
Univerzita Komenského v Bratislave

Fakulta matematiky, fyziky a informatiky

Sampling as an approach to sequencing
MinION data
Bakalárska práca

2017
Matúš Zeleňák

Univerzita Komenského v Bratislave

Fakulta matematiky, fyziky a informatiky

Sampling as an approach to sequencing
MinION data
Bakalárska práca

Študijný program: Informatika
Študijný odbor: 2508 Informatika
Školiace pracovisko: Katedra informatiky
Školiteľ: Mgr. Tomáš Vinař PhD.

Bratislava, 2017
Matúš Zeleňák

37506746

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Matúš Zeleňák
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: Computer Science, Informatics
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Sampling from MinION Reads

Aim: The MinION DNA sequencing platform produces long reads with high error
rates. One of the reasons for high error rates is that electrical signals produced
by the sequencing machine need to be first translated into DNA sequences by a
process called base calling, and this process is error prone. An alternative way
of interpreting these signals is to generate multiple samples from a posterior
sequence distributions defined by a hidden Markov model (HMM) representing
the properties of the sequencing process. The goal of this thesis is to speed up
this sampling by employing GPUs.

Supervisor: doc. Mgr. Tomáš Vinař, PhD.
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

prof. Ing. Igor Farkaš, Dr.

Assigned: 27.10.2016

Approved: 31.10.2016 doc. RNDr. Daniel Olejár, PhD.
Guarantor of Study Programme

Student Supervisor

iii

Acknowledgement: I would like to thank Mgr. Tomáš Vinař,PhD. and Mgr. Bro-
nislava Brejová, PhD. for their goodwill, guidance and advice. Moreover I am grateful
to Mgr. Vladimír Boža for technical help. Special thanks to my family and girlfriend
for supporting me. Additional thanks to Shia LaBeouf for providing motivation.

iv

Abstrakt

MinION je platforma sekvenovania DNA, ktorá produkuje dlhé čítania s relatívne
vysokým stupňom chybovosti spôsobeným prekladom meraných napätí zo sekvená-
tora do báz DNA, ktorý je nepresný. Je známe, že predspracovanie týchto meraní
pomocou skrytých Markovovových modelov pred prekladom pomáha zmierniť chy-
bovosť. V našej práci sme použili skrytý Markovov model na vzorkovanie z posteriórnej
pravdepodobnosti pričom hlavným zameraním bolo zrýchlenie vzorkovacieho algoritmu
použitím paralelizmu, ktorý ponúkaju grafické karty. Konkrétne sme adoptovali plat-
formu CUDA na paralelizáciu algoritmov v jazyku C a použili ňou ponúknuté pro-
gramovacie paradigmy na zrýchlenie kľúčových častí nášho programu. Následne sme
porovnali časy vykonávania akcelerovaného algoritmu s verziou, ktorá CUDU nevyužíva
a beží na CPU. Výsledky jasne ukazujú, že pre veľkosti vstupov vyskytujúce sa v praxi
ponúka náš zrýchlený algoritmus značné zrýchlenie, často o niekoľko rádov v porovnaní
s neparalelnou verziou bežiacou na CPU.

Kľúčové slová: MinION, skrytý Markovov model, vzorkovanie, DNA, CUDA

v

Abstract

MinION DNA sequencing platform produces long reads with relatively high error rates
caused by a noisy translation of current measurements into the DNA bases representa-
tion. It is known, that preprocessing the current measurements with Hidden Markov
models before the translation can help reduce the error. We use the Hidden Markov
model to sample from a posterior probability and the main focus of our work is to ac-
celerate the sampling algorithm by using the parallelization potential of graphic cards.
Specifically we adopted the CUDA platform used for parallelization of C algorithms
and implemented the paradigms it provides into the key parts of our software. Sub-
sequently we compared the running times of both the accelerated algorithm with a
version that does not use CUDA and runs on CPU. The results show conclusively that
for inputs occurring in real life applications our algorithm offer a significant speedup,
ofter in the order of several magnitudes compared with a non-parallel CPU version.

Keywords: MinION, Hidden Markov model, sampling, DNA, CUDA

Contents

Introduction 1

1 Background 2
1.1 DNA Sequencing . 2
1.2 Nanopore sequencing and MinION platform 3
1.3 Hidden Markov Model . 4
1.4 Relationship of the MinION data to HMM 5

2 Sampling 8
2.1 Theory . 8

2.1.1 Motivation for sampling . 8
2.1.2 Forward Algorithm . 9
2.1.3 Stochaistic tracebacking of sample 10

2.2 Algorithm implementation . 10
2.2.1 Sample path decoding . 11
2.2.2 Arithmetics in log scale . 12
2.2.3 Time and space complexity analysis 12
2.2.4 Used libraries . 13
2.2.5 Abandoned attempt at implementation 13

3 Parallelization through GPGPU 14
3.1 Introduction to GPGPU and example cases 14

3.1.1 GPGPU applications . 15
3.2 Used techniques . 15
3.3 Parallel implementation of sampling algorithm 16

3.3.1 Parallelization bottleneck identification 16
3.3.2 Theoretical speedup estimation 18

4 Experiment design and results 19
4.1 Input data . 19
4.2 Testing method . 19

vi

CONTENTS vii

4.3 Running time comparison . 21
4.3.1 Theoretical vs. practical speedup 25

5 Conclusion 27
5.1 Future work . 28

Appendix A 30

List of Figures

1.1 Nanopore with threaded DNA, table with current measurements [3] . . 3
1.2 Graph representation of HMM . 4
1.3 Raw signal from MinION and its segmentation to events [14] 5
1.4 diff function example . 6
1.5 Example of transition types . 7

2.1 Example comparison of Viterbi path and samples 9
2.2 Path decoding example . 11

3.1 Simple kernel example . 15
3.2 Kernel usage example code . 16
3.3 Parallel forward matrix calculation pseudocode 17
3.4 Parallel sampling pseudocode . 17
3.5 Parallel decoding pseudocode . 17

