
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Design and implementation of an RFID
access control system

Bachelor’s Thesis

2016
Kamila Součková

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Design and implementation of an RFID
access control system

Bachelor’s Thesis

Študijný program: Informatics

Študijný odbor: 2508 Informatics

Školiace pracovisko: Department of Computer Science

Školiteľ: RNDr. Richard Ostertág, PhD.

Bratislava, 2016

Kamila Součková

53637720

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Kamila Součková
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Design and implementation of an RFID access control system
Návrh a implementácia RFID prístupového systému

Cieľ: Cieľom práce bude navrhnúť a implementovať server pre prístupový systém
Deadlock. Práca by mala obsahovať:
• návrh servera, ktorý bude udržiavať databázu identifikátorov RFID
prístupových kariet a to najmä návrh:
o architektúry servera,
o dátových štruktúr pre efektívne uloženie a spracovanie prístupových práv,
o komunikačného protokolu so zariadeniami riadiacimi prístup do chránených
priestorov,
o riešenia aktualizácie firmvéru k serveru pripojených zariadení,
o zaznamenávania prístupu do chránených priestorov,
• implementáciu navrhnutého riešenia v jazyku Python 3.

Vedúci: RNDr. Richard Ostertág, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: doc. RNDr. Daniel Olejár, PhD.

Spôsob sprístupnenia elektronickej verzie práce:
bez obmedzenia

Dátum zadania: 28.10.2015

Dátum schválenia: 28.10.2015 doc. RNDr. Daniel Olejár, PhD.
garant študijného programu

študent vedúci práce

iii

Acknowledgements: I would like to thank RNDr. Jaroslav Janáček, PhD.,

RNDr. Richard Ostertág, PhD., and Mgr. Tomáš Vinař, PhD. for their valuable input

on the design and requirements of the system. Without their insightful discussions,

Deadlock would lack the strengths that make it unique, such as reliability and

simplicity.

I would also like to thank Adam Dej, who designed and is at the time of writing

implementing the embedded devices. Deadlock would not exist without him.

Finally, I would like to thank Michal Hanula and RNDr. Richard Královič,

PhD. for listening and asking questions. They helped me to see things from a different

viewpoint, which led to considerable improvements.

iv

Abstract

Project Deadlock is a system that controls access to a number of points of access

(e.g. doors, appliances) using RFID cards. Deadlock is designed for security and reli-

ability, assuming untrusted and unreliable network. It is fully open-source and open-

hardware, and designed to be flexible, maintainable, and cost-effective. It is easy to

integrate with existing systems and customize to the needs of the user.

This thesis first lists the requirements and introduces the high-level design

choices we made in order to fulfill them. It then focuses on the design and implementa-

tion choices of some parts of the system. We start with the design and implementation

of the system’s communication protocol, focusing on the conflicting requirements of

reliability, extensibility and simplicity. Next, we describe the access rules format and

evaluation, especially the compromise of generality vs. user-friendliness. Third, we

provide an overview of the server design and implementation. We conclude with the

future plans for Project Deadlock.

Keywords: access control, networked system design, network protocol design, reli-

able system design

v

Abstrakt

Projekt Deadlock je systém na kontrolu prístupu do miestností alebo k zariadeniam na

základe identifikáce RFID kartou.

Deadlock je navrhnutý s dôrazom na bezpečnosť a spoľahlivosť aj za použitia

nezabezpečenej a nespoľahlivej siete. Je plne open-source a open-hardware a navrhnutý

s cieľom pružnosti, udržiavateľnosti a cenovej efektivity. Je možné ľahko ho integrovať

s existujúcimi systémami a prispôsobovať požiadavkám používateľa.

Táto bakalárska práca vychádza z požiadaviek na systém a vysvetľuje základné

rozhodnutia pri jeho návrhu. Ďalej sa zameriava na rozhodnutia pri návrhu a implemen-

tácii niektorých častí systému. Začíname návrhom a implementáciou použitého komu-

nikačného protokolu, dbajúc na to, aby súčasne vyhovoval požiadavkám spoľahlivosti,

rozšíriteľnosti a jednoduchosti. Ďalej popisujeme štruktúru a spôsob vyhodnocova-

nia prístupových pravidiel, pristavujúc sa najmä pri kompromise medzi všeobecnosťou,

jednoduchosťou a prívetivosťou pre používateľa. Pokračujeme prehľadom návrhu a

implementácie servera. Na záver popisujeme ďalšie plány projektu Deadlock.

Kľúčové slová: kontrola prístupu, návrh distribuovaného systému, návrh sieťového

protokolu, návrh spoľahlivého systému

Table of Contents

Introduction 1

1 Requirements 2

1.1 Trustworthiness . 2

1.2 Practicality . 3

1.3 Further considerations . 4

2 System overview 5

2.1 Existing systems: overview and comparison 5

2.2 Key design principles . 5

2.3 Main components . 6

2.4 Access rules . 8

2.5 Technical challenges . 8

3 Server/controller communication protocol 10

3.1 Design requirements . 10

3.2 Protocol design . 11

3.3 Network stack . 13

3.4 Message types, controller behavior . 14

3.5 Packet format . 18

3.6 Security . 21

4 Access rules 23

4.1 Generality vs. convenience . 23

4.2 Internal rules format . 24

vi

TABLE OF CONTENTS vii

4.3 Quick access querying: “in expression” relation 26

4.4 Local evaluation on embedded devices 27

4.5 Integration with existing systems . 27

5 Server Design 28

5.1 Data organization . 28

5.2 Main components . 29

6 Server Implementation 32

6.1 Chosen programming language . 32

6.2 Targeted environment, dependencies 33

6.3 Database structure . 33

6.4 Some noteworthy implementation details 35

7 Future plans 37

7.1 Real-world deployment . 37

7.2 Testing . 37

7.3 System status monitoring . 37

7.4 High-level rules and UI optimized for usage at universities 38

7.5 Tools and libraries . 38

7.6 A server implementation in Haskell . 38

Conclusion 39

Glossary 41

Appendix: Source code and documentation 42

References 43

Introduction

Project Deadlock is a system that controls access to a number of points of access

(e.g. doors, appliances) using RFID cards. Deadlock is designed for security and reliabil-

ity, assuming untrusted and unreliable network. Unlike existing commercial solutions,

Deadlock is fully open-source and open-hardware, and designed to be flexible, main-

tainable, scalable, and cost-effective. We provide tools and expose all interfaces and

components, making Deadlock easy to integrate with existing systems and customize

to the needs of the user.

Deadlock is a project of the Student Development Team1 at the Faculty of

Mathematics, Physics and Informatics of Comenius University. It is implemented by

students and supervised by faculty members.

This thesis first lists the requirements (chapter 1) and introduces the high-level

design choices we made to fulfill them (chapter 2). These were developed jointly by the

Student Development Team. We then focus on the author’s contribution in the rest of

the thesis. Chapter 3 describes the design and implementation of the server/controller

communication protocol, focusing on the conflicting requirements of reliability, exten-

sibility and simplicity. Chapter 4 describes the access rules format and evaluation,

especially the compromise of generality vs. user-friendliness. Chapters 5 and 6 provide

an overview of the server design and implementation. We conclude with the future

plans for Project Deadlock (chapter 7).

1http://svt.fmph.uniba.sk

1

http://svt.fmph.uniba.sk

Chapter 1

Requirements

Project Deadlock aims to create a complete system to allow cards compatible with the

ISO/IEC 14443a standard (commonly known as RFID cards), such as International

Student/Teacher Identification Cards, to be used to unlock doors and access other

electronic equipment (hereafter points of access or PoA).

