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Abstract

Bacteriophages are viral particles that infect and replicate inside bacterial organisms.

Since they are speci�c to a particular strain of bacteria, advances in their research

could lead to novel means of targeted treatment without adverse e�ects on natural

microbiome in patient's body. Moreover, this treatment could be e�ective against

bacterial strains with antibiotic resistance. We consider as one of the main bottlenecks

of bacteriophage research the inability to cultivate some of the phages due to missing

information about their hosts and insu�cient description of their genes. We aim to

address this issue with our bioinformatics pipeline which can predict bacteriophage

hosts from genomic sequence and which can give us additional information about gene

importance for their function.

Keywords: bacteriophage, bioinformatics, host prediction
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Abstrakt

Bakteriofágy sú vírusové £astice, ktoré in�kujú baktérie a replikujú sa v nich. Pre-

toºe sú vysoko ²peci�cké na konkrétny kme¬ baktérií, pokrok v ich výskume by mohol

vies´ k novým prostriedkom lie£by bakteriálnych infekcií bez ved©aj²ích ú£inkov na

prirodzený mikrobióm pacienta. Taktieº by táto lie£ba mohla by´ efektívna proti mul-

tirezistentným baktériám. Pokladáme za jedno z hlavných úskalí vo vývoji týchto

metód neschopnos´ kultivácie niektorých bakteriofágov s chýbajúcimi informáciami o

ich hostite©och a nedostato£ný popis ich génov. Tento problém sa snaºíme rie²i´ v na²ej

práci bioinformatickou metódou ur£enou na predikciu hostite©ov z genomickej sekven-

cie bakteriofágov. Tento postup nám tieº umoº¬uje získa´ informácie o dôleºitosti

jednotlivých génov pre funkciu bakteriofágov.

K©ú£ové slová: bakteriofágy, bioinformatika, predikcia hostite©a
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Introduction

Discovery of penicillin was one of the most important discoveries of the last century.

Many similar antibiotic substances were discovered after penicillin proved itself as an

e�cient weapon against bacteria. In the year 1940, antibiotics were �rst prescribed as

medication to serious bacterial infections. Since then, antibiotics helped mankind to

�ght bacteria and saved millions of lives.

However, easy access and their excessive use led to overuse, resulting in bacterial

strain immune to antibiotic treatment. In less than 10 years from introduction of peni-

cillin to the market, penicillin resistant bacterial strain became a signi�cant problem.

The drugs discovered after penicillin followed a similar trend.

In the year 1972, vancomycin was introduced to the market. Resistance to this

drug was so problematic to induce in laboratory conditions that it was believed it will

not develop resistance in real conditions. Unfortunately, resistance to this drug was

reported in 1979 and 1983.

Nowadays, resistance to nearly all developed antibiotics was observed. The pace at

which mankind is able to discover new medicaments for treating bacterial infections is

slowing down, which, together with the relatively fast pace of resistance growth, could

cause a severe problem.

Bacteriophages, natural predators of bacteria, could introduce novel methods in the

battle against bacterial infections. Although, they are well known to mankind for over

hundred years, research in this �eld was slowed down after introducing antibiotics to

the public. Therefore, we still do not know a lot of details about them. Sometimes

even basic information about their hosts cannot be found in databases.

In our work, we will propose a method for predicting a host of a bacteriophage

based on its genomic sequence. We will also show, how our method could provide a

new insight on data about bacteriophages available online.

In the �rst chapter, we will describe basic terms of the molecular biology as they will

be important for the work. We will put certain terms into context, such as nucleic acids

and amino acids. We will also picture how we can work with data representing these

terms in the computer. Bacteriophages, central topic of this work, will be introduced

in this chapter as well. We will provide details about their role in the environment,

their structure, taxonomical classi�cation, life cycle and their potential as antibacterial

1



Introduction 2

agents. At the end of this chapter, we will summarize approaches to predicting hosts

of bacteriophages taken by other researchers.

The second chapter will be devoted to bioinformatics algorithms used in the work.

Comprehensive description of the alignment problem will be provided. We will de�ne

the problem and we will illustrate algorithms used for solving it. Moreover, data

clustering will be described in this chapter.

In the third chapter we will provide detailed description of the created software

for prediction of bacteriophages hosts. Because this software will use a lot of third

party tools, we will describe them in detail. Furthermore, the most common biological

databases will be mentioned. We will depict each step of our program and we will

provide reasons for decisions made during programming.

In the fourth chapter we will show methods used for data analysis and how we

interpreted the results. We will illustrate principal component analysis and the decision

tree classi�er. Results from these analyses will be provided. We will also show how

we evaluated these results to support method correctness. At the end we will discuss

limitations of this work and we will outline ideas for further work.



Chapter 1

Biological background

In this chapter we will present basic biological terms, which we will use later in this

work. Firstly, we will describe molecules performing functions in living organisms

and their representation in bioinformatics and computational biology. Then, we will

explain relationships between these molecules. We will also provide detailed description

of bacteriophages, which will be the central topic of our work. Description of what they

are and where we can �nd them will be provided. Furthermore, we will explain their

life cycle and we will point out some of their use. We will also show currently valid

taxonomical classi�cation and the structure of a typical representative of this group of

organisms. At the end of this chapter we will point out what was already done in the

�eld of their hosts prediction and what we would like to achieve.

1.1 Biological molecules

Molecules are basic components of every living organism on Earth. Vast majority of

biological function are mediated by them. Next, we will present the central types of

molecules in molecular biology, which we will use in our analysis.

1.1.1 Deoxyribonucleic acid

Deoxyribonucleic acid (DNA) is a long chain of nucleotides (bases) of four types -

adenine, cytosine, guanine and thymine. These bases are connected through a phos-

phodiester bond, connection between the 3' carbon atom of one deoxyribose and the

5' carbon atom of the second deoxyribose. The structure of DNA consists of two

complementary strands coiled around each other in the form of a double helix. In

this double helix adenine is paired with thymine and cytosine with guanine through

hydrogen bonds [1].

In bioinformatics and computational biology, we usually represent a base by its

�rst letter - A for adenine, C for cytosine, G for guanine and T for thymine. Due to

3



CHAPTER 1. BIOLOGICAL BACKGROUND 4

linear organisation of nucleotides, a DNA molecule can be represented as a word from

alphabet {A, C, G, T}, called DNA sequence. We usually store biological sequences

in simple plain text �les. Probably the most commonly used format is the FASTA

format. It can consist of one or multiple records, each representing a single DNA

sequence. Each record starts with the identi�er of the sequence, which is followed by

lines of the DNA sequence written in direction from 5' to 3'.