4.1 Running time of non-paralell calibration algorithm 21
4.2 Running time of forward matrix calculation for varying data size 22
4.3 Running time of sampling phase for varying data size 22
4.4 Running time of sampling phase for variable number of samples 23
4.5 Running time of forward matrix phase for variable k-mer size 23
4.6 Running time of sampling phase for variable k-mer size 24
4.7 Running time for forward matrix phase for variable skip size 24
4.8 Running time for sampling phase for variable skip size 25
4.9 Running time for decoding phase . 25

viii

List of Tables

4.1 Parameter defaults . 20

ix

Introduction

MinION is a third generation DNA sequencing platform capable of producing long
reads. Sequencing is performed by threading a DNA strand through a nanopore and
measuring current alterations that the passing DNA fragment induces. Based on these
current measurements we are able to determine the nucleotide string of the sequenced
DNA strand. Unfortunately, this process of measurement translation is noisy and
results in relatively high error rate. It is known that these errors can be mitigated
to a degree by first processing the measurement data with Hidden Markov models.
For instance, there already exist solutions[16] which use Hidden Markov models for
determining the most likely DNA sequence for a set of measurements. In our work,
we will focus on sampling which is a process of generating a set of DNA sequences
that are close to the most likely one in terms of their probabilities and thus maintain
a biological significance. The main focus of our work is on acceleration of the already
existing sampling algorithm. We propose parallelization using Nvidia CUDA API for
GPUs as a viable way of significantly increasing the speed at which samples can be
produced. In the first chapter we provide the reader with theoretical background of our
thesis and introduce the model we use for the remainder of our work. Second chapter
describes the motivation for sampling and implementation of the algorithm on which
we base our software. Third chapter revolves around the potential of graphic cards
for scientific use and applies the CUDA paradigms to the sampling algorithm. In the
fourth and last chapter we describe the design and results of experiments that rate the
worthiness of parallelization for our task.

1

Chapter 1

Background

This chapter should introduce the reader to relevant topics that will be used throughout
the thesis and should serve as a reference point for basic definitions.

1.1 DNA Sequencing

Organisms have most of their working principles encoded into a deoxyribonucleic acid
(abbreviated DNA). This molecular structure made of two complementary strands of
nucleotides contains information necessary for growth, functioning and reproduction of
the carrier organism [1].

From the computer science standpoint, a single strand of DNA can be viewed as a
string of finite length over a four symbol alphabet. The alphabet symbols represent the
DNA nucleotides (bases) which are the building blocks of nucleic acid and are labeled
A,C,G, T for adenine, cytosine, thymine and guanine respectively.

Given the importance of DNA, it is understandable that we attempt to retrieve its
structure from individual organisms in a process called DNA sequencing [2]. The result
of a sequencing run is called read – a set of measurements which can be translated into
a string representation of the aforementioned nucleotides. In most sequencing technolo-
gies there is a limit to the length of a read that can be obtained in a single run. This
limit is typically much lower than the length of the a genome we are sequencing and
thus individual reads need to be later reassembled using bioinformatics’ methods[24].

Throughout history, the sequencing approaches and technologies evolved and can
be separated into so-called generations: The first generation consists of modifications of
Sanger sequencers which are characteristic by sequencing runs of about 1kbp (kilobase
pair), high per-base accuracy of up to 99.999% and a cost in the order of $0.5 per kbp

2

CHAPTER 1. BACKGROUND 3

[23].
The second, or ’Next-generation sequencers’ use a wider variety of technologies and
compared to the first generation offer shorter reads in the order of tens of base pairs
with a higher error rate of about 1-1.5%. The cost is around $2 per megabase pair[23].
The most recent third generation devices are capable of producing reads of lenghts in
the order of tens of kilobasepairs per run at about half the cost for second generation
at the expense of higher error rate in the ballpark of 13% [22].

1.2 Nanopore sequencing and MinION platform

Definition 1.2.1. k-mer is a continuous sequence of k nucleotide bases.

Definition 1.2.2. The process of translating sequencing reads into a representation
of a corresponding DNA sequence is named base calling.

Recently, a third generation platform called MinION was released by Oxford
Nanopore technologies. The core of the platform is a phone-sized device which is con-
nected to a computer via USB. Sequencing is performed by threading a single strand
of DNA through a protein nanopore. The nanopore is embedded in a membrane made
of synthetic polymers to which an electric current is applied. There are hundreds of
such nanopores in one device, each of which generates a stream of data [19].

Figure 1.1: Nanopore with threaded DNA, table with current measurements [3]

As a part of the DNA strand passes through the nanopore it induces a characteristic
disruptions of the current. In an ideal conditions, the speed at which the strand passes
through the nanopore would be constant and there would be a deterministic way to
map the disruptions to k-mers that caused them. That is not the case and even the
latest version of MinION (the R9.4 of October 2016) has up to 8% error rate.[18]

CHAPTER 1. BACKGROUND 4

1.3 Hidden Markov Model

One way to approach the problem of base calling on MinION data is to design a
probabilistic model that characterizes the basic properties of the technology. To this
end, we will use a Hidden Markov Model (HMM) [21].

Hidden Markov model is a machine learning concept that has use in many areas:
speech and handwriting recognition, image processing and bioinformatics to name a
few.

Definition 1.3.1 (Hidden Markov model). Let H = (Q,E, e, t, s) where Q is a non-
empty finite set of states, E is a an uncountably infinite set of emissions, e : Q×E →
[0, 1] is an emission probability function and t : Q×Q→ [0, 1] is a transition probability
function and s is an initial state probability function. H is a Hidden Markov model
when the following conditions hold true:

1. ∀u ∈ Q :
∑

v∈Q t(u, v) = 1

2. ∀u ∈ Q :
∫
x∈E e(u, x)dx = 1

3.
∑

q∈Q s(q) = 1

This model is structurally similar to a finite automaton and can be visually repre-
sented as a directed graph. In this graph the states from Q would form vertices and
arrows would mark transitions between states u, v that satisfy t(u, v) > 0. An example
can be seen in Figure 1.3

Figure 1.2: Graph representation of HMM

The HMM we use is a generative model. It is used to generate two sequences - a
sequence of states and a sequence of observations.

