
Comenius University, Bratislava
Faculty ofMathematics, Physics and Informatics

Visualization tool for teaching

The Principles of Compilers

Bachelor Thesis

2014 Peter Dolák

Comenius University, Bratislava
Faculty ofMathematics, Physics and Informatics

Visualization tool for teaching

The Principles of Compilers

Bachelor Thesis

Study programme: Computer Science

Study field: 2508 Computer Science, informatics

Department: Department of Computer Science

Supervisor: RNDr. Richard Ostertág, PhD.

Bratislava, 2014

Peter Dolák

62049539

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Peter Dolák
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: 9.2.1. Computer Science, Informatics
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Visualization tool for teaching The Principles of Compilers

Aim: The goal of this work is to implement visualization of algorithms used for
teaching compilers principles.
After entering context free grammar, following features will be available to the
user:
* FIRST and FOLLOW set calculation
* goto and closure function calculation
* grammar transforms (removal of left recursion, left factorization, ...)
* construction of parsing tables for LL, SLR, CLR, LALR parsers
* visualization of these tables by graphs
* visualization of parsing for chosen input

The result will be in form of web application implemented using HTML,
JavaScript, SVG.

Supervisor: RNDr. Richard Ostertág, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

doc. RNDr. Daniel Olejár, PhD.

Assigned: 01.10.2013

Approved: 09.10.2013 doc. RNDr. Daniel Olejár, PhD.
Guarantor of Study Programme

Student Supervisor

62049539

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Peter Dolák
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: 9.2.1. informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Visualization tool for teaching The Principles of Compilers
Vizualizačný nástroj pre výuku princípov kompilátorov

Cieľ: Cieľom práce je implementácia a vizualizácia algoritmov používaných
pri tvorbe kompilátorov.
Výsledkom budú webové stránky, ktoré budú slúžiť ako pomôcka pri výučbe
tvorby kompilátorov.

Po zadaní bezkontextovej gramatiky bude možné napríklad:
* vypočítať množiny FIRST a FOLLOW
* vypočítať funkcie goto a closure
* transformácie gramatík (odstránenie ľavej rekurzie, lavá faktorizácia, ...)
* skonštruovať parsovacie tabuľky pre LL, SLR, CLR, LALR parser
* vizualizovať tieto tabuľky pomocou grafu
* vizualizovať parsovanie zvoleného vstupu

Pre implementáciu bude použité HTML, JavaScript, SVG.

Vedúci: RNDr. Richard Ostertág, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: doc. RNDr. Daniel Olejár, PhD.

Spôsob sprístupnenia elektronickej verzie práce:
bez obmedzenia

Dátum zadania: 01.10.2013

Dátum schválenia: 09.10.2013 doc. RNDr. Daniel Olejár, PhD.
garant študijného programu

študent vedúci práce

Acknowledgement

I would like to thank my supervisor RNDr. Richard Ostertág, PhD. for his help and advices,

and also Mgr. Marek Zeman for his guidance in a former project that served as a basis for

creating this thesis. Finally, I thank my family for their support.

v

Abstract

In this thesis we attempt to faciliate the study of syntax analysis, an important topic in the

theory of compilers, which can be difficult to properly understand without good examples.

As the main result of this thesis, we have created a web application allowing visualization of

several algorithms for context-free grammar transformation, parse table creation and parser

simulation. The thesis describes the development of a visualization framework and the im-

plementation of these algorithms.

Keywords: compilers, syntax analysis, parsing, algorithm visualization

vi

Abstrakt

V tejto práci sa pokúšame ul’ahčit’ štúdium syntaktickej analýzy, dôležitej témy v teórii kom-

pilátorov, ktorá môže byt’ náročná na správne porozumenie bez dobrých príkladov. Hlavným

výsledkom práce je webová aplikácia umožňujúca vizualizáciu niekol’kých algoritmov pre

tranformáciu bezkontextových gramatík, tvorbu parsovacích tabuliek a simuláciu parsera.

Práca popisuje vývoj frameworku pre vizualizáciu a implementáciu týchto algoritmov.

K ’lúčové slová: kompilátory, syntaktická analýza, parsovanie, vizualizácia algoritmov

vii

Contents

Introduction 1

1 Project background 2
1.1 Motivation . 2

1.2 Goals . 3

1.3 Technology . 3

1.4 Similar projects . 4

2 Formal structure library 6
2.1 Grammar-related structures . 6

2.1.1 Symbols . 7

2.1.2 Words, rules & LR items . 7

2.1.3 Grammars . 8

2.1.4 Grammar input/output methods 8

2.2 Algorithm-related structures . 9

2.2.1 Common structure mechanisms 9

2.2.2 Set-like structures . 11

2.2.3 Table structures . 11

2.2.4 Parser structures . 12

2.2.5 LR automaton . 12

3 Algorithm visualization framework 15
3.1 Goals . 15

3.2 Framework interface . 16

3.2.1 Algorithm implementation example 18

3.3 Framework mechanics . 21

3.3.1 Algorithm controller tree . 21

3.3.2 Algorithm controller . 22

3.4 Algorithm browsing user interface . 23

viii

CONTENTS ix

4 Implemented algorithms 24
4.1 Grammar normal forms . 24

4.1.1 Reduced form . 24

4.1.2 Epsilon-free form . 25

4.1.3 Chain-rule-free form . 25

4.1.4 Weak Chomsky form . 25

4.1.5 Strict Chomsky form . 26

4.1.6 Left recursion removal . 26

4.1.7 Greibach form . 26

4.1.8 Left factorization . 27

4.2 Parsing . 27

4.2.1 CYK . 27

4.2.2 First & Follow sets . 27

4.2.3 SLR parse table creation . 28

4.2.4 CLR parse table creation . 28

4.2.5 LALR parse table creation . 29

4.2.6 LR parser simulation . 29

4.2.7 LL parse table creation . 30

4.2.8 LL parser simulation . 30

5 Project usage example 31

6 Future plans 34

Conclusion 35

A The application’s source code 37

Introduction

One of the most significant practical uses of the theory of formal languages is found in

the process of compiling programming language code. Such as human languages cannot

be purposefully translated word by word, also programming languages use their syntax to

express critical information about the meaning of a program. In order for a compiler to

translate between languages that usually have major differences in their syntax (most of the

time we translate from a complex language to a simpler), it typically needs to convert the

input string of characters (or a little more abstract entities – tokens) into a structure that is far

easier to work with, a syntax tree. This can be achieved by determining how can the input

string be generated by a context-free formal grammar describing the input language. This

process is referred to as the syntax analysis or parsing.

Vast research was done in this area and methods were invented that allow parsing for

large classes of context-free grammars in the optimal linear time. Depending on the power

of such a class, these methods become increasingly complicated and may require somewhat

larger effort to properly understand.

This work aims to provide help with teaching The Principles of Compilers and with

self-study of this important topic. The main task is to create a client-side web application

(powered by JavaScript) that implements several algorithms used to create a parser, allowing

the user to observe their work on a chosen grammar using a step-by-step visualisation. Extra

formatting is used to help the user see the changes performed in each step and text description

is supplied to clarify their meaning. The tool can also simulate the parser itself and visualize

some additional algorithms that can be performed on grammars.

The thesis begins with a talk about the motivation behind this project, its goals, used

technologies and a comparison with some other projects serving a similar purpose. The sec-

ond chapter describes the library for representing various formal language theory structures

created for the needs of the project. A framework for step-by-step visualization of algorithms

was created as well and will be discussed in the third chapter. Then follows a list of all the

algorithms implemented in this project, providing definitions where necessary. The thesis

also includes a usage example with screenshots from the application and concludes with a

short talk about the future plans for extending it.