1.1.2 Ribonucleic acid

Ribonucleic acid (RNA) is, similar to DNA, it is a polymeric molecule consisting of

four types of nucleotides. There are three main di�erences between DNA and RNA

molecules. Firstly, the sugar-phosphate backbone of RNA contains ribose instead of

deoxyribose. This change in structure makes RNA less stable as it is more prone to

hydrolysis. Another distinctive feature of RNA is that it contains uracil instead of

thymine. Additionally, RNA appears in nature mostly as a single-stranded molecule,

whereas DNA is mostly double-stranded [1]. This characteristic allows RNA to form

more complex structures and show enzymatic activity. In bioinformatics, sequences of

RNA are usually written, similarly as with DNA, from 5' to 3', with the di�erence of

U for uracil instead of T for thymine.

1.1.3 Protein

Proteins are polymers consisting of amino acids connected by a peptide bond. There

are 20 basic proteinogenic amino acids encoded in DNA sequences and 2 proteinogenic

amino acids incorporated into proteins by a unique mechanism. Protein performs

overwhelming majority of functions in living organisms. Thanks to this characteristic,

they will be of high importance in our analysis. In bioinformatics, protein sequences are

represented as a string of 1-letter abbreviations of their amino acids. All proteinogenic

amino acids with their 1-letter codes can be found in the Table (1.1)

1.2 Flow of genetic information

Genome is a complete genetic material of an organism. It usually consists of DNA

molecules, but some organisms can have genome in the form of RNA molecules. In

genome, there is written entire information about the composition of particular organ-

ism with functional elements included. These functional elements, also called genes,

are encoded in the sequence of DNA or RNA. Genes can be located in genomes using

bioinformatics tools, which usually search for coding DNA sequences (CDSs). CDS is a

region of genome that starts with the start codon and end with the stop codon. These
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amino acid 1-letter code amino acid 1-letter code

alanine A arginine R

asparagine N aspartic acid D

cysteine C glutamine Q

glutamic acid E glycine G

histidine H isoleucine I

leucine L lysine K

methionine M phenylalanine F

proline P serine S

threonine T tryptophan W

tyrosine Y valine V

selenocysteine U pyrrolysine O

Table 1.1: Amino acids

regions can be directly translated into amino acid chains using standard codon table.

In this table, every combination of three nucleotides corresponds to amino acid, with

exception of the combinations TAA, TAG and TGA, which correspond to stop codons.

The relationships between biological molecules and the �ow of genetic information in

most living organisms are described in central dogma of molecular biology. Most or-

ganisms store their genetic information in the nucleus in the form of DNA. Some parts

of that DNA are transcribed into the RNA molecules. Afterwards, ribosome trans-

lates the RNA sequence into a protein that is based on the codon table. Proteins are

then folded into their natural 3D structure and prepared to realize their corresponding

functions.

Despite of central dogma of molecular biology needs advanced compartments as

ribosome for ensuring the �ow of genetic material, not all organisms do have these

compartments. Viruses tends to exploit hosts mechanisms for expression of viral genes

and replication of themselves.

We based our work on the central dogma of molecular biology and on the assumption

that genes will be useful indicators when predicting the ability to infect certain hosts.

1.3 Bacteriophages

Bacteriophages (phages) belong to the group of viruses, which have the capability to

infect and replicate within bacterial hosts. It is estimated that they are the most

abundant group of entities on Earth with their estimated count around 1031[3]. In

comparison, it is estimated that the count of all bacteria on planet Earth is around

1030. They are one of the most highly diverse group in the biosphere, with their
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[2]

Figure 1.1: Central dogma of molecular biology, arrows show the �ow of information

between biological molecules, full lines symbolizing usual �ow in living organisms and

dashed line symbolizing �ow of information used by some primitive organisms (viruses)
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genomes spanning from few genes to as many as hundreds of genes. We can �nd them

in every place on earth, where bacteria are able to live, even inside our bodies. It is

believed that one of the most saturated location of their occurrence is sea, with 9 · 108

virions per milliliter of seawater at the surface and 70% of bacteria infected [4]. Thanks

to the high abundance of bacteriophages, their impact on shaping of the environment

is outstandingly signi�cant, reducing considerable amount of bacteria.

1.3.1 Taxonomical classi�cation

Classi�cation of bacteriophages is di�cult mainly due to their high diversity and

genome mosaicism. [5] Consequently, there exists no universal marker similar to uni-

versal markers in bacteria, according to which we will be able to classify bacteriophages

based on their genetic information. This is because no genes are strongly conserved

within all bacteriophages. Despite of these facts, there is taxonomical classi�cation of

phages. This classi�cation was created by International Committee on Taxonomy of

Viruses (ICTV) and it categorizes each phage according to its morphology and nucleic

acid. This taxonomy recognizes nineteen di�erent families of phages. Although this

taxonomy is currently in use, many biologists feel it is outdated and in need of revision.

[5]

1.3.2 Structure of a typical bacteriophage

Given the high variety of bacteriophages, they come in a lot of di�erent sizes and

shapes. Each bacteriophage consists of genetic information in form of DNA or RNA

and capsid, a protein coat usually composited from higher number of identical protein

units [6]. We will describe the most typical form of tailed bacteriophages, which is

abundantly found in nature.

As we can see in the Figure 1.2, this bacteriophages body consists of a head and

a tail. These parts are created from proteins and in addition, the head contains DNA

or RNA of the bacteriophage genome. The tail is used to attach and to inject the

genetic code into bacteria. At the end of the tail, there are proteins, which are able

to bind to speci�c receptors on the surface of a bacteria. Thanks to this mechanism,

bacteriophages tend to have a high speci�city in selection of their prey.

1.3.3 Life cycle of bacteriophages

Generally, there are two strategies that bacteriophages use to secure their survival

and replication; the lysogenic cycle and the lytic cycle [8]. Viruses tend to use these

strategies in di�erent proportions, but usually prefer to choose one of them. The

lysogenic cycle results in incorporations of phage genetic information into host DNA
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[7]

Figure 1.2: Structure of a typical bacteriophage, it is composited by head, in which

the genetic material is stored and tail, through which the genetic material is passed

during the infection

or creation of a circular replicon in the bacterial cytoplasm. By this approach, the

genetic material of a phage inside the host, called prophage, is duplicated together

with the host genome and after cell division, both daughter cells contain DNA of the

bacteriophage. In dependence on the following events, viral DNA can be released from

hosts genome and start proliferation of new phages via the lytic cycle. The lytic cycle

is characterized by the lysis of bacterial cells membrane and their subsequent death.