Starting from an arbitrary state q0 with probability s(q0) we emit a random ob-
servation o ∈ E with a probability defined by e(q0, o). Next, we transition to some
random state qi ∈ Q with a probability defined by t(q0, qi). Once in the state qi we
again emit an observation, this time with probability e(qi, o) and again transition to
next state. This chain of transitions can have arbitrary length, even be infinite. For

CHAPTER 1. BACKGROUND 5

the sake of our work we are only interested in transitional state paths of finite length.

In this way, HMM defines the joint probability over the pairs P (o | s) where o is
the sequence of observations and s is a description of the state path the HMM took in
order to emit o. This probability can be calculated as

P (o | s) = (
n∏
i=1

t(si−1, si)) · (
n∏
i=1

e(si, oi)) (1.1)

where o = o1, o2, . . . , on is the sequence of observations and s = s0, s1, s2, . . . , sm is the
sequence of states.

Definition 1.3.2. Indegree of state q ∈ Q from HMM (Q,E,e,t,s) is the value

Iq = |{qf | t(qf , q) > 0, qf ∈ Q}|

Definition 1.3.3. Maximal indegree of the HMM (Q,E,e,t,s) is

IH = max ({Iq | q ∈ Q})

where Iq is indegree of state q.

1.4 Relationship of the MinION data to HMM

Definition 1.4.1. Event is a result of clustering of the raw current measurement data
originating from a single nanopore. Event is characterized by its mean, standard
deviation and duration [19].

Figure 1.3: Raw signal from MinION and its segmentation to events [14]

In an ideal situation, each consecutive event should correspond to a different DNA
context (different part of the sequenced DNA) and consecutive events should represent

CHAPTER 1. BACKGROUND 6

DNA contexts which differ in only one nucleotide. In practice the process of segmen-
tation of current measurements into a sequence of events is noisy and can produce
consecutive events that represent the same DNA context (stays) or there can be a shift
of more than one nucleotide between the consecutive events (skips).
We will use a specific form of an HMM to alleviate this noisiness. Consider a HMM H

such that:

• Q = {x|x ∈ {A,C,G, T}k, k ∈ N}

• E ⊂ R

• s(q) = 1
|Q| ∀q ∈ Q

As can be seen, each state of H represents a different DNA k-mer.
For future use let us create a helper function diff operating on pairs of states.

The value of diff (qu, qv) is k − l where l is the length of the longest suffix of qu which
matches the prefix of qv of length l and k is the length of a k-mer.

Figure 1.4: diff function example

Suppose we have two states qu and qv. We will call a transition between two states
qu and qv that satisfies diff (qu, qv) = 2 a skip transition of one base. We can see
an example of such transition as T3 in Figure 1.4. We define the probability of such
transition occurring as probskip. In a similar way we can define a skip transition of up
to k − 1 bases for states that have diff ∈ [2, k].
For diff (qu, qv) = 0 we call the transition a stay transition. Figure 1.4 shows this
transition as T2. Again, we define a constant probstay marking the probability of H
making a stay transition.

CHAPTER 1. BACKGROUND 7

Figure 1.5: Example of transition types

Additionally we have a variable m defining the maximum allowed number of bases
H can skip in transition.

The transitional probability t(qm, qn) for a value m ∈ [1, k − 1] can now be derived
from the following conditions:

• for diff (qm, qn) = 0 : t(qm, qn) = probstay

• for diff (qm, qn) = s ∈ [2,m] : t(qm, qn) =
(probskip)

s−1

|{qx | diff(qm,qx)=s}|

• for diff (qm, qn) = 1 : t(qm, qn) =
1−probstay−

∑
qo∈{q | diff (qm,q)>1} t(qm,qo)

|{qx | diff(qm,qx)=1}|

• for diff (qm, qn) > m : t(qm, qn) = 0

For a given observation x the probability of a state emitting x is calculated from a
Gaussian distribution N (µ, σ2) where both µ and σ are parameters associated with a
particular state.

Imagine that we have a sequence of events produced by MinION and we would like
to find the most probable DNA sequence that caused these events. We can perceive
the events as an observations sequence o emitted by H. In such case, our problem of
finding the DNA sequence is reduced to finding a state path smax such that smax =

argmaxs P (o|s).
In real-life application we count on using a particular instance of H provided by

Nanopore Technologies [8]. Our algorithms however accepts any HMM that is struc-
turally identical to H.

Chapter 2

Sampling

This chapter should persuade the reader about the viability of sampling for biological
tasks, explain how sampling can be done on HMMs and describe the concrete algorithm
we use.

2.1 Theory

2.1.1 Motivation for sampling

Hidden Markov models are most usually employed for finding the optimal solution to
a problem, for example by running a Viterbi algorithm [12] to find the most probable
state path for a given observation sequence.

In the case of Nanopore model running Viterbi algorithm and decoding the state
path would yield us the most probable DNA sequence corresponding to the given
observation sequence of events read from MinION.

Suppose that instead of the optimal solution we are interested in a set of solutions
that have a chance of being close to optimal. The process of obtaining such set is called
sampling.

Regarding our example with Nanopore model, by sampling from the HMM we could
instead get several state sequences instead of only the most probable one. Note that we
know the observation sequence beforehand and thus we are sampling from a posterior
probability [5].

Practice shows that searching for such samples is meaningful as the resulting se-
quences retain significance from a biological point of view [15].

In figure 2.1.1 we can see how exploring the randomized solution space through
samples can help us obtain useful information about a DNA sequence. We can see
that the most probable path found with Viterbi algorithm does not bear similarity to
majority of the samples on some of its parts. Based on this observation we could infer

8

CHAPTER 2. SAMPLING 9

Figure 2.1: Example comparison of Viterbi path and samples

that these particular parts in the Viterbi path are an artifact since the alternate part
is supported by many suboptimal solutions.

2.1.2 Forward Algorithm

Suppose we want to obtain a probability that the HMM generated an observation se-
quence o. The probability of a particular path π = q1, q2, . . . qn emitting an observation
sequence o = o1, o2, . . . on was already shown in the equation 1.1. In order to find out
the probability of the HMM generating o we would need to sum up the probabilities
of path π emitting e over all the paths.

P (o) =
∑
π

P (o|π)

There can be exponentially many paths (in relation to the number of states) that
generate the observation sequence o. Doing a brute-force search would thus be very
inefficient for even small models. Fortunately, a polynomial time dynamic programming
algorithm exists for this task.

