
Department of Informatics

Faculty of Mathematics, Physics and Informatics

Comenius University, Bratislava

Visualization of tagspace
(Bachelor thesis)

Juraj Ďuďák

Thesis advisor: RNDr. Martin Homola Bratislava, 2009

iii

By this I declare that I wrote this bachelor thesis

by myself, only with the help of the referenced lit-

erature, under the careful supervision of my thesis

advisor.

. .

iv

Contents

1 Introduction 3

2 Tagging 5

2.1 Tag . 5

2.2 Tagging . 6

2.3 Future of tagging . 8

3 Tagclouds 9

3.1 Inline tagclouds . 9

3.2 Navigating through tagspace 13

3.3 Tagclouds with arbitrary positions 15

3.4 Geotagging . 17

4 Used technologies 19

4.1 XPath . 19

4.2 XQuery . 20

4.3 Php . 20

4.4 XSLT . 21

4.5 Ajax . 22

5 Implementation and results 23

5.1 Retrieving data . 24

v

vi CONTENTS

5.2 Force-directed layout . 25

5.3 Arbitrary tag positions and html 30

5.4 Results . 30

6 Conclusion 35

Abstract

Users taggings(assigning metadata keywords) Internet content are creating

so called folksonomy, a bottom-up build taxonomy describing relations be-

tween resources. This taxonomy can be used as a form of navigation, even

though it does not leads to answers, but rather leads to more questions and

interesting content.

By aggregating tag according to their name, we get navigation elements

called tagclouds. This thesis introduces basic methods of inline tagcloud

generation, also, defines tag relations, to improve tagclouds and the model

of navigation in this tagspace. Tagcloud generation methods are compared,

and experimentally tested, by implementing these algorithms and using them

on real data. As a main result we will introduce relational tagbrowser cre-

ated for portal blog.matfyz.sk, that uses graph layout to visualize tags and

relations between them. Algorithms and technologies that lead to creating

of this tagbrowser are described and implementation details are listed.

Keywords: tags, relational tagcloud, graph layout

1

2 CONTENTS

Chapter 1

Introduction

Tags are metadata keywords assigned to data, such as images, atricles or

music, to help search and browse this data. Users add this keywords, and

create so called folksonomy, a taxonomy, that is different from standard sci-

entifical taxonomies, since it does not have hierarchical structure, but rather

describes relations. Taxonomy is build bottom-up, not by dividing objects

into categories, but rather by joining related objects.

We can look at this taxonomy as a 3-dimensional space(dimensions are

user,tag,object), and we want to allow users to move in this space and browse

data, according to tags or users. Users should be able to select so called piv-

ots, and see the tagspace in concrete pivot point, so that they can further

move in this space, in direction they want. Tags are visualized in form of

tagclouds, mostly lists of tags(inline tagclouds), with font size(or color) rep-

resenting tag importance. Drawback of these clouds in that they do not show

relations, and should be replaced with new generation, relational tagbrowsers.

Inline tags are only able to visualize 2 dimensions, so these browsers should

use position to visualize third dimension, relations of tags.

Among possible solutions, best idea was to visualize small part of tagspace,

as a graph, with tags as vertices and relations shown as edges. Problem

3

4 CHAPTER 1. INTRODUCTION

was transformed into problem of finding a graph layout. After considering

all methods, we have chosen force-directed layout, and easy to implement

heuristics, that work really great for task like this one. Force-directed lay-

out(or spring algorithm) uses physical model of particles and springs, to

simulate dynamics of system over time, and finds local kinetic energy min-

imum. Whole application was done for blog.matfyz.sk blog portal, that is

known among students. Portal heavily uses XML technologies, such as na-

tive XML database and XSLT transformation.

We will introduce basic tagcloud generation techniques, present options on

tagspace navigation, also write about all parts of tagbrowser developed, its

implementation and technologies on blog.matfyz.sk.

Chapter 2

Tagging

In our computer era, everyone produces large amounts of data and wants to

share with the world. In 2006, the blogosphere was doubling in size every

200 days[Sif06], or about once every 6 and a half months. On July 31,

2006, Technorati tracked its 50 millionth blog, and users produce millions of

articles, photographies and videos every day. This data has to be categorized,

and somehow, we need to create abstracts, or meaning of data. As far as we

know, tags are the best solution.

2.1 Tag

A tag is a non-hierarchical keyword or term assigned to a piece of information.

