
Comenius University, Bratislava

Faculty of Mathematics, Physics and Informatics

Alignment of Nanopore Sequencing
Reads

Bachelor Thesis

2016
Rastislav Rabatin

Comenius University, Bratislava

Faculty of Mathematics, Physics and Informatics

Alignment of Nanopore Sequencing
Reads

Bachelor Thesis

Study programme: Informatics
Study field: 2508 Informatics
Department: Department of Computer Science
Supervisor: Mgr. Tomáš Vinař,PhD.

Bratislava, 2016
Rastislav Rabatin

28804922

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Rastislav Rabatin
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Alignment of Nanopore Sequencing Reads
Zarovnávanie čítaní z nanopórového sekvenovania

Cieľ: Nanopórové čítania sú postupnosti elektrických signálov, ktoré možno približne
preložiť do DNA sekvencií zhruba s 30% chybovosťou. Následne tieto približné
DNA sekvencie zarovnávame k iným sekvenciám, no vysoká chybovosť
zabraňuje použitiu efektívnych algoritmov alebo znižuje ich senzitivitu. Cieľom
práce je navrhnúť nové prístupy ku zarovnávaniu nanopórových čítaní, ktoré
obídu nespoľahlivý krok prekladania signálov do DNA sekvencií.

Vedúci: Mgr. Tomáš Vinař, PhD.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 28.10.2015

Dátum schválenia: 29.10.2015 doc. RNDr. Daniel Olejár, PhD.
garant študijného programu

študent vedúci práce

28804922

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Rastislav Rabatin
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: Computer Science, Informatics
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Alignment of Nanopore Sequencing Reads

Aim: Nanopore reads are sequences of electrical signals that can be approximately
translated into DNA sequences with about 30% error rate. Usually these
approximate DNA sequences are then aligned to other DNA sequences,
however high error rates prevent the use of efficient and sensitive algorithms.
The goal of the thesis is to design new approaches to nanopore sequence read
alignment, bypassing unreliable translation of signals into DNA sequences.

Supervisor: Mgr. Tomáš Vinař, PhD.
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

prof. Ing. Igor Farkaš, Dr.

Assigned: 28.10.2015

Approved: 29.10.2015 doc. RNDr. Daniel Olejár, PhD.
Guarantor of Study Programme

Student Supervisor

iii

Acknowledgement

First, I would like to thank my supervisor Mgr. Tomáš Vinař,PhD. for his guidance
and his patience mainly during the last days.

I am also thankful to doc. Mgr. Bronislava Brejová, PhD. and Mgr. Vladimír Boža
for their helpful advice.

Special thanks to my family and friends for their support.

iv

Abstrakt

Nanopórové sekvenovanie je DNA sekvenovacia technológia najnovšej generácie sekven-
ovacích technológií. Produkuje veľmi dlhé čítania, ktoré sú však náchylné na chyby. V
tejto bakalárskej práci sa zaoberáme zarovnávaním týchto čítaní k referenčnej sekvencii.

Zarovnávanie nanopórových čítaní sa väčšinou robí v dvoch krokoch. Najprv sa
rekonštruuje DNA sekvencia z dát, ktoré sú vyprodukované počas nanopórového sekven-
ovania, a potom sa použije nejaký bežný algoritmus na zarovnávanie sekvencií. Proces
počas, ktorého sa rekonštruuje DNA sekvencia je náchylný na chyby, a teda počas toho
sa stratí množstvo informácie. Navrhujeme prístup, ktorý sa snaží eliminovať túto
stratu informácií a využiť ju počas zarovnania.

Kľúčové slová: skryté Markovove modely, nanopórové sekvenovanie, zarovnávanie
čítaní

v

Abstract

Nanopore sequencing is a DNA sequencing technology of the most recent generation.
It is known by its ability to produce long reads which are prone to errors. In this
bachelor thesis we study the alignment of these high error rate reads.

The alignment of the nanopore reads is usually performed in two steps. First, we
need to infer the DNA sequence from the data produced by the nanopore sequencing
device and then we use a general-purpose alignment algorithm. However, the process
of DNA sequence inference is prone to errors. Therefore much information is lost
during this process. We propose an approach which tries to eliminate the loss of this
information and tries to use it for the alignment.

Keywords: hidden Markov models, nanopore sequencing, alignment of reads

Contents

Introduction 1

1 DNA Nanopore Sequencing 3
1.1 DNA . 3
1.2 DNA Sequencing . 3
1.3 Nanopore Sequencing Technology . 4
1.4 Kmer probability model . 7

2 Hidden Markov Model 8
2.1 Definitions . 8
2.2 Graph Representation . 9
2.3 HMM as a Generative Model . 9
2.4 HMM and the Nanopore Sequencer . 9
2.5 Viterbi algorithm . 10
2.6 The Forward Algorithm . 11
2.7 Sampling from the Conditional Probability Distribution 11

3 HMM for Modelling MinION Data 14
3.1 Model Without Errors . 14
3.2 Event Detection Errors . 15
3.3 Modelling Event Detection Errors in HMM 16

3.3.1 Split Events . 16
3.3.2 Skipped events . 16
3.3.3 Transition Probabilities . 17

3.4 Profile HMMs . 17
3.4.1 Adaption of the Profile HMM to Our Problem 18

4 Alignment of Sequences 20
4.1 Motivation . 20
4.2 Problem Statement . 20
4.3 Needleman–Wunsch Algorithm . 22

vi

CONTENTS vii

4.4 Smith–Waterman Algorithm . 23
4.5 Seed and Extend . 23

4.5.1 Our approach to finding seeds 24

5 Implementation And Experiments 25
5.1 Preprocessing and the Data Set Analysis 25

5.1.1 BWA-MEM . 25
5.1.2 FAST5 . 27
5.1.3 Data Set . 27

5.2 Hidden Markov Model Implementation 28
5.2.1 Arithmetics with Very Small Numbers 29
5.2.2 Encoding k-mers . 31
5.2.3 The Translation of State Sequences into DNA Sequences 31

5.3 Pipeline For Analyzing Samples . 32
5.3.1 Base Calling . 32
5.3.2 Comparison of k-mer Sets . 33

5.4 Libraries . 38

Conclusion 39

Appendix A 43

List of Figures

1.1 Overview of the nanopore sequencing 5
1.2 The segmentation of individual current measurements into events. . . . 6

3.1 Typical profile HMM . 18

5.1 Identity and read lengths. 28
5.2 Translation of the state sequence to DNA sequence. 32
5.3 Boxplots for identity between reference and samples. 34
5.4 Venn diagrams for k-mer sets . 35
5.5 A sample plots for a random chosen read for k = 9 and k = 14. 36
5.6 Kmer sensitivity for a random chosen read and k ∈ {9, . . . , 30}. 37

viii

List of Tables

5.1 Basic statistics of the whole data set 28

ix

Introduction

Nanopore sequencing technology is a third generation DNA sequencing technology. It
is based on measurements of electric current in the nanopore. When the DNA passes
through the nanopore, it alters the electric current inside the nanopore. This change
in current is measured and based on this measurements we can determine the sequence
of DNA that passed through the nanopore. Unfortunately, this step of translation of
electric current into DNA is very inaccurate.

The common task in bioinformatics is to align DNA sequences. There are many
known algorithms that are used to solve this problem. Usually, heuristic algorithms
are used because the exact algorithms are very slow.

The alignment of nanopore sequences is usually done in two steps. We translate the
sequences of electric current levels into DNA sequences and then we use of the com-
mon algorithms to align these sequences between each other. This is quite inefficient
because we loose a lot of information in the first step since the translation algorithm is
inaccurate. Also the alignment algorithm is not exact and introduces additional error.
We propose to merge these two tasks into a single step and use the information from
the electric current measurements also in the alignment algorithm.

Our final goal is to align one nanopore read against a large database of reads. Our
approach is to use a well-known paradigm, seed and extend (Section 4.5), to solve this
problem. The usual approach for seeding this algorithm is to find the maximum exact
matches. In our approach, we want to use a probabilistic model of the nanopore reads
to find good seeds for our algorithm. This thesis is mainly focused on designing this
probabilistic model, sampling DNA sequences from this model and finding the similar
regions between the sampled sequences which can be used for seeding our alignment
algorithm.

In the first chapter, we describe the nanopore sequencing technology in more detail.
Second chapter describes hidden Markov models and the basic algorithms required in
this thesis. In the third chapter, we describe the design of hidden Markov model for
nanopore reads. Fourth chapter explains the problem of alignment of sequences and
gives an overview of the algorithms that are used to solve this problem. We also explain
the seed and extend paradigm and how to incorporate our hidden Markov model into
this paradigm. Finally, in the last chapter we discuss the implementation details of

1

Introduction 2

our model and algorithms. We also discuss the experiments that we have done and
analyze the results from these experiments. We mainly focus on analyzing the sampled
sequences from our model which helps us to determine the good parameters for our
heuristic algorithm for alignment of nanopore reads based on seed and extend.

Chapter 1

DNA Nanopore Sequencing

At first, we will give the brief introduction to bioinformatics and DNA sequencing.
Then we will explain how nanopore sequencing technology works and compare this
technology to other DNA sequencing technologies. We also describe the MinION se-
quencer from which we had data and what kind of data it provided us.

1.1 DNA

Most of the genetic instructions of living organism are stored in deoxyribonucleic acid
(DNA). These instructions are used in many important processes of organisms such as
protein synthesis. DNA is composed of two strands (template and complement) and
has a shape of helix. Each strand is composed of molecules called nucleotides. There
are four nucleotides (bases) – adenine, cytosine, thymine, guanine. Consequently,
we represent each DNA strand as a sequence of letters A, C, T, G. When we know
the sequence of one strand we can easily determine the sequence on the other strand
by using the base pairing rules. Adenine (A) always pairs with thymine (T) and
cytosine (C) always pairs with guanine (G) and vice versa.

1.2 DNA Sequencing

DNA sequencing is a process of determining the order of nucleotides in the DNA
sequence from biological samples. There are many technologies that are used for se-
quencing DNA. Currently, we are working with the third generation of sequencing
technologies.

One of the main problems with DNA sequencing is that no sequencing technology
is able to read the whole sequence at once. Instead, sequencers produce many short
subsequences of the DNA sequence called reads. The original sequence is then recon-
structed by a heuristic algorithm combining individual reads into a longer sequence.

3

CHAPTER 1. DNA NANOPORE SEQUENCING 4

Sequencing technologies from the second generation were able to read only approxi-
mately 400 base pairs (bp) in a single read which is much shorter than a typical genome
size. Human genome has approximately 3 Gb (gigabase pairs). With the new nanopore
sequencing technology, we can sequence up to 100 kbp in a single read.

Number and length of the reads is not the only problem with sequencing. All
sequencing technologies are prone to errors. Sequencer are not perfect. While sequenc-
ing technologies from the first and second generation achieved error rates less than two
percent, nanopore sequencing technology suffers from very high error rates up to 30%.