1

Chapter 1

Project background

1.1 Motivation

Most of today’s parsers are created using automated tools that let the user specify an input

grammar and produce an effective parser without exposing any of this task’s true complex-

ity. Nevertheless, Syntax Analysis is an important topic in the theory of compilers, formal

languages and other areas of computer science. Proper knowledge of the employed methods

is not just a matter of some general insight or only useful for authors of the mentioned au-

tomated tools. In many cases this knowledge will help us to choose a well-suited grammar,

choose the right tool (depending on the generated parser type) and know what we can expect

the tool to be able to do. Sometimes it may even enable us to create a better parser ourselves.

The algorithms used in the process of creating a top-down or especially a bottom-up parser

(and the algorithm of the parser itself) are not trivial and can be much easier to understand

and memorize when seen at work in a practical example. Hence the tool is created in such

a way that it can be especially useful as an aid during a lecture. After a particular algorithm

is explained, the tool can be used to demonstrate it on an example. Students can later work

with the tool themselves for better understanding and memorizing of the algorithms, or to

explore cases not covered on the lecture. A recommended approach would be trying each

step on a piece of paper first and then checking with the tool. Finally, the tool can also be

used to check students’ answers on an exam. Of course, this tool could even be used for

construction of parsing tables used in real world applications, although due to the algorithms

being visualized, it can never reach the effectiveness of a standard parser generator.

2

CHAPTER 1. PROJECT BACKGROUND 3

1.2 Goals

Algorithms are visualized mainly by allowing the user to browse the computation on an

example step by step and see the state of the grammar or various auxiliary structures..

This visualization attempts to achieve the following goals:

• The user is provided with various ways to enter the input context-free grammar that

they would like to visualize the algorithms on

• The computation is organized into a hierarchical structure of steps that the user can

easily navigate

• Since many algorithms make use of the result of another algorithm, the user has the

opportunity to show such computations or skip them entirely

• Each step has at least a brief description of the action being performed, to aid with

orientation in the visualized algorithm

• The changes made in a step are made clear by using appropriate highlighting, bringing

the user’s attention to semantically important changes

Some algorithms even visualize abstract structures, which are not physically represented

during the execution of an algorithm, but can help understanding the semantics of the struc-

tures being computed upon.

1.3 Technology

JavaScript was chosen as the single programming language of this project. This choice

allows for a high degree of portability and ease of access. Because no server-side computa-

tion is being used, the application can even be used without network access if preloaded or

stored. Another advantage is the possibility of using modern web technologies for design –

HTML, CSS3, SVG; speeding up the development.

The project heavily uses object-oriented programming, which JavaScript implements us-

ing the concept known as prototype-based programming. [MDNcOOP] This style of pro-

gramming is quite flexible and most paradigms of classical object-oriented programming

can be reproduced.

JavaScript libraries used by the project are following:

• jQuery
A popular library greatly simplifying DOM Tree manipulation and extending the lan-

guage with several useful utilities

CHAPTER 1. PROJECT BACKGROUND 4

• Viz.js
Essentially the Graphviz library compiled to JavaScript, used to create the layout for

directed graphs and render the graph to SVG

• dagre-d3
A lightweight library for creating layouts of directed graphs, using the D3.js library to

render the graph to SVG

• lz-string
A lightweight compression library

1.4 Similar projects

The Context Free Grammar Checker [UCCFGC] is a web application created at the

Department of Computer Science, University of Calgary. This tool enables the user to check

certain properties of a user-specified grammar, generate various parser tables and apply many

context-free grammar transformations. It is quite rich in functionality and helpful as a teach-

ing aid in the area of syntax analysis because of displaying the output structures and au-

tomata, however none of the algorithms is visualized. It also cannot simulate a parser and

the computation is done server-side.

Grammophone [DaiGram] is a web application created by Michael Daines. It is intended

as a new version of The Context Free Grammar Checker and it implements a similar set of

functionality. The most important change is that there are no active server side components.

Grammar transformations are semi-automatic – the user is often given the choice on which

grammar nonterminals or productions should a change be applied.

JFLAP [RodJFLAP] is a Java application created by Susan H. Rodger of Computer Sci-

ence Department at Duke University. This very feature-rich application is able to visualise

various algorithms from the area of formal languages, not omitting syntax analysis. For

instance, it allows for visualising the construction of LL(1) and SLR(1) parsers and can sim-

ulate them as well, CYK parsing and Chomsky’s normal form are also supported. Support

for LALR(1) and CLR(1) parsers and some other grammar transformations is missing.

CHAPTER 1. PROJECT BACKGROUND 5

This project CFG Checker Grammophone JFLAP

Technology web web web Java

Client/server-side client server client client

Grammar transformations
Reachable & generating � � � �

Epsilon-free � � � �

Chain-rule-free � � � �

Chomsky normal form � � � �

No left recursion � � � �

Greibach normal form � � � �

Left factoring � � � �

Transformations visualized � � � �

LR/LL parse table construction
FIRST & FOLLOW � � � �

SLR � � � �

CLR � � � �

LALR � � � �

LL � � � �

Automaton graph displayed � � � �

Construction visualized � � � �

LR/LL parser simulation
Parser simulated � � � �

Simulation visualized � � � �

CYK
CYK parsing � � � �

CYK parsing visualized future � � �

Table 1.1: Project comparison. Note that the table only shows functionality implemented or

planned in this project, all the other tools provide some functionality this project does not.

Chapter 2

Formal structure library

Before any algorithms could be visualized, it was necessary to implement good JavaScript

representations for several structures from the theory of formal languages. A library was cre-

ated providing rich classes for such structures, most importantly grammars and other outputs

of the chosen parsing algorithms. The interfaces were designed with the goal of enabling us

to efficiently express these algorithms using code of good readability (to the extend limited

by the JavaScript programming language), heavily employing object-oriented programming,

callback iterators and other patterns. This chapter mentions most of the classes and very few

of their methods, the knowledge of which is essential for working with the library.

Certain characteristics are shared across many of the implemented structures. All of the

object representations implement a toElement method creating its jQuery element set visual

representation and toString method for a unique string representation. A toData method is

available to obtain a representation of the structure that can be serialized as JSON or used to

create a copy of the object. Several structures also feature a highlight method allowing to

add certain highlighting visible in the element representation.

2.1 Grammar-related structures

Without a doubt the most important structure to be represented by the library is a context-

free formal grammar. Following its usual definition as in [ALSU06, section 2.2.1], a context-

free grammar consists of a set of terminal symbols (further referred to as terminals), a set of

nonterminal symbols (or nonterminals), a set of production rules (or rules, productions) and

a designation of one of the nonterminals as the start symbol. The object representation of a

grammar is created by composing object representations of simpler entities.

6

CHAPTER 2. FORMAL STRUCTURE LIBRARY 7

2.1.1 Symbols

The most basic entities represented by an object are both types of symbols. Classes

Terminal and Nonterminal inherit from a common class Symbol. The permissible text rep-

resentation of a symbol is a string consisting of certain allowed characters (see table 2.1).

Optional indexing of symbols is possible – any substring following the first occurrence of a

slash character is visually formatted as a subscript. Terminal and nonterminal symbols are

distinguished using the first character of their text representation – nonterminals start with

an uppercase letter, any other first character designates a terminal. Name eps is reserved.

letters

uppercase lowercase digits special symbols

A-Z a-z 0-9 _ + - * / () [] ’ : ; ! ? @ $ #

when first: nonterminal terminal

Table 2.1: Symbol text representation allowed characters

2.1.2 Words, rules & LR items

A sequence of symbols of either type creates a word, represented by the class Word. The

text representation is composed by joining text representations of symbols with spaces. A

special case is the empty word, which is represented in the user interface as eps. The internal

representation of any word is an array of references to symbols; those are shared across all

words defined within the context of a grammar. Some of the most useful methods include

a callback iterator (method forEachSymbol) and basic regular expression matching (method

match) - regular expressions can be used to match words over the alphabet {N,T, S ,R}, where

the letters substitute any nonterminal, any terminal, the grammar’s start nonterminal and any

nonterminal except the start, respectively.