For this system to be useful at our university, Deadlock must meet the require-

ments outlined below.

1.1 Trustworthiness

As Deadlock may be used to protect valuable resources, such as computer rooms or

labs, it must allow access when and only when it should.1 We must provide the user

with reasons to trust this promise.

1.1.1 Reliability. Points of access should be accessible even when things go wrong;

specifically partial power or network outages must not prevent the system from allowing

access, nor cause loss of access logs. Temporary server failure must cause no problems.

Furthermore, the design and implementation should allow for a simple failover mecha-

nism.

1See section 1.3.1 for the discussion of behavior during power outages.

2

CHAPTER 1. REQUIREMENTS 3

1.1.2 Security. Deadlock must not allow illegitimate access. To protect privacy,

logs or card IDs must not leak. We cannot assume a private communication chan-

nel. Therefore all communication in both directions must be authenticated and kept

confidential.

1.2 Practicality

Deadlock must be an effective solution for our use case. This must hold even if the use

case changes in the future.

1.2.1 Extensibility. In order to be prepared for the future, and to make incremental

development possible, all software and all hardware must be modular, with well-defined

interfaces, and extensible.

Functions not implemented in the first iteration, but expected to be added in

the future, are

• arbitrary communication with the card,2

• controlling arbitrary appliances, not just door locks,

• WiFi module (for cases when power is available but Ethernet is not).

1.2.2 Ease of development. In the future Deadlock will likely be developed and

maintained by students, not full-time developers. Therefore the codebase must be

simple, easy to understand and change, the tools and libraries must be easy to use, and

the overhead of introducing a new developer to the project must be minimal. When

possible, general, well-known solutions should be used instead of solutions developed

in-house.

1.2.3 Ease of use. Setting up access rules should be simple and convenient. This

should not come at the expense of generality. Synchronization with the university’s
2RFID cards are capable of complex actions, such as cryptographic verification of identity, or local

data storage. Currently we only support reading the card’s ID, but the communication stack is ready
for extension.

CHAPTER 1. REQUIREMENTS 4

electronic information system is required, so that card information and groups like “CS

teachers” or “PhD students” can be imported automatically.

The system should notify the operator if human intervention is required, but

simple tasks and predictable issues should be handled automatically.

1.2.4 Ease of deployment and maintenance. Deployment should be simple and

with minimal overhead. On the hardware side, it should be possible to leverage existing

infrastructure in order not to need extra cables for communication or power. On the

software side, importing data from existing sources (such as our university’s Academic

Information System) should be possible. Replacing any failed components should be

quick and should not require substantial training. The system should check its state

and automatically fix whatever can be fixed automatically, e.g. reboot a device if it

gets locked up.

1.2.5 Availability. Hardware should be cheap to manufacture and components

should either be available in the foreseeable future or painlessly replaceable by newer

alternatives.

In order to make Deadlock as available as possible, we release both the hardware

schematics and the software to the public under the MIT license.

1.3 Further considerations

1.3.1 Power outage behavior. In case of a power outage at entrance/exit PoAs,

some doors should stay locked (to avoid the risk of breaching security), and some

doors should open (e.g. emergency exits). Both can be supported by using different

lock hardware and changing configuration.

1.3.2 Emergency open. The hardware locks on entrance/exit PoAs must support

manual opening and locking by authorized personnel. This is useful in emergencies.

Chapter 2

System overview

2.1 Existing systems: overview and comparison

The solution currently employed at the university, as well as most commercially avail-

able alternatives, consist of a number of simple card readers and a centralized decision-

making server and access management interface. They usually require custom wiring;

introduce vendor lock-in because of proprietary communication protocols; and cannot

operate when the server is unavailable. In contrast, Deadlock will rely on standard,

hopefully already existing infrastructure; provide the communication protocol speci-

fication and libraries to aid in extending the system; and make sure it continues to

operate when the server cannot be reached.

Existing commercial solutions are expensive (usually several hundred dollars per

unit) and because of vendor lock-in parts cannot be replaced by alternatives. Deadlock

aims to be almost an order of magnitude cheaper, and fully open.

2.2 Key design principles

2.2.1 Modularity. Separating the functionality into independent modules with well-

defined, simple, minimal interfaces simplifies development, makes the design much

easier to grasp and minimizes the learning curve for a new developer. Things are

better if one knows where to look for certain functionality (and where not to).

5

CHAPTER 2. SYSTEM OVERVIEW 6

2.2.2 Principle of Least Astonishment. “People are part of the system. The

design should match the user’s experience, expectations, and mental models.” [13] If

the design, implementation or behavior of a part of the system is obscure enough to

surprise you, it should be redesigned.

We should prioritize predictability of the parts of the system which are hard to

observe (such as the embedded devices), so that they do not unpleasantly surprise the

user.

2.2.3 State is ugly. State adds complexity to a system: if something has state, it

has code managing it, and the developer must keep track of how the internal state

influences the system. Also, if the system is stateful, it complicates failure recovery,

as the state must be replicated or otherwise re-creatable. Therefore when at all possi-

ble, the components of Deadlock should have little internal state and depend only on

explicit, well-defined, easily replicated data.

2.3 Main components

The system consists of a server and a number of controllers. Each controller serves a

single point of access, holds a copy of the access rules and evaluates them locally. The

server provides controllers with rules updates and collects access logs.

2.3.1 Server. The server holds the authoritative version of the access rules, collects

logs and provides software updates and time synchronization for the other devices. It

monitors system state (and reports it to the management UI).

Except for the contents of the database, it is entirely stateless. This simplifies

the code and makes replication and failover trivial.

2.3.2 Controller. The controller controls its associated point of access (e.g. unlocks

its door). It takes actions (such as opening the door or logging) based on events

observed (such as a card being presented or the door being opened). It periodically

CHAPTER 2. SYSTEM OVERVIEW 7

contacts the server, reporting its status and checking for updates.

The controller is “almost stateless” – logs are sent to the server, and rules and

firmware updates can be retrieved from the server. Therefore a device can be swapped

simply by writing the correct device ID and encryption key to either the device or the

database.

2.3.3 Reader. The user-visible box at PoAs that reads RFID cards and provides

visual and auditory feedback about whether access is granted. Up to two card readers

may be attached to one controller. A library to interface with our readers is provided,

so they can be used independently of our controller.

2.3.4 Hardware. The server is hardware-agnostic – it runs on anything with net-

working and a Python environment. Deployments are expected to use generic server

hardware.

The development team has designed and built custom hardware for the con-

trollers and readers. They focused on making it available and future-proof, extensible,

and cheap. The schematics and other documents are available in the Deadlock source

repository [4].

In order to simplify installation, we have attempted to leverage existing in-

frastructure wherever possible: we use Ethernet for server/controller communication,

adding optional Power over Ethernet, so we don’t require any extra cables. Optionally,

we can add a WiFi module to the controller for cases where electricity is available but

connectivity is not. We even designed our reader boxes and connection cables to be

easy to customize, so that they can be made compatible with existing holes in walls.1

1For example, instead of using an expensive cast for the reader boxes, we make them from several
layers of Plexiglas that can be cut individually. The source files for the cut pattern are available and
easy to modify.

CHAPTER 2. SYSTEM OVERVIEW 8

2.4 Access rules

The decision whether to grant access is a function of user identity, point of access, date,

time, and day of week. The access rules are designed to be simple without sacrificing

generality. For details see chapter 4.

