 WifiManager wi f iManager = (WifiManager) c o n t e x t

2 . g e t S y s t e m S e r v i c e (C o n t e x t . WIFI_SERVICE) ;

3 W i f i I n f o w i f i I n f o = wif iManage r . g e t C o n n e c t i o n I n f o () ;

4 i f ((w i f i I n f o != n u l l) && (w i f i I n f o . g e t I p A d d r e s s () != 0)) {

5 i n t i p = w i f i I n f o . g e t I p A d d r e s s () ;

6 S t r i n g i p S t r i n g = S t r i n g . f o r m a t ("%d.%d.%d.%d " , (i p & 0 x f f) ,

7 (i p >> 8 & 0 x f f) , (i p >> 16 & 0 x f f) , (i p >> 24 & 0 x f f)) ;

8 . . .

9 }

Listing 3.1: Finding out local WiFi IP address

The next step is managing client and server part of the application, resp. connection. I

need to create socket for both client and server. It is really easy, when I want to create socket

for client connected to the server, everything I need is a server’s IP address and port. Every

work does the Java class Socket for me. This is a powerful class and saves my work.I

also specifies that kernel sends keepalive messages. Then I create BufferedReader and

BufferedWriter for bidirectional communication. After the end of communication, I have

to close both the reader and writer and also the socket.

1 mSocket = new So ck e t (s e r v e r A d d r e s s , SERVER_PORT) ;

2 mSocket . s e t K e e p A l i v e (t rue) ;

3 mIn = new B u f f e r e d R e a d e r (new I n p u t S t r e a m R e a d e r (

4 mSocket . g e t I n p u t S t r e a m ())) ;

5 mOut = new B u f f e r e d W r i t e r (new O u t p u t S t r e a m W r i t e r (

6 mSocket . g e t O u t p u t S t r e a m ())) ;

7 . . .

8 mIn . c l o s e () ;

9 mOut . c l o s e () ;

10 mSocket . c l o s e () ;

Listing 3.2: Client socket

When I create server socket, I need only the number of port. I also set reusing of the

address. And then while server socket is listening, it accepts a new client’s connection and

returns socket for remote client. Work with this socket is similar as work with client socket in

previous part. So I create reader and writer and then I do not forget to close them and remote

client socket, too. And it is also necessary to catch SocketException, resp. IOexception.

1 mServe rSocke t = new S e r v e r S o c k e t (SERVER_PORT) ;

2 mServe rSocke t . s e t R e u s e A d d r e s s (t rue) ;

CHAPTER 3. ANDROID APPLICATION 26

3 whi le (l i s t e n i n g) {

4 mRemoteCl ien tSocke t = mServe rSocke t . a c c e p t () ;

5 mRemoteCl ien tSocke t . s e t K e e p A l i v e (t rue) ;

6 mIn = new B u f f e r e d R e a d e r (new I n p u t S t r e a m R e a d e r (

7 mRemoteCl ien tSocke t . g e t I n p u t S t r e a m ())) ;

8 mOut = new B u f f e r e d W r i t e r (new O u t p u t S t r e a m W r i t e r (

9 mRemoteCl ien tSocke t . g e t O u t p u t S t r e a m ())) ;

10 . . .

11 mIn . c l o s e () ;

12 mOut . c l o s e () ;

13 mRemoteCl ien tSocke t . c l o s e () ;

14 }

15 . . .

16 mServe rSocke t . c l o s e () ;

Listing 3.3: Server socket

3.3 Audio recording and playing

I can record raw audio from microphone with class AudioRecord by polling object using

one of three methods read(). The AudioRecord object initializes its own associated buffer

with size specified during the construction, so it can record data for a while without reading

them.

I can determine the minimum size of this buffer with AudioRecord.getMinBufferSize(

sampleRateInHz, channelConfig, audioFormat), with parameters describing config-

uration of desired record.

ChannelConfig is one of the CHANNEL_IN_MONO or CHANNEL_IN_STEREO, audioFormat

can be ENCODING_PCM_16BIT or ENCODING_PCM_8BIT, but only the first mentioned is a

guaranteed to be supported by devices[Goo13a]. The last parameter is sample rate expressed

in Hertz. Currently 44100Hz is the only rate guaranteed to work on all devices, but other

rates (e.g. 22050, 16000, and 11025) may also work[Goo13b]. In the Listing 3.4 there is a

demonstration of using AudioRecord (also with processing recorded data using FFT).