1.3 Nanopore Sequencing Technology

In this section we describe the main idea of nanopore sequencing and basic terminology.
In this thesis, we focused on the data from the MinION, produced by Oxford Nanopore
Technologies (ONT).

The MinION device is a highly portable DNA sequencing instrument in the size of
a regular USB flash drive. It is the first commercially sold nanopore sequencing device.
As we mentioned above, the advantage of this device is that it produces very long reads
compared to other sequencing technologies at a very low price. The disadvantage is
that nanopore reads have very high error rate.

Nanopore is a small hole with an internal diameter of the order of one nanometer.
Pores of this size are usually composed of proteins or graphene. Nanopores in MinION
are so small that only a single strand of the DNA sequence can pass through it. MinION
has multiple nanopores so it can read multiple sequences simultaneously.

As we can see in Figure 1.1, double-stranded DNA sequence is split into two strands
which are connected by a hairpin adapter. Special adapters (proteins) are also attached
at the beginning and at the end of the whole DNA sequence in order to lead the sequence
through the nanopore. When we turn on the electric field DNA is attracted towards
the anode which forces DNA sequence to travel through the nanopore. The template
strand is driven through the nanopore first, followed by the complement strand. The
speed at which DNA is going through the nanopore is controlled by the current and
the adapters attached to the sequence.

When DNA sequence passes through the nanopore, it alters electric current flow-
ing through the nanopore. k-mer is a sequence of k nucleotides which resides in the
nanopore and influences the electric current flowing through the nanopore. Mathemat-
ical definition:

Definition 1. k-mer is a word of length k over the alphabet Σ = {A,C, T,G}.

The length of the k-mer is a given constant for the whole data set. We worked with a
version of data from MinION in which k = 5 but there’s a newer version in which k = 6.

CHAPTER 1. DNA NANOPORE SEQUENCING 5

Figure 1.1: Overview of the nanopore sequencing [Sch16]

The disruption in electric current is believed to be different for every k-mer. This
change in current is measured thousand times per second. Raw electric current mea-
surements are not usually stored in the output file because it would be very large.
Instead, the MinION splits the sequence of measurements into sequence of events.
Event is a short continuous sequence of electric current measurements, which in the
perfect case, should correspond to a single k-mer.

You can image the sequencer as a head of a finite automaton that can read k letters
at a time. The DNA strand that we want to read can be seen as a word on the input
tape of this automaton. The head of the automaton moves in every step by a single
letter to the right starting from the left. In the perfect case, every step of the finite
automaton corresponds to a single event. For example, when the sequence is ACTGCGT
and k = 5 then the first event should correspond to 5-mer ACTGC, the next event should
correspond to CTGCG and the last event to TGCGT.

However, in the reality events can be split or merged because of an error in the
event detection algorithm. We discuss these errors in Chapter 3.

The segmentation of measurements into events is done locally in the real time by
the MinKNOW software running on the computer which the MinION is connected
to by USB.

CHAPTER 1. DNA NANOPORE SEQUENCING 6

●●●●●●●●
●●
●
●

●
●

●

●
●
●
●●●●
●

●

●

●●●
●

●

●
●●
●

●
●●●
●
●●●●
●
●
●
●●●
●
●
●
●
●●
●

●

●

●
●●●●
●●●

●
●●●
●
●●●●●

●●

●●●●
●●●●●
●
●
●

●●●●
●

●

●

●

●
●
●
●●

●●
●●

●●●●●
●
●
●
●
●●●●

●

●
●

●

●●●●

●

●

●●●
●

●●
●●
●

●
●●
●
●
●●●●●

●

●
●
●●
●●

●

●
●●

●
●
●

●

●
●

●

●●
●
●●●
●
●●●●
●
●●●
●
●
●

●
●●
●
●

●

●●●

●
●
●

●

●

●●
●
●
●

●
●

●
●
●
●

●
●●
●●
●
●●●●●
●
●

●

●
●
●

●●
●

●

●
●●●●●
●
●●●
●
●
●
●
●
●

●
●

●

●●●
●

●●●●●
●●●
●

●●
●●

●

●

●
●
●
●●
●
●●●
●●
●
●●●

●●

●

●
●
●●

●
●
●●●
●●
●

●
●●
●
●

●
●

●●

●

●
●●
●●
●●●
●
●●
●
●

●
●●

●

●

●
●●
●●

●
●

●

●
●
●
●●

●
●●
●

●

●●

●
●
●

●●●●●
●
●

●●
●
●
●●
●
●
●

●●●●●
●
●
●
●
●

●●

●●●
●
●
●
●●

●●●●●●
●●●●●●

●●●
●
●
●
●
●

●●
●
●●

●●●●
●●
●●

●●●

●●

●

●
●●●●●
●●
●●

●

●

●

●
●

●

●

●●●●●
●

●
●
●
●●

●
●
●

●●●

●●●●
●
●
●●●
●

●
●●
●●
●●●
●●●
●

●

●●●●
●
●●
●●
●●
●
●●
●
●
●●
●
●

●
●
●●
●
●●●●●
●

●
●
●

●

●
●
●●

●

●

●

●

●
●

●

●
●

●●●

●

●

●
●
●

●●

●

●
●

●●
●

●

●

●
●
●●

●
●●●
●●
●

●
●

●

●●

●
●
●

●

●
●●

●
●
●

●

●
●●

●

●●
●

●

●
●●●
●

●●●
●
●

●●●

●
●●
●●

●

●

●

●●
●
●

●

●●
●
●
●●●

●

●
●
●

●

●

●
●
●●●

●

●

●

●
●
●

●

●
●

●
●
●●

●

●
●

●●

●

●
●●

●
●●

●

●●
●
●
●
●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

●

●
●

●●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●●
●

●
●

●

●

●

●

●●

●
●

●
●

●

●●

●

●

●

●

●

●●
●
●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●●
●

●●
●
●
●
●
●

●

●●

●

●

●
●●●
●●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●●

●

●
●
●

●

●●

●
●
●

●●

●

●

●
●

●
●
●

●

●

●

●●

●

●
●●
●

●●●

●

●
●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●
●
●

●

●
●

●●
●●

●

●

●
●●
●
●
●
●

●
●

●

●
●●

●●

●
●

●

●

●

●
●
●

●●●

●

●

●●

●
●

●●

●

●

●

●
●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●●
●
●●●
●

●

●

●
●

●

●●
●

●

●

●●●●
●●
●

●

●
●
●

●
●●
●
●

●
●
●
●

●

●

●

●
●

●

●●

●
●●
●●

●
●
●●●
●●
●

●
●
●●
●●

●

●●●

●
●
●

●

●

●

●
●●

●
●
●

●
●
●●
●

●
●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●●
●
●

●
●

●

●

●

●●
●

●

●

●
●
●

●●

●●●●●
●●

●

●

●●●
●
●
●●

●

●

●

●●

●
●

●

●●
●

●

●

●

●●●●●●
●●●●●
●●●
●●
●
●

●

●
●

●
●

●●
●●

●

●

●

●●
●
●
●●

●●

●
●
●

●

●
●●
●
●●

●
●●
●●
●

●
●
●
●●

●

●●
●

●
●
●●
●

●

●
●

●

●
●●
●

●

●
●
●

●

●
●●●

●

●●
●
●●

●

●
●
●

●

●

●
●

●

●
●
●

●

●
●
●
●
●●
●●●

●
●

●

●

●
●
●
●

●

●
●
●

●
●●

●●

●

●

●
●●●

●
●
●●●●●
●●

●

●
●●●●●
●

●●

●
●

●
●●●●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●●
●●
●
●

●

●

●

●

●

●●

●
●

●
●

●●

●
●
●

●
●

●
●

●

●●
●●●

●

●
●

●

●

●

●
●

●●●

●●
●

●

●●
●
●
●

●

●
●

●

●

●

●

●

●●

●
●
●

●
●

●
●

●
●

●

●

●

●●
●●

●
●

●
●
●

●

●
●

●

●

●

●

●●

●

●
●

●
●●

●

●●

●●

●

●

●

●●

●

●●
●
●
●●
●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●●
●●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●●●

●
●●●

●

●
●
●

●

●
●●●

●

●

●

●

●
●●

●
●

●
●
●

●●

●

●●

●
●
●
●
●
●●●●
●●
●

●

●●

●

●●
●

●

●●●

●

●

●

●

●

●
●
●
●
●

●●
●

●●

●

●●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●
●●●●

●

●

●●
●
●
●●●●
●●

●

●

●

●●

●
●●

●

●
●

●

●●

●●●
●
●

●

●●

●●
●●

●●
●
●
●
●
●●

●
●
●
●

●

●

●

●

●

●●●

●
●
●●●
●●
●
●

●●
●

●●

●

●

●
●
●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●●●●
●

●

●
●

●

●●

●
●

●

●

●●
●●

●●
●
●

●

●

●
●

●●

●
●●
●

●
●

●

●●
●

●●●

●●
●●
●

●

●●

●

●
●●
●

●

●

●
●
●

●

●●●
●
●

●

●
●
●

●
●●

●

●

●

●
●●●

●

●

●

●

●
●
●●
●

●

●

●
●
●
●

●

●●
●

●

●

●

●

●

●●●
●

0

25

50

75

100

0.0 0.5 1.0 1.5

time (s)

C
u

rr
e

n
t

(p
A

)

Figure 1.2: The segmentation of individual current measurements into events ([LQS15,
supplement p. 2]). The black dots represent current measurements and the red line
segments represent mean current levels measured during an event. All current samples
that are in the interval marked by a red line segment are included in the event. Events
can sometimes even overlap each other but usually they do not. We can also have gaps
between the events.

CHAPTER 1. DNA NANOPORE SEQUENCING 7

Afterwards, these events are usually sent for base calling (translation of events
to a sequence of letters A, C, T, G) to Metrichor (cloud-based computing platform).
The events and the results of the base calling process are written to FAST5 files. The
MinION describes every event by four parameters: mean of current samples (in pA),
standard deviation of the current (in pA), start of the event (in seconds) and length
of the event (in seconds). More detailed description of FAST5 files and libraries for
working with those files can be found in Chapter 5.

Metrichor performs basecalling for the template and complement strands separately.
Sometimes it does not succeed and the FAST5 file contains only base call of the template
strand. In the best case, the file contains both strands and additionally 2D base
call. 2D base call is constructed by creating consensus sequence from events from both
strands by combining the information. Therefore the 2D base call is of a higher quality.
The exact details of the base calling process are not provided by the manufacturer. We
call the reads for which the 2D base call is available 2D reads. The reads for which
only the template strand base call is available are called 1D reads.

1.4 Kmer probability model

Mean current level for every k-mer in the MinION is modeled by the Gaussian distribu-
tion. Parameters for this distributions are stored in the FAST5 file. Standard deviation
of current for a given k-mer is modeled by the Inverse Gaussian distribution. In our
work, we only use the mean current level. Therefore when we refer to the sequence
of events, we only mean the sequence of the mean current levels corresponding to the
events.