The algorithm works by iteratively computing rows of matrix FW where FW [i, k]

expresses the probability that for an emitted observation sequence o1, o2 . . . oi the HMM
ended up in state k.

The matrix of values FW [i, k] for an observation sequence o = o1, o2, . . . on can be
computed recursively by formula

FW [1, l] =
1

|Q|
· e(l, o1) (2.1)

FW [i+ 1, l] = e(l, oi+1) ·
∑
k∈Q

FW [i, k] · t(k, l) (2.2)

In the end, we can obtain the final probability of HMM generating the o = o1, o2, . . . on

by calculating
∑

q∈Q FW [n, q]

CHAPTER 2. SAMPLING 10

2.1.3 Stochaistic tracebacking of sample

Suppose we have an observation sequence o = o1, o2 . . . on We want to sample a state
sequence s = s1, s2 . . . sn from a distribution described by probability mass function
f(s) = P (s|o) where P (s|o) is the probability of our HMM moving through state path
s and emitting o.

We will start constructing the sampled state sequence from the end. Having the FW
matrix precomputed, we can sample the last state sn of the sample with a probability

FW [n, sn]∑
q∈Q FW [n, q]

Afterwards we sample for each next state si with probability

FW [i, si] · t(si, si+1) · e(si+1, oi+1)

FW [i+ 1, si+1]

We can repeat the above step until we run out of observations.
At the end, we have a sample state sequence s1, s2, . . . , sn.

2.2 Algorithm implementation

The input for our algorithm consists of:

1. HMM model (in format as seen in Nanopore [8]) along with parameters such as
the probstay, probskip or maximum allowed skip distance

2. Sequence of events – An array labeled events

First, we load the HMM and compute the transitions according to the conditions
formulated in section 1.4.

Next, we compute the FW matrix with m rows and n columns where m is the
length of the event sequence and n is the number of states for our HMM. Matrix cal-
culation can be implemented using a nested loop where the outer loop iterates over
the increasing prefix lengths pi of the observation sequence, while the inner loop goes
through the states qto of the HMM. Inside this inner loop is yet another loop which
iterates all of the states qfrom such that t(qfrom, qto) > 0 and calculates the sum (refer
to 2.2) that ends up as a result for cell FW [pi, qto].

Afterwards we traceback a sample sequence. We start by computing S =
∑

q∈Q FW [n, q]

and normalizing the last row of FW by S. We compute the prefix sum array p of this
last row and then choose a random number r from uniform distribution on interval
[0, 1]. Using binary search we find an index i of p such that p[i− 1] ≤ r ≤ p[i]. Index i
now refers to the position of a sampled state in the last row of FW . We mark the last

CHAPTER 2. SAMPLING 11

state as prev (previously seen state).
Having found the last state, we start a traceback routine consisting of a loop iterating
over the decreasing prefix lengths si of the observation sequence. Inside it, we calculate

T = e(prev, events[si]) ·
∑

q∈Q,t(q,prev)>0

FW [si, q] · t(q, prev)

. We create an array w and fill it with values

w[q] = FW [si, q] · t(q, prev) · e(prev, events[si]) ∀q ∈ Q

Again, we normalize w by T and calculate its prefix sum array wp. We use the same
process involving random number r and binary search to sample the next state (index)
of wp. The final step of the loop is to set the value of prev to the state that we have
just sampled.

We repeat the traceback routine as many times as is the number of samples we
need.

2.2.1 Sample path decoding

After we have obtained a sample state sequence q = q1, q2, . . . qm we need to decode it
into the DNA sequence it represents. Recall that every state of the HMM is a different
k-mer. Consider now a pair of states qi, qi+1 that are next to each other in the state
sequence. In the decoding process we look at the k-mers that the two states describe
and find the longest prefix of qi+1 that matches the suffix of qi – we call this substring
an overlap. The result of decoding is the suffix of qi+1 that immediately follows the
found overlap. In case of qi being the first state of the sequence we prepend it to the
suffix. Example of this process can be seen in figure 2.2.

Figure 2.2: Path decoding example

The path decoding can be implemented via loop that iterates the state sequence
from the start, calculates the length of the overlap for qi, qi+1 in a nested loop and
appends the non-overlapping part of qi+1 to the resulting string.

We repeat the above procedure starting from the sequence start for all pairs of
consecutive states and concatenate the results into a single string which represents the
sample DNA sequence.

CHAPTER 2. SAMPLING 12

2.2.2 Arithmetics in log scale

When calculating products of probabilities, such as in the Forward algorithm, we find
out that after only a few steps of computation the resulting probabilities have a value
that is too small to store in the limited space for floating point numbers in computers
with classical architecture. For example, the most precise floating type in C language
is the 64-bit double type which is capable of storing only numbers that have a value
between 10−308 and 10308. To overcome this problem we store logarithms of numbers
instead. For instance, instead of storing 10−4247 (which we can not do with double
type) we store ln(10−4247) ∼ −9779 which fits in the double without problems.

Such modification requires us to handle the basic arithmetic operations differently.
In case of number multiplication, we have to do addition since:

ln(x · y) = ln(x) + ln(y)

Similarly, division becomes subtraction:

ln(
x

y
) = ln(x)− ln(y)

Addition is a bit more tricky:

ln(x+ y) = x+ ln(1 + e(y−x)) x > y

ln(x+ y) = y + ln(1 + e(x−y)) y > x

When implementing these operations one must not forget to handle the problems
arising from the use of ln(0) (which in most languages results in some form of minus
infinity).

2.2.3 Time and space complexity analysis

The time complexity of the forward algorithm is O(nmd) where n is the number of
HMM states, m is the length of the event sequence and d is the maximum indegree of
all the HMM states. The space complexity is O(nm) since we just store the resulting
matrix.

The time complexity of a single sample traceback is O(md) and space complexity is
O(n) since we only store the resulting sample. The total space complexity for storing
k samples is inevitably O(km) and the time complexity is O(kmd)

As for the path-decoding phase, the time complexity for one sample is O(mk2)
where k is the length of a k −mer. The k2 factor arises from the fact that we need
to find the overlap by iterating the length of a k −mer and comparing the resulting
substrings for equality each time. Space complexity is O(km).