2.5 Technical challenges

2.5.1 Reliability. As required by section 1.1.1, controllers must work during net-

work failures. Continued operation is ensured by storing and evaluating the rules

locally on the controller, and only needing the server for updating the local copy. Loss

of access logs is avoided by saving them locally and until they have been stored to the

server’s hard drive.

Multiple servers may be deployed for higher availability, as long as the back-

ing database is synchronized by generic database replication mechanisms (eventual

consistency is sufficient).

Most of the issues concerning reliability will be thoroughly addressed in chap-

ter 3.

2.5.2 Security. The security of the servers and controllers themselves is out of scope

of this thesis. The security of the communication channel between these is addressed

in section 3.6.

2.5.3 Easy deployment and maintenance. Due to requirements in sections 1.2.4

and 1.2.5, communication is built on standard Ethernet, and we support the Power over

Ethernet standard. Adding and replacing devices must be quick and easy, and therefore

we made sure it was possible to pre-configure devices and then just plug in as needed.

Deadlock must be usable decades from now, therefore it must depend only on

components, libraries and tools which are likely to stay. This requirement needed to

be taken into account when designing the hardware and software.

CHAPTER 2. SYSTEM OVERVIEW 9

2.5.4 Scalability. Deadlock should scale to

Chapter 3

Server/controller communication

protocol

3.1 Design requirements

The server/controller communication protocol must facilitate reliability, security, ex-

tensibility and ease of development and deployment, as defined in sections 1.1.1, 1.1.2,

1.2.1, 1.2.2 and 1.2.4. This led to the following decisions:

3.1.1 Statelessness and idempotence. In order to keep the protocol simple, yet

reliable, communication should be stateless and all messages should be idempotent.

This allows for retrying anything that failed for any reason, at any time.

3.1.2 Simplicity. The protocol should be simple. This includes not only low com-

plexity of the protocol’s states and messages, but also simplicity in message parsing on

any device and in any programming language. Specifically, parsing must be efficient

on embedded devices with low CPU frequency and memory.

3.1.3 Extensibility. The protocol must be easily extensible. Additionally, a mecha-

nism for seamlessly transitioning to a newer version in a live system should be provided.

These must not interfere with the simplicity requirement.

10

CHAPTER 3. SERVER/CONTROLLER COMMUNICATION PROTOCOL 11

3.1.4 Security. We do not want to rely on security mechanisms provided by lower

layers (as they may or may not be adequate, or present). Therefore the application

layer of the protocol must provide sufficient authentication and secrecy.

3.1.5 Built on standard, well-known technologies. Code is a liability. Our

code has our bugs, requires specific knowledge, and is our problem. Therefore the

protocol should reuse existing code and technologies wherever appropriate.

Note that fulfilling these requirements is not at all trivial, as some, especially

extensibility vs. simplicity, or security vs. simplicity, may end up contradicting each

other.

Statelessness and idempotence are not strictly required, as reliability may be

achieved in different ways, too. However, as shown in the following sections, stateless-

ness is a very useful approach, as it allows to keep things simple even in the face of

requirements that would otherwise need significant complexity.

3.2 Protocol design

3.2.1 Alternatives considered. The original suggestion was a connection-oriented

protocol, where either the server or the controller could initiate communication. This

would abstract away details like maximum packet size, handle lost packet retransmis-

sions, and allow for pushing rule or firmware updates from the server side. However,

this approach presents multiple problems, such as

• high server failover cost: in a stateful protocol, connection state would either

have to be synchronized among multiple servers, which is impractical, or all

communication would have to be restarted from the beginning on failure;

• added reliability only at the cost of added complexity: again because of problems

with server state;

CHAPTER 3. SERVER/CONTROLLER COMMUNICATION PROTOCOL 12

• more complexity on the server: the server would need to keep track of active

controllers, and who has said and heard what;

• extra CPU cycles, flash and memory usage on embedded devices: while an ef-

ficient implementation of these abstractions might be unnecessary or could be

written, nonexistent code is easier to write, more efficient, and has fewer bugs.

3.2.2 Chosen design: overview, rationale. The chosen communication protocol

is connectionless and stateless, and all information exchange is of the form “controller

request → server response”. All requests (including retries) can be served independently

of any other past, present or future requests from this or another controller.

This implies that there is in fact no strict requirement to serve all requests, or any

particular subset of requests, by a single server. Multiple server instances can be used

as long as the data they need can be synchronized (and even for this synchronization,

eventual consistency is sufficient). Therefore, the system may be configured to use

several servers, and controllers are expected to send requests, including retries, in a

more or less round-robin fashion.1

The round-robin scheduling is particularly useful for retries: if there is a problem

with a specific server or a specific part of the network, the controller will simply re-

send the request to a different server until a good response is received. Therefore the

probability that no server can be reached can be significantly reduced by deploying

multiple servers in different parts of the network.

As will be shown in section 3.4, under normal circumstances the server/controller

communication is not latency-sensitive, so the round-robin retries approach does not

pose a latency problem. Therefore the controllers use round-robin with generous

timeouts and exponential back-off to avoid network congestion.

A “bad” response (such as one that cannot be parsed, or an error) is treated

the same as if no response were received (except for possibly different timeouts, logging

and such), i.e. a retry is sent to the next server. This allows for uniformly handling all
1“More or less” means that the controller is allowed to cache “server dead” information in order

to skip dysfunctional servers.

CHAPTER 3. SERVER/CONTROLLER COMMUNICATION PROTOCOL 13

kinds of transient and permanent problems with the server, network or other resources.

3.2.3 Live system upgrades. A welcome consequence of the message independence

and round-robin retries for all errors is that even if a server cannot parse a controller’s

request, or a controller cannot parse a server’s response, the controller will simply retry

with a different server. Therefore in order to transition to an incompatible protocol

version, all that is needed is deploying servers with both the “old” and the “new”

protocol, and the controllers will simply retry until they find a compatible server.

Together with the fact that the server can automatically deliver firmware updates,

and that controllers report their firmware version to the server, this makes any and all

online system upgrades trivial and fully automatic.

3.3 Network stack

The standard network stack is used: Ethernet (IEEE 802.3) as the physical and data

link layers, IP as the network layer and UDP as the transport layer. For IP, both

IPv4 and IPv6 are supported, and standard ARP or NDP, respectively, is supported

for network to link address resolution. IP addresses may be configured statically or

obtained via DHCP.

3.3.1 UDP vs. TCP. A standard TCP implementation is available for all devices

we will use (it is even bundled with the real-time OS used for the embedded devices).

Therefore it seems like using TCP would provide benefits at no additional cost. How-

ever, as our protocol is stateless and packet-oriented, and manages retransmissions

on the application layer, the only benefit of TCP would in fact be unlimited “packet”

length (as opposed to 64kB for UDP [9]), and other than that we would end up emu-

lating a UDP-like service on top of TCP if we chose to use it.

While the unlimited message size looks useful, it is in fact not that helpful – the

only messages that do not fit into a single UDP packet are rule database and firmware

blobs, and for these it is more efficient to deliver them in explicit chunks, so that the

CHAPTER 3. SERVER/CONTROLLER COMMUNICATION PROTOCOL 14

transfer of these large files does not need to start over in case something goes wrong.

Therefore, as the benefits of TCP are in our case not worth the TCP overhead

and flash space on embedded devices is limited2, we have chosen to use UDP.