1 m B u f f e r S i z e I n B y t e s = AudioRecord . g e t M i n B u f f e r S i z e (SAMPLE_RATE_IN_HZ ,

2 CHANNEL_CONFIG, AUDIO_FORMAT) ;

3 i f ((m B u f f e r S i z e I n B y t e s == AudioRecord .ERROR_BAD_VALUE)

4 | | (m B u f f e r S i z e I n B y t e s == AudioRecord .ERROR)) {

5 mAudioRecorder = new AudioRecord (AUDIO_SOURCE, SAMPLE_RATE_IN_HZ ,

6 CHANNEL_CONFIG, AUDIO_FORMAT, m B u f f e r S i z e I n B y t e s) ;

7 i f (mAudioRecorder . g e t S t a t e () == AudioRecord . STATE_INITIALIZED) {

8 mAudioRecorder . s t a r t R e c o r d i n g () ;

CHAPTER 3. ANDROID APPLICATION 27

9 whi le (mRecording) {

10 long c a p t u r e T i m e = System . c u r r e n t T i m e M i l l i s () ;

11 i n t s h o r t C o u n t = 0 ;

12 whi le (s h o r t C o u n t < mSampleSize) {

13 s h o r t C o u n t += mAudioRecorder . r e a d (aud ioData , s h o r t C o u n t ,

14 mSampleSize − s h o r t C o u n t) ;

15 }

16 mFFT . f o r w a r d (a u d i o D a t a) ;

17 p ro c e s s R e su l t sF r om F F T (c a p t u r e T i m e) ;

18 }

19 mAudioRecorder . s t o p () ;

20 mAudioRecorder . r e l e a s e () ;

21 }

22 }

Listing 3.4: Audio recording

Obviously, audio recording and analysing will be running in a separate thread and com-

munication with other threads (especially thread associated with LocationManager) will

be based on messages and Looper, see Section 3.4.

For playing PCM audio resource there is an AudioTrack class. Audio data are pushed to

the audio hardware using one of the write() methods of AudioTrack. The instance of this

class can operate in two modes: streaming and static. Streaming mode is suitable for playing

long audio, which can not fit into the memory or it is received or generated while previous

chunk is playing. Static mode is suitable for short sounds (like audio pings) and for sounds

that need to be played with smallest possible latency (like audio ping).

Similarly as AudioRecord, also AudioTrack instance has associated buffer for playing

sound. In static mode, the size of this buffer is the maximum size of playing sound. Also

I can determine the minimum size of this buffer with AudioTrack.getMinBufferSize(

sampleRateInHz, channelConfig, audioFormat), with parameters describing config-

uration of desired track.

My audio pings are short audio chunks, I generate their samples with Math.sin(). The

rest of the buffer I fill with zeros, then write this audio data to the AudioTrack and play

sound.

Fortunately, I do not have to generate audio data every time when I want to play audio ping.

I can simply use mAudioTrack.reloadStaticData() for reloading static data in audio

hardware and then play it again.

CHAPTER 3. ANDROID APPLICATION 28

1 m B u f f e r S i z e I n B y t e s = AudioTrack . g e t M i n B u f f e r S i z e (SAMPLE_RATE_IN_HZ ,

2 CHANNEL_CONFIG, AUDIO_FORMAT) ;

3 i f ((m B u f f e r S i z e I n B y t e s != AudioTrack .ERROR_BAD_VALUE)

4 && (m B u f f e r S i z e I n B y t e s != AudioTrack .ERROR)) {

5 m B u f f e r S i z e I n B y t e s = DEFAULT_BUFFER_SIZE_IN_BYTES ;

6 mAudioTrack = new AudioTrack (AudioManager . STREAM_MUSIC,

7 SAMPLE_RATE_IN_HZ , CHANNEL_CONFIG, AUDIO_FORMAT,

8 m B u f f e r S i z e I n B y t e s , AudioTrack . MODE_STATIC) ;

9

10 s h o r t [] a u d i o D a t a = new s h o r t [m B u f f e r S i z e I n B y t e s / 2] ;

11 f o r (i n t i = 0 ; i < mSampleSize ; i ++) {

12 a u d i o D a t a [i] = (s h o r t) (AMPLITUDE ∗ Math . s i n ((double) mFrequency

13 ∗ 2 ∗ Math . PI ∗ i / SAMPLE_RATE_IN_HZ)) ;

14 }

15 f o r (i n t i = mSampleSize ; i < a u d i o D a t a . l e n g t h ; i ++) {

16 a u d i o D a t a [i] = 0 ;

17 }

18 mAudioTrack . w r i t e (aud ioData , 0 , a u d i o D a t a . l e n g t h) ;

19 mAudioTrack . p l a y () ;

20 . . .