CHAPTER 2. SAMPLING 13

2.2.4 Used libraries

In order to parse FAST5 files that are produced by MinION we used the fast5 library
by Matei David.
For command line argument parsing and logging Boost library was used.

2.2.5 Abandoned attempt at implementation

During the tracebacking phase we are computing an array with length that of the
indegree of HMM, normalizing it, and making prefix sums. Originally, we tried to
precompute all of these prefix sum arrays during the forward matrix calculation. The
reasoning was that for queries with large enough number of samples this would make
the tracebacking phase faster as it would only need to binary search on an already
existing array. In practice however, we found that the additional memory burden of
an indegree factor far outweighed the advantage which was only present for a small set
of inputs. Moreover, this memory overhead limited the test inputs for experiments to
only a few thousands events and HMMs with small indegrees. For these reasons we
abandoned this version of our algorithm, though it is still present in the code and can
be triggered with a special flag.

https://github.com/mateidavid/fast5
http://www.boost.org/

Chapter 3

Parallelization through GPGPU

In this chapter we aim to educate the reader on the topic of graphic card usage for
scientific purposes, provide examples of algorithm parallelization with concrete tech-
nology and describe how we transformed the sampling algorithm from the previous
chapter into a parallel version along with an estimation of the performance gain that
this conversion could provide.

3.1 Introduction to GPGPU and example cases

In their early years, graphic cards (often referred to as GPUs) were supporting merely
specific fixed-function pipelines that served the purpose of creating image output [13].
Throughout the years however, GPUs have been becoming increasingly programmable
and the focus split to utilizing their potential for uses other than just computer graphic
computation. Their parallel nature proves to be valuable for scientific purposes, even
more so because GPUs excel at fast floating point arithmetics.

The key difference between a standard CPU and GPU is in the chip structure. CPU
is made to be as universal as possible and consists of only a few cores that focus on
sequential processing while GPU has thousands of smaller, more efficient cores designed
to run tasks in parallel. [13]

The term for the idea of GPU usage for tasks other than just image output has
been coined as General-purpose computing on graphics processing units, ab-
breviated GPGPU.

Nowadays, the most widespread instance of GPGPU support is CUDA by Nvidia
corporation. CUDA is a parallel computing platform that effectively provides a layer
of abstraction between the instruction set of the graphic card and a high level pro-
gramming language, such as C,C++ or Python. [6]

14

CHAPTER 3. PARALLELIZATION THROUGH GPGPU 15

3.1.1 GPGPU applications

GPGPU has found uses in many areas : machine learning, physics, quantum chemistry
and many more [11]. With closer focus on bioinformatics, there are solutions imple-
menting CUDA for sequence alignment, motif discovery or evolutionary reconstruction
[11].

3.2 Used techniques

The core concept of CUDA programming in C/C++ is separation of parallelized code
into so called kernels. Kernels to GPU are more-or-less what threads are to CPU.
From the programmer’s perspective, the kernel is just a block of C code.
A simple kernel that doubles an array value can look like this:

__global__ void array_sum(int ∗d_a){
unsigned int kerne l_id = threadIdx . x ;
d_a [kerne l_id] ∗= 2 ;

}

Figure 3.1: Simple kernel example

Many kernels can be run at once, asynchronously of the CPU which can continue
code execution and be notified once the kernels terminate in order to collect the results.

Typical work flow in C/C++ when using CUDA consists of:

1. Copying input data from host memory into GPU memory

2. Launching kernels that process the input data and save the output into GPU
memory

3. Copying output back into host memory

Let us demonstrate how the already shown kernel can be used to double every value
of an array using parallel kernel execution.

CHAPTER 3. PARALLELIZATION THROUGH GPGPU 16

__global__ void array_sum(int ∗d_a){
unsigned int kerne l_id = threadIdx . x ;
d_a [kerne l_id] ∗= 2 ;

}

int a [5] = {1 , 3 , 2 , 7 , 5} ;
int ∗d_a ;
cudaMalloc ((void∗∗)&d_a , 5∗ s izeof (int)) ; // a l l o c a t e memory on GPU
cudaMemcpy(d_a,&a ,5∗ s izeof (int) , cudaMemcpyHostToDevice) ; // copy to GPU
array_sum<<<1,5>>>(d_a) ; //run 5 k e rn e l s in p a r a l l e l
cudaDeviceSynchronize () ; // b l o c k CPU un t i l a l l k e r n e l s f i n i s h
cudaMemcpy(&a , d_a,5∗ s izeof (int) , cudaMemcpyDeviceToHost) ;
// output to RAM
//c now conta ins [2 , 6 , 4 , 14 ,10]
cudaFree (d_a) ;

Figure 3.2: Kernel usage example code

3.3 Parallel implementation of sampling algorithm

3.3.1 Parallelization bottleneck identification

Let us now explore how we can use the CUDA parallelization to accelerate the two
essential algorithm phases:

• Forward matrix computation

• Tracebacking of the samples

First, consider the formula for Forward algorithm that calculates the matrix in 2.2.
As can be seen, in order to calculate the value of FW [i+1, l] we need to have values

FW [i, x]∀x computed beforehand, therefore it is impossible to split the calculation of
matrix rows into independent parallel kernels and still satisfy the correctness of formula
for the algorithm.
On the other hand, it can be seen that the calculation of FW [i, l]) does not depend on
the value of FW [i,m] for m 6= n. Therefore we can run n kernels k1, k2, . . . kn where
each kernel kj computes the value of FW [i, j] independently. In order to satisfy the
execution order governed by the formula we have to wait until all the kernels finish
running before launching them again for the calculation of the next matrix row.
Pseudocode that implements this idea through CUDA kernels resembles the one in
figure 3.3.1

CHAPTER 3. PARALLELIZATION THROUGH GPGPU 17

__global__ void fw_matrix_cell (double ∗fwm, double obse rvat i on){
// c e l l va lue computed here

}

for (int p = 1 ; p < obse rva t i on s . l ength ; p++){
fw_matrix_cell<<<n_of_states / threads , threads>>>(&fwm, obse rva t i on s [p]) ;
cudaDeviceSynchronize () ; // wai t f o r a l l k e rn e l s to f i n i s h

}

Figure 3.3: Parallel forward matrix calculation pseudocode

Considering the sample tracebacking stage, we can safely conclude that there can
be arbitrary number of instances where each instance tracebacks one sample. This is
possible due to the fact that this stage does not write into any memory that is shared
between the instances (only reads from the forward matrix).