3.4 Message types, controller behavior

Controllers are expected to download a local copy of the rules database and query that

instead of contacting the server whenever access is requested. They send access logs,

report their status, and request updates of the rules database and firmware.

As all communication must be initiated by the controller, it must periodically

contact the server in order to find out if an updated rules database or firmware is

available.

All responses have a response status tag, the value of which is one of OK, ERROR

(permanent error), TRY_AGAIN (transient error). Any non-OK response must be treated

as if the response did not arrive (i.e. usually a retry as in section 3.2.2 is necessary),

except for possibly different timeouts, logging or scheduling. In the following, only OK

responses are shown.

Note: The following describes the “semantic” data types. The details of the

encoding are specified in section 3.5.1. The type “byte string” represents a binary-safe

string, or an array of bytes of arbitrary length.

Currently, the following message types are recognized:

3.4.1 PING: keepalive, DB and FW version info. Contacts the server to report

current status and request info about updates. Also used to adjust controller time.

2The current controller model will have slightly less than 256kB of programmable flash memory,
of which less than 128kB is usable, because we need to store two versions of the firmware when doing
online firmware upgrades. Therefore the several kB saved by not compiling in the TCP stack might
come in handy.

CHAPTER 3. SERVER/CONTROLLER COMMUNICATION PROTOCOL 15

PING request:

Field Type Description

time integer what time the controller thinks it is

db_version integer version of the rules database currently in use

fw_version integer currently running firmware version

PING OK response:

Field Type Description

time integer server time

db_version integer newest available version of the rules database

fw_version integer newest available firmware version

The controller is expected to adjust its clock to match the server time.

3.4.2 ALOG: transfer access logs. Sends access logs to the server.

Controllers attempt to send access logs as soon as possible, but in order not

to lose them, they are saved to the SD card until the server confirms they have been

written to disk.3 Logs may be sent in multiple batches if needed.

ALOG request:

Field Type

records array4 of log_records (defined in table 3.4)

3We recommend at least 4GB SD cards in order to have enough space for flash wear leveling. As
each log record is about 20-30 bytes (depending on the encoding), at a rate of 1 access per second
(which is somewhat overstated) it would take about 5 years to run out of space.

4The array may end with a termination symbol instead of having an explicitly specified length.
See section 3.5.1 for details of the encoding.

CHAPTER 3. SERVER/CONTROLLER COMMUNICATION PROTOCOL 16

Field Type Description

time integer timestamp

card_id byte string card that requested access

allowed boolean was access granted?

Table 3.4: log_record structure

ALOG OK response: All sent records have been written to disk. (Response body

empty.)

3.4.3 XFER: transfer a file chunk. Firmware and rule database updates are treated

as opaque binary blobs by the XFER command. They are identified by type and version.

In order to trivially support incremental downloading and arbitrary chunk sizes, the

controller explicitly requests the offset and length of the chunk. The same version

must always refer to an exactly identical blob (if it exists), even if requested from a

completely independent server.5 The server may return a smaller chunk, but never

longer. A chunk of length 0 indicates end of file.

XFER request:

Field Type Description

filetype enum DB and FW currently supported

fileversion integer same version =⇒ same contents

offset integer offset from the beginning of the blob

length integer

5See section 6.4.2 for notes on how we implemented this. From the protocol’s viewpoint, versions
must be treated as opaque integers with this and only this guarantee.

CHAPTER 3. SERVER/CONTROLLER COMMUNICATION PROTOCOL 17

XFER OK response:

Field Type Description

length integer may be less than requested

chunk byte string the file chunk contents

The server will return a TRY_AGAIN error if the file was not found. This would

usually happen because one server already received and processed an update and an-

other one is behind. The controller will simply retry until it finds a ready server.

Note: These are the only responses longer than a few bytes. The server will

send whatever size it is asked for (up to the generous packet size limit). It is each

controller’s responsibility not to ask for chunks that may result in replies that are

too long for it to process. This is to allow maximum efficiency with controllers with

different capabilities.

3.4.4 CRITICAL: report a critical problem. Used to report a critical problem,

upon which the server should take immediate action.

CRITICAL request:

Field Type Description

code enum error code

message optional text string details of the error, if any

Currently the only recognized codes are LOCK_FORCED_OPEN (a physical lock was

opened without permission) and READER_NOT_RESPONDING (a reader is not responding

correctly even after multiple restarts), but we assume that more uses will emerge when

preparing for real-world deployments.

CRITICAL OK response: Acknowledged, action taken. (Response body empty.)

CHAPTER 3. SERVER/CONTROLLER COMMUNICATION PROTOCOL 18

3.4.5 ASK: ask if access should be granted now. Because of the potentially high

latency of roundtrips, local evaluation rather than querying the server should be used

in production. However, we include this for special cases and as a fallback.

ASK request:

Field Type Description

card_id byte string card that requested access

Whether access should be granted is a function of identity, time and PoA (for

details see chapter 4). In this case, this card’s identity, the current (server) time and

the PoA associated with this controller are used.

ASK OK response:

Field Type Description

allowed boolean do we allow access?

3.4.6 ECHOTEST: echo for testing purposes. Echoes the request body. This is

helpful in integration testing. Live deployments are recommended to run a process

that will act as a controller sending ECHOTEST (and possibly other) requests and report

any problems. (Such a process is run by default – see section 5.2.4.)

3.5 Packet format

3.5.1 Record encoding. All requests and responses, as well as the outer packet

envelope, are “records”, i.e. small key-value mappings with fixed key names and types.

Therefore we originally wanted to simply transmit “C structs” (i.e. binary blobs with

fixed offsets for fields) and hard-code field offsets in the server and controller firmware.

However, this approach has multiple disadvantages:

• Any extension would be an incompatible change, and therefore would require

CHAPTER 3. SERVER/CONTROLLER COMMUNICATION PROTOCOL 19

the full upgrade procedure as described in section 3.2.3. While this procedure is

simple, when it is running, the system requires more servers to achieve the same

level of redundancy; and it may make administrators nervous.

• We may parse a packet incorrectly without noticing, if the length matches.

• When the length does not match, we don’t know anything more specific than

“parsing failed”.

• The blob is not self-describing, and therefore nothing is known about it without

the context of the outer envelope specifying the version and the description of

fields for this version.

Especially the concerns around parsing errors are significant enough to justify a

self-describing encoding. Therefore we need an encoding with the following properties:

• self-describing: key names and types must be present in the the encoded data

• expressive: it must be possible to include all the necessary types and arbitrarily

nest them as arrays or sub-records; optional fields must be supported

• binary-safe: able to transmit arbitrary binary data (e.g. card IDs or file chunks)

without the need for extra encoding

• not incompatible by default: when a backwards-compatible change is introduced

(such as adding a new optional field, or removing a field that was optional), old

and new code must be able to communicate without change

• suitable for embedded devices: encoding and decoding must be fast, using small

code size and producing small messages

• standard, with existing libraries: our code is our problem – the less code we write,

the less code we will need to maintain in the future

These requirements are perfectly fulfilled by the Concise Binary Object Repre-

sentation (CBOR, see [3]) – a data format designed for communicating with constrained

nodes. We use arrays of CBOR semantically tagged items to represent records.6 (These
6If a duplicate tag is encountered, it is considered an error. In addition to serving as a sanity check,

this might prevent some overflow-related attacks.