The class Rule represents a context-free grammar production rule consisting of a left side

nonterminal and right side word. The rule object simply holds references to such objects,

which can be retrieved by methods getLeft and getRight. The following is an example of

using the above mentioned match method to find out if a given production rule is regular:

Listing 2.1: match method usage example

1 if(rule.getRight().match("T*N?")) {

2 // rule is regular

3 }

CHAPTER 2. FORMAL STRUCTURE LIBRARY 8

Another relevant class, LRItem, represents an LR(0) or LR(1) item (a rule with a dot at

some position of the right side, [ALSU06, section 4.6.2]). An instance of this class holds a

reference to a grammar’s production rule, a numerical index determining the dot’s position

and an array of LR(1) lookahead symbols. In case an LR(0) item is desired, this array is

simply left empty or omitted in the constructor call.

2.1.3 Grammars

A context-free formal grammar is represented by the Grammar class. The terminal and

nonterminals sets are implemented as mappings of symbol text representations to symbol

references. Method tryGetSymbol can be used to retrieve a symbol by it’s text, methods

forEachTerminal, forEachNonterminal and forEachSymbol allow callback iteration. The set of

production rules is implemented as a mapping of left side nonterminal texts to rule groups,

these are mappings of rule right side texts to actual rule object references. This approach

allows for effective implementation of methods forEachRule and forEachRuleWithLeft, the

latter of which will only iterate over the grammar’s rules with a given left side nonterminal.

2.1.4 Grammar input/output methods

As one of the goals is to let the user choose the grammar used in the implemented algo-

rithms, it is important that they can enter the grammar with ease. The project provides one

graphical input method and four text input/output methods for grammars to meet the needs

of various users and situations.

• Rich input
Interactive graphical grammar editor, resembling a formal description of grammars.

Symbols and rules can be created using buttons placed where the user would expect

the new entity to be displayed; creating either a new nonterminal, terminal, adding a

new rule to an existing group with a common left side, or creating a new rule group.

Clicking on existing entities allows to change them (this also allows for symbols to be

quickly renamed), clearing the input bow deletes them. Symbols need to be declared

before they are used in productions. This input method provides best readability and is

best suited for new users not familiar with the text input methods and for small changes

to the currently used grammar.

• Math-like text input
Text-only version of the above method. Symbols again need to be explicitly declared.

Best suited for users familiar with the rich input method, especially when making

CHAPTER 2. FORMAL STRUCTURE LIBRARY 9

significant changes to the currently used grammar or when the application is being

used on a low-end device.

• Brief text input
Format used by The Context Free Grammar Checker and the Grammophone, therefore

is best suited for users familiar with these applications. Since symbols are declared

implicitly and only rules are specified, this is the fastest input format for specifying

new grammars.

• JSON
JSON parsable format. Useful when scripting is used to generate or further process

the grammar.

• HTTP link
The grammar is serialized, compressed, base64-encoded and included in the hash frag-

ment of an HTTP link to the application. The grammar is automatically used if the

application is opened with such a link. This method is intended for sharing the gram-

mar using the Internet (for example the link could be included in a course homework

assignment).

2.2 Algorithm-related structures

Most of the algorithms implemented in this project make use of other structures than

just the grammar. Algorithms like form conversions can sometimes use important auxiliary

structures that should be visualized to the user as well (mainly symbol sets and tables).

Moreover, all of the parsing algorithms yield such other structures as their result (mainly

tables, automata and parse trees).

Later we will explain that the algorithm framework needs to be able to make snapshots

of all the visualized structures in each step. Since in any of the algorithms there is always

exactly one grammar present, it is acceptable to pay some special attention to it and create

its copies by directly referencing the Grammar class. The other structures, however, are used

differently by each algorithm, therefore a more general approach is necessary.

2.2.1 Common structure mechanisms

All of the structures provided by the library except the grammar inherit from the Structure

base class. They need to implement the following methods:

• toStructureInnerElement – should return a jQuery element set with all the structure

dependent markup

CHAPTER 2. FORMAL STRUCTURE LIBRARY 10

• getType – returns a string with the name of the subclass (JavaScript doesn’t provide

any reliable built-in method of doing that)

• toConcreteData – should return serializable object with all of the structure’s important

state variables

• fillStructureData – should replace the current structure’s state using a data object

generated by the above method

• a constructor delegating the id and name arguments to the initStructuremethod inher-

ited from the base class

Correct implementation of those methods will then allow the proper function of the fol-

lowing methods inherited from the Structure base class:

• toElement – returns a jQuery element set with the full structure markup, displaying a

name if it was set

• toData – extends the concrete data object with other information needed to reconstruct

the structure

• name, id – getter methods for the name of the structure displayed to the user and its

internal identifier

• priority – getter/setter method for a structure’s priority; the lower this number is, the

higher is the structure’s element positioned in the visualization; the grammar’s implicit

priority is 0

• Structure.fromData static method – creates a new structure of any type using the pro-

vided data object

The specialized structure’s constructor is dynamically located in the document object

model using the class name string provided by getType, the newly created structure is

then initialized using the fillStructureData.

We have to state that although this approach to creating copies of structures works, some

downsides became apparent later. The first one is the mere fact that a structure needs to

manipulate all its state data in the toConcreteData and fillStructureData methods. Aside

from being a burden, this can lead to very obscure bugs if the programmer starts using a new

state data field and forgets to modify those methods. Another downside is performance –

creating the state’s data representation has the complexity of a deep copy. In the future, this

could be partially addressed by using immutable objects only.

CHAPTER 2. FORMAL STRUCTURE LIBRARY 11

2.2.2 Set-like structures

The abstract class SetStructure serves as a basis for implementing representations of set-

like formal structures. A derived class will allow to create sets over a certain domain of

elements, which are typically simpler objects not derived from the Structure base class. Such

objects should override their toString method to return their unique text representation. The

derived class should then implement the createSetItemFromText method to use a given text

representation of an element to return an appropriate object for it. A grammar object is also

passed, so that instead of creating new instances, references can be returned where possible.

Concrete structures derived from the SetStructure class include:

• SymbolSet – elements of this set are the symbols of a grammar, or an empty word

• LRItemSet – elements are LR items for a grammar

The structure LRState representing a state of an LR automaton is essentially a wrapper

for two LRItemSet structures storing core and non-core LR items, all represented by

the LRItem class.

• ParserActions – elements are actions or parse table entries of an LR/LL parser, these

are:

– LRActionShift, LRActionReduce, LRActionAccept – LR actions Shift, Reduce &

Accept; for the LR ACTION table

– LRGotoEntry – an entry in the GOTO table

– LLActionProduce – an entry in the LL parse table

– ParserActionError – a user-defined error in the LR/LL parse table

2.2.3 Table structures

The class TableStructure provides representation for formal structures that can be best

expressed as tables. Rows and columns (with names used in header cells) can be declared

during the construction or added and removed dynamically. Cells of such a table are usually

set structures; specialization for an instance is achieved by passing the structure’s class object

in TableStructure’s constructor.

One important use of the TableStructure class is representing an LR/LL parse table. In this

case, each cell of the table is occupied by an instance of the ParserActions set structure. This

allows each parse table cell to have zero to many parser actions defined. When a computed

parse table has conflicts (multiple actions), a special parse table input method can be used

to disable an action and resolve them. This is done by clicking on the action, toggling the

enabled/disabled state.

CHAPTER 2. FORMAL STRUCTURE LIBRARY 12

2.2.4 Parser structures

The following structures are used by LL and LR parser algorithms.

The input word for a parser provided is represented by the class ParserInput. Before a

parser simulation algorithm is computed and visualized, the user is prompted to specify an

input word; that is stored, accessed and visualized by this structure.