It starts by injecting bacteriophage genome into bacteria. After this step virus is

not incorporated, but it compromises bacterial translation apparatus to produce more

viruses. Once enough virions have been produced, special viral proteins dissolve the

bacterial cell and virions are released into surrounding space.

1.3.4 Potential usage of bacteriophages

Their ability to kill or alter behavior of highly speci�c strains of bacteria makes bac-

teriophages a valuable target for research. Humankind tried to harness the power of

phages since their discovery in the year 1917. This discovery is attributed to a French-

Canadian microbiologist Félix d'Hérelle, who experimented extensively with phages

and introduced the concept of phage therapy [9]. Unfortunately, after the discovery of

antibiotics, research in this �eld su�ered from insu�cient funding and the development
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was signi�cantly slowed down.

Nowadays, when humanity face the threat of multiresistant bacteria and phages could

bring a new methods into the battle against pathogenic bacteria, the research in this

�eld begins to �ourish. We can see the potential of their use in the �eld of food in-

dustry as the substances that are prolonging life and improve the quality of our food

[10]. In the �eld of pharmacy, they could be used as medicines for bacterial infections

[11]. Their potential of use is signi�cant where we encounter the need to control the

lives of microbial communities. Moreover, due to their high speci�city to a particular

strain of bacteria, these new practices will likely be without adverse e�ects on natural

microbiome.

1.3.5 Host identi�cation

In our work we focus on prediction of phage hosts from genomic sequence. We based

our method on the assumption that bacteriophages with similar set of genes will infect

the same bacterial host. The decision to create host predicting models was made based

on its straightforward use in searching for phages suitable for phage therapy.

Attempts to classify bacteriophages from a genomic sequence were already made. In

the study "The Phage Proteomic Tree: a Genome-Based Taxonomy for Phage"[3] from

year 2002, researchers performed analysis based on genomes resulting in phylogenetic

tree compatible with ICTV system. In their work, they proved phages indeed do not

contain any universal genetic marker, which could be used as sequence for classi�cation.

They also showed that classi�cation based on whole proteome of phage is a reasonable

approach. In 2016 a similar tool, called HostPhinder, for predicting hosts from genomic

sequences appeared [12]. Their approach to classi�cation was through rate of similar k-

mers, short sequences of nucleotides of length k. With this approach they achieved the

results of 81% of correctly predicted genera. In our work we tried a di�erent approach,

where we looked for similar genes instead of rate of similar k-mers.



Chapter 2

Bioinformatics methods

In this chapter we would like to thoroughly explain methods and algorithms used in

bioinformatics. Firstly, we will explain details about sequence alignment. We used tools

implementing ideas of sequence alignment in the practical part of this work, therefore

it is important to clarify what it is and how it is realized. Secondly, we will explain

data clustering. We will introduce the concept of it, how we can use it and we will

describe algorithm we used in the work.

2.1 Sequence alignment

In this section we would like to thoroughly explain what sequence alignment is, since

it is one of the most essential tasks in bioinformatics. We will describe two main types

of sequence alignment, with emphasizing the di�erences. We will also explain the

basic algorithms used for solving these problems and we will also describe the heuristic

method used in case the input is too big to be computable by standard approaches

that guarantee optimal solution.

2.1.1 Global alignment

Usage

Global alignment is commonly used for comparison between two sequences with roughly

the same length. This comparison can help us to discover mutations in a sequence that

causes a certain phenotype, or we can use the comparison to determine highly conserved

regions with a potential to carry a gene. The relationships between conserved regions

and mutations in certain sequences often serve as a basic assumption for construction

of phylogenetic trees. Therefore, global alignment can tell us a lot about the nature

of evolution. Global alignment is also capable of calculating a similarity score for two

sequences.

10
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A-TTGATGG -ATTG-ATGG

AATTCAAC- AATTCAAC--

Table 2.1: Global alignment examples

Problem statement

Let the input for the problem be a set of two sequences consisting of nucleotides, for

example, X = ATTGATGG and Y = AATTCAAC. Then the output is represented

as a matrix, where each row is one sequence with possible gaps between nucleotides,

representing insertion or deletion of the sequence. We can see potential solutions in

the Table (2.1)

As we can see, every alignment could have more than one valid solution. Despite

of multiple possible solutions, not every solution is of equal value to us. We want to

�nd the best possible solution to this problem and for this purpose, we implement a

scoring scheme to determine what is the best solution. Scoring scheme consists of rules,

which add numerical value to each column of pairwise alignment. For example, we can

evaluate match in column with score +1, mismatch with score −1 and alignment to

gap with score −1. With this scoring scheme, we can evaluate quality of a particular

alignment. For alignment on the left side of the Table (2.1), resulting score is +1 −
1 + 1 + 1 − 1 + 1 − 1 − 1 − 1 = −1 and for alignment on the right side of the Table

(2.1) −1 + 1 + 1 + 1− 1− 1 + 1− 1− 1− 1 = −2. From this example we can see that

according to our scoring scheme, alignment on the left is better.

Scoring schemes

In practice, we could use a more complex scoring scheme that better re�ects reality.

For example, substitution between purines (adenine, guanine) or substitution between

pyrimidines (cytosine, thymine) occur more often, because they do not require change

in the number of rings in the chemical structure of these nucleotides [13]. When we

try to align two proteins, a more complex scoring scheme is inevitable. Amino acids

di�er in many parameters such as: polarity, size and structure of their side chains.

This in�uences the probability of a substitution occurring between two amino acids.