CHAPTER 3. SERVER/CONTROLLER COMMUNICATION PROTOCOL 20

are equivalent to arrays of (tag, data) pairs, where data is strongly typed.) Unknown

tags are ignored and from the parsing viewpoint all fields are optional. In this way the

only thing that a server and a controller must have in common to communicate are the

tag interpretations (which makes sense, if they want to use the values for something

useful).

3.5.2 Requests, responses. For all requests and responses, the record as specified

in 3.4 is tagged by a semantic tag for the corresponding message type, and in case of

response records this is in turn tagged by the response status.

3.5.3 “Envelope” – version, addressing, encryption. The outer layer of the

messages (common to requests and responses) provides addressing and encryption. It

is a record with fields as specified in table 3.10. The encoded record is prepended

with a 4-byte “magic number” containing the bytes [68, 69, 65, 68] (‘DEAD’ in ASCII)

identifying this as a Deadlock message.

Field Type Description

Version identifier integer unknown version must be ignored

Controller ID integer addressing

Nonce 24 bytes random bytes

Payload byte string encrypted request/response

Table 3.10: Message record.

Version identifier Packet must be considered invalid if this does not match a known

version. This is to support live system upgrades, as detailed in section 3.2.3.

Controller ID Unique identifier of the sender or intended recipient. Serves as address-

ing. Including a form of addressing on the application layer decouples “logical”

addressing from “physical” (i.e. network) addressing, thereby allowing Deadlock

to function over NAT, with broadcast/multicast/anycast IP addresses, and such.

CHAPTER 3. SERVER/CONTROLLER COMMUNICATION PROTOCOL 21

Nonce Randomly generated bytes. Matches a response to a request: when a request

nonce is x, the associated response’s nonce must be x ⊕ 1. Used as detailed in

section 3.6.

Payload Request/response, encoded according to section 3.5.1. Encrypted with the

key for the given controller using the nonce, as detailed in section 3.6.

Note: Maximum message size (when encoded and encrypted) is 63kB (in order

to comfortably fit into a UDP packet).

3.6 Security

Security is complicated. While libraries implementing cryptographic primitives exist,

they usually do not make securing an application particularly easy: the developer must

be aware of what needs what kind of security; which primitives (such as cipher, cipher

mode, checksums, signatures) are suitable for which use case, what they promise, what

their weaknesses are and whether they are a problem in the given use case; she must

consider potential side channel attacks, replay attacks, and such; and she must ensure

other developers are aware of all these considerations. As the numerous vulnerability

reports published each month signify, this is no easy task.

Short of locking one’s computer in a closet without electricity, the best way to

secure a system is to leave it to an expert. Luckily, in 2013 the NaCl library interface

specification [7] and several implementations were published, with the aim of providing

developers with a simple, “sane defaults” crypto toolkit. See [2] for a discussion of the

impact of such a library.

In Deadlock, we assume operation over untrusted networks, and we must re-

sist both passive and active attacks. Therefore we encrypt and authenticate all mes-

sages from/to a given controller with a device-specific symmetric key, using NaCl’s

secret_box(nonce, key, payload) function, which promises secrecy and integrity

provided the nonce is not used more than once [7]. We construct the nonce by gener-

CHAPTER 3. SERVER/CONTROLLER COMMUNICATION PROTOCOL 22

ating 24 random bytes,7 which ensures negligible collision probability (quick birthday

paradox approximation says the probability reaches 50% after more than 1028 packets,

which is a lot). Symmetric cryptography was chosen for performance, but once the

actual controller hardware and firmware exists, we are planning to run benchmarks

and switch to asymmetric cryptography if possible, in order to avoid the need to copy

the secret to more than one place.

The default NaCl primitives in NaCl are the Salsa20 stream cipher for symmetric

encryption and the Poly1305 MAC for message authentication. As detailed in [1], these

are secure and performant without depending on any form of hardware acceleration,

which goes well with our requirements.

3.6.1 Security guarantees. Provided a nonce is not used more than once,

secret_box(nonce, key, payload) guarantees

• secrecy: it is infeasible to decrypt a message without knowledge of the key;

• integrity: if a message is decrypted successfully, no accidental or purposeful third

party modification of the nonce or the encrypted payload can have occurred;

• resistance to timing attacks: the implementations try to always perform the

same amount of work.

Furthermore, the protocol’s idempotence and use of nonces prevents replay

attacks: if an attacker attempts to replay a request to a server, nothing bad will

happen as all requests are idempotent; if she replays a response to a controller, its

nonce will not match any of the responses the controller is currently expecting and

therefore it will ignore the fake response.

7“Random” in this case does not mean cryptographically secure randomness – nonces may be
predictable (they are sent in cleartext along with the payload anyway), the only requirement is a
uniform distribution to ensure low collision probability. The fact that NaCl does not require a source
of good randomness is in embedded environments very welcome.

Chapter 4

Access rules

4.1 Generality vs. convenience

The key observation when designing the access rules is:

Generality comes at the cost of complexity. For any given application, most rules

will look the same, and therefore if the rules are general, then they will be unnecessarily

complex in the typical use case. Most of the time, the user will be annoyed by inputting

similar rules every time, instead of making use of the generality.

Because of this problem, we have decided to create two distinct layers of access

rules: a low-level layer, which is general and simple, and a domain-specific high-level

layer, which is optimized for the typical usage in the given domain. The high-level

layer builds on the primitives provided by the low-level layer, and different high-level

rules should be developed for different use cases (such as campuses vs. hotels). This

allows for flexibility and convenience at the same time.

In order to support both the typical use case and the unique snowflakes in a

single installation, high-level rules implementations are expected not to assume any-

thing about the rules installed in the system – they are not allowed to carelessly delete

existing rules, or assume only rules they know about exist. They should display the

low-level representation for rules they cannot interpret in their high-level model.

To facilitate this cooperation between high-level and low-level rules, and to

ensure consistency, we have come up with the notion of a ruleset: every rule in the

23

CHAPTER 4. ACCESS RULES 24

system is tagged as belonging to exactly one ruleset, and the high-level layer can create,

update or delete only whole rulesets, not individual rules. Operations on rulesets

are atomic. An application implementing the high-level rules should operate only on

rulesets created by that application. A mechanism for enforcing this restriction exists.1

The low-level, internal rules must be generic enough to support any use case,

yet easy to compile by both computers and people.

4.2 Internal rules format

In order to cover all possible use cases, the straightforward approach is to allow access

rules to be specified as any Boolean formula over identities, access points and time

specifications. However, this brings the following problems:

• it is hard for humans to quickly reason about the result of any given query

• complete evaluation on every query is necessary, which might be costly in memory

or time; it is impractical to pre-compute much for large inputs

• for offline functionality, the evaluation logic and all data required for evalua-

tion need to be embedded in the controllers, which violates the “keep embedded

devices simple” design principle;

• a small change in input data or formulas can have arbitrarily large effects,

which hinders attempts at both understanding why something happens and

pre-computation.

In order to avoid these problems, we have instead chosen the following model:

Every access point is of exactly one type; for each type, rules that

match a time specification and an identity expression to an Allow or Deny

response may be added. Rules are strictly ordered by priority.

The evaluation flow, as depicted in in figure 4.1, is as follows:

1. Find this AP’s type, select its rules.
1This is implemented in our DBMS of choice, PostgreSQL, by the row-level security mechanism

[11].

CHAPTER 4. ACCESS RULES 25

2. Select rules with matching time specification.

3. Select rules where this identity matches the rule’s identity expression.

4. Select the (single) rule with the highest priority.

This selects a single rule, which unambiguously allows or denies access.
pr

io
rit

y

time NOW

1. 2. 3. 4.