MinION provides parameters µx and σx for the Gaussian distribution for every k-
mer separately. Since characteristics of the current measurements are slightly changing
over time and are different for every nanopore, Metrichor uses scaling parameters in
order to compensate. These scaling parameters are determined by Metrichor and saved
into the FAST5 file together with the base called sequences.

The probability of observing an event with a mean current level e for a given k-mer
x is:

P (e|x) = f(e, scale · µx + shift, σx · var) (1.1)

where µx and σx are given parameters for every k-mer x; scale, shift and var are
parameters given for every DNA strand, and

f(x, µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (1.2)

We have used parameters computed by Metrichor in our model. We did not try to
compute them by ourselves. Another possibility could be to replace these parameters
by those computed by independently developed project, such as Nanocall [DDY+16].

Chapter 2

Hidden Markov Model

In this chapter, we describe hidden Markov model (HMM) which is a very common
machine learning model used in many areas such as speech recognition, image pro-
cessing and bioinformatics. We will explain the basic HMM terminology and classical
algorithms used for this model which we also used in our work. In Chapter 3, we use
this probabilistic model to define the probabilities of DNA sequences given a sequence
of events from the MinION.

2.1 Definitions

Definition 2. Hidden Markov model with continuous emissions and silent
states (HMM)
Let H = (Q,S,E, q0, e, t) where Q is a non-empty finite set of states, S ⊆ Q is a set of
silent states, E is an uncountably infinite set of emissions, q0 ∈ S is an initial state,
e : Q × E → [0, 1] is an emission probability function and t : Q × Q → [0, 1] is a
transition probability function. Then H is a hidden Markov model when the following
conditions hold true:

1. ∀u ∈ Q : t(u, q0) = 0

2. (∀u ∈ S)(∀e ∈ E) : e(u, e) = 0

3. ∀u ∈ Q :
∑
v∈Q

t(u, v) = 1

4. ∀u ∈ Q \ S :

∫
x∈E

e(u, x)dx = 1

Notation 1. We say that there is a transition from state u to state v, if and only if
t(u, v) > 0. We will use notation u→ v to denote this fact.

8

CHAPTER 2. HIDDEN MARKOV MODEL 9

2.2 Graph Representation

Hidden Markov models can be represented as directed graphs. In fact they are quite
similar to the finite automata so they can be illustrated as state diagrams similarly
to the finite automata. Transitions are directed edges (drawn as arrows) in the graph
and states are vertices (drawn as circles). Initial state is drawn as two concentric
circles. Transition probabilities are drawn above the edges. We will sometimes use
graph terminology when talking about HMMs because graph representation is quite
natural.

2.3 HMM as a Generative Model

HMM is a generative machine learning model and that is the reason why it is so
similar to the finite automata. It can be viewed as an automaton which generates two
sequences – sequence of emissions and sequence of states. The sequence of states is
hidden. We can only see the sequence of emissions and that is the reason why emissions
are sometimes called observations.

The automaton starts in the initial state and selects a random transition based
on the transition probability function and moves through that edge to the next state.
Afterwards, it generates a random element from the emission probability distribution of
the current state and again moves to the next state based on the transition probability
function. If the next state is silent then it does not emit anything and only moves to
the next state. This process can go on forever but we are only interested in paths of a
finite length.

Generative models directly define the joint probability over the pairs P (~α∧~β) where
~α is the input vector (observed – emitted vector) and ~β is output vector (vector that
we want to predict). In case of HMM it is:

P (e ∧ s) =

(
m∏
i=1

t(si−1, si)

)
·

(
n∏
i=1

e(vi, ei)

)
(2.1)

where e = e1, e2, . . . , en is the sequence of emissions (input) and s = s0, s1, s2, . . . , sm is
the sequence of hidden states (output) and v1, . . . , vn is a subsequence (not necessary
continuous) of non-silent state of sequence s. For convenience, we define s0 := q0 (the
initial state). We will use this convention throughout the whole thesis.

2.4 HMM and the Nanopore Sequencer

We can view the sequencer as a finite automaton which emits a sequence of events – the
electric current levels and the internal (hidden) states are the k-mers of the sequence

CHAPTER 2. HIDDEN MARKOV MODEL 10

that is currently passing through the nanopore. We want to determine the sequence of
k-mers that passed through the sequencer. This sequence will be represented by the
path through the states in the model. Later (in the Chapter 3) we will explain why
modelling the sequencer is not so straightforward and we also need to consider some
internal characteristics of nanopores and associated errors during sequencing.

2.5 Viterbi algorithm

A common task when working with HMM is to find the most probable sequence of
hidden states for a given emission sequence. More formally, we want to find

argmaxs P (e ∧ s)

, where s = s0, s1, . . . , sn is a sequence of states and e = e1, . . . , em is a sequence of
emissions. This can be done by using dynamic programming [DEKM98, p. 56].

We want to compute matrix V , where V [i, u] is the probability of the most probable
path ending in the state u and emitting the sequence e1, . . . , ei. This matrix can be
computed by using the following formulas:

V [0, u] =

1, u = q0

0, otherwise
(2.2)

V [i, u] = max
v∈Q

V [i, v] · t(v, u), if i > 0 and u ∈ S (2.3)

V [i, u] = max
v∈Q

V [i− 1, v] · t(v, u) · e(u, ei), if i > 0 and u ∈ Q \ S (2.4)

This matrix can be computed row by row starting from row zero and iterating
through each row from left to right. When we have a transition going to a silent state
then the value in the matrix V for the outgoing state has to be calculated before the
value of the silent state for the same row of the matrix. In other words, the states have
to be topologically ordered. Otherwise we would have a cycle in the recurrence. The
final result is the maxu∈Q V [m,u].

To reconstruct the most probable path, we also need to store in every cell of the
matrix the states for which we found the maximum value. Thus, every cell in the matrix
stores a pair – the probability and a pointer to the state from which we computed
the probability. Afterwards, the most probable path can be reconstructed by simply
starting from the cell with the maximum value in the last row and following the pointers
until we get into the first row of the matrix. To get the resulting path we need to reverse
this path.

The time complexity of this algorithm is O(NMD) where N is the number of states,
M is the length of the emission sequence and D is the maximum degree of a state in
the HMM. The space complexity is O(NM).

CHAPTER 2. HIDDEN MARKOV MODEL 11

2.6 The Forward Algorithm

The forward algorithm [DEKM98, p. 58] is very similar to Viterbi algorithm. It
computes the matrix F , where F [i, u] is the probability of ending up in the state u and
emitting e1, . . . , ei.

It can be computed by the following formulas:

F [0, u] =

1, u = q0

0, otherwise
(2.5)

F [i, u] =
∑
v∈Q

F [i, v] · t(v, u), if i > 0 and u ∈ S (2.6)

F [i, u] =
∑
v∈Q

F [i− 1, v] · t(v, u) · e(u, ei), if i > 0 and u ∈ Q \ S (2.7)

Compare to the Viterbi algorithm, we have only replaced the maximum function
with summation. The time complexity of this algorithm is the same as for Viterbi
algorithm.

2.7 Sampling from the Conditional Probability Dis-

tribution

A very common usage of HMM is to find the most probable path in the model that ex-
plains the emission sequence using Viterbi algorithm (2.5). This algorithm only finds
the optimal solution to the problem for a given set of parameters. The parameters
highly influence the resulting most probable path. Sampling from HMM allows us to
find many suboptimal solutions to the problem that still might be biologically signifi-
cant [CP03]. We will also use this approach and sample from the conditional probability
distribution defined by HMM to find many paths close to the optimal solution. This
approach will allows us to explore the space of all the solutions in a randomized way.
First, we will define the problem more formally and then describe the algorithm that
we used for sampling.

We want to sample a random path s = s0, s1, . . . , sn from the distribution which is
defined by the probability mass function f(s) = P (s|e) where e = e1, . . . , em is a given
emission sequence and P (s|e) is the probability defined by the HMM.

Let Pu be the set of all paths starting in the initial state and ending in the state u.
From the definition of the conditional probability we know:

P (s|e) =
P (s ∧ e)
P (e)

=
P (e ∧ u)∑

q∈Q
∑

π∈Pq P (e ∧ π)
=

P (e ∧ u)∑
q∈Q F [m, q]

(2.8)

CHAPTER 2. HIDDEN MARKOV MODEL 12

where F [m, q] is the probability computed by the forward algorithm described in Sec-
tion 2.6.

First, we will solve an easier problem and then show how we can solve the original
problem using the algorithm for the easier problem. The easier problem is to pick a
random path u0, . . . , un starting in the initial state and ending in a particular state un
and emitting sequence of length m with the probability:

P (e ∧ u0, . . . , un)

F [m,un]
(2.9)

Suppose that we have an algorithm that can solve this problem for every state
sequence of length shorter or equal to n. If un is not a silent state then we can sample
a random state un−1 with the probability:

F [m− 1, un−1]t(un−1, un)e(un)

F [m,un]
. (2.10)

Afterwards, we can use the hypothetical algorithm to sample a random path ending
in the state un−1 of length n and emitting sequence e1, . . . , em−1. This way we got a
random path of length n+ 1 ending in the state un with the probability:

F [m− 1, un−1]t(un−1, un)e(un)

F [m,un]
· P (e1, . . . , em−1 ∧ u0, . . . , un−1)

F [m− 1, un−1]
=
P (e ∧ u0, . . . , un)

F [m,un]
(2.11)

Which is the result that we wanted to achieve.
If un is a silent state then we can again sample a random state un−1 with the

probability:
F [m,un−1]t(un−1, un)

F [m,un]
, (2.12)

and then use the algorithm for sampling a random path ending in the state un−1 of
length n and emitting sequence e1, . . . , em. This way we obtain a random path of length
n+ 1 ending in the state un with the probability:

F [m,un−1]t(un−1, un)

F [m,un]
· P (e1, . . . , em ∧ u0, . . . , un−1)

F [m,un−1]
=
P (e ∧ u0, . . . , un)

F [m,un]
(2.13)

Now, we can solve the original problem using this algorithm. We sample the last
state un with the probability:∑

π∈Pun
P (e ∧ π)∑

q∈Q
∑

π∈Pq P (e ∧ π)
=

F [m,un]∑
q∈Q F [m, q]

, (2.14)

and then we use the algorithm mentioned above the sample a random path ending in
un. The probability of the whole path obtained this way is:

F [m,un]∑
q∈Q F [m, q]

P (e ∧ u0, . . . , un)

F [m,un]
=
P (e ∧ u0, . . . , un)∑

q∈Q F [m, q]

CHAPTER 2. HIDDEN MARKOV MODEL 13

which is exactly Equation (2.8).
In summary, the algorithm starts with computing the matrix F by the forward

algorithm (Section 2.6) and then it samples the random path starting from the end
(the last row of the matrix). Then it picks a random state according to the probability
of in the last row of matrix F . The probabilities are normalized by the sum of the
row. Then we pick a random edge going to the chosen state according to the sum of
probabilities of all paths going through each edge and ending in the chosen state. We
repeat this process until we get to the initial state.