Therefore, there is a higher probability that Leucine will be substituted for Isoleucine,

rather than Aspartic Acid. To solve the complexity of substitutions between amino

acids, matrix BLOSUM62 (2.1) was created. Another layer of complexity, that does a

better job of re�ecting reality is the a�ne gap penalty function. This re�ects the fact

that insertions and deletions do not usually occur only on one nucleotide, but often

a longer region of DNA is deleted or inserted. A�ne gap penalty solves this issue by

having a higher negative score for opening a new gap in alignment and a lower negative

gap for extension of an already created gap.
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[14]

Figure 2.1: BLOSUM62, table providing score of substitution between all pairs of

amino acids, commonly used in the protein alignment

Needleman-Wunsch algorithm

For searching optimal global alignment, we usually use the Needleman-Wunsch algo-

rithm. It is an algorithm from a group of dynamic programming algorithms. This

means that the main problem is divided into smaller problems, which are computable

more easily and solutions to them are stored in memory. At each occurrence of a

small problem, we can look into stored solutions, where we can �nd it. Then the main

problem is reconstructed from already computed subproblems. Dynamic programming

algorithms o�er saving time on computation at the expense of a higher memory usage.

Needleman-Wunsch algorithm produces a table as shown in the Figure (2.2). It

starts by putting the �rst sequence we want to align to the �rst row and the second

sequence to the �rst column. Before each sequence there is one gap to cover the case if

we would not want to align �rst letter of a particular sequence right from the beginning.

The table is then initialized with a series starting from 0 and decreasing by 1 each step

on the second row and with the same series on the second column. After initialization,

the table starts to be �lled from top left corner following this rule:

Into each cell Ai,j write maximum of:

• Ai−1,j−1 + s(Xi, Yj),

• Ai−1,j + g(),
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--TAATAACTCTCTGAATAA

||||||

CGGCGGCGGTCTCTGCC---

Table 2.2: Local alignment example

• Ai,j−1 + g(),

where s(Xi, Yj) returns score of match/mismatch from scoring scheme and g() returns

a score of the gap penalty (possibly a�ne gap). The �nal score of the alignment can

be found in the bottom right corner of the �lled table. Speci�c alignments can be

found by tracking all possible paths to this value. The time and space complexity of

Needleman-Wunsch algorithm is O(nm), where n is the length of the �rst sequence

and m is the length of the second sequence.

2.1.2 Local alignment

Usage

In comparison with global alignment, local alignment search for regions inside sequences

with high similarities and does not provide alignment from beginning to end. It is

generally useful when searching for a small subsequence inside a vast sequence. For

example, searching for a gene inside the whole bacterial genome. It can be also used

when comparing two di�erent sequences and we want to �nd out if they contain any

highly similar sequence.

Problem statement

Similarly to what we have done with the global alignment, in this problem we search for

optimal local alignment according to the de�ned scoring system. The di�erence is that

we do not know where the alignment in both sequences starts and where it ends. For

example, X = TAATAACTCTCTGAATAA and Y = CGGCGGCGGTCTCTGCC

can be aligned as in the Figure (2.2) and the score is calculated just from the �rst

aligned base to the last aligned base.

Scoring

Scoring of local alignment is similar to global alignment and we are allowed to use the

same methods we use in the global alignment. Since the score is calculated just from

the �rst aligned base to the last aligned base, the score of our local alignment would

be +1 + 1 + 1 + 1 + 1 + 1 = 6, because there are 6 matches (+1) and no gaps (−1) or
mismatches (−1).
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Smith-Waterman algorithm

Local alignment can be found with dynamic programming algorithm similar to Needleman-

Wunsch algorithm. This is called Smith-Waterman algorithm and there are only two

changes compared to Needleman-Wunsch. First change is that matrix is not initialized

with decreasing series, but second row and second column are �lled with zeroes. Second

di�erence is in the rule as follows:

Into each cell Ai,j write maximum of:

• 0,

• Ai−1,j−1 + s(),

• Ai−1,j + g(),

• Ai,j−1 + g().

After completing the table, we need to �nd the highest number in it. This number

is a resulting score of our local alignment. Following the path similarly as in global

alignment we can reconstruct the alignment. The space and time complexity of this

algorithm is also O(nm).

2.1.3 Word methods

Needleman-Wunsch and Smith-Waterman algorithms are su�cient for simple compar-

isons of sequences, but their time complexity is not good enough when we want to

search through very long sequences that are common in genomics. It is often the case

that we want to �nd the most similar sequence to ours in enormous bioinformatics

database containing genomes of large amount of organisms. This is particularly useful

if we want to �nd the potential source of our sequence or comparing it to all known

proteins to get some indicators about its potential function. For this purpose, various

heuristic algorithms were developed. These algorithms do not guarantee �nding the

most optimal solution but are orders of magnitude faster and therefore usable also for

searching in vast databases.

BLAST

Basic Local Alignment Search Tool (BLAST) [16] is probably the most widely used tool

in bioinformatics. The algorithm distinguishes between target sequences and query

sequences. Target sequences are sequences from which we create a database of all

included k-mers. For every k-mer in every sequence we save its position. For example,

for sequence GATCGATAG and given k = 3 we create database as follows:
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GAT = 1, 5

ATC = 2

TCG = 3

CGA = 4

ATA = 6

TAG = 7

Next, we �nd every k-mer from query sequence in the database. The matching k-mers

are called cores of alignment and serves as starting points for extending of alignment.

The extending is performed in a similar manner to that of Smith-Waterman algorithm.

The di�erence is that we do not need to search through the whole matrix, but we search

for good alignments only in the immediate surrounding of cores. Firstly, we extend

cores without the possibility to insert any gaps into alignment. Secondly, we can join

these extended cores together using the gaps, if the resulting score will be bigger than

before joining.

E-value

E-value is used to assess the relevancy of the resulting alignment. It can be interpreted

as how many alignments in database could reach the same score or better purely by

chance. This means, the closer the E-value is to zero, the higher level of signi�cance

can be assumed. E-value is automatically produced by BLAST.

2.2 Data clustering

In this section we will explain what is data clustering. We will describe its use in data

analysis and bioinformatics and how we used it in our program. We will brie�y de�ne

the problem and we will explain the algorithm used for solving it.

2.2.1 Usage

Data clustering is used to group data according to similar characteristics. In compu-

tational biology it can be used to cluster organisms to examine relationships between

di�erent groups or to study structure of population. By clustering genes, we can inves-

tigate their relationships and then extend functional annotations of particular genes to

their closely related genes. Clustering can also be used to distinguish di�erent types of

tissue or group drugs with similar e�ects according to their mechanism of action.