Both parser algorithm make use of a stack, represented by the class ParserStack. Ele-

ments inserted into the stack should be structures derived from the Structure base class,

requiring symbols to be wrapped using the SymbolWrapperStructure class. The contents can

be manipulated using methods similar to those typical for a stack (push, peek, pop).

Finally, both parser algorithms emit a sequence of production rules as their output, which

is collected by the ParserOutput class. This structure is typically not visualized until the

parser algorithm execution finishes successfully. At this point, when the structure should be

visualized, the rules are used to construct a parse tree, which is visualized.

2.2.5 LR automaton

The most complex formal structure found in the project is the LR automaton, represented

by the LRAutomaton class. The automaton is composed of an enumerated list of states (item

sets, using the above mentioned LRState class) and a set of transitions between them (im-

plemented as ordered pairs over the set of state numbers). The automaton has to be able to

efficiently look up whether a given item set is already an existing state, and add it if neces-

sary; transitions are added dynamically as well.

With the states being nodes and transitions being edges, the automaton is depicted as a

directed graph, potentially with cycles. Visualizing such a graph is not a trivial problem

and external libraries were used to calculate the graph’s layout. The user can choose one of

these three options to change the functionality of an automaton’s toStructureInnerElement

method:

• None
With this option the LR automaton structure is not visualized at all. Very large graphs

are not readable using any of the below mentioned methods and the execution time

can significantly complicate browsing the algorithm visualization; in such case it is

advisable to use this option.

CHAPTER 2. FORMAL STRUCTURE LIBRARY 13

Figure 2.1: Example of using dagre-d3 to visualize the SLR(1) automaton graph for the

grammar { B→ BB | (B) | [B] | ε. }

• dagre-d3
Dagre is a JavaScript library that allows to easily lay out directed graphs on the client-

side. The dagre-d3 library acts a front-end to dagre, using the D3 library to provide

actual rendering of the layout to SVG. HTML labels for nodes and edges are natively

supported.

Creating the layout and markup for the automaton with dagre-d3 is done in the toDagreGraph

method. Using this library was very straightforward and no intervention with the gen-

erated markup was required. The minified sources of the dagre-d3 and D3 libraries are

less than 200 kB in size.

In smaller graphs the layout of nodes created by dagre is logical and well organized,

but the overall quality deteriorates with increasing amount of edges. Edges may often

overlap in angles that make them difficult to follow, all loops are laid out poorly. The

execution is moderately resource consuming.

CHAPTER 2. FORMAL STRUCTURE LIBRARY 14

Figure 2.2: Example of using Viz.js to visualize the SLR(1) automaton graph for the gram-

mar { B→ BB | (B) | [B] | ε. }

• Viz.js
This library was created by compiling the GraphViz library to JavaScript using the

Emscripten source-to-source compiler, allowing for layouts to be created client-side.

It uses the powerful DOT language to input graphs and allows to choose one of many

output formats, including SVG. There is no native support for HTML labels.

Method toGraphvizGraph creates the layout and markup for the automaton with the help

of Viz.js. To achieve HTML labels, the dimensions of label elements for nodes and

edges need to be pre-calculated and passed in the DOT language input string. After-

wards, the SVG is traversed and HTML label elements (wrapped in the foreignObject

SVG element) are used to replace some existing SVG markup. The size of the minified

source for Viz.js is above 1.3 MB.

Viz.js is able to keep the layout readable even for somewhat larger graphs than dagre.

The main drawback is the resource consumption, which grows quickly with the size of

the graph; the execution is generally slower than dagre.

Chapter 3

Algorithm visualization framework

Using the formal structure library, algorithms can now be easily implemented. To visualize

their step-by-step implementation, however, requires significantly more effort. A powerful

framework for visualization of algorithms was created in this project; this section should

describe its goals, application programming interface with an example algorithm implemen-

tation, the concepts behind this framework and the user interface.

3.1 Goals

We will now analyze the goals set for the visualization, so that it is apparent what aspects

common for any algorithm visualization should be separated into a framework.

• Freely navigable visualization
To achieve a step-by-step visualization, certain points should be set in the algorithm’s

execution, the immediate state of which can be later viewed by the user. We will

be referring to these points as steps. As we would like to impose no restrictions on

the order in which these steps can be displayed by the user, the execution will be

precomputed and a snapshot of the state in each step will be stored. Such a snapshot

should allow the complete reconstruction of the original object structure so that it can

be easily visualized.

• Hierarchical organisation of steps
If the steps were to be organized in a strictly linear fashion, the visualization would

become less useful for complex algorithms with many steps. We will enforce a hierar-

chical organisation of steps based on their semantics for reasons such as:

– providing the user with more context – a look upwards in the hierarchy can

quickly answer the question why is a certain subtask necessary

15

CHAPTER 3. ALGORITHM VISUALIZATION FRAMEWORK 16

– more flexible navigation – the user can easily skip repetitive groups of steps that

will not aid in understanding the algorithm; or more easily locate groups of steps

that can

– better memorability – information organized in a clear and logical hierarchy is

easier to remember than when in a sequence [MM97]

To our benefit, the structure of steps will come naturally from the structure of the

code. Following good coding practices, the implementation of an algorithm shall be

separated into procedures that perform well-defined tasks and may rely on other pro-

cedures to carry out any subtasks. The framework can, in a sense, trace the calls to

those procedures to gain the information needed to create the step hierarchy.

• Delayed step execution
As a downside of JavaScript’s event loop and its run-to-completion model [MDNcEL],

long execution times of event loop messages (synchronously executed code blocks)

cause browser freeze-ups and other unpleasant effects. Where necessary, this is treated

by cutting the down large messages to several smaller ones. As the execution time

of a visualized algorithm can easily become noticeable with large inputs, the algo-

rithm framework should only carry out a finite amount of procedures in one message.

This should be achieved by executing a procedure’s subtasks asynchronously - instead

of actually calling a subprocedure, it is merely scheduled to be carried out after the

procedure’s own code.

• Flexibility
The hierarchical structure of steps will not only be shaped differently for different

algorithms, but even for executions of the same algorithm on different inputs. For

instance a parser algorithm’s step may use diverse subtasks depending on the action

defined in its parse table. The framework should enable the algorithm to quickly and

easily adjust its program flow depending on the information it gains. It should allow

some typical programming constructs, like conditionals and loops, to be emulated at

the level of steps.

3.2 Framework interface

Implementing a new visualized algorithm is made fairly simple by the framework. A new

JavaScript function with an empty body should be declared (we will refer to this function

as the algorithm object). Then the function setupAlgorithmImplementation is called, passing

the algorithm object and another object used as a dictionary to set some configuration values

(see Listing 3.1 for an example). The mandatory values are:

CHAPTER 3. ALGORITHM VISUALIZATION FRAMEWORK 17

• id – string with the identifier of the algorithm; by convention should be the same as

the function’s name

• name – string with a short name of the algorithm used in the menu

• type – determines where the algorithm should be displayed in the menu; either "

FormConversion" (also declares that the algorithm implements grammar form checking,

see below) or "ParsingAlgorithm"

After the algorithm object is set up, task procedures should be defined as methods of this

function object (set to the object as its direct properties). Each time such a method is exe-

cuted, a new step is generated in the visualized algorithm execution hierarchy. The method

accepts one parameter – a controller object, which is also accessible via the this keyword.

The whole body of this method will be executed in a single step. All interaction with the

framework is done using the controller object, which provides the following methods:

• myNameIs – This method accepts a string which will be used as the description of the

current step displayed to the user. Since the description can be composed and set any-

time during the step, it is possible to provide very specific information about what is

being done and why. It is strongly recommended that the description string is com-

posed using the _ (underscore) method, which provides very basic templating function-

ality. Occurrences of %s in the format string passed as the first parameter are replaced

by strings passed as other arguments, in their respective order.