The time complexity of the preprocessing phase (the forward algorithm) isO(NMD)
where N is the number of states, M is the length of the emission sequence and D is
the maximum degree of a state in the HMM. The space complexity of this phase is
O(NM). The time complexity of the sampling phase is O(kLD), and space complex-
ity is O(kL), where k is the number of samples, and L is the length of the sampled
sequence. If there are no silent states then L = M+1, otherwise L can even reach NM
(we can visit all the cells in the matrix, but we cannot return to any cell because the
silent states are ordered in the topological order as we mentioned in the Section 2.5).
The size of L highly depends on the specific architecture of the HMM.

We can also trade space for time to speed up the sampling phase. The preprocessing
phase will be only slowed down by a constant. The goal is to improve the sampling
phase. In addition to storing the original probabilities from the forward algorithm, we
can also store the individual summands that were added to the sum which is stored in
a particular cell. Then we can normalize them by the total sum and compute prefix
sums which causes the increase of the space complexity to O(NMD). However, this
additional space allows us to omit the computation of the summands and we can just
generate a random number x in the interval [0, 1], and find a number in the prefix
sums array that is greater or equal than x. Since the sequence of prefix sums is
non-decreasing, we can use binary search which decreases the time complexity of the
sampling phase to O(kL log(D)).

Chapter 3

HMM for Modelling MinION Data

We will start with a description of the simplest model for our data assuming no event
detection errors. Then we will describe event detection errors and problems with
nanopore sequencing which we need to deal with and incrementally show how we can
modify our HMM to account for these issues. We will describe our model for k = 5,
which corresponds to an older version of MinION. However, the approach can be easily
generalized to larger values of k (current MinION chemistry uses k = 6).

3.1 Model Without Errors

In the simplest HMM, we assume that the sequencer moves stepwise from 5-mer to
5-mer, and emits a single event from each 5-mer. The architecture of this HMM is
quite similar to de Bruijn graphs [Wik16a]. De Bruijn graphs are used to represent
overlaps between reads during reconstruction of DNA sequences from many overlapping
reads [ZB08]. In our model, we will have states corresponding to 5-mers, and edges
representing exact overlaps of length four.

For convenience we also define these mappings:

Definition 3. We define mappings movei : Σ5 → 2Σ5 as:

∀x1, x2, x3, x4, x5 ∈ Σ, i ∈ N : movei(x1x2x3x4x5) = {xi+1 . . . x5y|y ∈ Σi}

Sometimes we will use move(x) to denote move1(x).

Mapping movei(x) basically maps 5-mer x to a set of 5-mers which the sequencer
might emit after i steps assuming no errors. If we take errors into account then the set
of possible 5-mers would be greater. A different way of looking at this mapping is that
it left-shifts the sequence by i symbols and adds arbitrary symbols from Σ at the end
of the sequence to get a sequence of length five.

For example:
move0(ACTGC) = {ACTGC}

14

CHAPTER 3. HMM FOR MODELLING MINION DATA 15

move1(ACTGC) = {CTGCA,CTGCC,CTGCT,CTGCG}

move2(ACTGC) ={TGCAA, TGCAC, TGCAT, TGCAG, TGCCA, TGCCC,

TGCCT, TGCCG, TGCTA, TGCTC, TGCTT, TGCTG,

TGCGA, TGCGC, TGCGT, TGCGG}

...

∀k ≥ 5 : movek(ACTGC) = Σ5

Our HMM will have states Q = Σ5 ∪{0}, where 0 is the initial state. The set of all
emissions is E = R.

Every state in our HMM has four outgoing edges. Every edge represents one step
of the sequencer. For every state x we have directed edges to all states y ∈ move(x).
We also have an initial state. In summary, we have N = 45 + 1 = 1025 vertices and
M = 45 · 4 + 45 = 5120 edges.

Emission probabilities are computed from the probability density function of Gaus-
sian distribution and all the parameters for this distribution are taken from Metrichor
FAST5 files as described in Section 1.4 by using Equation (1.1).

Transition probabilities for the initial state come from the uniform distribution i.e.:

∀x ∈ Σ5 : t(0, x) =
1

45
(3.1)

Transition probabilities for other states also come from the uniform distribution
i.e.:

∀x, y ∈ Σ5 : t(x, y) =
1

4
(3.2)

3.2 Event Detection Errors

Our simple HMM assumed the perfect case when no event detection errors occur.
Unfortunately, we may encounter two types of errors [LQS15, supplement p. 3]:

1. Skipped event. Event might be skipped by the event detection algorithm if
the current level measured for the previous event was very similar to the current
level for the next event.

2. Split event. The same event may be emitted multiple times because of transient
noise that might look like change in current. Event detection is done in real time
which makes it harder to detect the right intervals for events.

Probably the biggest problem arises with long sequences composed of the same
nucleotide called homopolymers. These kind of sequences can occur in DNA quite

CHAPTER 3. HMM FOR MODELLING MINION DATA 16

often. For example poly-A tail is a long sequence of adenine (A). In case of homopoly-
mers, the event detection algorithm only sees a very long sequence of measurements
where the current is very similar because the measurements come from the same dis-
tribution. It is very hard to segment these kind of sequences into events in real time.
Therefore we never really know, how long are these sequences.

3.3 Modelling Event Detection Errors in HMM

3.3.1 Split Events

Duplicated events can be modelled very easily. We will just add transitions from every
state to itself (loops). This way, we also allow HMM to generate homopolymers.

3.3.2 Skipped events

First, we want to model only skips of one event by the sequencer – skips of a single
base.

Definition 4. We will use the terminology skips of length k to denote the fact that
the sequencer skipped k events (bases) in a row. More formally, transition u→ v is a
skip of length k for a state u if and only if v ∈ movek+1(u) and skips of length k are
all transitions in

{u→ v|u, v ∈ Q ∧ v ∈ movek+1(u)}

Definition 5. When we have a transition from state u to state v ∈ movei(u) then we
call it a move of length i.

Consider state x. Normally, we can transition to any y ∈ move1(x) ∪move0(x). In
order to deal with skips of length one, we add transitions to states move2(x). That is
42 = 16 new edges for each state.

If we want to model skips of length two in this way, we need to add additional
42 + 43 = 80 edges for every state compared to the simplest HMM. That is also
edges to states move3(x) for every x. If we continue in this fashion, we need to add
42 + 43 + 44 = 336 edges for skips of length three, and so on. In general, if we model
skips of length k then we have

k+1∑
i=0

|movei(x)| =
k+1∑
i=0

4k =
4k+2 − 1

3
(3.3)

transitions for every state. This sum includes loops (mentioned in the previous sec-
tion 3.3.1), transitions from the simplest HMM (section section 3.1), and skips. Note
that the number of edges grows exponentially and we can get a complete graph very

CHAPTER 3. HMM FOR MODELLING MINION DATA 17

quickly. Working with complete graph is very computationally expensive. It makes all
the algorithms that we will need very slow and requires a lot of memory.

Some of the skips might lead to the same state. For example, consider state ACTTT;
then one of the skips of length one goes to TTTCG, but we could also say that transition
from ACTTT to TTTCG is a skip of length two. In other words, when we have state
x = x1x2zzz then we have skip of length one going to zzzab for some a, b ∈ Σ and skip
of length two also going to zzzab because zzzab ∈ move2(x) ∧ zzzab ∈ move3(x). We
do not need to have multiple edges going to the same state. We just merge those edges
into one edge and sum up all transition probabilities in order to preserve the property
that sum of all the transition probabilities going from one state is one. If we allow
skips of an arbitrary length then we have O(N2) edges: two edges between every node
going opposite directions and loops.

Notice that when we have 5-mer composed of the same bases (e.g. AAAAA) then loop
goes to this state, normal edge goes to this state, and also all the skips of an arbitrary
length k go to this state which causes the problem with determining the exact length
of homopolymers.

3.3.3 Transition Probabilities

The transition probabilities can be learnt from the data. The classical approach is to
set the probability of transitioning from the state u to the state v as:

t(u, v) =
cu,v∑

w∈Neighu cu,w
(3.4)

where cu,v is the number of transitions from u to v that we have observed in the training
data set plus pseudocount p and Neighu is the set of all neighbours of the vertex u.
We add pseudocount p to cu,v to ensure that we do not get zero probability. The
data analysis and a more detailed description of the training phase can be found in
Chapter 5.

3.4 Profile HMMs

Profile hidden Markov models are used for profile analysis of related sequences [DEKM98,
chap. 5]. Profile is a description of an alignment of multiple sequences, for example
profile of a protein family. Proteins in the same family have similar functions and are
evolutionary-related. When we have HMM for a given family, we can generate protein
sequences which are very similar to the proteins in the family or we can test if the
given sequence is a member of the family. Profile HMM has three types of states:

1. Match - corresponds to a substitution or a match in the alignment.

CHAPTER 3. HMM FOR MODELLING MINION DATA 18

2. Delete - corresponds to a deletion in the alignment. This state is silent which
means that it emits nothing. All the other states have emissions.

3. Insert - corresponds to insertions in the alignment.

Every position in the alignment has these three types of states. If the length of the
alignment is L then we have 3L states. See the typical profile HMM in Figure 3.1.

Figure 3.1: Typical profile HMM [DEKM98]. State denoted by Mj is the match state,
Dj is the delete state and Ij is the insert state. This HMM has also has a special state
for the end of the sequence which is a silent silent.

3.4.1 Adaption of the Profile HMM to Our Problem

We can think of errors in the sequence as insertions and deletions. Therefore we can
adapt profile HMM to solve our problem.

Every 5-mer has three states – match, delete and insert. We denote these states for
5-mer x by Mx, Dx and Ix, respectively. In our problem we define these states as:

1. Match(Mx) - represents emission of event from the distribution of 5-mer.

2. Delete(Dx) - represents a skipped event corresponding to 5-mer x. When we
add transitions between delete states then we basically allow skips of an arbitrary
length without having N2 edges, which solves the problem with the previous
model.

3. Insert(Ix) - represents a split event for 5-mer x or insertion of an unexpected
event after x corresponding to 5-mer which is not in move(x). By looking at
the data, we can notice that split events occur quite often and insertions of
unexpected events are rare. We did not model unexpected events in the previous
design of our HMM in Section 3.3.

We can also adapt transitions from the typical profile HMM which you can see in
Figure 3.1. Every node for 5-mer x (Mx,Ix or Dx) has transitions to all states in this
set:

{Ix} ∪ {My|y ∈ move(x)} ∪ {Dy|y ∈ move(x)}

CHAPTER 3. HMM FOR MODELLING MINION DATA 19

Let us look at the common paths in the model. The path for a read without errors
uses only match states.

The path modeling skipped event for 5-mer y starts in Mx, Dx or Ix such that
y ∈ move(x) and then it goes to Dy. Afterwards, it can transition to a next delete or
match state for an arbitrary z ∈ move(y).