In our work, we clustered genes with sequential similarities. We expected, that this

approach will create clusters of genes with closely related functions.
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2.2.2 De�nition of problem

Clustering is a problem where we want to determine closely related entities and put

them in distinct groups, also called clusters. Cluster can be characterized by presence

of many connections between cluster members. Members from di�erent clusters have

lesser probability to be connected and the distance between them is usually longer.

Although, to intuitively understand clustering is not complicated, there exists a lot of

clustering models with slightly di�erent approaches, which makes exact general de�-

nition di�cult. In our case, a graph representing our dataset was created. Vertices

of this graph were individual genes and edges were alignments of corresponding se-

quences. Weights of these edges were alignment scores. Proper clustering of this graph

was determined using Markov Cluster Algorithm.

2.2.3 Markov Cluster Algorithm

Markov Cluster Algorithm [17] is searching for clusters by simulating random walks on

the graph. It assumes that these random walks will infrequently go from one cluster to

di�erent cluster and mostly will stay in the starting cluster. The algorithm simulates

random walks through the graph deterministically with two operations, expansion and

in�ation. Expansion corresponds with squaring of stochastic matrix, non-negative

matrix where each column sums to 1 and entry aij corresponds to probability of going

from node j to node i. In�ation is de�ned by entry-wise powering of stochastic matrix

to the power of r, followed by scaling step to get stochastic matrix again. It is observed

that for r > 1 in�ation favors more probable walks over less probable walks. Expansion

can be interpreted as random walk with many steps. In�ation then enlarges the e�ect

of random walks within a cluster and reduces random walks across a di�erent cluster.

By repeating expansion and in�ation operations, the equilibrium is reached which

produces the clusters. These clusters do not contain any paths between each other and

the only paths in graph are those within clusters. This algorithm does not need any

prior knowledge of clusters and resulting clusters emerge from the primary structure

of the graph. Furthermore, size of clusters can be regulated by changing parameter r

of in�ation operation. Bigger r will cause algorithm to converge to equilibrium faster

and will produce smaller resulting clusters. In practice, r from 1.2 to 5.0 is used.
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[15]

Figure 2.2: Needleman-Wunsch, visualization of table used in dynamic programming

algorithm, arrows signalizing, from which cell the maximum was calculated, optimal

solution is highlighted with coloured arrows



Chapter 3

Modelling bacteriophage genomes

In this chapter we will present parts of our pipeline used for data retrieval and ma-

nipulation. Since we used a considerable amount of third party libraries and tools, we

will explain them in detail and we will clarify our reasons for using them. We will also

provide some basic stats of the data as number of downloaded genomes and number of

obtained genes to later support statistical signi�cance of our results.

3.1 Pipeline overview

Our pipeline consists of python scripts and publicly available bioinformatics software.

When writing the code, we have taken care of its readability, sustainability and exten-

sibility.

We implemented our pipeline in work�ow management system Snakemake [18] that

was primarily designed for writing reproducible bioinformatics pipelines. Snakemake is

inspired by GNU make, but it uses python-like syntax with elements similar to pseudo

code. Furthermore, it is fully portable, depending only on Python executables and

libraries. Snake�le consists of rules, where each rule is de�ned by its input �les, output

�les and commands.

When the Snakemake is executed, it runs �rst rule in speci�ed Snake�le. If the rule

is missing input �les, it scans through the whole Snake�le and looks for rules that are

capable of creating required �les. This process is repeated until there is a rule which can

be completed or until there is a rule whose input is not possible to create by any other

rule. In the former case the execution starts running, in the latter case an error message

is displayed. By this approach it is ensured that we do not execute any unnecessary

rules nor any rules that have been already completed. This is an important feature

for our program as some rules can take several hours to complete, even on powerful

computational cluster. Another useful characteristic of the Snakemake engine is the

ability to produce graphical visualization of particular Snake�le in format of directed

18
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acyclic graph. Simpli�ed graphical representation of our pipeline is in the Figure 3.1.

The pipeline starts with downloading of publicly available data. After downloading,

we merge all records and eliminate duplicated records. Next, we extract genes of the

bacteriophages. Consequently, phage genomes represented as sets of genes are split

into a training and a testing set. Similarity between the genes from the training set

are calculated and based on those, clusters of similar genes are produced. From these

clusters, the binary matrix is created. This matrix is later used in classi�cation.

3.2 Downloading phage genomes

The �rst step in our pipeline is downloading of data from three publicly available

databases. Although they cover the majority of currently sequenced and published

phages, we made this step easily extensible for adding new sources of information in

the future. New sources can be added by writing a new download script, naming

it {script_dir}\download_from_{db}.py and appending this name into a variable

DATABASES in Snake�le.

3.2.1 GenBank database

National Center for Biotechnology Information (NCBI) provides an access to Gen-

Bank [19] database. This database is a comprehensive source of genomic data with

more than 200 million genomic sequences of all life's domains. NCBI administers

the GenBank database free of charge and give researchers the possibility to access data

through various interfaces as web-based retrieval services, FTP and Entrez[20]. Despite

of these facts, there are shortcomings of using GenBank. With recent breakthrough

of high-throughput medical technologies the amount of data �owing into GenBank

database every day is enormous. Therefore, it is unreasonable to check all the data.

Sequences are primarily submitted by individuals from all around the globe and are

not thouroughly reviewed. This causes redundancy of sequences and sometimes it even

creates contradictions between information in system.

We obtained data using python library Biopython [21], which implements python

wrapper NCBI Entrez. Besides that, we used Biopython to facilitate processing of

standard �le formats used in bioinformatics. When downloading sequences, we also

created unique identi�ers for each record. Those were used later in the pipeline. Rea-

sons behind the decision to use custom identi�ers was the ability to remove dupli-

cated sequences and the possibility to �nd out multiple sources of each sequence in

our dataset. Downloading from GenBank was our largest source of data with 6704

downloaded records.
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3.2.2 ViralZone database

ViralZone provides highly reliable data about viruses, including bacteriophages. Infor-

mation about the structure of a capsid, a genome, life cycle, replication mechanisms,

taxonomy, geographical location and host are included. This website does not store

sequences internally, rather it delivers links to RefSeq [22] database. Compared to Gen-

Bank, RefSeq database contains fewer sequences, but all of these sequences are curated

and manually reviewed.

Our custom script was used to download records from RefSeq database. Although,

large portion of sequences downloaded was identical with GenBank records, some se-

quences were unique. Another advantage in performing this action was that it enabled

us to pair genomic sequences from RefSeq with more comprehensive information from

ViralZone portal. By performing this process, we obtained 2107 records.