This metadata define context or meaning of such information. A list of

tags(also called keywords) is assigned to data to help other users browse and

search data. Tag does not have a semantic value itself, but since tagging is

collaborative, larger set of tags help to define data semantic. Tag in general,

is any textual information, specific or abstract, the power of tags comes from

open nature of tagging systems, so users does not need to be experts to tag

data. One wrong tag is suppressed by 100 correct. This also brings some

5

6 CHAPTER 2. TAGGING

problems including plural and synonymy. But this problems can be removed

by using libraries or dictionaries containing such words.

2.2 Tagging

Tagging(creating, browsing tags) is protocol independent, so it can and have

to be implemented by web-designers. When implementing such system, pro-

grammer has to take into account all the possible tag sources:

• author - tags are provided by data author, she manages them, but

usually only on data creation time, this option is good for systems

with less users, but authors does not tend to consider all aspects of

their creations.

• user - allows all the users to tag content. This is a good alternative

on large systems, without a large user community, someone can exploit

this possibility.

• machine - uses algorithm to extract tags from given text.

• combination of above - probably best solution is combination of

above approaches, but be careful to explain to users where does tags

come from.

Tagging creates so called folksonomy, which comes from words folk and tax-

onomy, a user-generated classification system, that is quite different from

standard scientific taxonomies. Folksonomy does not create hierarchical sys-

tem, but rather describes properties and relations between objects, since data

used on the Internet is not easy to categorize. Tags are then used for web

search, and as a navigation in various forms, mostly as tag clouds. Tagging

is intended for users and made by users, and what is most important it does

not need much afford to maintain.

2.2. TAGGING 7

Tagging, as we know it today, dates back to 2003, when social bookmark-

ing service Delicious1 introduced tags, that allowed users to easily find their

stored bookmarks.

Another great example is flickr2, a photo sharing webservice, on which tag-

ging is absolutely essential, because search engines are unable to search for

images without being given an image description.

Very innovative approach in tagging was used by Google, in google image

labeler, a game, rather than application, where 2 users are paired and both

shown a picture, that they are supposed to label with words. Players receive

point if their labels match, and the more complex label is, the more points

they get. When some image was already labeled, its label becomes off-limits,

and this label cannot be used anymore. This game has many players, is

quite interesting and provides valuable data. Before image labeler, Google

image search was only relying on image context or description, and google

was unable to remove undesirable content from web search. But with image

labeler, they were given a set of tags associated with pictures, that 2 users,

not knowing each other, has both given to picture. This means that label

is good enough because 2 people thought of it, moreover, usage of off-limit

label enforces users to focus on details of picture, so labels does not only

describe key elements of the picture, but all its properties. All this data was

retrieved for free and also in very motivating way.

Music is also being tagged, a web-application last.fm created large folkson-

omy of music, and allowed users to freely add, browse, and filter music by

tags. This way you can create your own playlist with music according to

specific criteria. Unmoderated and free nature of tagging many times result

in irrelevant tags, or even expressing opinions and arguing by adding tags.

1www.delicious.com
2www.flickr.com

8 CHAPTER 2. TAGGING

2.3 Future of tagging

In past 6 years tagging became inseparable part of the Internet, and is con-

sidered the future of web search, and one of the key features of Web 2.0.

Web 2.0, a new generation of web services, relies on social-networking and

user-generated content, that needs to be organized, and tags, as far as we

know, are the best solution. They need almost no help from service admin-

istrators, because users themselves are responsible for quality and usability

of tags. Tagging is also important for semantic web[XFMS06], since tags

create taxonomy that is not only suitable for humans, but also is machine

readable. Tags define most important aspects of data, so that search engines

can improve their results(like google did with image labeler) by taking in

count the importance of tags. What is more, list of tags is usually part of a

web page, so even today, they improve search results.

Chapter 3

Tagclouds

Tagcloud are visual representation of tagspace. They are usually list of

tags(inline tags) that visualize tag relevance, or count by size or color. Tag

clouds evolved from maps visualization, that used font size to visualize city

sizes. Cloud was used for first time by Flickr co-founder and interaction

designer Stewart Butterfield. Tagclouds are currently very popular form of

navigation, since they are very easy to implement and provide good alterna-

tive to clasical navigation. But today, we know they have many drawbacks,

and we will also show that we also need some mechanism for navigation

between tagclouds.

3.1 Inline tagclouds

The most common form of tag cloud is inline tagcloud, that uses list of

tags(usually one word) that are rendered as hypertext links on a website.

These lists are usually sorted by alphabet, or by importance of tags. Tag-

clouds also visualize importance by using different font-size, or changing a

color.