• grammar (alias g) – Returns a reference to the step’s grammar, which is actually an

instance of the ConversionGrammar class. This is a Grammar subclass, extending it with

methods that allow highlighted modifications of the underlying formal structure.

• structures (alias s) – Returns an instance of the Structures class. This serves as

a collection of any structures that the algorithm uses, allowing new structures to be

declared, existing structures to be retrieved or removed.

• data (alias d) – Returns the reference to an object that is shared across the whole algo-

rithm’s execution. It can be used for storing any auxiliary variables used by multiple

steps. The contents of this objects are not visualized, thus it should only be used for

storing parts of the execution’s state that are obvious to the user.

• task – This method accepts a reference to another task method, which is scheduled for

execution as a subtask. The subtask will have its own step in the visualization and will

be located under the step of the invoking task in the hierarchy. The code of a scheduled

subtask is not executed immediately – all code of the invoking task is executed before

CHAPTER 3. ALGORITHM VISUALIZATION FRAMEWORK 18

anything else. Then the code of the first scheduled subtask is executed, also executing

any subtasks of its own. Then the second directly scheduled subtask is executed, and

so on.

• willRepeat Calling this method in the body of a task method will make sure the same

task is executed again right after all the scheduled subtasks. The current task will

thereby become another subtask of its parent task, executed before its further subtasks.

• hook – Similarly to task, this method accepts a reference to a JavaScript function.

However, this method allows scheduling only a single function, which will be executed

immediately after the rest of the task method’s body; and it will not create another step.

Setting such a "hook" can be especially useful because the changes done by its code

will not be visualized in the current step, but will have already taken effect in the next

one.

The execution of an algorithm begins at the task method main of the algorithm object.

Since it constitutes the root of the hierarchy, the willRepeat controller method cannot be

used there. The task controller method is not limited to task methods of the same algorithm

object, this way other algorithms or their parts can be reused (which is done extensively in the

project). The visualization does not actually allow navigating to the step represented by main,

but an artificial step is created as its subtask to allow viewing the initial state. Furthermore,

by convention there should be a step added as the last subtask of main that does not change

the state and its description says that the algorithm has finished.

If the algorithm object was defined using "FormConversion" as the type, it should also

have the method check defined. This method receives a grammar as its only argument and

should return a boolean value indicating whether the grammar is already in the normal form

the algorithm converts to.

Although this controller interface is quite simple, it proved to be comfortable to use and

sufficient to implement all of the algorithms visualized in this project. Even so, as the mech-

anisms behind the interface are very powerful, other interface methods providing even more

flexibility can be easily added in the future.

3.2.1 Algorithm implementation example

In the following example we will implement a trivial algorithm for converting a grammar

to a normal form without loops. A loop is a production rule of the form A → A, where A

is a nonterminal. Clearly, such productions have no effect on the language generated by a

grammar and can be removed.

CHAPTER 3. ALGORITHM VISUALIZATION FRAMEWORK 19

The implemented algorithm will remove one loop per step and will also visualize an incre-

mentally constructed set of nonterminals, for which a loop existed in the original grammar.

In the actual implementation, the list of all loops is collected in the method main, so that the

grammar productions do not have to be iterated over in each step.

Listing 3.1: example of implementing conversion algorithm for removing loops

1 function NoLoopsForm() { }

2

3 setupAlgorithmImplementation(

4 NoLoopsForm ,

5 {

6 id: "NoLoopsForm",

7 name: _("no loops"),

8 type: "FormConversion"

9 }

10);

11

12

13 NoLoopsForm.main = function (c) {

14 // set the description

15 c.myNameIs(_("remove loops"));

16

17 // declare a new SymbolSet structure

18 // stores symbols that had loops, but they were already removed

19 c.structures().newSymbolSet(’hadLoops’, _("Had loops"));

20

21 // create a queue with the loops to be removed (not visualized)

22 var queue = c.data().loopQueue = [];

23

24 // inspect all the productions to find loops (callback iterator)

25 c.grammar().forEachRule(function (rule, leftNonterm , rightWord) {

26 if (

27 rightWord.match("N") // the rule is in the form A -> B

28 && leftNonterm.equals(rightWord.get(0)) // A = B

29)

30 // add the rule to queue

31 queue.push(rule);

32 });

33

34 // if the queue isn’t empty, we remove the loops in substeps

35 // we only schedule the first substep, which will be repeated

36 if (queue.length > 0)

37 c.task(NoLoopsForm.removeSingle);

38

CHAPTER 3. ALGORITHM VISUALIZATION FRAMEWORK 20

39 // we also schedule a clean up task

40 c.task(NoLoopsForm.done);

41 }

42

43 NoLoopsForm.removeSingle = function (c) {

44 // retrieve the symbol set structure and the loop queue

45 var hadLoops = c.structures().getSymbolSet(’hadLoops’),

46 queue = c.data().loopQueue;

47

48 // destructively retrieve a loop production

49 var loop = queue.shift();

50

51 // generate the description

52 c.myNameIs(_("remove the production %s -> %s",

53 loop.getLeft(), loop.getLeft()));

54

55 // add the nonterminal to the set

56 hadLoops.add(loop.getLeft());

57

58 // remove the production from the grammar

59 c.grammar().taskRemoveRule(loop);

60

61 // repeat this step until the queue is empty

62 if (queue.length > 0)

63 c.willRepeat();

64 }

65

66 NoLoopsForm.done = function (c) {

67 c.myNameIs(_("done"));

68 }

69

70

71 NoLoopsForm.check = function (grammar) {

72 var ret = true;

73 // search the grammar for loops, if found, check is negative

74 grammar.forEachRule(function (rule, leftNonterm , rightWord) {

75 if (

76 rightWord.match("N") // the rule is in the form A -> B

77 && leftNonterm.equals(rightWord.get(0)) // A = B

78)

79 return ret = false;

80 })

81 return ret;

82 }

CHAPTER 3. ALGORITHM VISUALIZATION FRAMEWORK 21

3.3 Framework mechanics

3.3.1 Algorithm controller tree

In order to achieve the goals set for the framework, we have designed a data structure

that controls the execution of an algorithm, stores the state of each step and later allows to

browse these states to visualize them. The structure is in its essence a rooted tree and we

will be referring to it as the algorithm controller tree. Each node of this tree is equivalent

to a single step of the algorithm’s execution; any subtree is equivalent to a step and all its

substeps. The following is the functionality provided by any algorithm controller tree node,

represented by the class ACTNode. It should be noted that this structure is not actually exposed

by the framework.

• Navigation
A node holds up to five references to surrounding nodes in the tree to allow quick

navigation according to the needs of the framework:

– to the node’s parent

– to the node’s first and last child

– to the node’s previous and next sibling

These five references were sufficient for an efficient implementation of bidirectional

prefix order traversal of the algorithm controller tree.

• Procedure code
The only argument passed to a newly created ACTNode is a reference to some JavaScript

function, which the framework will later execute in order for the step to be carried out.

• State
A node also holds the state of a step, consisting of references to ConversionGrammar and

Structures class instances (see above). Note that the auxiliary data object exposed by

the framework is not stored per node, as it is not visualized. A node’s state must be

initialized before the attached code is executed; afterwards the new state (modified in

the execution) can be retrieved.

• Name & numbering
When browsing the execution tree of an algorithm, a node’s name will be displayed

to the user as the step’s description. Each node is also assigned a numbering string

(composed as the numbering of the parent node and the child’s index).

CHAPTER 3. ALGORITHM VISUALIZATION FRAMEWORK 22

Figure 3.1: Class ACTNode node adoption example; A.adopt(B)

• Adding nodes
New nodes can be added to the tree by calling one of the following two methods on

any existing node.