21 mAudioTrack . r e l e a s e () ;

22 }

Listing 3.5: Audio playing

3.4 Message loop

Android supports message loop – construct waiting for dispatching Messages or Runnables

ready for execution. By default, only thread with message loop is the UI thread and it is used

for interaction with UI from other threads than UI thread. Of course, I can associate message

loop with some thread by calling Looper.prepare() and Looper.loop() in this thread.

For communication with message loop there is Handler class[Goo13d]. Handler in-

stances allows us to send messages (or Runnables) to the MessageQueue associated with

thread in which has been the Handler object created. So if I want to create a new thread

with message loop and Handler, I can do it this way:

1 p u b l i c Hand le r mHandler ;

2 . . .

3 Thread workerThread = new Thread (new Runnable () {

4 @Override

5 p u b l i c vo id run () {

CHAPTER 3. ANDROID APPLICATION 29

6 Looper . p r e p a r e () ;

7 mHandler = new Hand le r () ;

8 Looper . l oop () ;

9 }

10 }) ;

11 workerThread . s t a r t () ;

Listing 3.6: Thread with message loop

Interaction with workerThread can be done using one of post*() methods, such as

post(runnable), postAtTime(runnable, uptimeMillis) or postDelayed(runnable,

delayMillis).

1 mHandler . p o s t (new Runnable () {

2 @Override

3 p u b l i c vo id run () {

4 . . .

5 }

6 }) ;

Listing 3.7: Interaction with Handler

Message loop allows me to design control logic of distance measurement including send-

ing audio pings, processing detected audio pings, network communication between smart-

phones and evaluating the results.

3.5 Communication protocol of measurement

In my application two devices will communicate over the WiFi and will play and listen

for audio pings during measurement. All steps of this measurement must have exact order,

so I introduce the first version of communication protocol of measurement between these

smartphones.

1. the client makes a connection to the server

2. the client sends message M1 to the server and estimate local time ts0

3. the server sends timestamp T to the client

4. the client received server’s timestamp at local time t1, computes server’s current time

as T + (t1 − t0)/2 and offset ∆t to the local time (Cristian’s algorithm)

5. (optional) repeat steps 2 – 4 for better accuracy of time synchronization

6. the server sets time limit for audioping detection and sends message M2 to the client

7. the client plays audio ping and estimate time tc

CHAPTER 3. ANDROID APPLICATION 30

8. the server detects audio ping or timelimit, estimates time ts and sends ts to the client or

informs client about the time limit exceeding

9. if detection of audio ping was correct, the client computes travelling time of audio ping

as tt = ts − (tc + ∆t) and sends tt to the server; starts new measurement otherwise

The individual steps of this protocol can be simply programmed as the Runnable objects

and processed in the given order with the message loop associated with LocationManager’s

thread. Time limit for audio ping detection can be set with mHandler.postDelayed(r,

timelimit) in step 6. When detection of audio ping fails, then after timelimit exceeds,

Runnable r in the message loop will be processed. When detection of audio ping is correct,

then runnable for processing audio ping signal found action will be executed before runnable

for time limit and thus runnable for time limit can be ignored (first runnable sets some flag

for correct detection).

3.6 Experiments and problems

First of all, I programmed classes MainActivity, LocationFragment and AudioRecord

for testing purposes. Audio pings were generated in Audacity and played from the notebook.

In the beginning, audio ping recognition was very simple and dummy, I checked only am-

plitudes of audio ping’s frequency and if this amplitude was greater than some threshold, I

figured out this as the audio ping. This approach does not work as good as I want on my

Xperia X10 mini, because some audio pings were not recognized and some fluctuations in

ambient noise were recognized as audio pings.

I experimented with different durations of audio pings and different sizes of FFT’s window,

but there was detection fails with short durations and small sizes and performance and real-

time problems with long durations and large sizes. After many experiments and consultation

with my supervisor I figure out new approach described in Subsection 2.2.4. Described

method and implementation works great, recognition’s percentage of audio pings is above

95% in the test environment and detection of ambient noise as the audio pings is almost zero.