The implementation is therefore straightforward as can be seen in figure 3.3.1

__global__ void t raceback (double ∗ fwmatrix , &samples){
//one sample cons t ruc t ed here

}

for (int i = 0 ; i < num_of_samples ; i++){
traceback<<<num_of_samples/ threads , threads>>>(&fwmatrix , &samples) ;

}
cudaDeviceSynchronoze () ; // wai t f o r a l l k e rn e l s to f i n i s h

Figure 3.4: Parallel sampling pseudocode

In case of path decoding phase we are allowed much greater freedom – decoding two
consecutive states is an operation entirely independent of the decoding of any other
part of the sample. Therefore, we can split each sample into blocks (possibly as small
as a single state pair) and decode every block in parallel.

__global__ void decode_block (int ∗ samples , int ∗ r e s u l t s , int b l o c k s i z e){
//one sample b l o c k decoded here

}
// ’ samples ’ con ta ins
decode_block<<<tota l_threads / threads_per_block ,

threads_per_block>>>(samples , r e s u l t s , b l o c k s i z e) ;
cudaDeviceSynchronoze () ;

Figure 3.5: Parallel decoding pseudocode

CHAPTER 3. PARALLELIZATION THROUGH GPGPU 18

3.3.2 Theoretical speedup estimation

In the previous chapter we concluded that the time complexity of the forward algorithm
is O(nmd). By implementing the parallelization as seen in 3.3.1 and assuming perfect
conditions where all n kernels are launched and terminated at the same time we expect
to shrink the practical complexity to O(md).

Similarly, for the sampling stage we start with a time complexity of O(kmd) for
k samples. By computing all k samples in parallel with an assumption of the same
perfect conditions we should shrink the time complexity to O(md).

Lastly, the path decoding phase normally has O(nmk2) time complexity for n sam-
ples of length m with k-mer size k. Decoding a pair of states takes O(k2). If we choose
a block size b and assume we have enough kernels to decode all of the blocks of all
samples we should lessen the complexity for n samples to O(bk2).

Chapter 4

Experiment design and results

4.1 Input data

The primary objective of our work is a speedup of sample generation and not the
quality of samples in terms of metrics relevant for biology. For this reason we can
afford to operate on random input which in turn is processed by a HMM which has
some of its aspects chosen randomly as well.

We will be feeding our algorithm observation sequences consisting of event means
generated randomly from an uniform distribution on interval [0, 1]

Because our algorithm works with HMMs of a form described in the Background
chapter, we are limited to HMMs that structurally differ from the Nanopore model only
in the k-mer size (and consequently the number of states) and maximal allowed skip.
The means and standard deviations for the HMM states are both random numbers
chosen from a uniform distribution on interval [0, 1]

Both in the case of event data and HMM state parameters the actual values should
not affect computation speed since they are all stored as double precision numbers.

4.2 Testing method

We have created a set of tests all of which were run on both CPU and GPU version of
the sampling algorithm. Each test is parametrized by following variables:

• k-mer size

• input data size (in number of events)

• number of generated samples

• maximum amount of bases the HMM can skip on transition

19

CHAPTER 4. EXPERIMENT DESIGN AND RESULTS 20

k-mer size 6
max skip 1
data size 5000
samples 100

Table 4.1: Parameter defaults

We have run test batches where one or two of the parameters were changing while
the rest were fixed to defaults.

All of the computation done for the purpose of this thesis was performed on a server
cluster equipped with Nvidia Tesla K40c and Intel Xeon CPU E5-2670 [4][7].
In order to not interfere with other running jobs we have set an artificial limit of 8GB
for both RAM and GPU RAM as well as time limit of 15 minutes for every test. Test
runs which would require more than stated memory limits were not executed and the
results of those that exceeded the time limit were ignored.

We should note that the k-mers of the HMM for all the tests are strings over the
alphabet {A,C,G, T}. Our algorithm accepts k-mers over arbitrary alphabet.

For each test we recorded the running time for following computation stages:

• Forward matrix calculation

• Traceback to find samples

• Sample path decoding

Each test was repeated 3 times and the final result is an average of the three
measurements.

CHAPTER 4. EXPERIMENT DESIGN AND RESULTS 21

4.3 Running time comparison

In order to objectively judge the speedup of the non-parallel CPU algorithm and its
parallelized GPU version on a particular hardware, we first need to know the perfor-
mance of both the used CPU and GPU for a task which does not make use of the
parallelism.
In our case, we ran a simple algorithm consisting of a loop which manipulated an ar-
ray of double values. The reasoning behind this choice is that these operations are
most common in our sampling algorithm. We recorded the total running time of this
algorithm for variable array sizes.

__global__ void ke rne l (double ∗ arr , int l en){
double prev = 0 . 0 ;
for (int i = 0 ; i < l en ; i++){

i f (i % 2){
ar r [i] = prev − i ;

}
else {

ar r [i] = prev + i ;
}
prev = ar r [i] ;

}

The result of this test can be observed in 4.1.

Figure 4.1: Running time of non-paralell calibration algorithm

We can see that the GPU is 7 times slower compared to the CPU for all input sizes.
This can be easily explained by looking at the device architecture – the Xeon processor
has very few cores that are more powerful than any of the Tesla’s 2880 smaller cores.
For better brevity, we will refer to this factor of 7 as CPU/GPU factor. Based on

CHAPTER 4. EXPERIMENT DESIGN AND RESULTS 22

this factor we can better estimate just how big of an impact the parallelization had.
Knowing this, we can move on to the tests for the sampling algorithm.

In the graphs we compare the running times of the parallel sampling algorithm on
the GPU and its non-parallel CPU version.