3.2.3 PhagesDB

PhagesDB is a database specialized in bacteriophages infecting bacteria from phylum

Actinobacteria. This phylum is of great importance, because of its contribution to the

soil system in the form of decomposing of organic matter. This phylum also contains

the genus Mycobacterium, which includes pathogens causing tuberculosis and leprosy

in humans [23]. The database was designed to avoid the time between sequencing

and data availability. Authors declare, at the time of their publication, there was

more than 600 records of bacteriophages that were not yet in GenBank. Furthermore,

PhagesDB stores more biologically relevant data , such as discovery details, sequencing

details, characterization details, sequence �le and a plaque picture. We downloaded

2491 phage records with our automatized script using the publicly available Application

Programming Interface (API).

3.2.4 Merging and removing of duplicated records

Downloaded records were highly redundant, mainly because many of those records were

present in more databases at once. To solve this issue, we merged datasets together

and removed duplicated records. For merging we used the standard unix command

cat. For removing duplicated sequences, we created a custom Python script. This

script made use of custom identi�ers, which were assigned to every sequence that was

downloaded. In case more identical sequences were found, their custom identi�ers

were rewritten with the identi�er of the �rst sequence. This approach preserved the

relationships between one particular sequence and all data related to it. Thus, we

were able to track phages, based on their identi�ers, to their source databases and also

connect them with all data that was already downloaded. After removing of duplicated
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sequences our dataset contained 6277 phage records. This suggests high duplication

ratio between the databases and even in the GenBank alone.

3.3 Extraction and annotation of genes

Next step in the pipeline was to identify genes on genomic sequences and annotate

them with their biological function. Although gene annotations of particular genomes

are part of genomic records in used databases, we decided to annotate sequences from

scratch. This way we ensured consistency of annotations accross our data . Another ad-

vantage of annotating from scratch is that annotations will be up-to-date with current

human knowledge.

3.3.1 Prokka

We used publicly available pipeline called Prokka [24] to identify and annotate genes.

First, coordinates of coding DNA sequences (CDS) were found with Prodigal tool[25].

After the locations of genes are predicted, Prokka can start to annotate functions of

all CDSs. This is usually done through comparing of a sequence to a database of

sequences with an experimentally determined function. The function of protein with

the best match is then assigned to the new CDS. Prokka, by using this approach

searches through multiple databases. Starting with the most reliable source, which

is usually the smallest, it scans all the databases, continuing with the less accurate

one. The databases used with their corresponding order are as follows: An optional

user-de�ned database, UniProt[26], RefSeq[22], Pfam[27] and TIGRFAM[28]. If no

match is found across databases, protein is labelled as hypothetical protein. After

annotation, resulting genes were selected and saved to �les in format suitable for further

use in the pipeline.

UniProt

The UniProt database is acollection of more than 60 million protein sequences and their

corresponding detailed information. Prokka uses just a small fraction of proteins backed

up by experimental evidences. This typically provides information about approximately

50% of queried proteins.

RefSeq

RefSeq, provides information about genomic and protein sequences. It contains more

than 2.5 million protein records. Multiple sources are integrated in annotation of genes.

Furthermore, all records are curated by the NCBI sta� members.
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Pfam

Pfam is a database consisting of protein families and domain records. Protein families

are groups of protein sharing evolutionary history. This shared evolutionary history is

often expressed by closely related functions and sequence similarity. Protein domains

are parts of a protein sequence responsible for a particular interaction. Members of

the same protein domain usually share a high sequence similarity. Protein families and

domains are mostly characterized by Pro�le Hidden Markov Models. Pfam incorporates

more than 6100 of those models.

TIGRFAM

TIGRFAM, similarly as Pfam, contains protein families characterized by Pro�le Hidden

Markov Models. It contains more than 4200 models with comprehensive description of

family structure and function.

3.4 Datasets used

At the beginning of this step, our dataset consisted of: phage genomic records, their

corresponding genes, information about phage hosts and functional annotation of genes.

As our work used techniques of supervised machine learning, we needed to split the

dataset to a training set and a testing set. Furthermore, we created set for other

records, which we decided not to use due to missing information about host or due to

host outside of our group of interest. We decided to group phages according to the genus

of their hosts. After calculating the number of phages in each group, we selected �rst

eight genera with the highest count of records as groups of our interest. These were

Mycobacterium, Streptococcus, Escherichia, Gordonia, Arthrobacter, Pseudomonas,

Lactococcus and Staphylococcus. Number of phages within each group can be found in

the Table (3.1). All other genera were excluded from the dataset due to the insu�cient

number of samples. Phages without information about their hosts were also excluded.

Subsequently, we divided remaining data into a training set and a testing set at a ratio

of 4:1. The resulting training set included 2787 records of bacteriophages and resulting

testing set included 699 records.

3.5 Alignment of genes

In our pipeline, we used alignment to �nd similarity scores between genes in the train-

ing set. We needed these scores later in the pipeline at clustering step. Software Cro-

coBLAST [29] was used for this purpose. CrocoBLAST is a wrapper around BLAST

algorithm which makes better use of parallelization than standard BLAST maintained
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genera count genera count

Mycobacterium 1619 Streptococcus 354

Escherichia 323 Gordonia 293

Arthrobacter 240 Pseudomonas 236

Lactococcus 219 Staphylococcus 184

Table 3.1: Counts of records within genera

by NCBI. With this software we were able to reduce the time needed for the alignment

step from around four days to one day. Resulting �le was in tab separated format,

where �rst column was gene identi�er of query sequence, second column was gene

identi�er of the target sequence and third column was e-value of alignment.

3.6 Clustering

3.6.1 MCL

Firstly, we used Markov Cluster Algorithm implemented in package MCL [17]. This

software is popular in the bioinformatics community for its capabilities to work with big

data. As input data we used E-values from CrocoBLAST results. These E-values were

automatically transformed into a similarity score to enable creation of the adjacency

matrix. We used the value 1.2 as the in�ation parameter. This was the smallest value

recommended by the developers. The reason for using the smallest possible in�ation

value was that we wanted to create clusters that are as large as possible This approach

also reduced the number of di�erent clusters. In our work, we needed as few reasonable

clusters as possible, mainly due to the number of phage records in our dataset. If we

had too many clusters, we would have too many features for classi�er and we would

risk over�tting of our �nal models to the training dataset. We created 15017 gene

clusters.