When using font-size for displaying tag importance, it is essential to select

9

10 CHAPTER 3. TAGCLOUDS

Figure 3.1: Typical tag cloud ordered by alphabet. Font sizes represent

frequency of certain tag.

proper scaling formula, because you have to choose compromise between

legibility, usability and relevance of font-size. Importance of tags can have

almost any value, so to make proper tag cloud, we have to assign maximum

and minimum font-sizes for tags. Otherwise, after some time, some tags may

become too large or small. This gives us basic parameters for our problem:

• list of n tags with defined importances, with minimum value min (importance)

and maximum value max (importance)

• minimum font-size minFS

• maximum fot-size maxFS

Our task is to scale all importance values into interval between minFS and

maxFS, so we need to find function FS, with tag importance as an input

and with final font-size as an output. Thus, this function must hold these

3.1. INLINE TAGCLOUDS 11

properties:

∀i < n FS (tagi) ≤ maxFS ∧ FS (tagi) ≥ maxFS

FS (min (importance)) = minFS

FS (max (importance)) = maxFS

In general, you can choose from 3 best approaches, considering design of

your interface and semantics of data you visualize.

• proportional scaling - Font-sizes of tags are distibuted into this interval,

according to simple scaling rule

FS (importance (tagi)) = minFS+

(maxFS −minFS) (importance (i)−min (importance))

max (importance)−min (importance)

Advantage of this scaling is that tags differ a lot, it can be easily seen

which tag is the most important. This is because scaling is really

done in proportional way. On the other hand, if one tag is a lot more

important than the others, all other tags will have font-size a little

above minimum font-size, and thus the tag cloud does not have the

properties we want.

• linear scaling - uses the same formula as proportional scaling, but in-

stead of using importance(x), we use log(importance(x)). This makes

the differences between tag importances smaller and produces tagcloud

with interesting properties.

Font-sizes are evenly distributed along interval, and tagcloud aesthet-

icaly better. But sometimes, tag-sizes are too close to each other and

it is difficult to see which tag is largest. This method mainly improves

performance for large importance range tag clouds.

12 CHAPTER 3. TAGCLOUDS

• group scaling - We need to order tags by size, then divide them into n

groups. Now, ith group will be assigned font-size

minFS + i
maxFS −minFS

m

where minFS(maxFS) is minimum(maximum) font-size. This tech-

nique is quite nasty, it does not really show font-size as a function

of importance, but still can be used on systems with very special tag

distribution.

Figure 3.2: Comparing 2 different tags size techniques. On the left pro-

portional scaling brings in front most important tag and size really show

importance, while linear scaling, on the right, make differences smaller using

logarithm, and all tags can be compared according to their size

3.2. NAVIGATING THROUGH TAGSPACE 13

First two techniques are used very often[Smi08], each of them has its ad-

vantages and disadvantages, but to select a technique, one must consider

legibility, usability and of course aesthetics.

3.2 Navigating through tagspace

In means of navigation, we can look at the folksonomy created by tagging as a

space. This space has three dimensions, author, tag and an article(resource).

It is important to use all of them, and allow users to look at tagspace from

each of these dimensions.

Common are inline tag clouds, that summarizes all articles, from all users,

and visualizes tag count as importance of tags. These tagclouds provide

outlook on tagspace, but to provide full feature navigation, user should be

allowed to move in any direction in this tag space by selecting so called piv-

ots.

Pivot can be either tag, user or article. By selecting a pivot in one di-

mension, other dimensions are scaled, so that they contain only the relevant

information to this pivot. But also, we should be able to provide tag cloud

for each pivot. Standard tag clouds can be created with an user or article

pivot point. Also standard tagclouds are only list of tags(one dimensional)

and use font-size to visualize tag importance, so we only have 2 dimensions

for 3-dimensional space. This mean, that we can provide tagcloud that shows

tags that are related to user (tag that user has used), also tags related to ar-

ticle (articles tags). But we can not visualize third dimension, tag. We have

to visualize tagcloud, that has a tag as an pivot point, and show all tags

related to this chosen tag. But also this tag cloud should somehow visualize

relations between its tags so that user can further explore this space.

But first, we have to define relation of tags. There are many ways to do

this, but one of the easiest, but still very often used is to relate tags through

14 CHAPTER 3. TAGCLOUDS

articles.

Definition. Tags t1, t2 are related, if there exists a article tagged with both

tags.

This provides us the last piece of information, to finalize tagspace model.