Figure 4.2: Running time of forward matrix calculation for varying data size

In case of forward matrix calculation for varying data sizes we can observe a uniform
speedup of factor ∼50. Since the rows of the forward matrix need to be computed
sequentially and the number of states remained constant, such a result was predictable.
Taking the CPU/GPU factor in the account, we can estimate a 350-fold increase of
effectiveness on the GPU.

Figure 4.3: Running time of sampling phase for varying data size

Since the data size does not affect the number of kernels launched for sample trace-
backing, the speedup is unsurprisingly constant.

CHAPTER 4. EXPERIMENT DESIGN AND RESULTS 23

Figure 4.4: Running time of sampling phase for variable number of samples

In figure 4.4 we can see that the speedup grows larger with the increasing number
of samples up until a certain point, which can be explained by the fact that the GPU
can run only a limited number of kernels at the same time. We assume that after the
GPU exhausts this limit, the scheduling overhead takes a toll on the speed. We do not
include the results for matrix calculation as the number of samples has no effect on
them due to constant data size and number of states. The obtained speedup reached
a factor of ∼150 at its peak.
Considering the CPU/GPU factor, the effectiveness of GPU is 1050 times better with
parallelization.

Figure 4.5: Running time of forward matrix phase for variable k-mer size

Changing the k-mer size and therefore the number of states results into more kernels
used for forward matrix cell calculation. Due to this we can see an increasing speedup
of up to ∼13x as we increase the k-mer size.

CHAPTER 4. EXPERIMENT DESIGN AND RESULTS 24

Figure 4.6: Running time of sampling phase for variable k-mer size

Similarly to results in Figure 4.3, changing the number of states does not change
the constant speedup of ∼8.6x for sampling phase.

Figure 4.7: Running time for forward matrix phase for variable skip size

We can only hypothesize what caused the sudden speedup drop for skip size 2
in forward matrix calculation on GPU. Since the skip size determines the maximal
indegree of states and therefore the execution time of each kernel it might have to do
with how Cuda internally assigns the kernels into execution queues. The speedup again
averages at ∼50x.

CHAPTER 4. EXPERIMENT DESIGN AND RESULTS 25

Figure 4.8: Running time for sampling phase for variable skip size

The speedup drop off here could be explained by contextualizing the CPU/GPU
factor. The most time consuming part of sample tracebacking is the construction of
prefix array that has a length of the maximal indegree and binary searching the state
from it. Even though the CPU constructs samples sequentially, it should overtake the
GPU in terms of a single prefix array calculation. As a result, the more we increase
the maximum indegree of our HMM, the less advantage the GPU has.

Figure 4.9: Running time for decoding phase

With path decoding phase we can once more observe a rising speedup of up to 650x
until a threshold where the GPU exhausted all available kernel instances. This means
a 4550 times better effectiveness due to parallelization.

4.3.1 Theoretical vs. practical speedup

At the end of the previous chapter we set an optimistic expectation of the algorithm
speedup where we assumed an ideal condition of GPU being able to run as many

CHAPTER 4. EXPERIMENT DESIGN AND RESULTS 26

kernels as we need with no additional overhead. As can be judged from the results
these estimates were far off. For a HMM with 4096 states we have observed a 350 times
better effectives compared to a hypothetical algorithm that does not use parallelism
for the forward matrix calculation phase. While less than 10 times the ideal result ,
this can still be considered impressive. When it comes to the sampling phase we have
seen as much as 1050 times better effectiveness for 3000 samples which is only worse
from the theoretical maximum by a factor of 3. As for the path decoding phase, we
obtained an impressive 4550x improvement for input value of 2250000 total states.

Chapter 5

Conclusion

In our work we were exploring the ways to perform sampling from posterior probability
on a Hidden Markov model in an effective way by exploiting the parallel power of
graphic cards. The goal was to design, implement and test an algorithm that would
offer a speed advantage over a naive approach that only utilizes CPU and at the same
time would be able to process the read data from the MinION sequencing platform.

In the first chapter we introduced the reader to the problematics of DNA sequencing
and shown how the behaviour of the MinION platform can be modeled with Hidden
Markov models. A particular form of Hidden Markov model was chosen for the rest of
the work and described in greater detail.

The second chapter justified sampling as a viable process of inferring information
about an event sequence produced by MinION as well as describing how the sampling
can be implemented along with time and space complexity estimation.

In the next chapter we explored the topic of GPGPU, looked at example uses in
other areas, and demonstrated how we can use CUDA API to create parallel versions
of algorithms. In addition, we reasoned about the ways we can use parallelization for
specific parts of our algorithm as well as about the limits that disqualify the use of such
technique. Moreover, we took a closer look on how the parallelization could improve
the already analyzed time complexity from previous chapter.

In the fourth and final chapter we described the testing methods, environment and
input data and examined the results of running time for our parallel implementation
compared to the naive CPU approach.

The tests proved rather conclusively that the parallel implementation offers signifi-
cant speedup. Compared to a hypothetical GPU algorithm without parallelization we
experienced a 350x speedup in forward matrix calculation, as much as 1050x speedup
for multiple samples tracebacking and as high as 4550x speedup for path decoding
phase. In comparison with the CPU performance the forward matrix calculation was
sped up 50 times, sampling phase has seen as much as a 150x increase in speed while

27

CHAPTER 5. CONCLUSION 28

the path decoding reached a 650x running time. These factors are especially notice-
able for large datasets and HMMs where the difference between the CPU and GPU
implementation is drastic enough to render the former hardly usable (running time of
hours/days). while the latter still runs in reasonably quickly (running time of a few
minutes). Even more importantly, these speedups occur for inputs that either resemble
the real-life data (e.g. tens of thousands of events and HMM with k-mer size 6) or far
exceed then, offering a reserve for future use.

We can conclude that in the case of sampling, parallelization is not only possible, but
also a viable option that can very positively affect the performance of our algorithms.

5.1 Future work

While we successfully accomplished the task of producing large amounts of long samples
in short time, there remains a question of how to further process these. It would
definitely be useful to have a algorithm that can align [10] many sequences quickly,
where again a GPU accelerated algorithms could come in useful.

Moreover, since the functionality of the HMM in our software is rather crude, we
would like to implement features like parameter training to better prepare the software
for real-life use.