The next step was the implementation of AudioPlayer. For obvious reasons AudioTrack

is used in the static mode with 44100Hz sample rate, 16bit PCM encoding and mono channel

configuration. At first it seemed to be all OK with playing audio pings, but after a while I

noticed problems with repeated playing AudioTrack’s buffer. The correct way of replaying

is to call AudioTrack.stop() before AudioTrack.reloadStaticData(). With this fix

replaying of audio pings works perfect.

CHAPTER 3. ANDROID APPLICATION 31

With working classes AudioRecord and AudioPlayer I tried out to estimate the latency

of playing sound in static mode of AudioTrack. I was really disappointed, because the

latencies was approximately 100 milliseconds. This is indeed a too great value for my pur-

pose. With a 100 ms inaccuracy in audio playing measurements of travelling times will be

also too inacurate regardless of the time synchronization. I have to make small changes in

my approach and communication protocol.

3.7 Enhanced protocol and results

Latencies (and especially inaccuracies) in audio playing is good reason for a change in

my approach. But it is not so bad, smartphone can detect its own audio ping and estimate

time, when audio ping was really played. So I can switch to model more similar to the active

sonar. First smartphone sends audio ping to the second smartphone. When second device

receives this audio ping, plays own audio ping (at another frequency). Both devices can

detect these two audio pings and estimate times, when these pings were played or received.

In this measurement synchronizing clock are not necessary, because local time differences

are important, not exact local times. So I introduce enhanced protocol.

1. the client makes a connection

2. both the server and the client starts recorder

3. the client sends message M1 to the server, the server sends the same message to the

client1

4. both the client and the server sets time limit for audioping detection

5. the client waits d ms2 and plays audioping at frequency f1

6. both the server and the client detects audiopings or time limits, estimates time ts1 , tc1 ,

sets time limit for second audio ping detection

7. the server plays audioping at frequency f2

8. both the server and the client detects audiopings or time limits, estimates time ts2 , tc2

9. N times repeat steps 3 – 8

10. both the client and the server stops recorder

11. the server sends all ts2 − ts1 to the client over the WiFi

12. the client sends all tc2 − tc1 to the server over the WiFi

13. both the server and the client validates values due to time limits and calculates average

value of
(
tc2 − tc1

)
−

(
ts2 − ts1

)
and standard deviation s

14. the server restarts listening and waiting for new clients

1reading from Reader is blocking operation, so it can be used as such a synchronization of the measurement

beginning
2for a small pause between measurements

CHAPTER 3. ANDROID APPLICATION 32

In enhanced protocol, devices repeat measurements and computes averages for minimize

inaccuracies. Standard deviation is some indicator of the accuracy of this series of measure-

ments. Inaccuracy in the single measurement is really large, because all the times ts and tc

are approximately 150 – 350 ms, but their difference should be approximately 5 – 100 ms.

So differences are approximately the same as inacuraccies in single measurements. In single

measurements, it is often possible that estimated travelling time is less than zero, which is

not very good.

I hoped that repeated measurements and their averages minimizes inaccuracies. I experi-

mented with different numbers of repetition, results are presented in graph below. Distance

between smartphones (SE Xperia X10 mini and HTC Desire S) is 2 meters, in the graph are

displayed evaluated distances from travelling times of audio pings also with the error bars

(standard deviation).

-30

-20

-10

0

10

20

30

40

50

0 10 20 30 40 50

ev
al
u
a
te
d
d
is
ta
n
ce

(m
)

number of measurements

(a) evaluated values

-20

-10

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

ev
al
u
at
ed

d
is
ta
n
ce

(m
)

number of measurements

(b) filtered values

Figure 3.3: The number of measurements and impact on the inaccuracy

CHAPTER 3. ANDROID APPLICATION 33

With increasing in the number of experiments, first there is expected decreasing in the

inaccuracy, but then inaccuracy raises again. This is because with more measurements there

is greater chance of occurrence of the measurement error. So I filtered out values with varia-

tion from average is greater than 3s. Results are shown in the Figure 3.3(b). As I expected,

this filtration brings better results especially for a greater number of measurements. But 50

measurements are too slow for practical application. Fortunately, also 20 – 25 measurements

have usually not so large inaccuracy.