We can put into relations all of the 3 dimensions. With a complete model of

tagspace, we are able to navigate through it using pivot points, and what is

more, we can visualize current space point, and thus give user further options

for pivot selection. According to pivot, we can provide:

• User pivot

– list of related users - users using related tags

– list of articles created by selected user

– tagcloud consisting of user added tags, tag sizes are only measured

from user tags

• Article pivot

– list of related articles according to related tags

– list of other articles written by author of pivot article

– tagcloud consisting of tags assigned to pivot article

• Tag pivot

– tagcloud of tags related to pivot tag

– list of articles tagged with pivot tag

– list of users using pivot tag

Also, there are other possible dimensions such as time, or popularity(visit

count). But these are not ”true” dimensions, they are not as strong as those

3.3. TAGCLOUDS WITH ARBITRARY POSITIONS 15

3 above, but are great for scaling and sorting lists of users and articles. Al-

most every website uses list of new articles, top rated articles, most visited

articles, or sometimes top users(either as most read or best rated). Main

goal is to allow users move in tagspace, and explore new dimensions. There

is a fundamental difference in the activities of browsing to find interesting

content, as opposed to direct searching to find relevant documents in a query.

It is similar to the difference between exploring a problem space to formulate

questions, as opposed to actually looking for answers to specifically formu-

lated questions.[Mat04]

Now, we have designed a full-feature navigation through tag-space and it

is time to show options on how to create better tag clouds, 3-dimensional

clouds showing also relations between tags.

3.3 Tagclouds with arbitrary positions

Typical inline tag clouds are 2-dimensional, and to add third dimension,

position can be used to create metric. This is typically done by positioning

related tags next to each other. This is quite difficult problem, because we

have to deal with 2 problems, calculating positions and rendering tag cloud

on web page.

• Calculating positions - this process is computationally difficult. Many

optimizing algorithms working on graphs are NP-complete, and for this

purpose, they are replaced with heuristic solutions, that produce quite

nice result in reasonable time. Algorithms include greedy principles,

dynamic programming and simulation.

• Rendering - according to chosen model, one can use more alternatives

to display such tag cloud. Possibilities include HTML tables[LK07],

divs and floating and also, absolute positioning. Even javascript or

16 CHAPTER 3. TAGCLOUDS

flash animation can be used to produce aesthetically valuable tag cloud.

Other possibility is to connect related tags with lines and to create graph.

Then we can display relations by graph edges. We have considered this

solution as the best for the portal, and implemented such visualization, since

system on portal is not very large.

Figure 3.3: Tag cloud with arbitrary positions use position to visualize tag

relations. Related tags are rendered close to each other. This layout can be

achieved using HTML tables.

3.4. GEOTAGGING 17

3.4 Geotagging

Another variant of tag clouds are maps, that use pins to visualize geographical

source of data. Geotagging is assigning geographical metadata to data. They

use special tags, called triple tags or machine tags. They can be used in

RDF1 format and thus in form of 3 values. Namespace, predicate and value

itself. For example tag geo:lat=47 is saying that geographical latitude is

47. These tags are then used for many purposes, most noticable are already

mentioned maps, such as google earth. Geotagging is really good choice for

photographs, and since these triple tags are easily machine readable, user

can browse and search photos by their geographical source.

1The Resource Description Framework (RDF), a family of World Wide Web Consor-

tium (W3C) specifications[Gro04a]

18 CHAPTER 3. TAGCLOUDS

Figure 3.4: Geotagging can be used to create maps with pictures assigned to

various places

Chapter 4

Used technologies

4.1 XPath

Current version of XPath is XPath 2.0[W3C07a]. This language was defined

by World Wide Web Consortium(W3C). It became a recommendation on

23 January 2007. XPath is used for addressing, selecting parts of XML

document.

XPath deals values as sequence of nodes and atomic values. Nodes are XML

constructs such as elements, attributes and text nodes. XPath deals XML

document as a tree, and addresses its part through selecting nodes on path

from root. Root element is / and for example to select elements A, a child

of B, under root, one will use /A/B expression. Also, predicates can be used

to filter selected nodes i.e. /A[@B = ”C”] will only select those children of

root element, that has attribute B set to value ”C”. XPath in used as a part

of XQuery and XSLT, both used for work with XML.

19

20 CHAPTER 4. USED TECHNOLOGIES

4.2 XQuery

XQuery[W3C07b] is a functional programming language, that was developed

by XML query working group of W3C. Current version is 1.0 and it is in

W3C recommendation since 2007. XQuery can be used both for retrieving

and storing data in XML format.

XQuery works with XML tree like structure, and uses XPath expressions

to select xml nodes. Language is strongly binded with XML, it uses nodes,

attributes, list and XML atomic values, as defined in XML Schema. XQuery

uses FLOWR expressions, to make SQL like SELECT from database. FLOWR

stands for FOR, LET, ORDER BY, WHERE, RETURN. Queries are sim-

ilar to SQL queries, although SQL is declarative language. Advantages of

XQuery are allowing to work directly on XML structure, no chance to make

mistake in XML structure, since both input and output of XML are valid

XML documents, and also, this language is quite easy to learn, of course,

for user that is already familiar with XPath. XQuery is really suitable for

operations over XML, but it is not suitable for creating large applications,

since it is primary developed as query language.