T1

T3

T2

R1

R2

R3

R4

R5

R1, ID ∈ expr(R1)
R2

R3, ID ∈ expr(R3)

R5

R1

R3pr
io

rit
y

Figure 4.1: Rule evaluation flow

4.2.1 Identity expressions. An identity expression is a (restricted) Boolean for-

mula over identities only, and it implements a generalization of access control by groups.

Implementing general Boolean formulas (e.g. using AND, OR and NOT op-

erators) would be possible, but to support NOT we would have to either store the

complement, which may require a lot of memory for a small input, or make the com-

putation less straightforward, which clashes with keeping controllers simple. Therefore

identity expressions use the INCLUDE and EXCLUDE operators, which are equivalent

to set union and set difference. These are equivalent (even in expression complexity)

to general Boolean formulas as long as the set of “interesting” identities is given (which

it is, as “any ID whatsoever except for this one” is not a useful rule).

Therefore, we define identity expressions as

expr ..= INCLUDE x1, . . . , INCLUDE xm, EXCLUDE xm+1, . . . , EXCLUDE xn

where x ..= expr | identity

with the semantics “union of all INCLUDEd sub-expressions minus union of all EX-

CLUDEd sub-expressions”.

CHAPTER 4. ACCESS RULES 26

4.2.2 Rationale for the separation. Splitting rule evaluation into identity expres-

sions and time+place expressions means that rules are easier to evaluate: a human (or

a computer) can evaluate the two independently, and “why does this happen” questions

are easier to answer. Moreover, in this way classes of equivalence on inputs are easier

to find, as in this model a single time+place rule matches a single identity expression

instead of arbitrary combinations. This makes it practical to pre-compute some rules,

and implement re-computing this incrementally on change.

4.3 Quick access querying: “in expression” relation

Typically, rules will be queried often (especially when creating local rules databases for

controllers) and changed infrequently. Therefore we can save work and time by pre-

computing some information. Currently, we assume that in a typical deployment there

will be few rules and multi-level identity expressions. Therefore we pre-compute an “in

identity expression” relation – for every identity (i.e. for all leaves of the expressions)

we climb the expression tree (or, in fact, DAG) and save the (identity, expression)

tuple when the identity is included by an expression (taking into account the IN-

CLUDE/EXCLUDE operations). As the expressions are acyclic, whenever we need to

INCLUDE/EXCLUDE a sub-expression, we can re-compute expressions in the order

of dependencies (and therefore exactly once).

In order to select the rule applicable for a given access query according to

section 4.2, in step 3 we simply select rules where an (identity, expression) tuple exists.

Similarly, when creating the local database for controllers, only the flattened relation,

not the original hierarchy, is used.

When an identity expression changes, it is easy to incrementally re-compute

only the affected parts: we simply search the DAG, re-computing nodes as we visit

them.

See section 6.3.1 for notes on the implementation of re-computation.

CHAPTER 4. ACCESS RULES 27

4.4 Local evaluation on embedded devices

The local database copy on the controllers builds on this two-level approach of sepa-

rating identity expressions and time specifications. Note that any controller serves a

single point of access, and therefore the “where” part of the rules is already taken care

of – every point of access knows only about rules belonging to its type.

The server listens for “rules changed” notifications from the database and re-

builds the controller-specific local databases when needed. The specific format of the

local databases is out of scope of this thesis.

4.5 Integration with existing systems

As required by section 1.2.3, data may be imported from other systems, and transpar-

ently “patched” into access rules. This is done via an application that generates flat

identity expressions of the form X ..= [INCLUDE person1, INCLUDE person2, . . .] for

every group X that needs to be imported. These groups are marked and considered to

be primitives, and they may be modified only by creating a group Y that INCLUDEs

X and further INCLUDEs or EXCLUDEs what needs to be adjusted in the imports.

In this way when the underlying data changes, the “patches” will not be disturbed.

Chapter 5

Server Design

Like all other Deadlock components, the server design and implementation follows from

the key design principles listed in section 2.2.

5.1 Data organization

Server replication and failover should be easy, and therefore any data/state that the

server needs must be easy to replicate. Therefore the server is allowed to depend only

on the contents of the relational database (for which replication mechanisms exist) –

it may cache or pre-compute some values, but otherwise all output must be a pure

function of the database contents.

The following sections give an overview of the data the server works with.

5.1.1 Point of access management and access logs. For each access point, we

store its type, optional description, and which controller is attached to it.

Access logs (with data as specified in the message, according to section 3.4.2)

are saved in the database.1 In order to fulfill the protocol idempotence guarantee, only

logs with a unique combination of attributes are stored.

Data about the state of the controllers, in particular the time of last PING,

the rules database version, the firmware version and the local time (to measure drift)
1As the database journal is flushed to disk on commit, the logs are on long-term storage by the

time we send an OK response to the controller.

28

CHAPTER 5. SERVER DESIGN 29

are stored (see section 3.4.1). Other parts of the system, such as monitoring or a

management UI, may use this information as they see fit (e.g. to alert if a controller

has been silent for too long or is out of date).

5.1.2 Access rule specification and identities management. Identities and

expressions form a DAG as described in section 4.2.1. We represent this by storing the

edges (marked by the INCLUDE or EXCLUDE operation), and the nodes (containing

a reference to either an identity, or a sub-expression) in the database.

In addition, we compute the “in expression” relation as described in section 4.3.

See section 6.3.1 for the description of the implementation.

The access rules are stored as a relation on the PoA types, identity expressions,

time specifications, priority, and {Allow, Deny}. Time specifications may contain a list

of weekdays, a date range, and a time of day, and these function as masks – when un-

specified, they match any weekday/date/time. Operations (such as union/intersection)

on these masks are not supported – this should instead be done by creating several

rules with appropriate priorities.

5.2 Main components

The server functionality has been split into 3 separate components with minimalistic

interfaces. These run as separate processes and it is not assumed that they run on the

same machine.

5.2.1 The “common files” interface. In order to avoid tight coupling between

these modules, generally the only common interface among these (apart from the shared

database) is the filesystem: when configuring the deployment, a shared filesystem direc-

tory with read and write access is given, and the components communicate by creating

and accessing files in that location. This is usually sufficient, as the components are

designed to run independently and only collect whatever happens to have been created

by the other components. In particular, the purpose of several components is to create

CHAPTER 5. SERVER DESIGN 30

files meant for transfer to controllers via the XFER message (see section 3.4), and for

these we have created a simple common library for opening files meant for a specific

controller (optionally with a fallback to files common to all controllers).

5.2.2 deadserver: communicates with controllers. Listens for controller re-

quests on a UDP socket, and sends responses according to the protocol specified in

chapter 3. For PING and XFER requests (see section 3.4), looks for files via the mecha-

nism mentioned in section 5.2.1.

5.2.3 deadapi: the API for the outside world. Provides the HTTP API used

by the web management and monitoring interface, and the provided commandline

interface. Thereby bridges the outside world and the database via a simple CRUD

REST API.

It supports pushing events via a streamed long-running HTTP response, in ac-

cordance with the Server-sent events/Eventsource specification [6]. Events are triggered

via the LISTEN/NOTIFY pub/sub mechanism in Postgres [10], and the database in

turn contains triggers that send a NOTIFY on certain table row changes. Therefore

data changes can bubble all the way to clients, which can use the standard Eventsource

API to subscribe to these.