Next I tried another experiment. I wanted to figure out the dependency of inaccuracy and

distance between smartphones. For each distance I run at least 5 measurement cycles (with

25 single measurements in each cycle). Results are not encouraging, for distances up to 5

meters there were inaccuracies about 5 – 10 meters, for longer distances (up to 10 meters)

inaccuracies were greater even more (sometimes up to 50 meters). This is because detection

of audio pings is good for short distances up to 5 meters, but for greater distances there is an

increasing in probability of detection failure. Results obtained from more than a thousand of

measurements are presented in the Figure 3.4.

-20

-15

-10

-5

0

5

10

15

0 1 2 3 4 5

ev
al
u
a
te
d
d
is
ta
n
ce

(m
)

real distance (m)

measurement
expectation

Figure 3.4: The distance between smartphones and impact on the inaccuracy

One positive message of this graph is that the real distance always lies within standard

deviation of the mean. So my measurements fulfil my physical and statistical expectations,

but. . . Because great inaccuracies this is not suitable for precise localization of smartphones.

Even more, this is not suitable for any localization of smartphones, because with evaluated

values and deviations only relevant information from measurements is that if the second

smartphone is closer than 5 meters, then its distance is for example somewhere between −3

and 8 meters.

CHAPTER 3. ANDROID APPLICATION 34

Major contribution to inaccuracies is caused by thread scheduler, Dalvik Virtual Machine

and operating system itself. Android is not a real-time operating system, and at critical

moments there is not guaranteed something like maximum latency. Moreover, this latency is

compouded by Dalvik VM and Java itself.

My application estimated times in AudioRecorder’s thread, but when audio hardware

is recording sound and this thread is paused, estimation of the time will be delayed until

AudioRecorder’s thread will resume. And this delay depends on many parameters, such as

the system load and strategy of scheduler. And during long measurements, this parameters

can significantly affect latency in the estimation of the time when audio chunk has been

captured.

However, the audio ping detection works almost with all the tested smartphones: Sony

Ericsson Xperia X10 mini, Samsung Galaxy 5, Samsung Galaxy Mini, Samsung Galaxy S2

and HTC Desire S. This detection does not work only with Google Nexus One, because this

smartphone has an extra microphone for filtering audio input and it filters high frequencies

from recorded sound.

The audio ping detection can be useful in other applications. For example it can be a

medium for short-distance communication or for sending short notification between smart-

phones. Of course, the transfer rate will be much lesser than transfer rates of WiFi, Bluetooth

or NFC, but there is advantage in very simple broadcastig. Moreover, with parallel transmit-

ted audio pings at distinct frequencies will be the transfer rate greater. This can be useful for

example in supermarkets. There can be one transmitter in each department of supermarket

and it can inform customers in this department about current product’s discounts.

Another application can be an emulation of serial port for smartphones. Many devices

still use RS232 interface for communication, but these devices can not be simply connected

to the smartphones or tablets. With audio analysis, it RS232 interface can be emulated with

Jack port of smartphones. Or we can use audio analysis for recognition Morse code and

translation Morse code into Latin alphabet chars.

Conclusion

In this bachelor thesis I deal with possible approaches for short distance localization of

mobile devices, which is not based on GPS and has minimal prerequisites. Due to prereq-

uisites, most of available localization methods are not suitable, because they require some

external resources, such as Internet connection, access to database of the mobile cells or

WiFi access points (or GPS satellites).

After research of available technologies and features of smartphones, I decided to use

sound. There are two possible ways how to use sound for measuring distances between

smartphones, first is based on sound strength, second on sound speed. At the first touch the

sound intensity looks like a solution for me. But on closer examination this approach has

also many disadvantages such as different sensitivities of microphones, unknown power of

loudspeakers, silencing the transmitted sound and so on. However, I described methods how

some of these disadvantages can be partly eliminated, but not totally eliminated.

The second approach based on the sound speed and audio pings seemed to be better,

theoretically with minimal inaccuracies. I also described several methods for reconstruction

real positions from known distances between smartphones. I choose this approach for more

detailed examination.

I examined and described basic algorithms for clock synchronization with their advantages

and disadvantages for my purposes. I also dealt with sound analysis, especially Fourier series

and transforms. I also implemented Fourier transform and proposed method for audio ping

detection. This detection works well with high frequency audio pings for short distances

without influencing close people and dogs.