The path modelling a split event for 5-mer x starts in Mx and then goes to Ix and
loops there couple times and then continues with a transition to the next delete or
match state. It does not really make sense to have transition Dx → Ix in our case so
we will not include them in our model. Transitions from Ix to Dy for y ∈ move(x)

seem to be quite rare, but they make sense. They correspond to a duplication of an
event followed by a skipped event in the sequence.

Note that we still have the same problem with homopolymers. Since duplicated
events are common errors then we cannot differentiate between 5-mer AAAAA as being
duplicate (transition to state IAAAAA) or another correct event (transition to state
MAAAAA). The current for a homopolymer should be approximately the same all the
time.

Chapter 4

Alignment of Sequences

In this chapter, we first explain what is alignment of sequences and why it is important
in bioinformatics. Then we describe basic algorithms that are used for solving this
problem.

4.1 Motivation

Probably the most common and crucial task in bioinformatics is to compare two DNA
sequences. The purpose of aligning two sequences (pairwise alignment) is to identify
similar regions. For example, this can help to identify regions which changed over
the course of evolution or identify mutations in DNA of a virus. When we find similar
regions in many sequences of different organisms it might mean that the region encodes
information that is important for the organisms.

4.2 Problem Statement

Definition 6. Alignment of two sequences (pairwise alignment)
Consider two sequences u = u1 . . . un, v = v1 . . . vm and a matrix

M =

(
M1,1 M1,2 . . . M1,k

M2,1 M2,2 . . . M2,k

)

. We call the matrix M an alignment of sequences u and v (pairwise alignment) if the
following conditions hold true:

1. All the elements of the matrix are symbols over the alphabet {A,C, T,G,−}

2. M1,1M1,2 . . .M1,k is a word created from u by insertion of dashes.

3. M2,1M2,2 . . .M2,k is a word created from v by insertion of dashes.

20

CHAPTER 4. ALIGNMENT OF SEQUENCES 21

4. We don’t have two dashes in the same column.

For example, let u = ACTGAAAATA and v = ACAGGATTA. Then one possible
alignment of u and v is:

ACTGAAA--ATA

AC---AGGATTA

There are four types of columns in the pairwise alignment. Every type of column
has its name. A column with two same letters is called match, a column with two
different letters is called mismatch, dash above a letter is called insertion and a letter
above dash is called deletion.

There are many valid alignments for two sequences. For example, the following
alignment is also a valid for the sequences mentioned above, albeit it is not very useful:

ACTGAAAATA---------

----------ACAGGATTA

In most cases, our goal is to find the "optimal" alignment is some scoring system.
The scoring system usually assigns a score to every column of the alignment and the
final score for the alignment is the sum of scores for all of the columns. For example,
we may have a scoring system which assigns score +1 to every match column and −1

to every mismatch, insertion and deletion. The optimal alignment will be the one with
the greatest score.

When we are constructing the scoring system, we are not limited to setting the
score only for the types of columns mentioned above. For example, we can also say
that we want to give a higher score to columns with letters A and C.

The choice of the scoring system can highly influence the resulting optimal align-
ment. Usually, the goal is to design a scoring system that reflects the evolutionary
history of the sequences.

In general, when we have some scoring system we define two types of problems.

Definition 7. Global alignment problem
Input to the problem are two sequences x and y. The output is a pairwise alignment of
x and y with the best score according to the scoring system.

Definition 8. Local alignment problem
Input to the problem are two sequences x = x1x2 . . . xn and y = y1y2 . . . ym. The
output is a pairwise alignment of two sequences xi . . . xj and yk . . . yl with the best score
according to the scoring system for some 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ l ≤ m.

CHAPTER 4. ALIGNMENT OF SEQUENCES 22

4.3 Needleman–Wunsch Algorithm

Needleman–Wunsch algorithm [DEKM98, p. 19] is used for solving the global align-
ment problem. Let us demonstrate the algorithm using a simple scoring system: +1

for match and −1 for mismatch, deletion or insertion. The goal is to find the alignment
with the largest score. The idea of this algorithm is based on dynamic programming.

Consider input sequences x = x1x2 . . . xn and y = y1y2 . . . ym. The algorithm
computes matrix A, where A[i, j] is the largest score for alignment of sequences x1 . . . xi

and y1 . . . yj.
Let us start with the trivial case when i = 0 or j = 0. For i = 0 we are aligning

empty sequence to the sequence y1 . . . yj. There is only one way to do it: write dash
above each letter in y1 . . . yj which corresponds to an insertion. The score of this
alignment is −j. Similarly, in case of j = 0 we get score −i.

Now, consider the case when i, j > 0. We will define a function s(a, b) as:

s(a, b) =

1, a = b

−1, otherwise
(4.1)

Last column of the alignment for the sequences x1 . . . xi and y1 . . . yj must conform
to one of the possibilities.

First possibility is that the last column may contain xi and yj. Then the score for
that column is s(xi, yj). If we remove the last column of the alignment, we get the
alignment for sequences x1 . . . xi−1 and y1 . . . yj−1. We claim that this alignment must
be the optimal alignment of sequences x1 . . . xi−1 and y1 . . . yj−1. To prove this claim,
consider that there could exist an alignment with a higher score. Then by removing the
last column with xi and yj we would end up with an alignment of sequences x1 . . . xi

and y1 . . . yj with a higher score than the original alignment which contradicts the fact
that we took the optimal alignment. Therefore the total score for the best alignment
with the assumption that the last column contains xi and yj is A[i−1, j−1]+s(xi, yj).

The second possibility is that the last column contains xi and dash. Then the
score for this column is −1 and we can again remove this column to get the alignment
of sequences x1 . . . xi−1 and y1 . . . yj. The best score for this alignment is A[i − 1, j].
Therefore the total score for the original alignment is A[i− 1, j]− 1.

Finally, the third possibility is that the last column contains yj and dash. Then the
score for this alignment is A[i, j − 1]− 1.

Therefore, A[i, j] can be computed as:

A[i, j] = max

A[i− 1, j − 1] + s(xi, yj)

A[i− 1, j]− 1

A[i, j − 1]− 1

(4.2)

CHAPTER 4. ALIGNMENT OF SEQUENCES 23

Every cell in the matrix can be computed from the three adjacent cells: the cell
above, the cell on the left-hand side and the top-left cell. Therefore, we can iterate
over the matrix row by row from the left-hand side and calculate values of every single
cell in the matrix. At the end of this computation, the final result will be located in
the cell A[n,m].

The time and space complexity of this algorithm is O(nm).

4.4 Smith–Waterman Algorithm

Smith-Waterman algorithm [DEKM98, p. 22] solves the local alignment problem. It
is very similar to Needleman–Wunsch algorithm. In this case we want to compute
matrix A where A[i, j] is the best score for the local alignment of sequences x1 . . . xi

and y1 . . . yj. The only difference between the recurrent formula in Smith–Waterman
algorithm and the previous algorithm is that we are allowed to clip some prefix and
suffix of the alignment. Basically, we can choose when we start the alignment. The
trivial cases are:

A[i, 0] = 0, 0 ≤ i ≤ n (4.3)

A[0, j] = 0, 0 ≤ j ≤ m (4.4)

The recurrence relation for 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m is:

A[i, j] = max

0

A[i− 1, j − 1] + s(xi, yj)

A[i− 1, j]− 1

A[i, j − 1]− 1

The final result of the algorithm is the maximum value in the matrix.
The time and space complexity of this algorithm is again O(nm).

4.5 Seed and Extend

The time complexity of both of the algorithms is O(nm). This is quite slow because
we usually want to work with sequences where n and m are in the order of 106. (The
size of human genome is approximately 3 · 109 bp.) In the case of such sequences we
cannot use an exact algorithm. We will have to make a trade-off between the precision
of the algorithm and the time complexity.

Various heuristics are used to tackle this problem. The most used paradigm is seed
and extend [Har07, chap. 2]. We can split this strategy into the following phases:

CHAPTER 4. ALIGNMENT OF SEQUENCES 24

1. Finding seeds (matching k-mers) - Find all matching k-mers between input
sequences x and y. These k-mers are also called seeds.

2. Extension without gaps - Extend all seeds in both directions to get longer
alignments without using gaps. Gaps are the dashes in the alignment. We also
want to connect two seeds if they are close to each other to obtain a longer
alignment without using gaps.

3. Extension with gaps - Extend all alignments using gaps to chain alignments
that are close to each other.

4. Dynamic programming - Use exact dynamic programming to extend the align-
ment (one of the two mentioned algorithms above) and improve the score.

5. Output - Output the highest scoring alignments.

The important part in the first phase is to choose the right length of the seed.
When we take seeds that are too long, we might miss many important alignments. On
the other hand, when we choose seeds that are too short we will end up with too many
matching k-mers (hits) which causes us to perform too many extensions in the next
phase, degrading time performance.

In the second and third phase, we keep a significance score for every local alignment.
The alignments are being extended until we notice that the score is rapidly decreasing
and we will not improve much by extending it more. We also have some threshold for
the minimum score that we want to reach in every phase to filter out the alignments
that are not significant. We probably would not manage to extend them in the next
phase. This also decreases the time that is needed to spend in the next phase.

4.5.1 Our approach to finding seeds

The classical approach would be to take the most probable sequence from our model and
use all the kmers of this sequence for seeding. The problem is that then most probable
sequence contains many errors. Our approach is to use many sampled sequences from
the conditional probability and find similar regions inn these sequences and use these
regions for seeding. Using more samples might help us to eliminate the errors which
occur in the Viterbi sequence.

Chapter 5

Implementation And Experiments

We can split our code into three parts: preprocessing and the data set analysis scripts,
the code for hidden Markov model, and the analysis pipeline for the sampled sequences
from our HMM. In this chapter, we explain the design of all three parts and then the
main problems that we had to deal with. In the last section, we give an overview of
the libraries that we have used in our work.

5.1 Preprocessing and the Data Set Analysis

In this section, we introduce our data set and show some basic statistics about it.
Afterwards, we explain what subset of the whole data set we used for our experiments.

5.1.1 BWA-MEM

In order to find out what is the quality of our reads, we needed to align them to the
reference sequence. The reference sequence is believed to be the true DNA sequence
of the organism that was used in the sequencing. At first, we align each read to the
reference sequence and then we keep the part of the reference sequence corresponding
to each read. We will call the extracted part of the reference sequence a reference
read. We assume that this is the read that we should have obtained if the sequencing
was error-free.

We used BWA-MEM [Li13] for this task. BWA-MEM is a widely used tool for mapping
sequences against a large reference sequences. Running BWA-MEM, we have used the
flag -x ont2d which turns on optimizations for Oxford nanopore reads. BWA-MEM is
routinely being used in many nanopore software tools, including Nanopolish [LQS15],
Deeepnano [BBV16], Nanocall [DDY+16] and MarginAlign [JFM+15].