It provides a quick way to stage firmware updates: a firmware image together

with a list of controller IDs can be uploaded, and deadapi simply drops (or links) the

file into subfolders dedicated to the given controllers (see section 5.2.1).

5.2.4 deadaux: auxiliary jobs supporting the other components. deadaux

is a collection of auxiliary modules that support the functionality of deadserver and

deadapi, plus a very simple dispatcher that runs the modules in separate threads. By

default, the following modules are part of deadaux:

• offlinedb: The main responsibility of this module is to build the copy of the

rules database that the controllers use for local offline evaluation. Its main thread

uses the pub/sub mechanism in Postgres, LISTEN/NOTIFY [10], to be notified

CHAPTER 5. SERVER DESIGN 31

on rule changes. On change, it generates new versions of the files, and drops them

where controllers can find them via the common files mechanism mentioned in

section 5.2.1.

• echotest: Uses the controller client library to periodically send ECHOTEST mes-

sages to deadserver and check the response. May be configured to e.g. send an

email if any problem occurs.

Chapter 6

Server Implementation

6.1 Chosen programming language

Several alternatives were considered for the server code, notably C++ and Haskell, but

in the end we chose Python 3, for the following reasons:

• Low entry cost for new developers: Most potential future developers are

already familiar with Python: the Applied Informatics branch at our faculty

teaches it in the first year, and the Informatics students are expected to know

Python in various courses in the curriculum. Python is quite simple, so becoming

proficient at it is easier than with most other languages.

• Great simplicity/awesomeness ratio.

• Principle of Least Astonishment: Unlike e.g. C++, Python is simple and

consistent.

• Effective constructs that encourage good design and correct code: Lan-

guage constructs such as decorators encourage modularity and composition, and

e.g. context managers help ensure resources, transactions and such are managed

correctly.

• Good libraries available: Libraries for common tasks such as interfacing with

the DB, serving UDP or HTTP requests, and much more, are readily available,

well known and well tested.

32

CHAPTER 6. SERVER IMPLEMENTATION 33

• Fast prototyping: For the above reasons, getting something up and running is

quick with Python.

The obvious, and considerable, disadvantage of Python, is the lack of static

typing – without static typing, many errors which could be discovered by a compiler

will only appear at runtime. In fact, the type system is the main reason for the author’s

ongoing desire to switch to Haskell. However, not many people know Haskell, and we

want it to be easy to contribute to Deadlock, so it is a much better idea to pick a well

known language.

6.2 Targeted environment, dependencies

• The Deadlock server is meant to be run on a Unix-like server. While it may

work on multiple platforms, it is currently tested only on Debian-like Linux dis-

tributions and FreeBSD 10.

• We are targeting Python 3.4 or newer. This is because at the time of writing

Python 3.4 is available in all relevant OSs and distributions (in particular Debian

Stable), and contains useful features not present in previous versions.

• For the DBMS, PostgreSQL >= 9.3 is required. We use non-standard Postgres-

specific features, such as the PL/pgSQL in-database procedural language [8] for

rules pre-computation, or the NOTIFY/LISTEN pub/sub system for notifying

deadaux of access rules changes.

• Several of the used libraries (at least psycopg and pynacl) use native bindings,

and therefore only work with the CPython implementation of Python 3.

6.3 Database structure

As explained in section 5.1, the database structure is the complete information (except

for caching/pre-computation) about the data Deadlock is concerned with.

Figure 6.1 shows the entity-relationship diagram for the basic database schema.

CHAPTER 6. SERVER IMPLEMENTATION 34

Fi
gu

re
6.

1:
En

tit
y-

re
la

tio
ns

hi
p

di
ag

ra
m

fo
r

th
e

da
ta

ba
se

sc
he

m
e.

CHAPTER 6. SERVER IMPLEMENTATION 35

6.3.1 “in expression” pre-computation. In addition to the above, the “in ex-

pression” relation as described by section 4.3 is computed from the data.

To save time and resources, this computation is implemented in-database using

PL/pgSQL [8]. Figure 6.2 shows the tables used.

Figure 6.2: Entity-relationship diagram for the ”in expression” pre-computation.

The re-computation function is triggered by changes on the in_expr_edge ta-

ble using the CREATE TRIGGER mechanism in SQL. Upon change, it traverses the iden-

tity expression DAG recursively, marking what needs recomputing in the auxiliary

_mr_recalculate table. The recomputation happens inside a transaction, so other

queries cannot see partial changes in the in_expr table – integrity during recomputa-

tion is ensured.

6.4 Some noteworthy implementation details

6.4.1 The CryptoBox abstraction. In order to avoid accidentally exposing the

private keys (e.g. as part of logged tracebacks), and to provide a good abstraction of

the cryptography used, we have created the CryptoBox interface: a black box that can

perform encryption and decryption for a particular controller. In this way, we avoid

passing the secret key directly, thereby reducing the risk that it will end up where it

shouldn’t. (Naturally, we cannot really hide it from the process, as it must be mapped

in the same address space in conventional circumstances, but we can at least avoid

revealing it without noticeable effort.) This also abstracts away all of the specifics

of the particular cryptographic primitives used, thereby allowing for switching to a

different method (e.g. to assymetric cryptography) without needing to change any of

CHAPTER 6. SERVER IMPLEMENTATION 36

the code using the CryptoBox. This API is inspired by the Python API to the NaCl

library [12].

6.4.2 The “file version implies file contents” guarantee. The protocol guar-

antees that a given file version always points to the same contents, to the last byte

(section 3.4.3). In order to be able to guarantee this, we:

• always write into a temporary file and rename it to a recognized filename only

after it is ready, relying on atomicity of the POSIX rename call within the same

filesystem [14]; and

• derive the file name from the contents: we compute the 32-bit FNV-1a hash1 [5]

while writing the file and use that as the version.

1The FNV-1a hash algorithm was chosen for low collision probability in the 32-bit variant, and for
good performance especially on longer inputs.

Chapter 7

Future plans

7.1 Real-world deployment

As we prepare Deadlock for deployment at our faculty, more issues will certainly surface.

We intend to make Deadlock a reliable long-term solution for our faculty. Later we are

planning to expand to larger deployments.

7.2 Testing

Due to time constraints, currently Deadlock does not have unit tests, although a sim-

ple integration test, plus the continuously running ECHOTEST sanity check included

in deadaux (as described in section 5.2.4), exist. Unit tests and more comprehensive

integration tests would ease development. We are planning to reach 100% unit test

coverage and setup continuous integration as soon as time allows.

7.3 System status monitoring

If one wants a system to work, one needs to monitor it. In particular, metrics assessing

the system health and performance should be exported; when a problem occurs, actions

that can be taken automatically should be automatically taken; and actions that require

human intervention should alert a human. A way to monitor the system and take

37

CHAPTER 7. FUTURE PLANS 38

appropriate actions (ideally based on an existing general solution) should be found.

Some basic watchdog functionality is present in Deadlock itself: controllers have

a hardware watchdog that restarts them on lockup, and the integration test included in

deadaux (see section 5.2.4) can alert a human if things obviously don’t work. However,

we intend to explore more comprehensive solutions.

7.4 High-level rules and UI optimized for usage at

universities

As part of deploying at our university, a domain-specific rules model will be developed,

and the corresponding rules management interface will be created.

7.5 Tools and libraries

Tools and libraries that further ease deployment and integration should be provided.

In particular, a tool for importing data from often used systems, such as directory

databases using the LDAP protocol or SQL databases, will be made available prior to

the faculty-wide deployment estimated for autumn 2016.