Bibliography

[1] Dna. https://en.wikipedia.org/wiki/DNA. Accessed: 15.5.2017.

[2] Dna sequencing. https://www.genome.gov/10001177/

dna-sequencing-fact-sheet/. Accessed: 15.5.2017.

[3] How does nanopore dna/rna sequencing work? https://nanoporetech.com/

how-it-works. Accessed: 14.5.2017.

[4] Intel R© xeon R© processor e5-2670. https://ark.intel.com/products/64595/

Intel-Xeon-Processor-E5-2670-20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI.
Accessed: 15.5.2017.

[5] Mcmc sampling for dummies. http://twiecki.github.io/blog/2015/11/10/

mcmc-sampling/. Accessed: 15.5.2017.

[6] Nvidia’s cuda: The end of the cpu? http://www.tomshardware.com/reviews/

nvidia-cuda-gpu,1954-6.html. Accessed: 11.5.2017.

[7] Nvidia R© teslaTM k40c gpu. http://www.thinkmate.com/product/nvidia/

900-22081-2250-000. Accessed: 15.5.2017.

[8] Predictive kmer models for development use. https://github.com/

nanoporetech/kmer_models. Accessed: 15.5.2017.

[9] Scalable, real-time biological analysis technology. https://nanoporetech.com/

products. Accessed: 14.5.2017.

[10] Sequence alignment. https://en.wikipedia.org/wiki/Sequence_alignment.
Accessed: 15.5.2017.

[11] Transforming computational research and engineering. http://www.nvidia.com/
object/gpu-applications.html. Accessed: 11.5.2017.

[12] Viterbi algorithm. https://en.wikipedia.org/wiki/Viterbi_algorithm. Ac-
cessed: 15.5.2017.

29

https://en.wikipedia.org/wiki/DNA
https://www.genome.gov/10001177/dna-sequencing-fact-sheet/
https://www.genome.gov/10001177/dna-sequencing-fact-sheet/
https://nanoporetech.com/how-it-works
https://nanoporetech.com/how-it-works
https://ark.intel.com/products/64595/Intel-Xeon-Processor-E5-2670-20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI
https://ark.intel.com/products/64595/Intel-Xeon-Processor-E5-2670-20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI
http://twiecki.github.io/blog/2015/11/10/mcmc-sampling/
http://twiecki.github.io/blog/2015/11/10/mcmc-sampling/
http://www.tomshardware.com/reviews/nvidia-cuda-gpu,1954-6.html
http://www.tomshardware.com/reviews/nvidia-cuda-gpu,1954-6.html
http://www.thinkmate.com/product/nvidia/900-22081-2250-000
http://www.thinkmate.com/product/nvidia/900-22081-2250-000
https://github.com/nanoporetech/kmer_models
https://github.com/nanoporetech/kmer_models
https://nanoporetech.com/products
https://nanoporetech.com/products
https://en.wikipedia.org/wiki/Sequence_alignment
http://www.nvidia.com/object/gpu-applications.html
http://www.nvidia.com/object/gpu-applications.html
https://en.wikipedia.org/wiki/Viterbi_algorithm

BIBLIOGRAPHY 30

[13] What is gpu-accelerated computing? http://www.nvidia.com/object/

what-is-gpu-computing.html. Accessed: 11.5.2017.

[14] V. Boža, B. Brejová, and T. Vinař. DeepNano: Deep Recurrent Neural Networks
for Base Calling in MinION Nanopore Reads. ArXiv e-prints, March 2016.

[15] Simon L Cawley and Lior Pachter. HMM sampling and applications to gene finding
and alternative splicing. Bioinformatics, 19(suppl 2):ii36–ii41, 2003.

[16] Matei David, Lewis Jonathan Dursi, Delia Yao, Paul C Boutros, and Jared T
Simpson. Nanocall: an open source basecaller for oxford nanopore sequencing
data. Bioinformatics, page btw569, 2016.

[17] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge
University Press, 1998.

[18] Miten Jain, Hugh E. Olsen, Benedict Paten, and Mark Akeson. The oxford
nanopore minion: delivery of nanopore sequencing to the genomics community.
Genome Biology, 17(1):239, 2016.

[19] Hengyun Lu, Francesca Giordano, and Zemin Ning. Oxford nanopore min-
ion sequencing and genome assembly. Genomics, proteomics & bioinformatics,
14(5):265–279, 2016.

[20] Rastislav Rabatin. Alignment of nanopore sequencing reads, 2016. bachelor thesis
at Comenius University.

[21] Lawrence Rabiner and B Juang. An introduction to hidden markov models. ieee
assp magazine, 3(1):4–16, 1986.

[22] Eric E. Schadt, Steve Turner, and Andrew Kasarskis. A window into third-
generation sequencing. Human Molecular Genetics, 19(R2):R227, 2010.

[23] Jay Shendure and Hanlee Ji. Next-generation dna sequencing. Nature biotechnol-
ogy, 26(10):1135–1145, 2008.

[24] Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de novo short read
assembly using de bruijn graphs. Genome research, 18(5):821–829, 2008.

http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.nvidia.com/object/what-is-gpu-computing.html

Title of Appendix A

Attached to this thesis is a CD with the source code and test results in JSON format
along with graphs. Source code can also be found on Github.

31

https://github.com/matuszelenak/hmm_sampler_CUDA

	Introduction
	Background
	DNA Sequencing
	Nanopore sequencing and MinION platform
	Hidden Markov Model
	Relationship of the MinION data to HMM

	Sampling
	Theory
	Motivation for sampling
	Forward Algorithm
	Stochaistic tracebacking of sample

	Algorithm implementation
	Sample path decoding
	Arithmetics in log scale
	Time and space complexity analysis
	Used libraries
	Abandoned attempt at implementation

	Parallelization through GPGPU
	Introduction to GPGPU and example cases
	GPGPU applications

	Used techniques
	Parallel implementation of sampling algorithm
	Parallelization bottleneck identification
	Theoretical speedup estimation

	Experiment design and results
	Input data
	Testing method
	Running time comparison
	Theoretical vs. practical speedup

	Conclusion
	Future work

	Appendix A