– adopt – A.adopt(B) will add the node B as the last child of the node A

– duplicate – A.duplicate() will create a duplicate B of the node A and add it as the

last child of A’s parent node (the root node cannot be duplicated)

These methods will modify all the references to surrounding nodes used for navigation

accordingly.

3.3.2 Algorithm controller

The Algorithm controller tree is used by the AlgorithmController abstract base class,

arguably the core of the algorithm framework. Implementations of actual algorithms are

created by extending this class (which is done by the setupAlgorithmImplementation helper

function), the controller object passed to task method is an instance of the derived algo-

rithm class. There are three phases of this instance’s life cycle: initialization, execution and

browsing.

When the instance (controller object) is initialized, the root node for a new Algorithm

Controller Tree is created, using the algorithm’s task method main as the initial procedure. It

also receives its initial state – usually the currently active grammar and an empty collection

of structures. Furthermore, an empty object is created for any auxiliary data used by the

algorithm and stored in the controller.

Soon after the initialization, the controller receives a signal to start executing the algo-

rithm. The root node is set as the active node and the initial call to the recursive procedure

step is made. This procedure firstly executes the code attached to the active ACTNode object

(potentially adding new nodes to the tree) and retrieves the modified state of the algorithm’s

CHAPTER 3. ALGORITHM VISUALIZATION FRAMEWORK 23

execution. It is then attempted to locate the node that follows the active tree node in prefix

traversal order.

If such a node exists, it is set as the new active node. It also receives the finalized state of

the previous node. The procedure step will then recursively call itself to carry out the next

step. Depending on how many nodes were already processed, this recursive call is either

done in the same JavaScript event loop message (using a direct function call), or in a new

message (using JavaScript’s setTimeout). This achieves that only a finite amount of step

executions is carried out within one message and the event loop does not become frozen.

If no next node was found, the algorithm is considered finished. The controller then

collaborates with an instance of the AlgorithmController class, which takes care of all user

interaction while the algorithm is browsed. The controller object is destroyed once the user

executes another algorithm, or makes changes to any of the structures used as the input.

3.4 Algorithm browsing user interface

After the execution is finished, the user can browse the algorithm’s steps using two meth-

ods of navigation. The first method provides six buttons that navigate to one of the following:

• next step (I)

• previous step (J)

• next step, skipping substeps of the current step (II)

• previous step, skipping substeps of the current step (JJ)

• first step, initial state of the algorithm (I|)

• last step, algorithm result (|J)

The second method provides a selectable list of all steps, which is created by traversing the

step hierarchy in prefix order.

While a step is displayed, the user can see all the visualized structures that the step’s state

consists of. The description and numbering of the current step and all the steps upwards in

the hierarchy is visible as well.

If the user wishes to use the result of an algorithm for further computation in the applica-

tion (a modified grammar or a generated parse table), they can either store the final state or

store the state of any step of their choosing.

Chapter 4

Implemented algorithms

4.1 Grammar normal forms

Each grammar normal form defined in this section has an algorithm implemented in the

project, which converts the input grammar to another equivalent grammar meeting its criteria.

Aside from implementing and visualizing these algorithms, the project also automatically

reports which of these forms does the currently displayed grammar already comply with.

As not all of these normal forms are known under the names used in the project, we

provide their definitions. We also provide very brief explanations of how do the conversion

algorithms operate.

4.1.1 Reduced form

We will say a context-free grammar is in the reduced normal form (or has no useless

symbols, [HMU01, section 7.1.1]) if and only if all of the following is met:

• There is no production of the form A→ A, where A is a nonterminal (a loop).

• All nonterminals are generating. A nonterminal is generating if and only if there is any

terminal word derived from the nonterminal.

• All nonterminals are reachable. A nonterminal is reachable if and only if it is contained

in any sentence form derived from the start nonterminal.

After removing loops from the grammar, the conversion algorithm iteratively constructs the

set of generating nonterminals and removes the rest, then the same is done for the set of

reachable nonterminals.

24

CHAPTER 4. IMPLEMENTED ALGORITHMS 25

4.1.2 Epsilon-free form

We will say a context-free grammar is in the epsilon-free normal form (or has no ε-

productions, [HMU01, section 7.1.3]) if and only if all of the following is met:

• There is no production of the form A → ε, where A is a nonterminal other than the

start nonterminal.

• If the production S → ε is present, the start nonterminal S is not found in any produc-

tion right side.

The algorithm first creates a set of nullable nonterminals (those that generate the empty

word) and then adds subsequences of existing productions with those nonterminals skipped.

ε-productions are removed, possibly except for S → ε (in such case a new start nonterminal

might be necessary to enforce the second criterion). Thus, if a grammar used to generate the

empty word, the converted grammar can still do so, however the presence of ε-productions

is reduced to a single and well-maintainable case.

4.1.3 Chain-rule-free form

We will say a context-free grammar is in the chain-rule-free normal form (or has no unit

productions, [HMU01, section 7.1.4]) if and only if there is no production of the form A→ B,

where A, B are nonterminals. It also holds that if A→ α is a production that was added during

the conversion, there must have been a rule with α as its right side in the original grammar.

For each nonterminal the algorithm finds the set of nonterminals reachable by chain rules,

then it adds the chain-reachable productions to make chain rules useless.

4.1.4 Weak Chomsky form

We will say a context-free grammar is in the weak Chomsky normal form [RF13, sec-

tion 3.3] if and only if each of its productions is in one of the following forms:

• A→ B C, where A, B,C are nonterminals

• A→ t, where A is a nonterminal and t a terminal

• A→ ε, where A is a nonterminal

Nonterminals for each terminal are created where necessary to make sure other produc-

tions use nonterminals only. Unit productions are prolonged using a nullable nonterminal.

Long productions are iteratively decomposed until the grammar meets the form. This weak

version cannot be used for CYK parsing.

CHAPTER 4. IMPLEMENTED ALGORITHMS 26

4.1.5 Strict Chomsky form

We will say a context-free grammar is in the strict Chomsky normal form [HMU01, sec-

tion 7.1.6] if and only if each of its productions is in one of the following forms:

• A→ B C, where A, B,C are nonterminals

• A→ t, where A is a nonterminal and t a terminal

• S → ε, where S is the start nonterminal

Furthermore, if the production S → ε is present in the grammar, the start nonterminal S

cannot be present in any production right side.

Nonterminals for each terminals are created where necessary to make sure other produc-

tions use nonterminals only. Then the epsilon-free and chain-rule-free normal form conver-

sions are applied. Long productions are iteratively decomposed until the grammar meets the

form. Grammars in this form again preserve generation of the empty word and can be used

in CYK parsing.

4.1.6 Left recursion removal

We will say a context-free grammar has no left recursion [ALSU06, section 4.3.3] if and

only if there is no nonterminal A such that A⇒+ A α, where α is any word over the grammar

symbols. In words, a nonterminal cannot be used to derive a sentence form beginning with

the same nonterminal.

The conversion algorithm applies the epsilon-free and chain-rule-free forms, afterwards

the grammar nonterminals are enumerated. An iterative algorithm is used to enforce that if

Nk → Ni α is a production, then i > k. The algorithm then attempts to restore the original

nonterminal names.

4.1.7 Greibach form

We will say a context-free grammar is in the Greibach normal form [RF13, section 3.6] if

and only if each of its productions is in one of the following forms:

• A→ tA1A2...Ak, where t is a terminal and A1, A2, ..., Ak for k ≥ 0 are nonterminals

• S → ε, where S is the start nonterminal

Furthermore, if the production S → ε is present in the grammar, the start nonterminal S

cannot be present in any production right side.

The algorithm performs the above mentioned left recursion removal, in addition, all non-

terminals at the beginning of a production are iteratively expanded.