7.6 A server implementation in Haskell

The current server implementation (in Python) is production-ready. However, the lack

of compile-time type checking is a considerable weakness. The type system in Haskell

is very strong, and therefore it can give strong correctness guarantees. We believe that

a Haskell implementation would be far more trustworthy, and intend to write one.

Conclusion

Project Deadlock is still a work in progress and not yet production-ready. In particular,

specialized controller hardware and firmware, and auxiliary tools such as data import-

ing utilities or rule management UIs, are not ready yet. However, the main challenges

have been solved, and the requirements fulfilled. The server is ready to be deployed at

small scale for testing/evaluation purposes.

The unexpected challenges we encountered included:

• Security: we did not take security lightly, but the first version of the communi-

cation protocol was still prone to replay attacks.

• Sheer size: despite the efforts to keep things as simple as possible, the Deadlock

server, as well as the other components, turned out to be more complex than

originally envisioned. If not for the good design choices, implementing the server

would be impossible within the given time and personnel constraints.

• Constant need to refactor: in many cases, the first attempt at something was

not an adequate solution, despite devoting a lot of effort to thinking before typ-

ing. Fortunately, the modular architecture of Deadlock meant that the cost of

experimenting with multiple approaches was quite low.

The author is particularly pleased by the effects of good design on the resulting

software, as well as on the development process. Starting from the base principles of

simplicity, statelessness and modularity, we came up with a simple and consistent set of

abstractions. These made the implementation relatively straightforward and enjoyable

(in contrast to what would normally happen in a project of this scale). Perhaps even

more importantly, they transformed many difficult problems into trivial ones, some-

39

CHAPTER 7. FUTURE PLANS 40

times unexpectedly so. In the author’s opinion, Deadlock is a very good example of

how good design choices led to a clean and elegant implementation.

Glossary

access rule A function from (identity, PoA, time) to Allow or Deny that defines

whether to grant access to the given PoA. See chapter 4.

controller Controls its associated point of access (e.g. unlocks its door) based on the

access rules. Communicates with the server.

deadapi The HTTP API for Deadlock management, access rules configuration and

status monitoring.

deadaux Auxiliary jobs supporting tasks such as offline database creation.

deadserver The Deadlock server process that communicates with controllers.

PoA, point of access A door lock, a printer or any other device, access to which is

controlled by a Deadlock controller.

reader The user-visible box at PoAs that reads RFID cards and provides visual and

auditory feedback about whether access is granted. Communicates with its con-

troller.

ruleset A tagged set of access rules. Every access rule in the system belongs to exactly

one ruleset. Creating, updating or deleting a ruleset is an atomic operation.

server The centralized data store and “manager” of the system. Communicates with

controllers (deadserver, see esp. chapter 3), provides an API for the outside

world (deadapi), and performs auxiliary tasks (deadaux).

41

Appendix: Source code and

documentation

Project Deadlock is and will for some time remain under development. The newest

source code, hardware schematics and documentation for all components is available

at https://github.com/fmfi-svt-deadlock/.

Due to time constraints, the attached source code does not yet implement ev-

erything as described in the thesis. The notable differences are:

• parts of the HTTP API are not implemented yet (section 5.2.3);

• identity expressions precomputation is not incremental (section 6.3.1);

• the CRITICAL message handler is not implemented yet (section 3.4.4);

• the command-line interface directly queries and modifies the database instead of

contacting the HTTP API.

Attached: CD with server source code, as of May 16, 2016.1

The newest version can be found at https://github.com/fmfi-svt-deadlock/server.

1It is strongly recommended to look at and use the newer online version rather than the attached
version of the code.

42

https://github.com/fmfi-svt-deadlock/
https://github.com/fmfi-svt-deadlock/server

References

[1]Bernstein, D.J. 2009. Cryptography in NaCl. https://cr.yp.to/highspeed/

naclcrypto-20090310.pdf. (2009).

[2]Bernstein, D.J., Lange, T. and Schwabe, P. 2012. The security impact of a new

cryptographic library. Progress in cryptology–LATINCRYPT 2012. Springer. 159–

176.

[3]Bormann, C. and Hoffman, P. 2013. Concise binary object representation (CBOR).

https://tools.ietf.org/html/rfc7049. (2013).

[4]Deadlock repositories: 2016. https://github.com/fmfi-svt-deadlock/. Accessed:

2016-05-16.

[5]Eastlake, D., Fowler, G., Vo, K.-P. and Noll, L. 2015. The FNV non-cryptographic

hash algorithm. (2015).

[6]Hickson, I. 2009. Server-sent events. W3C Working Draft WD-eventsource-20091222,

latest version available at http://www.w3.org/TR/eventsource. (2009).

[7]NaCl reference: 2013. https://nacl.cr.yp.to/. Accessed: 2016-02-12.

[8]PL/pgSQL reference: 2016. https://www.postgresql.org/docs/9.5/static/plpgsql.

html. Accessed: 2016-03-18.

[9]Postel, J. 1980. RFC 768: User datagram protocol. https://tools.ietf.org/html/

rfc768. (1980).

43

https://cr.yp.to/highspeed/naclcrypto-20090310.pdf
https://cr.yp.to/highspeed/naclcrypto-20090310.pdf
https://tools.ietf.org/html/rfc7049
https://github.com/fmfi-svt-deadlock/
http://www.w3.org/TR/eventsource
https://nacl.cr.yp.to/
https://www.postgresql.org/docs/9.5/static/plpgsql.html
https://www.postgresql.org/docs/9.5/static/plpgsql.html
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc768

REFERENCES 44

[10]PostgreSQL asynchronous notification – documentation: 2016. https://www.

postgresql.org/docs/9.5/static/libpq-notify.html. Accessed: 2016-04-22.

[11]PostgreSQL row security policies – documentation: 2016. https://www.postgresql.

org/docs/9.5/static/ddl-rowsecurity.html. Accessed: 2016-05-10.

[12]PyNaCl documentation: 2015. https://pynacl.readthedocs.io/. Accessed: 2015-12-

01.

[13]Saltzer, J.H. and Kaashoek, M.F. 2009. Principles of computer system design: an

introduction. Morgan Kaufmann.

[14]The IEEE and The Open Group 2008. POSIX.1-2008. http://pubs.opengroup.org/

onlinepubs/9699919799/. (2008).

https://www.postgresql.org/docs/9.5/static/libpq-notify.html
https://www.postgresql.org/docs/9.5/static/libpq-notify.html
https://www.postgresql.org/docs/9.5/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/9.5/static/ddl-rowsecurity.html
https://pynacl.readthedocs.io/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/

	Introduction
	Requirements
	Trustworthiness
	Practicality
	Further considerations

	System overview
	Existing systems: overview and comparison
	Key design principles
	Main components
	Access rules
	Technical challenges

	Server/controller communication protocol
	Design requirements
	Protocol design
	Network stack
	Message types, controller behavior
	Packet format
	Security

	Access rules
	Generality vs. convenience
	Internal rules format
	Quick access querying: ``in expression'' relation
	Local evaluation on embedded devices
	Integration with existing systems

	Server Design
	Data organization
	Main components

	Server Implementation
	Chosen programming language
	Targeted environment, dependencies
	Database structure
	Some noteworthy implementation details

	Future plans
	Real-world deployment
	Testing
	System status monitoring
	High-level rules and UI optimized for usage at universities
	Tools and libraries
	A server implementation in Haskell

	Conclusion
	Glossary
	Appendix: Source code and documentation
	References