4.3 Php

Php[Gro04b] is a scripting language used mainly for creating dynamic web

pages. Php was created by Rasmus Lerdorf in 1995 and currently being de-

veloped by PHP Group. With this working team change, name was changed

from ”Personal Home Page” to ”Php: Hypertext Preprocessor”. It is dis-

tributed with Php License, which is open-source license. Software can run on

almost all platforms an operating systems. Php is server-side and as many

other scripting languages is kept in human-readable form, so compilation is

typically done at run-time by the Php compilers. Several methods can be

4.4. XSLT 21

used for script execution acceleration, such as caching a compiled version of

a script in memory[Lin02].

Php variables use $ prefix, and anything written with this prefix is consid-

ered as variable, because php variable type does not have to be given in

advance. Script can be directly inserted into html, php only parses code

between <?php and ? > delimiters, anything else is given directly as output.

But for good practice, it is reasonable to keep controlling and visual repre-

sentation of data apart. Best option is object-oriented programming that

was introduced in php version 3 and completely rewritten in version 5, and

is really useful.

4.4 XSLT

XSLT[W3C07c] stands for Extensible Stylesheet Language Transformations

and it is developed by the W3C. The most recent version is XSLT 2.0, which

reached W3C recommendation status on 23 January 2007. XSLT is used to

transform one XML document to another. This technology uses style-sheets,

that that are given along with input XML to a XSLT processor which outputs

XML document transformed according to style-sheet. XSLT style-sheet itself,

is a XML document. XLST is like functional programming language and also

relies on pattern-matching and declarative approach. Typical style-sheet

consists of several templates, that match certain document nodes. These

matching patterns are written in XPath. Template processor takes document

as a tree and starting from its root, applies templates that match currently

processed node. Since XSLT works with XML, it can be used like CSS style-

sheet, to give data visual representation, typically, it takes raw XML data as

an input and outputs XHTML document.

22 CHAPTER 4. USED TECHNOLOGIES

4.5 Ajax

Ajax[Gar05], asynchronous JavaScript and XML, is a group of related web

development techniques. Ajax is used on web pages to dynamically load

data from server and display it, without reloading the page. This is done

using XMLHttpRequest, a javascript object, that allows xml document to

be loaded. Then, XML has to be parsed and added to document, using

DOM. All parts of this process are client-side, but the source of XML can

be anything, including server-side script. Advantages of Ajax count faster

response, since only parts of page are reloaded, not a whole page, scripts

and style-sheets are also loaded only once. On the other hand, usage of

Ajax should be considered, because it relies on javascript, and without it,

an internet application simply will not work. Also, programmer has to deal

with dynamic character of pages, and should provide links for bookmarking

and history search.

Chapter 5

Implementation and results

Implementation of tagbrowser was done for blog.matfyz.sk portal, a blog

portal, that is being developed by faculty students, and is used for different

purposes.

• social: students create their own blogs and write articles, express their

opinions on school, or write just for fun. Also, portal is great informa-

tion source about cultural life on faculty, and in community of mathe-

maticians and programmers.

• educational: Portal is developed by students, and is used for testing

and learning new technologies, also many master and bachelor thesis are

done on the portal. Students also use portal for making surveys among

portal users. There is even a course that teaches students webdesign,

and main goal is to develop a blog, using XSLT transformation

• scientific: Apart from student development, portal uses native XML

database Sedna, that is developed by Russian colleagues from Insti-

tute for System Programming at Russian Academy of Science. Portal

provides workload that is necessary for debugging this database. Bug

reports help developers to locate and repair problems is this system.

23

24 CHAPTER 5. IMPLEMENTATION AND RESULTS

Portal is heavily based on modern approaches, and usage of XML, for stor-

ing data and transforming data to its visual representation. Main portal

controller is written in php, and portal is divided into classes, each created

to serve several tasks. For this work class TagBrowser was created. This

class provides methods for retrieving both inline and arbitrary positioned

tagclouds in xml format. This xml is then parsed using XSL transformation

and presented to the user.