When the above mentioned flag is not used with our data, we can notice that the
aligner often does not manage to find any alignment of the query sequence against the
reference sequence. The problem with mapping nanopore reads is that these reads have

25

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTS 26

very high error rate. BWA-MEM algorithm is based on the seed and extend approach which
we described in the section 4.5. It uses maximum exact matches (MEM) for seeding
and Smith-Waterman algorithm (section 4.4) for extending the seeds. The important
part for us is that it performs local alignment so that it clips some parts of the sequence
from both of the ends.

BWA-MEM takes as the input FASTA file which is a very simple text file format. For
example, it looks like this:

>name of the sequence

ACTGAAAATAGATAAAGTAG

The output format of this tools is more complex. It can output SAM or BAM file. SAM file
is a text file and BAM is a binary file which can be in a compressed or non-compressed
format. We worked with SAM output. Unfortunately, SAM format is not very readable
and also not so straightforward to parse. The alignment is not stored in the format as
shown in the Chapter 4, but written as a compressed string. We used pysam (https:
//pysam.readthedocs.io/en/latest/) library for parsing the SAM files. This library
is a python wrapper over htslib (http://www.htslib.org/) written in C.

SAM format defines more operations which can be used in the alignment. Besides
match, mismatch, deletion and insertion it additionally allows skipping, padding, and
clipping. In our experiments, we have only observed clipping. The meaning of these
operations is not strictly defined in the documentation for BWA-MEM. SAM format
also differentiates between two types of clipping – soft clipping and hard clipping. The
difference is that the hard clipped part is not included in the resulting SAM file. We
also noticed that hard clipping is used only for couple reads.

From this we defined two metrics for measuring identity:

M

I +D +M + S + C
(5.1)

M

I +D +M + S
(5.2)

where M is the number of matches, I is the number of insertions, D is the number
of deletions, S is the number of mismatches (substitutions) and C is the length of the
clipped part of the sequence.

The output sometimes contain multiple different alignments. We always chose the
alignment with the greatest number of matches.

Mapping one read to the reference genome takes around one second. We worked
only with template strand (data set of 27076 reads). Since our data set is so large we
decided to parallelize many scripts that we used for analysis. We used make to run
things in parallel with flag -j number_of_jobs, which tells make to split the data into
multiple processes and do it in parallel.

https://pysam.readthedocs.io/en/latest/
https://pysam.readthedocs.io/en/latest/
http://www.htslib.org/

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTS 27

5.1.2 FAST5

FAST5 is the file format in which the reads from MinION are stored. This file format is
build on the top of HDF5 - hierarchical data format designed for storing large data sets.
Oxford nanopore technologies customized this data format for storing the nanopore
reads.

There are many libraries for working with this data format in many languages. We
used python , C++ , and BASH for accessing these files. Very handy GUI for viewing
these files is hdfview. For C++ , we have used a library specifically for FAST5 file
format written by Matei David which can be found on github: https://github.com/
mateidavid/fast5.git. For python , we used h5py library. In BASH scripts we used
poretools [LQ14] – command line tool which is written in python2 and R and allows
basic analysis of nanopore reads, including plotting basic graphs summarizing the data.

For our purpose, the interesting parameters from FAST5 file are:

1. Parameters of k-mer models (Gaussian parameters) - emission probabilities in
HMM.

2. Scaling parameters for Gaussian distributions.

3. Event sequence for sampling algorithm, Viterbi algorithm, and training HMM.

4. Base called sequence. This file contains three sequences – complement, template,
and 2D basecall. We needed these sequences for aligning them to the reference
sequence.

5.1.3 Data Set

For our experiments, we used a data set from Escherichia coli K-12 MG1655 which
can be downloaded from these two links:
https://www.ebi.ac.uk/ena/data/view/ERX985671,
http://trace.ddbj.nig.ac.jp/DRASearch/experiment?acc=ERX985671.

For simplicity, we used only template strands for our experiments. First, we tried
to map these reads to the reference sequence by using BWA-MEM as we mentioned in
Section 5.1.1. The reads which did not map to the reference sequence were immedi-
ately discarded. Then we looked at the move lengths that Metrichor predicted for the
template strands. We split our data into two groups: the reads for which Metrichor
predicted moves lower or equal to two (25162 reads) and reads for which it predicted
at least one move longer than two (1911 reads). Afterwards, we randomly sampled
from both of the data sets 1000 reads. Most of our analysis was done on the first data
set. The second data set was only to find out whether our HMM performs significantly

https://github.com/mateidavid/fast5.git
https://github.com/mateidavid/fast5.git
https://www.ebi.ac.uk/ena/data/view/ERX985671
http://trace.ddbj.nig.ac.jp/DRASearch/experiment?acc=ERX985671

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTS 28

worse on these kind of data since we allow only skips of length one in our model (see
Section 5.2).

Some basic statistics of the whole data set are presented in Figure 5.1 and Table 5.1.
The read length influences the runtime and memory consumption of our algorithms.
MinION can sometimes sequence reads of length even 40000. Also notice between the
difference between the identity defined by 5.2 and by 5.1.

Identity

identity

F
re

qu
en

cy

0 10 20 30 40 50 60 70

0
50

0
10

00
15

00
20

00
25

00

Read lengths

read lengths (bp)

F
re

qu
en

cy

0 10000 20000 30000

0
50

0
10

00
15

00

Figure 5.1: Identity (%) defined by Equation (5.2) and read lengths (bp) for the whole
data set.

Min 1st Quantile Median Mean 3rd Quantile Max Std
Identity 5.2 (%) 1.12 62.76 64.58 63.08 65.89 72.47 1.72
Identity 5.1 (%) 58.82 64.60 65.67 65.71 66.77 84.42 6.01
Read length (bp) 230.00 4689.00 6825.00 6967.00 9060.00 37270.00 3646.39

Table 5.1: Basic statistics of the whole data set.

5.2 Hidden Markov Model Implementation

We have implemented algorithms related to HMMs in C++ . We split the whole task
into two binaries: training (train_move_hmm_main) and, base calling and sampling
(sample_move_hmm_main). After the training phase, the HMM is serialized into JSON
file. We chose this file format because it is quite readable and nearly every programming
language has a library for working with JSON format. In C++ , we used jsoncpp library.

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTS 29

We designed a template class for HMM which implements methods for Viterbi
algorithm described in Section 2.5 and the sampling algorithm described in Section 2.7.
Both of the algorithms are implemented to work with silent states. The idea was to have
a more general class that would serve as an abstraction above both of the algorithms
that we want to use. This class takes the specific details of the architecture of HMM as
arguments – the list of transitions for every state and the list of states with probability
distributions. The template argument for this class is the emission type. Now, we are
working only with the mean current levels for the events but in future, we might decide
to use also the other parameters of the events such as the standard deviation of the
current.

Transition is a struct storing transition probability and the node that the transition
leads to. We also have an abstract class for states (State) and classes for individual
states (SilentState and GaussianState) which inherit from the abstract class.

We used HMM architecture described in Section 3.3 and we only allowed skips of
length one. The parameters for HMM were estimated by using Equation (3.4). For
pseudocount we chose the value one. The problem with choosing a fixed threshold
for the length of skips is that it is not clear what we should do when we encounter
a transition in the training data that skips more bases than the threshold. It is very
rare but it might happen so we chose a very simple strategy to handle this problem.
We just do not count this kind of transitions and move on to the next transition as if
nothing has happened.

We split our data set into two parts – training and testing set. We randomly
shuffled our data set and chose the reads for which the number of bases sums up to
approximately 70% of all bases in the data set. Training, running Viterbi algorithm,
and sampling 250 samples for every read took approximately five hours. We decided no
to parallelize this part, because it required a lot of memory for computing the forward
probability matrices for long reads.

5.2.1 Arithmetics with Very Small Numbers

The probabilities of paths in the HMM can be very small. For the sequences of lengths
of 104 bases the probabilities drop to very small numbers such as 2−5000 which brings
problems with representing these numbers. The most precise data type for floating
point numbers in C++ is double. It uses 11 bits for the exponent. Therefore the smallest
number that can be represented is 2−210−1 = 2−1023 and also mantissa is limited to 52
bits. The usual approach to this problem is to transform these numbers to logarithmic
scale. For example: instead of storing number 0.5, we store number log2(0.5) = −1.
We hold these numbers in this representation all the time so if the intermediate value
was a number like 2−2000 then in the standard 64-bit floating number representation it

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTS 30

is equal to zero but in our representation it is −2000 which can be stored in double

or float. This approach was inspired by the article about implementing numerically
stable HMM [Man06].

Now, when we are working with log-transformed values the multiplication changes
to addition because:

log2(a · b) = log2(a) + log2(b) (5.3)

The instruction for adding two numbers is also faster than multiplication which is
another advantage of this representation.

Division can be implemented also in the similar way by using this law of logarithm:

log2

(a
b

)
= log2(a)− log2(b) (5.4)

Again we change division into subtraction which is also more efficient than division.
Unfortunately, the addition of two log-transformed numbers is not as easy. Let

us say that we have numbers a′ = log2(a) and b′ = log2(b). We want to calculate
log2(a + b) using a′ and b′. Then by factoring out b and applying Equation (5.3) we
obtain:

log2(a+ b) = log2

(
b
(

1 +
a

b

))
= log2(b) + log2

(
1 +

a

b

)
. (5.5)

We need to express Equation (5.5) in terms of a′ and b′. We use the fact that exponential
function is inverse to the logarithm. In our case, we know that: a = 2a

′ and b = 2b
′ .

By using these two equations, we simplify our expression into the form:

b′ + log2

(
1 +

2a
′

2b′

)
= b′ + log2

(
1 + 2a

′−b′
)
. (5.6)

In summary, we derived the following identity:

log2(a+ b) = b′ + log2

(
1 + 2a

′−b′
)
. (5.7)

During implementing we can encounter two additional problems. The first problem
is the logarithm of zero. C++ returns -HUGE_VAL for log2(0). This also needs to be
handled separately in the multiplication and division.

The second problem is more hidden. We can basically compute log2(a + b) in two
ways by using the eq. (5.7) as

b′ + log2

(
1 + 2a

′−b′
)

(5.8)

or as
a′ + log2

(
1 + 2b

′−a′
)

(5.9)

From mathematical point of view those two equations are equivalent but in C++ they
are not. The order of a′ and b′ in the exponent does matter. For example, let us take
the number 10−350 which is lower than 2−1023 and 10350 which is greater than 21023.

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTS 31

Both of the numbers cause an overflow in C++ . The number 10−350 is truncated to
zero and the number 10350 is evaluated as a special constant inf which stands for
infinity. Therefore log2(1 + 10−350) is zero and log2(1 + 10350) is inf. Let us say that
we have a′ = 2000 and b′ = 100. Then when we use the Equation (5.8) we end up
with infinity and in the case of using the Equation (5.9) we get a′ = 2000 which is not
completely accurate but still better than infinity. If a′ > b′ then we want to use the
Equation (5.9) otherwise we want to use the Equation (5.8).