Next I developed testing Android application for a demonstration of my approach. During

many experiments and tests I found several problems, most of them I also solved, but main

problem with inaccuracy I have not solved yet despite considerable effort. But good message

is that my sound detection could be used for other purposes such as a way of communication

advantageous in some situations.

35

Bibliography

[BK11] Radoslav Böhm and Martin Klimo. Matematické metódy vo fyzike. http://

www.ddp.fmph.uniba.sk/~bohm/metody/skriptaA4.pdf, 2011. [Online;

accessed 22-May-2013].

[Cox69] H. S. M. Coxeter. Introduction to Geometry, chapter 6.6 The Circle of Apollo-

nius. John Wiley & Sons, inc, 2nd edition, 1969.

[DP90] Peter H. Dana and Bruce Penrod. The Role of GPS in Precise Time and

Frequency Dissemination. http://ilrs.gsfc.nasa.gov/docs/timing/

gpsrole.pdf, 1990. [Online; accessed 19-May-2013].

[Goo13a] Google. Android Developer Reference, AudioFormat. http://developer.

android.com/reference/android/media/AudioFormat.html, 2013.

[Online; accessed 26-May-2013].

[Goo13b] Google. Android Developer Reference, AudioRecord. http://developer.

android.com/reference/android/media/AudioRecord.html, 2013.

[Online; accessed 26-May-2013].

[Goo13c] Google. Android Developer Reference, BluetoothDevice. http://developer.

android.com/reference/android/bluetooth/BluetoothDevice.html,

2013. [Online; accessed 26-May-2013].

[Goo13d] Google. Android Developer Reference, Handler. http://developer.

android.com/reference/android/os/Handler.html, 2013. [Online; ac-

cessed 27-May-2013].

[Goo13e] Google. Android Developer Reference, WifiInfo. http://developer.

android.com/reference/android/net/wifi/WifiInfo.html, 2013.

[Online; accessed 13-May-2013].

[Goo13f] Google. Android Developers, Getting Started. http://developer.android.

com/training/index.html, 2013. [Online; accessed 24-May-2013].

36

BIBLIOGRAPHY 37

[How03] Ivan Howitt. Mutual interference between independent bluetooth piconets. Ve-

hicular Technology, IEEE Transactions on, 52(3):708–718, 2003.

[Kon12] Matěj Konečný. Vyvíjíme pro Android: První krůčky. http://www.zdrojak.

cz/clanky/vyvijime-pro-android-prvni-krucky/, 2012. [Online; ac-

cessed 24-May-2013].

[Krz09] Paul Krzyzanowski. Clock Synchronization, Rutgers University – CS 417: Dis-

tributed Systems. http://www.cs.rutgers.edu/~pxk/rutgers/notes/

content/08-clocks.pdf, 2009. [Online; accessed 19-May-2013].

[Liu10] Shu Liu. Analyze the frequency and strength of sound in Android.

http://netscale.cse.nd.edu/twiki/pub/Main/Projects/Analyze_

the_frequency_and_strength_of_sound_in_Android.pdf, 2010.

[Online; accessed 13-May-2013].

[VGSR05] E. Vergetis, R. Guerin, S. Sarkar, and J. Rank. Can bluetooth succeed as a large-

scale ad hoc networking technology? Selected Areas in Communications, IEEE

Journal on, 23(3):644–656, 2005.

[Wei13a] Eric W. Weisstein. Discrete fourier transform. http://mathworld.wolfram.

com/DiscreteFourierTransform.html, 2013. [From MathWorld–A Wol-

fram Web Resource; accessed 23-May-2013].

[Wei13b] Eric W. Weisstein. Fast fourier transform. http://mathworld.wolfram.com/

FastFourierTransform.html, 2013. [From MathWorld–A Wolfram Web Re-

source; accessed 23-May-2013].

[Wei13c] Eric W. Weisstein. Fast fourier transform. http://mathworld.wolfram.

com/NyquistFrequency.html, 2013. [From MathWorld–A Wolfram Web Re-

source; accessed 23-May-2013].

[Wei13d] Eric W. Weisstein. Fourier series. http://mathworld.wolfram.com/

FourierSeries.html, 2013. [From MathWorld–A Wolfram Web Resource;

accessed 23-May-2013].

[Wei13e] Eric W. Weisstein. Fourier transform. http://mathworld.wolfram.com/

FourierTransform.html, 2013. [From MathWorld–A Wolfram Web Re-

source; accessed 23-May-2013].