5.1 Retrieving data

All data is stored in XML native database Sedna and it was necessary to

obtain them using XQuery. Portal itself is using php, and queries on Sedna

are done by passing a query string to the Sedna controller class. To make

work on tagging easier, we have implemented set of XQuery functions for

basic tag operations, that formed a string, that was then concated to all the

queries done by TagBrowser class. Tags are retrieved from database in 3

steps:

1. Each article in database has a list of tags assigned to it. Tags of all

articles(or articles of certain author) are selected, along with the articles

ID

2. Tagging system on portal holds tag database with canonical represen-

tations of tags, to eliminate plural and synonym problems. Selected

tags are looked up in this database, so their canonical representations

along with post ID are ready for further computation.

3. Tags are aggregated according to their canonical representation, and

final XML is a list of tags, each provided with count attribute, and list

of articles tagged with this tag.

5.2. FORCE-DIRECTED LAYOUT 25

This XML holds all information needed to create inline tags(and to create a

list of articles tagged with certain tag), but has no information on relations.

Also, since Sedna was very slow for this task1, caching was the only option.

TagBrowser has a script, that is writting XML for each of portal languages

into external file. This script can be scheduled with cron, to run in periodical

time intervals. When TagBrowser is tasked to return relational tagcloud for

selected tag, this external file is opened, and its data is given again, as an

input for XQuery. XML we have created allows us to easily retrieve related

tags, since related tags share a common article, and every tag has a list of

articles assigned to it.

5.2 Force-directed layout

In order to visualize tag strength(importance) and also relations, it was nec-

essary to use tag cloud with arbitrary positions. For our purpose, best idea

was to look at the tag cloud as a graph and display the layout of a graph.

Layout(drawing) of a graph is a visual representation of graph, which is pla-

nar, and focuses on certain graph properties. Our graph should visualize tags

as graph vertices and their relations will be shown by graph edges. Biggest

challenge is that we only know that graph is connected. All other properties

depend on relations of tags. Since there is not any best graph layout, best

approach for run-time graph visualization is heuristic. Also so we have to

define properties that we want layout to have:

• uniform edge length

• scalable layout, that can be fitted into web page

• nodes as far from each other as possible, to achieve good legibility

1experimental time was approximately 5 seconds

26 CHAPTER 5. IMPLEMENTATION AND RESULTS

• aesthetic standards

From possible solutions, such as spectral layout, orthogonal layout, sym-

metric layout etc. We have chosen force-directed layout, because of good

result properties. Force-directed layout[JM02](also called spring-algorithm)

is a heuristic algorithm for graph drawing, that is based on physical model.

Given a graph G = (V, E), this approach deals vertices as electrically charged

particles, and edges as springs. Algorithm simulates dynamics of this sys-

tem over time. Since vertices are electrically charged, they repel each other

according to simplified Coulumb law

F =
q1q2

r2

Where q1, q2 are vertice sizes(weight) and r is vertice distance. And with

edges as springs, they are contracting and pushing nodes closer to each other

according to Hooke’s law

F = kx

Where x is distance from equilibrium position, k is spring constant, in our

case same constant for all edges. This equations provide systems energy,

and constants have to be properly set up, so that there exists a equilibrium

between these forces. Algorithm can be schematically written as follows:

1 i n i t i a l i z e node v e l o c i t i e s to (0 , 0)

2 i n i t i a l i z e node p o s i t i o n s randomly // a l so , we can use some more

s o p h i s t i c a t e d p o s i t i o n s , f o r example c i r c l e

3 loop

4 t o t a l k i n e t i c e n e r g y := 0 // running sum of t o t a l k i n e t i c

energy over a l l p a r t i c l e s

5 f o r each node

6 tmp−f o r c e := (0 , 0) // running sum of t o t a l f o r c e on t h i s

p a r t i c u l a r node

7

8 f o r each other node

5.2. FORCE-DIRECTED LAYOUT 27

9 tmp−f o r c e := tmp−f o r c e + Coulomb repuls ion (th i s node ,

other node)

10

11 f o r each edge i n c i d e n t to t h i s node

12 tmp−f o r c e := tmp−f o r c e + Hooke at t rac t i on (th i s node ,

edge)

13

14 th i s node . v e l o c i t y := (th i s node . v e l o c i t y + t imestep ∗ tmp

−f o r c e) ∗ damping

15 th i s node . p o s i t i o n := th i s node . p o s i t i o n + t imestep ∗
th i s node . v e l o c i t y

16 t o t a l k i n e t i c e n e r g y := t o t a l k i n e t i c e n e r g y + th i s node .

mass ∗ (th i s node . v e l o c i t y) ˆ2

17 u n t i l t o t a l k i n e t i c e n e r g y i s l e s s than some smal l number

System is moving according to specified rules, until total kinetic energy is

small enough. This means that the system has reached one of its local energy

minimal configurations.