CHAPTER 4. IMPLEMENTED ALGORITHMS 27

4.1.8 Left factorization

We will say a context-free grammar is left factored [ALSU06, section 4.3.4] if and only

if for each nonterminal A it holds that there are no two productions A → ψ α and B → ψ β,

where ψ is a non-empty word and α, β are any words over the grammar’s symbols. In words,

two productions with the same left side nonterminal cannot have a non-empty common prefix

in their right sides.

For each nonterminal, the algorithm iteratively searches for common production prefixes

of increasing lengths. Productions with a common non-empty prefix are factorized using a

new nonterminal.

4.2 Parsing

The following algorithms do not modify the grammar they receive as an input (or there is

only an insignificant temporary modification) and produce a certain formal structure as their

output. With the exception of CYK, all algorithms are visualized, including the structures

they output.

As these algorithms are well known by their name used in the project, it is outside the

scope of this thesis to define all the output structures they generate or provide in-depth ex-

planations of their operation. This section states where in an algorithm’s implementation do

certain actions happen, however.

4.2.1 CYK

If a grammar is in the strict Chomsky normal form, the CYK algorithm (Cocke, Younger,

Kassami) [HMU01, section 7.4.4] can be used to parse any input word. If a word was

parsed successfully, the algorithm also allows to display a randomly chosen parse tree and

its corresponding left-most and right-most derivations (note that multiple parse trees could

have been found if the grammar is ambiguous). The algorithm’s execution is not visualized,

but it is planned to be in the future.

4.2.2 First & Follow sets

This algorithm computes the FIRS T and FOLLOW sets [ALSU06, section 4.4.2] for each

nonterminal of the input grammar. All these sets are visualized in a single table.

FIRS T (A) contains all terminals that can occur as the first symbol of a word generated

by the nonterminal A. Furthermore, if A generates the empty word, we display ε in the set as

well.

CHAPTER 4. IMPLEMENTED ALGORITHMS 28

FOLLOW(A) contains all terminals that can occur after the nonterminal A in a sentence

form generated by the grammar. Furthermore, if the grammar generates a sentence form

where A is the last symbol, we display an end marker ($) in the set as well.

The algorithm constructs these sets by repeatedly processing all the grammar’s produc-

tions and adding terminals to the appropriate sets until no more can be added. The visualiza-

tion skips processing of productions that have no effect.

4.2.3 SLR parse table creation

This algorithm generates the SLR(1) parse table for the input grammar, a single table

structure composed of its ACT ION and GOTO table. The LR(0) automaton is created in the

process as well and is visualized as a graph. The SLR (simple-LR) method for constructing

parse tables for an LR(1) parser is described in [ALSU06, section 4.6.4]; the surrounding

sections of the book also explain the important concepts, like LR items and automatons.

The algorithm starts by computing the FIRS T and FOLLOW sets for the input grammar.

Then a new start nonterminal is created for the grammar (this modification is just temporary)

to more easily describe the initial LR automaton state – if S is the original start nonterminal

and S 0 is the new one, the initial state contains only the item [S 0 → • S]. States of the

automaton are then processed iteratively. Firstly, the CLOS URE operation is computed

from all core items of a state. Then for each final item [A → α •] in the state an action

is added to the parse table, ACCEPT if it is the item [S 0 → S •], REDUCE otherwise.

As there is no item lookahead, these actions are added for every symbol in FOLLOW(A).

Finally, transitions from this state are attempted for every symbol in the grammar and all

new non-empty states are created. Each such a transition also adds a new record to the

parse table, action SHIFT for a terminal, GOTO for a nonterminal. When all new states

have already been processed, the algorithm stops, leaving a complete parse table and LR

automaton. Conflicts (table cells with multiple actions defined) are highlighted.

4.2.4 CLR parse table creation

This algorithm generates the CLR(1) parse table for the input grammar, as described in

[ALSU06, section 4.7.3]. The CLR (canonical-LR) method can avoid some conflicts by using

LR(1) items and the states of an LR(1) automaton, allowing better use of the lookahead

symbol while parsing.

The work of this algorithm is very similar to the generation of SLR tables. The initial

LR(1) item is [S 0 → • S , $], where $ is the end marker lookahead symbol. The CLOS URE

operation takes the symbol FIRS T sets into account when creating new items. Actions

REDUCE/ACCEPT rely on the lookahead of final items instead of the FOLLOW sets.

CHAPTER 4. IMPLEMENTED ALGORITHMS 29

4.2.5 LALR parse table creation

This algorithm generates the LALR(1) parse table for the input grammar, as described in

[ALSU06, section 4.7.4]. The LALR (lookahead-LR) method makes use of LR(1) items just

as CLR, but merges the states of the LR(1) automaton with the same core items, disregarding

of their lookahead.

The project implements the space-inefficient algorithm that explicitly creates and then

merges the states of an LR(1) automaton. The first part of the algorithm works exactly like

the CLR parse table creation, then the algorithm merges the appropriate states iteratively –

in each step a group of states is merged into a single one, adjusting the visualized parse table

and LR automaton.

4.2.6 LR parser simulation

Once an LR parse table has been computed and stored, this algorithm can be used to simulate

an LR parser [ALSU06, section 4.6.3] on any input word. The same algorithm is used for

tables created by SLR, CLR and LALR methods. The simulation will be attempted even if

the input parse table has conflicts.

Five structures are used in the process:

• parse table – consisting of the ACT ION and GOTO table

• parser input – before the algorithm begins execution, the user is asked to enter an

input word

• parser state stack – the main stack for storing parser states added by SHIFT actions

and retrieved from the GOTO table on REDUCE actions

• parser symbol stack – a supplementary stack for storing symbols (input terminals

on SHIFT actions and production left side nonterminals on REDUCE actions); this

structure is not actually necessary for the algorithm, but may aid understanding it

• parser output – if the parsing has finished successfully, it visualizes the generated

parse tree

The simulation begins with the initial state in the main stack. Each move of the parser is

represented by a step, which retrieves an action from the ACT ION table based on the top of

the state stack and the input lookahead, and a few substeps dependent on the action retrieved.

If multiple or no actions are found in a move, the algorithm fails.

CHAPTER 4. IMPLEMENTED ALGORITHMS 30

4.2.7 LL parse table creation

This algorithm generates the LL(1) parsing table for the input grammar, as described in

[ALSU06, section 4.4.3].

As in the case of LR parse table generation, the algorithm starts by computing the FIRS T

and FOLLOW sets for the input grammar. Then, each grammar production A → α is pro-

cessed in up to three steps. The first step calculates FIRS T (α), the other two steps may add

the production in certain columns of the A row of the parse table. In the second step, these

columns are any terminals in FIRS T (α). If ε ∈ FIRS T (α), then in the third step, these

columns are also any terminals or the end marker $ in FOLLOW(α).

4.2.8 LL parser simulation

Once an LL parse table has been computed and stored, this algorithm can be used to simulate

an LL parser [ALSU06, section 4.4.4] on any input word. The simulation will be attempted

even if the input parse table has conflicts.

The structures used by the algorithm are similar to the LR parser, but there is only a

single parser symbol stack, for storing symbols of the used productions. The simulation

begins with the start nonterminal in the stack. Each move of the parser is represented by a

step trying to determine the next action based on the top symbol on the stack and the current

lookahead. If multiple or no actions are found in a move, if the lookahead doesn’t match a

terminal on the top of the stack, or if the stack underflows without consuming all the input,

the algorithm fails.

Chapter 5

Project usage example

This chapter contains an example of using this application with screenshots. The chosen

example usage should well demonstrate the most important features of the application and

provide a beginner user a good idea on how to work with it.

The task we will be trying to achieve is to parse the word "i f cond then i f cond then st else st"

using LL parsing on a grammar demonstrating the dangling else problem [ALSU06, sec-

tion 4.8.2].

We begin with opening the menu by clicking at the top bar and using the brief text input

method (grammar (text) in the menu, then the tab brief) to enter a very simple grammar

for the problem.