We implemented this part of code in C++ which allows us to overload operators
for classes. Therefore we wrote a class Log2Num which has overloaded operators for
addition, multiplication, division, comparison and the operators for writing into the
streams (<<, >>). This abstraction allows us to hide all the implementation details and
problems with the logarithm of zero.

5.2.2 Encoding k-mers

Another problem that we encountered was encoding k-mers into integers. In some
situations, it is more convenient to work with integers than strings. Additionally,
strings take more space than integers. For example, we need to map k-mers into the
state ids of the HMM for the dynamic programming.

We can see every k-mer as a number in the base-4 numeral system. More formally,
we can define homomorphism:

Definition 9. Homomorphism h : {A,C, T,G}∗ → {0, 1, 2, 3}∗ maps A → 0, C → 1,
T → 2, G→ 3.

We can use the classical algorithm for conversion between numeral systems and
convert this base-4 number into decimal system. Now, we can work with it as an
integer in our code. When we want to convert this number into a string then we can
again use the classical algorithm for conversion between bases and get a number in
base-4. The only thing that we have to keep in mind is that normally when we work
with numbers we do not care about leading zeros. In our case, we cannot ignore those
zeros. Therefore after decoding, we have to add zeros to the beginning to get a string
of length k.

5.2.3 The Translation of State Sequences into DNA Sequences

Both of our algorithms for HMM return a sequence of states. Afterwards, we need
to translate it into DNA sequence. The main problem of the translation is that it is
not unique because of loops and skips in the model. For example, when we have two
consecutive states for 5-mers TCGCG and CGCGA then we might interpret it as a move of
length one or move of length three. Depending on that we will end up with a sequence

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTS 32

N = length(states)

previous_kmer = states[1]

result = previous_kmer
for i = 2, 3, . . . , N − 1 do

next_kmer = kmerToString(states[i])

move = shortestMove(prev_kmer, next_kmer)
result += the suffix of length move of the string next_kmer
prev_kmer = next_kmer

end for
return result

Figure 5.2: Translation of the state sequence to DNA sequence. The input of the
algorithm is the array states. This array is indexed from zero but the first state is the

initial state.

TCGCGA or TCGCGCGA. Our algorithm always chooses the smallest possible move, in this
case TCGCGA. Notice that when we have transition from AAAAA to AAAAA, we always
choose the move of length zero. For example, if the sequence of states looks like this:

AAAAA, AAAAA, AAAAA, AAAAA, AAAAA, AAAAA, AAAAA, AAAAA, AAAAA, AACTG

then it will be translated to AAAAACTG. Another consequence of this heuristics is that
we will never end up with homopolymers longer than five.

Pseudocode of this algorithm is in Figure 5.2.

5.3 Pipeline For Analyzing Samples

The output from the HMM (sample_move_hmm_main) are separate files for each read
that we used for testing. Each file contains Viterbi sequence, empty line and the
sequences for samples. Every sample is on separate line. In the following section, we
describe analysis that we have performed on this data.

5.3.1 Base Calling

First, we need to estimate the quality of the output from our HMM. We decided to
compare the most probable sequence from our model with the Metrichor base called
sequence. We also wanted to find out how different are our samples from these two
sequences.

We aligned Viterbi sequence, Metrichor sequence, and the samples to the reference
read by BWA-MEM with flag -x ont2d and compared identity percentage between refer-

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTS 33

ence and all of these sequences. All samples were successfully mapped to the reference
sequence. See the two graphs with boxplots in Figure 5.3.

When we look at the statistics calculated by Equation (5.1) from the whole testing
set, we notice that the mean identity of Metrichor is 65.7% and median is 65.88%. The
mean identity of our model is 62.47% and 64.06%. On the other hand, when we look
at the values without clipping then the differences are smaller. The mean identity of
Metrichor is 66.45% and median 66.33%. The mean identity of our model is 64.87%

and 64.84%.
When we evaluate the identity on the second data set we notice only 1.97% difference

between Metrichor and Viterbi without clipping. With clipping, the difference is 5.88%.
Metrichor predicted for these reads that they contain moves longer than two and our
model does not allow moves longer than two. Therefore, we can say that this is a
difficult data set for our model. It seems that it can still perform quite well.

Our main goal is not basecalling therefore it is not so important to have the best
model for the data. It is just an intermediate step in the design of our algorithm. For
basecalling, recurrent neural networks (RNN) achieve better results [BBV16] and even
Oxford nanopore technologies decided to move from HMM to RNN in the most recent
release.

5.3.2 Comparison of k-mer Sets

Our primary goal is to find out what are the appropriate lengths of k-mers that we
can use for seeding our alignment algorithm and also what is the reasonable number
of samples that we should use. These are the two main parameters for our alignment
algorithm.

Definition 10. k-mer of a sequence x
We call a sequence y a k-mer of a sequence x if and only if |y| = k and y is a substring
of the sequence x.

We decided to compare sets of k-mers between the reference read, Viterbi sequence,
Metrichor sequence, and samples. Let R be the set of all k-mers of the reference read
and Si be the set of all k-mers of the first i samples. Then we are mostly interested to
find out what is the size of R ∩ Si. We will sometimes use the standard terminology
from the statistics and denote all k-mers in R∩Si as true positives, all k-mers in R\Si
as false negatives and so on. Notice Venn diagrams in Figure 5.4.

We decided to try all k ∈ {9, . . . , 30}. For example, BWA-MEM [Li13] uses seeds of
minimum length 19, BLAST [AMS+97] uses seeds of minimum length 11 and bowtie

[LTP+09] uses seeds of length 28.
We chose to sample 250 sequences from our HMM. We do not want to choose too

many because it would slow down the algorithm but we also do not want to choose very

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTS 34

●●

●
●

●●

●

●

●●●

●

●
●
●

●

●●●●

●●
●

●

●

●

●●●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●●

●●●

● ●
●

●

●

●
●
●

●

●

●●●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●●●

●

●●●●

●●
●

●●

●

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39

0.
60

0.
62

0.
64

0.
66

0.
68

0.
70

Viterbi
Metrichor

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●
●●
●

●
●●●●

●

●
●●
●

●

●

●

●

●
●

●
●
●

●●

●

●
●●

●

●

●

●

●
●
●●

●

●
●

●

●
●●●●

●

●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●●

●

●

●
●

●●●

●

●●
●

●
●

●

●

●●

●

●●●●●

●

●●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●
●●●

●

●

●
●●●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●●
●

●
●

●

●

●

●●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●
●●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●
●●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Viterbi
Metrichor

Figure 5.3: Boxplots of percent identity between the reference and samples. Each
boxplot corresponds to an individual read (in total, we show 40 reads). Red and blue
crosses correspond to Viterbi and Metrichor sequence as you can see in the legend. The
circles are outliers. The identity in the left plot is defined by the Equation (5.1) and
in the right plot by the Equation (5.2). Notice in the left plot that the difference in
identity between our basecalled sequence and the Metrichor is only 2% which is a very
good result. In the right plot we also took into account the clipping which changed
the boxplots a lot. Metrichor and Viterbi sequence are still close to each other but
the boxplot for samples is more stretched – the difference between upper and lower
boundary is greater and we also have more outliers. That means the problem with the
alignment of samples to the reference read is that quite a large part from the ends is
clipped quite often. Viterbi sequence is usually somewhere around the upper boundary
but sometimes it can be found also in the interquartile region.

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTS 35

false
negatives

false
positives

true
positives

R Si

true
negatives

Figure 5.4: Venn diagrams for k-mer sets

few because we would not find enough k-mers matching the k-mers in the reference
sequence.

First, we need to compute R and Si and then compute the intersection. We need
to do it efficiently because we need to run this algorithm for all k-mer lengths, for all
samples, reference read, Viterbi sequence and also Metrichor sequence.

The main idea is based on the rolling hash algorithm which is used, for example in
Rabin-Karp algorithm for string searching [Wik16d]. Let us start from the beginning
of a sequence a = a1a2 . . . an and take the first k-mer a1a2 . . . ak. We can encode this
k-mer into an integer (hash) in the same way as in Section 5.2.2 and then we want
to encode the next k-mer a2 . . . ak+1 and so on. The idea that makes our approach
efficient is that we can reuse the code of the previous k-mer in order to calculate the
code of the next k-mer.

When we have a k-mer a0, . . . , ak−1 then it can be represented in the decimal as a
number

x = a0 · 4k−1 + a1 · 4k−2 + · · ·+ ak−1 · 40 (5.10)

The code of the next k-mer is:

y = a1 · 4k−1 + a2 · 4k−2 + · · ·+ ak−1 · 41 + ak · 40 (5.11)

Therefore we can calculate y more efficiently as:

(x− a0 · 4k−1) · 4 + ak · 40 (5.12)

The important thing to notice is that we need 2 · k bits to encode a k-mer. Therefore
32-bit integer is not sufficient for us.

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTS 36

0

25

50

75

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241
Number of samples

In
te

rs
ec

tio
n

of
 k

m
er

s
w

ith
 r

ef
er

en
ce

 (
%

)

Oxford2_MARC_1b_050615_486pore_96ng_5320_1_ch130_file179_strand
 K=9

0.0

0.2

0.4

0.6

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241
Number of samples

In
te

rs
ec

tio
n

of
 k

m
er

s
w

ith
 r

ef
er

en
ce

 (
%

)

Oxford2_MARC_1b_050615_486pore_96ng_5320_1_ch130_file179_strand
 K=14

Figure 5.5: A sample plots for a random read and k = 9 and k = 14. The highest
sensitivity for k = 9 grew to 85%, while for k = 14 it only reached 0.6%. The red
dashed line is the sensitivity of the Viterbi sequence from our model and the black
dashed line is the sensitivity of Metrichor sequence.

This algorithm can be implemented using iterator design pattern. We have a class
that that represents the current k-mer window in the sequence. This class provides
methods next(), currentkmerCode() and currentkmer(). Method next() just slides
the window by one to the right or returns −1 if we are at the end of the string.

From now on, we just work with the codes of k-mers. For storing these codes, we
use std::set<long long>(). In the first step, we compute set R and then we iterate
over all samples. To iterate over a particular sequence of a sample we use our k-mer
iterator. We maintain set Si. If a new element was inserted into Si then we check if
this element is in R. If yes then we increase the counter for true positives (R ∩ Si).
After computing R, Si and the number of true positives, we can compute the sizes of
all four partitions which you can see in ?? in a straightforward way.

From this we can define sensitivity (hit rate) as:

|R ∩ Si|
|R|

(5.13)

The plots of sensitivity for every read are included in the appendix. Now, we only
include a random sample reads to explain these plots. We have two types of plots –
separate plots for every read and every length of k-mer (Figure 5.5) and plots separate
for every read with all curves for lengths of k-mers in it (Figure 5.6).