Damping is introduced, because without it, for some special configurations,

system could move forever.

Clearly in every iteration, we have to calculate all the forces that apply to

vertices:

F (v) =
∑

v′∈V ;v′ 6=v

CoulombRepulsion (v, v′) +
∑

e∈E;v∈e

HookeAtraction (v, e)

For a graph with N vertices and M edges, this results in computational

complexity of O (N2M) for each iteration.

Best technology for this algorithm implementation among those used by

portal, was php. From version 5 php supports object-oriented programming,

so it was possible to create universal classes for graph drawing. This small

library consists 3 objects, Node(vertice), Edge, and Graph itself. Classes

Node and Edge were basically serving as data holders, Graph was calculat-

ing everything. Algorithm was directly coded into php, with one difference,

28 CHAPTER 5. IMPLEMENTATION AND RESULTS

Figure 5.1: Graph layout dynamics. Red dotted lines represent repulsive

forces, green lines represent spring forces.

maximum number of iterations was set to 500, to stop long running calcula-

tions2.

To work with the library, most important is class Graph. Once created an

instance of this class, use this methods to create graph layout:

• addNode - specify unique node name, and possibly node weight

• addEdge - specify incident nodes, possibly length

• randomize - randomizes node positions, this is used because algorithm

needs nodes to have different positions

2As far as we know from test results, number of iterations does not exceed 100

5.2. FORCE-DIRECTED LAYOUT 29

• normalize - resizes and moves layout so that is completely using square

(0, 1)2

• step - one iteration step, probably useful, when trying to create ani-

mation, also for debugging

• make - starts spring-algorithm, iterates until kinetic energy is small

enough

This library(set of classes) is suitable for other uses, since it works only with

abstract graph data. As future work, we want to further develop this library

and implement other features, since php graph drawing is not very common.

To create a graph layout, we had to make five steps:

1. add nodes using addNode. Nodes related to selected node were re-

trieved from cached xml, and then only most important were added.3

2. add edges using addEdge. All nodes(tags) were checked for relations,

and edges were added. Since tag relation as we defined it is symetric,

graph class have to have duplicate edge removal mechanism.

3. randomize to prepare for calculating.

4. make to calculate graph layout.

5. normalize to make data ready for displaying

Force-directed layout as we defined it, only works for connected graph. Other-

wise, repelling forces moves graph partitions away from each other to infinity.

Once graph layout is calculated, results are given in form of xml to the page

generator and are further transformed using XSLT.

3for good legibility maximum of 15 nodes is reasonable

30 CHAPTER 5. IMPLEMENTATION AND RESULTS

5.3 Arbitrary tag positions and html

Our tag cloud is represented by graph layout, and tags can have almost

any positions. We have chosen absolute positioning to move elements(divs)

containing tags. One div, that can have any size, contains this layout, that

is absolutely positioned in percent of containing div. This allows page to be

resized and customized properly. Another problem is to render edges, using

html elements. Html and css have mechanisms to draw vertical or horizontal

lines4, but other lines can not be rendered, and have to be drawn using css

and absolute positioning. I have chosen a technique of drawing lines using 1

pixel divs. This method produces lot of divs, that slow down page rendering,

but unlike other methods, for example image scaling, lines are acurate and

thus aesthetically pleasing. All this was achieved by only using html and css,

so whole tagbrowser can run without javascript.

5.4 Results

To demonstrate final layout of tag cloud we will provide some images showing

algorithm result, on real data taken from blog.matfyz.sk .

4for example using borders

5.4. RESULTS 31

Figure 5.2: Typical cloud of one of the most important tags on portal, matfyz.

32 CHAPTER 5. IMPLEMENTATION AND RESULTS

Figure 5.3: This cloud is a great demonstration of how folksonomy creates

categories and taxonomy system. We can see, that tags related to ”matem-

atika” fall into 3 different cathegories(according to their relations) and this

tag connects them.

5.4. RESULTS 33

Figure 5.4: Accidentally we have also created a complete graph. This can be

eliminated by visualizing only strong relations, not all.

34 CHAPTER 5. IMPLEMENTATION AND RESULTS

Chapter 6

Conclusion

We have studied and written some technique and algorithms for visualization

of tags and tagspace. Further more, we have created model of tagspace nav-

igation system, and implemented important parts of it for blog.matfyz.sk.

As a side result, we have created functions for generating an inline tagcloud,

using different scaling techniques, that is being used for title tagcloud and

also, tagcloud of users. Also experiments show that same technique can be

used for large(title) and small(user) tagclouds.