3.6.2 MCL with global alignment

To get more accurate clustering, we tried di�erent approach, where we determined sim-

ilarity score from the global alignment. All the matches from CrocoBLAST search were

aligned with the needleman-wunsch algorithm [?] and the resulting score of alignment

was used instead of the E-value. Implementation of the Markov Cluster Algorithm was

executed with an in�ation parameter value of 1.2, without any transformation of the

similarity score. By this approach we created 9176 �nal clusters.
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3.6.3 Spectral clustering

In this work, we also experimented with a di�erent clustering algorithm, Spectral clus-

tering. SCPS implementation[30] was tested in the pipeline. Although authors of this

software declare quality of clusters quanti�ed by a measure that combines sensitivity

and speci�city to be better by 28% in comparison to MCL algorithm, our memory was

not su�cient for the program to run with all the input data.

3.7 Annotation of gene clusters

Clusters of genes were annotated to determine their function. We expected proteins

with similar biological function to be included in same cluster. For functional anno-

tation of particular proteins we used software InterProScan [31]. The reason to use

InterProScan annotations instead of Prokka annotations was because InterProScan

annotation had better standardized descriptions of functions. This tool scans given

protein sequences against the protein signatures in databases PROSITE [32], PRINTS

[33], Pfam [27], ProDom [34] and SMART [35]. After acquiring of annotations for all

proteins in a particular cluster, we calculated number of occurrences of each distinct

biological function. These statistics represented our annotation of a certain cluster.

We manually reviewed the annotations of the biggest clusters to evaluate relevancy of

created clusters. Although a lot of proteins remained without any assigned function,

our expectation of clusters containing proteins with similar function was met in most

cases. Therefore, we assumed that reasonable clustering was achieved.

3.8 Reducing phage genomes

One of the most crucial part of our analysis was binary matrix created in this step.

Rows in this matrix represented particular phage records and columns represented

particular protein clusters. The entry ai,j in matrix was �lled with 1 if phage i contained

gene from cluster j and 0 otherwise. Custom python script and �les produced in

previous steps were used for this task. Resulting matrix contained 2787 rows and

15017 columns and served as a main input �le for the machine learning algorithms.
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Figure 3.1: Work�ow visualization, cells symbolizing rules in work�ow, arrows create

acyclic graph, where rules at the top need to be completed before executing rules at

the bottom



Chapter 4

Data analysis and results

In this chapter we will describe approaches we used for analysis of binary matrix created

in previous chapter. Firstly, we will visualize data to get a basic idea about how closely

related these data are and how much variance they represent. Next, we will describe

the method used for selecting important characteristics. We will also explain how we

generated our predictive models and we will reveal how we evaluated them.

4.1 Principal component analysis

Principal component analysis (PCA) is a method mostly used for visualization of high

dimensional data. For matrix with r rows and c columns it createsmin(r−1, c) distinct
principal components. Principal components are linearly uncorrelated variables created

in such way that �rst principal component preserves most variance from the original

dataset, with each subsequent principal component preserving less than previous one

[36].

For principal component analysis we used python library scikit-learn [37]. Reduced

representation of phages in form of a binary matrix was used as an input. First few

principal components were used to create plots in python library matplotlib. In the

Figure (4.1) we can see data visualized with the principal component one on the x-axis

and the principal component two on the y-axis. Each data point represents one phage

record and the color of the particular data point corresponds to genus of that phage. As

we can see, most phage records are located around the center, with some distinct groups

of Mycobacterium and Staphylococcus phages outside the center. Although, this could

suggest di�culties with distinguishing di�erent genera, it was not the case as �rst

two principal components retained less than 21% of dataset variability. Therefore, we

assumed binary representation of phages is reasonable and proceeded with a di�erent

method of analysis.

26
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Figure 4.1: Principal component analysis - �rst two principal components, PC1 (11.57%

of variability) on the x-axis, PC2 (9.19% of variability) on the y-axis



CHAPTER 4. DATA ANALYSIS AND RESULTS 28

4.2 Decision tree

Decision tree is a model, which we can imagine as a binary tree. In this tree, every

node is either decision node or the end node. Decision node contains condition and has

two child nodes. First child node represents all cases, where the condition was not met

and the second child node represents all cases, where condition was met. These child

nodes can be decision nodes or end nodes. End nodes do not contain any conditions

and they represent the �nal decision made by model.

Decision tree is the simplest predictive model and contains conditions exclusively.

Usually, we need two sets of data to create the model, commonly called features and

labels. Features represent data which are known before prediction and labels represent

expected results of prediction. For example, the data representing features could be

size, weight, length of nose and color and labels could symbolize if animal described by

those features is a dog or it it is a cat.

Decision tree model has advantages, which led us to a conclusion that it will suit our

needs. Namely, these are the options to easily visualize the model, interpret the results,

availability in many programming libraries and its good documentation. The fact that

decision tree model is a white box model allowed us to extract further information from

our models, for example importance of particular clusters for predictions.

Of course, there are also disadvantages of this model. One of the biggest disad-

vantage is that the decision tree model is prone to over�tting of data. It means that

sometimes the resulting model does not generalize the data well enough and the accu-

racy of real predictions can be lowered. Another disadvantage is, the models are often

biased when predicting multiple classes with an unbalanced dataset. These issues was

addressed with methods mentioned further.

4.3 Feature selection

Up to now, our training dataset consisted of a matrix with 2787 rows, representing

phages and 15017 columns, representing gene clusters. This high dimensionality of

our data could lead to the increased probability of over�tting of models on data. To

address this concern, we decided to perform feature selection. Feature selection is a

process of removing dimensions with low importance from the dataset. The reason to

prefer feature selection over feature extraction methods as PCA presented in previous

section was that we wanted our tree models to be representable in terms of important

clusters rather than in terms of principal components. Because we expected a lot of

clusters with small number of genes, our choice for feature selection method was the

Variance Threshold. The Variance Threshold method is a simple method that removes

columns with variance under certain threshold. With this technique we removed all
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columns in the matrix with ones in more than 99% of cases or with zeros in more than

99% of cases. The reduced matrix had 2787 rows and 1818 columns.

4.4 Building decision tree models

In our work we used a Decision Tree Classi�er from python library scikit-learn. For

each group of phages with hosts from eight selected genera we created one model.