Figure 5.1: Entering a grammar using the brief text input method

This same grammar is also available as one of the built-in examples, located underneath

the text input. The menu immediately shows us that the grammar is not left factored, which

is one of the conditions necessary in order for a grammar to be LL. We therefore modify

31

CHAPTER 5. PROJECT USAGE EXAMPLE 32

our grammar using the left factorization algorithm (left factored under normal forms is the

menu).

Figure 5.2: In the middle of visualizing the left factorization algorithm; notice the high-

lighted changes done in the current step

The algorithm visualization can be navigated using the six buttons at the top of the right

panel, or using the list of steps at its bottom. We now save this modified grammar (Save final
result and return to input); it will automatically be open in the rich input method. Since

we are already there, we might want to change the name of the nonterminal S 4−1 created by

the conversion algorithm. We can do that by clicking on the name in the nonterminal list,

entering a new name of our choosing and then releasing the focus on the text field by clicking

elsewhere.

Figure 5.3: Using the rich input method to rename a nonterminal

We choose the name E, which will immediately replace the old name in all the grammar’s

productions. Now we go ahead and generate the LL parse table.

CHAPTER 5. PROJECT USAGE EXAMPLE 33

Figure 5.4: Finished visualization of the LL parse table generation algorithm; notice the

highlighted conflict

We can see that the LL parse table has conflicts and thus even our modified grammar is

not LL. This is unsurprising, as it is ambiguous. Let us choose to save the result, which gets

us to the parse table editor. In some cases, disabling a parse table action can fix the conflict

without changing the accepted language. In our case, this can be achieved by disabling the

E → ε production in the cell with the conflict. This way the parser should associate any else

with the most recent i f that doesn’t have such association already (this way the problem is

resolved in many programming languages).

We will therefore click on this production in the parse table editor to disable it. Now, let

us test this parse table by simulating the LL parser. The algorithm first prompts us to enter

an input word; we do so and click Parse. The last step of the visualization shows us that the

word was parser successfully. We can also the a visualization of the input word’s parse tree.

Figure 5.5: Finished visualization of a successful LL parser simulation; notice the parse tree

Chapter 6

Future plans

We would like to continue developing this application in the future, mainly to address any

needs that may arise when the application is used as an aid in education. The following are

some of the feature additions that are already planned.

• Visualization of CYK
At the time of writing this thesis, the CYK algorithm is not implemented using the vi-

sualization framework created in this project. Due to this reason, step-by-step brows-

ing of the algorithm’s execution is not supported.

• Computation of the FIRS T set for any input word
At the present time, the algorithm for computing FIRS T sets only does so for grammar

nonterminals. In the future, this algorithm will allow the user to choose any input word

to compute the FIRS T set for.

• Translation support
The application was created with translation support in mind and with some more

work, it will be possible to extend the application with languages other than English.

• Better visualization of large structures
The application currently suffers on usability if the visualized structures (mainly parse

tables and LR automata) are very large. In the future, we would like to address this by

adding more controls to change their behavior.

34

Conclusion

The goal of this thesis was to create a tool to aid study in the field of syntax analysis or

parsing. This should have been achieved by the means of a step-by-step visualization of

several algorithms for context-free grammar transformation, parse table creation and parser

simulation. The tool, a web application, should enable the user to freely choose the input

for these algorithms, easily navigate in a hierarchical structure of the execution’s steps and

clearly visualize the structures used by the algorithm, distinguishing what was done in each

step.

In order to achieve this goal we have firstly analyzed some of the existing tools in this

area and the needs for a useful algorithm visualization. We have then created a library for

representing various formal structures that are simple to use within the implementation of

an algorithm and great effort was put into visualizing these structures clearly, mainly in the

case of automata graphs. A number of input methods was created as well. We also designed

a somewhat more general-purpose framework that allows to freely browse the execution of

an algorithm and yet doesn’t obscure the algorithm’s implementation. Finally, altogether 15

algorithms were implemented using this framework, with brief descriptions for each step. In

case of grammar normal forms, the tool also implements routines to check for a grammar’s

compliance.

The thesis explained the concepts behind the framework and discussed the interfaces

provided by most classes, giving others the possibility to contribute to the project with even

more algorithms in the future. A good example of use was provided for beginner users.

We believe this tool is an exceptional alternative to existing tools, mainly because it imple-

ments many algorithms, offers a high rate of flexibility in their visualization, has an appealing

user interface and it is easily available to its potential users due to being a client-side web

application in English. We therefore believe it will be a very useful teaching aid for courses

about compilers, syntax analysis or formal languages in general and may have even greater

potential if used for self-study of this important topic.

The application is hosted at: http://micro.dcs.fmph.uniba.sk/cfge/

35

http://micro.dcs.fmph.uniba.sk/cfge/

Bibliography

[ALSU06] Alfred V. Aho et al. Compilers: Principles, Techniques, & Tools, Second

Edition. Addison-Wesley, 2006.

[DaiGram] Michael Daines. Grammophone. 2013. url: http://mdaines.github.

io/grammophone/.

[HMU01] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to

Automata Theory, Languages, and Computation. Addison-Wesley, 2001.

[MDNcEL] Mozilla Developer Network and individual contributors. JavaScript Guide:

Concurrency model and Event Loop. 2013. url: https://developer.

mozilla.org/en-US/docs/Web/JavaScript/Guide/EventLoop.

[MDNcOOP] Mozilla Developer Network and individual contributors. JavaScript Guide:

Introduction to Object-Oriented JavaScript. 2014. url: https://developer.

mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_

Object-Oriented_JavaScript.

[MM97] David Modjeska and Anna Marsh. Structure and Memorability of Web Sites.

1997. url: https://www.ischool.utexas.edu/~i385e/readings/

Modjeska.pdf.

[RF13] Branislav Rovan and Michal Forišek. Formálne Jazyky a Automaty. 2013.

url: http://foja.dcs.fmph.uniba.sk/materialy/skripta.pdf.

[RodJFLAP] Susan H. Rodger. JFLAP. 2009. url: http://jflap.org/.

[UCCFGC] University of Calgary Department of Computer Science. The Context Free

Grammar Checker. url: http://smlweb.cpsc.ucalgary.ca/.

36

http://mdaines.github.io/grammophone/
http://mdaines.github.io/grammophone/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/EventLoop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/EventLoop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://www.ischool.utexas.edu/~i385e/readings/Modjeska.pdf
https://www.ischool.utexas.edu/~i385e/readings/Modjeska.pdf
http://foja.dcs.fmph.uniba.sk/materialy/skripta.pdf
http://jflap.org/
http://smlweb.cpsc.ucalgary.ca/

Appendix A

The application’s source code

The thesis includes the source code of the application, attached as a CD in the printed version.

We also recommend the reader to reach for the most recent version at:

https://github.com/petee-d/cfge

37

https://github.com/petee-d/cfge

	Introduction
	Project background
	Motivation
	Goals
	Technology
	Similar projects

	Formal structure library
	Grammar-related structures
	Symbols
	Words, rules & LR items
	Grammars
	Grammar input/output methods

	Algorithm-related structures
	Common structure mechanisms
	Set-like structures
	Table structures
	Parser structures
	LR automaton

	Algorithm visualization framework
	Goals
	Framework interface
	Algorithm implementation example

	Framework mechanics
	Algorithm controller tree
	Algorithm controller

	Algorithm browsing user interface

	Implemented algorithms
	Grammar normal forms
	Reduced form
	Epsilon-free form
	Chain-rule-free form
	Weak Chomsky form
	Strict Chomsky form
	Left recursion removal
	Greibach form
	Left factorization

	Parsing
	CYK
	First & Follow sets
	SLR parse table creation
	CLR parse table creation
	LALR parse table creation
	LR parser simulation
	LL parse table creation
	LL parser simulation

	Project usage example
	Future plans
	Conclusion
	The application's source code