Main result of this thesis is relational tagbrowser, that visualizes part of the

tagspace around one selected tag, using graph layout visualization. We have

proven that this approach is suitable for this task, and that resulting tag-

clouds have high aesthetic, usability and also html validity standards. This

application is very modern and still not very common among tagging systems

used on the internet.

Tagbrowser will serve users of blog portal, and also can be used for research

on tags. Inline tagclouds are already used by the portal, and working well.

Force-directed layout was implemented in many languages, and there exists

many libraries dealing with this problem. But php implementations are not

very common, so this library can be useful for many other programmers and

35

36 CHAPTER 6. CONCLUSION

students. This library was created for this special task, but after a little

afford, it can be completely universal. It will be completed and published on

the internet, free for others to use.

As a future work, relational tag browsers are still not very much used, and

there is a lot of work to be done, either researching new methods and vi-

sualizations, or implementing tagclouds in different languages used on the

internet. Furthermore, tagging on blog.matfyz.sk has many features, but

navigation model introduced in this thesis will be considered and tagging

navigation will be remade, to complete navigation possibilities on portal.

Bibliography

[Gar05] Jesse James Garrett. Ajax: A New Approach to Web Applica-

tions. 2005.

http://www.adaptivepath.com/ideas/essays/archives/000385.php.

[Gro04a] RDF Core Working Group. Resource Description Framework

(RDF). 2004.

http://www.w3.org/RDF.

[Gro04b] The PHP Group. PHP Documentation. 2004.

http://www.php.net.

[JM02] Fabien Jourdan and Guy Melançon. A scalable force-directed

method for the visualization of large graphs. 2002.

ftp://ftpdim.uqac.ca/pub/ychirico/wvdr2002/jourdan.pdf.

[Lin02] Nick Lindridge. The PHP Accelerator 1.2. 2002.

http://www.php-accelerator.co.uk/PHPA Article.pdf.

[LK07] Daniel Lemire and Owen Kaser. Tag-Cloud Drawing: Algorithms

for Cloud Visualization. 2007.

http://www2007.org/workshops/paper 12.pdf.

[Mat04] Adam Mathes. Folksonomies - Cooperative Classification and

Communication Through Shared Metadata. 2004.

37

38 BIBLIOGRAPHY

http://www.adammathes.com/academic/

computer-mediated-communication/folksonomies.html.

[Sif06] D. Sifry. State of the Blogosphere. 2006.

http://www.sifry.com/alerts/archives/

000436.html.

[Smi08] Gene Smith. Tagging: People-Powered Metadata for the Social

Web. New Riders, 2008.

[W3C07a] W3C. XML Path Language (XPath) 2.0. 2007.

http://www.w3.org/TR/2007/REC-xpath20-20070123/.

[W3C07b] W3C. XQuery 1.0: An XML Query Language. 2007.

http://www.w3.org/TR/2007/REC-xquery-20070123/.

[W3C07c] W3C. XSL Transformations (XSLT) Version 2.0. 2007.

http://www.w3.org/TR/2007/REC-xslt20-20070123/.

[XFMS06] Zhichen Xu, Yun Fu, Jianchang Mao, and Difu Su. Towards the

Semantic Web: Collaborative Tag Suggestions. 2006.

http://www.semanticmetadata.net/hosted

/taggingws-www2006-files/13.pdf.

Abstrakt

Tagovańım (pridávańım metadátových ǩlúčových slov) internetového obsahu

vzniká takzvaná folksonómia, zdola budovaná taxonómia, popisujúca vzťahy

dátových objektov. Táto taxonómia môže byť použitá ako forma navigácie,

napriek tomu že neslúži na vyȟladávanie odpoved́ı na otázky, ale na ȟladanie

nových otázok a zauj́ımavého internetového obsahu.

Agregáciou tagov poďla ich mena vzniká navigačný element nazývaný tag-

cloud. Táto práca uvádza základné metódy generovania riadkových tag-

cloudov, takisto definuje pŕıbuznosť tagov, pre zlepšenie navigačného modelu

v tomto priestore tagov. Metódy generovania tagcloudov sú porovnané a ex-

perimentálne otestované implementovańım týchto algoritmov a ich následným

použit́ım na reálnych dátach. Ako hlavný pŕınos prezentujeme relačný tag-

browser vytvorený pre portál blog.matfyz.sk, ktorý využ́ıva kreslenie grafov

na vizualizáciu tagov a vzťahov medzi nimi. Algoritmy a technológie ktoré

viedli k vytvoreniu tohto tagbrowsera sú poṕısané spolu s implementačnými

detailami.

Kľúčové slová: tagy, relačný tagcloud, kreslenie grafov

39