Each of those models was trained to answer a question, whether one particular phage

was able to infect bacteria from a particular genus. For example, for a created model

Mycobacterium we could ask if the given phage sequence is able to infect bacteria from

Mycobacterium genus. The model will return one or zero, where one represents that

model assumes that the given sequence belongs to a Mycobacterium phage and zero

represents that model assumes it does not belong to Mycobacterium phage. Models

were trained with reduced matrix used as features. The ability to infect particular

genus was used as labels. To prevent over�tting of our trees, we also used the parameter

min_impurity_split=0.03. This enabled a threshold for splitting leaves and therefore

only nodes with an impurity index greater than 0.03 were divided. The threshold 0.03

was determined empirically. Lower values created a tree with many nodes, where the

risk of over�tting was high and greater values did not have enough nodes to maintain

model's accuracy. With this approach we created a model for each of our eight selected

host genera and visualized it with a python library graphviz. We can see example of

this visualization in the Figure 4.2.

We can see that cluster number 172 provides the best division of phages infecting the

Arthrobacter genus. Most Arthrobacter phages have some gene from this cluster. This

suggests genes from this cluster are of high importance for the Arthrobacter phages

and could participate on the important mechanism for infecting bacteria from genus

Arthrobacter. Of course, these claims need to be supported by additional evidence

and biological experiments, but it can provide valuable insight into the data. We can

analyze other graph nodes similarly. Finally, the models were stored using python

library pickle for later use.

4.5 Classi�cation of phage sequences

For classi�cation we expected to have complete sequence of bacteriophage. This se-

quence was annotated using Prokka and genes were extracted using a custom script.

Extracted genes were aligned using BLAST with a database of genes from the training

set. We assigned a cluster number to all newly obtained genes based on the cluster

number of the most similar gene from the BLAST database. Thereafter, vector of ones
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Cluster_172 <= 0.5
gini = 0.1326

samples = 2787
value = [2588, 199]

Cluster_314 <= 0.5
gini = 0.0535

samples = 2653
value = [2580, 73]

True

Cluster_896 <= 0.5
gini = 0.1123
samples = 134

value = [8, 126]

False

gini = 0.0198
samples = 2594

value = [2568, 26]

Cluster_102 <= 0.5
gini = 0.324
samples = 59

value = [12, 47]

Cluster_1 <= 0.5
gini = 0.2008
samples = 53

value = [6, 47]

gini = 0.0
samples = 6

value = [6, 0]

Cluster_1028 <= 0.5
gini = 0.32
samples = 5

value = [4, 1]

Cluster_398 <= 0.5
gini = 0.0799
samples = 48

value = [2, 46]

gini = 0.0
samples = 4

value = [4, 0]

gini = 0.0
samples = 1

value = [0, 1]

gini = 0.0
samples = 40

value = [0, 40]

Cluster_1299 <= 0.5
gini = 0.375
samples = 8

value = [2, 6]

gini = 0.0
samples = 2

value = [2, 0]

gini = 0.0
samples = 6

value = [0, 6]

gini = 0.0156
samples = 127

value = [1, 126]

gini = 0.0
samples = 7

value = [7, 0]

Figure 4.2: Arthrobacter model
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model correct FP FN accuracy

Arthrobacter 683 11 (1.57%) 5 (0.71%) 97.71%

Escherichia 679 17 (2.43%) 3 (0.42%) 97.13%

Gordonia 647 39 (5.57%) 13 (1.85%) 92.56%

Lactococcus 680 3 (0.42%) 16 (2.28%) 97.28%

Mycobacterium 686 11 (1.57%) 2 0.28% 98.14%

Pseudomonas 686 6 (0.85%) 7 (1.00%) 98.14%

Staphylococcus 685 0 (0.00%) 14 (2.00%) 97.99%

Streptococcus 686 2 (0.28%) 11 (1.57%) 98.14%

Table 4.1: Evaluation of models

and zeros was created for each phage representing if the phage contained a gene from

a particular cluster - similar to a new row in a matrix. This vector was passed to the

decision tree model and resulting prediction was saved.

4.6 Evaluation of models

To examine accuracy of our models, we classi�ed all bacteriophages from our test

dataset. Test dataset contained 699 phage records. Resulting predictions were aggre-

gated and number of correctly predicted (TP + TN), false positive (FP ) and false

negative (FN) was recorded. The table was constructed from this data. Accuracy

was calculated as TP + TN/(TP + TN + FP + FN), false positive percentage as

FP/(TP+TN+FP+FN) and false negative percentage as FN/(TP+TN+FP+FN).

We can see summary of model statistics in the Table 4.1.

4.7 Limitations and future work

Regardless of the high accuracy of our predictions, we are aware of the potential im-

provement that might be possible in the future. Sequences used were mostly annotated

only with one host. Despite high phage speci�city, some phages can have multiple hosts.

One of the goals in the future will be to collect more accurate dataset with experi-

mentally con�rmed non-hosts. Also, relatively small number of phages are known to

mankind, despite of approximately 200 newly discovered phages appears in databases

every month. With a greater and a more accurate dataset, we would be able to create

models to the taxonomical levels of species or even strains. In the future, we would also

like to try this method for predicting from incomplete sequences, as this will mostly

be the case in practice. This could lead to novel methods for indirect diagnosis of a

microbiome.



Conclusion

The importance of the bacteriophages as a research subject is rising mainly due to

the decreasing e�ectiveness of antibiotic treatments. Bacteriophages could be used as

novel weapons in the �ght against bacteria. The goal of this work was to examine

relationships between bacteriophage genomes and its bacterial host.

At �rst, we collected publicly available data, annotated phage genomes for genes

and clustered these genes according to their similarity. Then, we proposed reduced

representation of each bacteriophage based on genes, which were observed in its genome.

We demonstrated feasibility of this representation, using principal component analysis.

In representations that were transferred into lower dimensions we were able to roughly

distinguish between clusters of bacteriophages with a distinct bacterial host. Finally,

we used a decision tree classi�er to re�ne our prediction. This machine learning method

allowed us to create predictive models enabling us to assign a bacterial host with high

accuracy using only information about the genome of the bacteriophage. Models were

also interpretable in the terms of gene clusters. This allowed us to highlight clusters

with high potential of being important for phage speci�city.

The method demonstrated in this work could also be used for other biological traits,

which depend on the genes included in phage genome. This could bring a new insight

on phages and their functions.
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