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTS 37

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241
Number of samples

In
te

rs
ec

tio
n

of
 k

m
er

s
w

ith
 r

ef
er

en
ce

 (
%

)

Length of kmer

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Oxford2_MARC_1b_050615_486pore_96ng_5320_1_ch130_file179_strand

Figure 5.6: A sample plots for a random read and all k ∈ {9, . . . , 30}. Every curve
corresponds to different k. The red dashed lines correspond to Viterbi sequence and
the black dashed lines correspond to Metrichor sequence. Both Viterbi and Metrichor
match less than 5% of k-mers of the reference read. For many reads, we can notice

that the curves for k > 12 are below 15%. In this case, it is even below 5%.

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTS 38

From these plots we could notice that Viterbi and Metrichor are usually around
5% or even lower. The curves for samples very quickly intersect the lines for Viterbi
and Metrichor which means that we probably do not need so many samples for our
algorithm.

Based on these graphs we came up with compound statistics for all reads which are
very similar to standard statistical quantities. Let Ci be then number of k-mers in the
read i then:

sensitivity =

∑
i |R ∩ Ci|
|R|

(5.14)

precision =

∑
i |R ∩ Ci|
|R|

(5.15)

specificity =

∑
i |(R ∪ Ci)c|∑

i |(R ∪ Ci)c ∪ (Ci \R)|
(5.16)

found k-mers
reference k-mers

=

∑
i |Ci|
|R|

(5.17)

We computed all these quantities for all k ∈ {9, . . . , 30} and plotted graphs for them.
The graphs are in the appendix.

In the compound graphs, we can notice that the sensitivity for k > 20 drops below
1%, therefore we do not want to such length of k. We also probably do not want to
try k = 9 because we notice too many hits which slows down the alignment algorithm.

5.4 Libraries

Besides the libraries for working with various data formats that we mentioned above
we also used a couple of other libraries.

For logging, we used google-glog library which open source and released on
https://github.com/google/glog.git. It is also available in Ubuntu in the package
libgoogle-glog-dev. This library allowed us to monitor our algorithm during the
runtime. It was also very helpful for debugging.

We also used google-gflags for parsing the command line arguments in C++ . It
can be also found on https://gflags.github.io/gflags/.

We decided to properly test our code written in C++ so we wrote at least some
basic unit tests for every class and every function exposed in the header files. We used
https://github.com/google/googletest.git library for this purpose. It is a very
convenient unit testing framework. We used package libgtest-dev in Ubuntu with
version 1.7.0. It is important to used this version or a later version because some
features might not work that we used and the unit tests might not even compile.

https://github.com/google/glog.git
https://gflags.github.io/gflags/
https://github.com/google/googletest.git

Conclusion

The goal of this thesis was to design a new approach for alignment of nanopore reads.
A common approach is to translate the sequences of electric current levels into DNA
sequences and then align them using a general-purpose algorithms. The algorithms
used for translation of sequence of electric current levels (base calling) are quite inac-
curate which is also demonstrated in our experiments. Due to this inaccuracy, a lot of
information is lost in the base calling process and the alignment algorithm has to work
only with this reduced information. Instead, we proposed to merge these two steps and
use the raw underlying data from electric current in our alignment algorithm.

The usual approach for base calling nanopore reads is to design a hidden Markov
model and then take the most probable sequence from the HMM as the base call.
As we observed, this sequence contains many errors. Therefore, instead of a single
optimal sequence, we have decided to use a set of suboptimal sequences sampled from
the conditional distribution defined by the base calling HMM.

Many commonly used alignment algorithms use seed and extend paradigm (Sec-
tion 4.5). These algorithms use only the most probable sequence from HMM for finding
seeds. Our approach is to use a set of randomly sampled sequences, find similar regions
among these sequences, and use these regions for seeding our algorithm.

In this thesis, we have designed two different architectures for hidden Markov model
(Chapter 3). In our experiments, we found out that the first HMM is comparable
the Metrichor basecall. The difference is around 2 percentage points which is quite
sufficient for our purposes since our final goal is not base calling. The Metrichor model
is probably more complicated because it can predict moves longer than two but still
the difference in precision of our model and Metrichor is not so large.

After running our HMM, we have analyzed the samples from the conditional dis-
tribution. We compared the sets of k-mers in the samples and the reference read. We
experimented with various lengths of k-mers and numbers of samples. From these ex-
periments, we were able to identify some potentially good lengths of k-mers. It also
seems that we do not need to sample that many sequences for the alignment algorithm.

In our experiments, we did not take into account positions of kmers. Therefore in
future, we might want to investigate the positions of kmers and find out if there are
any interesting common subsequences between the samples. In this way, we might be

39

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTS 40

able to find some good chains of kmers which occur in the samples in increasing order.

Bibliography

[AMS+97] Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui
Zhang, Zheng Zhang, Webb Miller, and David J Lipman. Gapped blast and
psi-blast: a new generation of protein database search programs. Nucleic
acids research, 25(17):3389–3402, 1997.

[BB11] Tomáš Vinař Broňa Brejová. Methods in bioinformatics, volume 1.
Knižničné a edičné centrum, Fakulta matematiky, fyziky a informatiky,
Univerzita Komenského, Mlynská dolina, 842 48 Bratislava, 1 edition, 2011.

[BBB+] JM Bernardo, MJ Bayarri, JO Berger, AP Dawid, D Heckerman, AFM
Smith, and M West. Generative or discriminative? getting the best of
both worlds.

[BBV16] Vladimír Boža, Broňa Brejová, and Tomáš Vinař. Deepnano: Deep re-
current neural networks for base calling in minion nanopore reads. arXiv
preprint arXiv:1603.09195, 2016.

[CP03] Simon L Cawley and Lior Pachter. Hmm sampling and applications to
gene finding and alternative splicing. Bioinformatics, 19(suppl 2):ii36–ii41,
2003.

[DDY+16] Matei David, Lewis Jonathan Dursi, Delia Yao, Paul C Boutros, and
Jared T Simpson. Nanocall: An open source basecaller for oxford nanopore
sequencing data. bioRxiv, 2016.

[DEKM98] R. Durbin, S.R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge
University Press, 1998.

[GVM03] Valer Gotea, Vamsi Veeramachaneni, and Wojciech Makałowski. Mastering
seeds for genomic size nucleotide blast searches. Nucleic acids research,
31(23):6935–6941, 2003.

[Har07] Robert S Harris. Improved pairwise alignment of genomic DNA. ProQuest,
2007.

41

BIBLIOGRAPHY 42

[JFM+15] Miten Jain, Ian T Fiddes, Karen H Miga, Hugh E Olsen, Benedict Paten,
and Mark Akeson. Improved data analysis for the minion nanopore se-
quencer. Nature methods, 12(4):351–356, 2015.

[Li13] Heng Li. Aligning sequence reads, clone sequences and assembly contigs
with bwa-mem. arXiv preprint arXiv:1303.3997, 2013.

[LQ14] Nicholas J Loman and Aaron R Quinlan. Poretools: a toolkit for analyzing
nanopore sequence data. Bioinformatics, 30(23):3399–3401, 2014.

[LQS15] Nicholas James Loman, Joshua Quick, and Jared T Simpson. A complete
bacterial genome assembled de novo using only nanopore sequencing data.
bioRxiv, page 015552, 2015.

[LTP+09] Ben Langmead, Cole Trapnell, Mihai Pop, Steven L Salzberg, et al. Ultra-
fast and memory-efficient alignment of short dna sequences to the human
genome. Genome biol, 10(3):R25, 2009.

[Man06] Tobias P Mann. Numerically stable hidden markov model implementation.
An HMM scaling tutorial, pages 1–8, 2006.

[Mou04] David W. Mount. Bioinformatics: sequence and genome analysis. Cold
Spring Harbor Laboratory Press, 2004.

[Nán10] Michal Nánási. Biological sequence annotation with hidden markov models.
Master1s thesis, 2010.

[Sch16] Amanda Schaffer. Nanopore sequencing, 2016. [Online; accessed 30-
April-2016] Available from http://www2.technologyreview.com/news/

427677/nanopore-sequencing/.

[Sim16] Jared T. Simpson. Simpson lab blog, 2016. [Online; accessed 27-January-
2016] Available from https://simpsonlab.github.io/.

[Tec] Oxford Nanopore Technologies. Oxford nanopore sequencing technologies
specifications. [Online; accessed 26-January-2016] Available from https:

//nanoporetech.com/community/specifications.

[Wik16a] Wikipedia. De bruijn graph, 2016. [Online; accessed 26-January-2016]
Available from https://en.wikipedia.org/wiki/De_Bruijn_graph.

[Wik16b] Wikipedia. Dna, 2016. [Online; accessed 30-April-2016].

[Wik16c] Wikipedia. Generative model, 2016. [Online; accessed 30-April-2016].

http://www2.technologyreview.com/news/427677/nanopore-sequencing/
http://www2.technologyreview.com/news/427677/nanopore-sequencing/
https://simpsonlab.github.io/
https://nanoporetech.com/community/specifications
https://nanoporetech.com/community/specifications
https://en.wikipedia.org/wiki/De_Bruijn_graph

BIBLIOGRAPHY 43

[Wik16d] Wikipedia. Rabin–karp algorithm, 2016. [Online; accessed 15-May-2016]
Available from https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_

algorithm.

[ZB08] Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de novo short
read assembly using de bruijn graphs. Genome research, 18(5):821–829,
2008.

https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_algorithm
https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_algorithm

Appendix A - Implementation and
Graphs

This thesis includes an attached CD, containing the source code and graphs mentioned
in the text. The source code is also available at https://github.com/rasto2211/

nanopore-read-align.git.

44

https://github.com/rasto2211/nanopore-read-align.git
https://github.com/rasto2211/nanopore-read-align.git

	Introduction
	DNA Nanopore Sequencing
	DNA
	DNA Sequencing
	Nanopore Sequencing Technology
	Kmer probability model

	Hidden Markov Model
	Definitions
	Graph Representation
	HMM as a Generative Model
	HMM and the Nanopore Sequencer
	Viterbi algorithm
	The Forward Algorithm
	Sampling from the Conditional Probability Distribution

	HMM for Modelling MinION Data
	Model Without Errors
	Event Detection Errors
	Modelling Event Detection Errors in HMM
	Split Events
	Skipped events
	Transition Probabilities

	Profile HMMs
	Adaption of the Profile HMM to Our Problem

	Alignment of Sequences
	Motivation
	Problem Statement
	Needleman–Wunsch Algorithm
	Smith–Waterman Algorithm
	Seed and Extend
	Our approach to finding seeds

	Implementation And Experiments
	Preprocessing and the Data Set Analysis
	BWA-MEM
	FAST5
	Data Set

	Hidden Markov Model Implementation
	Arithmetics with Very Small Numbers
	Encoding k-mers
	The Translation of State Sequences into DNA Sequences

	Pipeline For Analyzing Samples
	Base Calling
	Comparison of k-mer Sets

	Libraries

	Conclusion
	Appendix A

