
COMENIUS UNIVERSITY, BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

TUTORIAL TO COMPASS AND SASS

BACHELOR THESIS

2013

Milan Darjanin

COMENIUS UNIVERSITY, BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

TUTORIAL TO COMPASS AND SASS

BACHELOR THESIS

Study programme: Computer Science

Study field: 2508 Computer Science, Informatics

Department: Department of Computer Science

Supervisor: RNDr. Tomáš Kulich, PhD.

Bratislava, 2013

Milan Darjanin

25782515

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Milan Darjanin
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: 9.2.1. Computer Science, Informatics
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Tutorial to Compass and Sass

Aim: Create documentation and cookbook to Sass language and Compass framework

Supervisor: RNDr. Tomáš Kulich, PhD.
Department: FMFI.KI - Department of Computer Science
Vedúci katedry: doc. RNDr. Daniel Olejár, PhD.

Assigned: 03.10.2012

Approved: 24.10.2012 doc. RNDr. Daniel Olejár, PhD.
Guarantor of Study Programme

Student Supervisor

25782515

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Milan Darjanin
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: 9.2.1. informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický

Názov: Tutoriál k jazykom Compass a Sass

Cieľ: Vytvoriť dokumentáciu a na príkladoch založené 'how-to' k jazykom Compass
a Sass

Vedúci: RNDr. Tomáš Kulich, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: doc. RNDr. Daniel Olejár, PhD.

Dátum zadania: 03.10.2012

Dátum schválenia: 24.10.2012 doc. RNDr. Daniel Olejár, PhD.
garant študijného programu

študent vedúci práce

Acknowledgement

I would like to thank my supervisor RNDr. Tomáš Kulich, PhD. for his help and advices.

v

Abstract

The CSS is used in many web projects and the Sass is its extension. The Sass helps the

developers to maintain the code readable even with large projects. The goal of the thesis is

to write a tutorial for the Sass. All topics have at least one simple example to show the code

in use. The second chapter is about the Compass framework, that brings more flexible way

for work on CSS projects.

KEYWORDS: sass, compass, css, tutorial

vi

Abstrakt

S CSS sa stretávame pri väčšine webových projektov. Sass je rozšírením CSS o nové

funkcie, ktoré pomáhajú sprehl’adnit’ a zrýchlit’ vývoj v CSS. Zámerom práce je zoznámit’

čitatel’a so syntaxou a možnost’ami preprocesora Sass. Jednotlivé funkcie sú s jednoduchými

príkladmi na rýchlejšie pochopenie ich funkčnosti. Po prejdení základov Sass sa presúva

pozornost’ na knižnicu Compass, ktorá posúva prácu s projektmi písanými v Sass na d’alšiu

úroveň.

KL’ÚČOVÉ SLOVÁ: sass, compass, css, tutoriál

vii

Contents

Introduction 1

1 Sass 3

1.1 First steps to the Sass . 3

1.1.1 History . 3

1.1.2 Installation . 4

1.1.3 Hello World example . 5

1.1.4 Compiling Sass . 5

1.2 Sass Syntax . 6

1.2.1 Variables . 7

1.2.2 Nesting . 8

1.2.3 SassScript . 11

1.2.4 @-rules and directives . 13

1.2.5 Mixins . 20

1.2.6 Control Directives . 23

2 Compass 27

2.1 Installation . 27

2.2 Working with projects . 28

viii

2.3 Compass core . 31

2.3.1 Reset . 32

2.3.2 CSS3 . 32

2.3.3 Helpers . 33

2.3.4 Utilities . 35

Conclusion 37

Introduction

Cascading Style Sheets (CSS) is a style sheet language that is here for many years.

It made great leaps through the time and today, with the third version, it brings a lot

of new features. In spite of them, there is still place for improvement. This place

fills CSS preprocessors like Sass (http://sass-lang.com), Less (http://lesscss.org) or Stylus

(http://learnboost.github.io/stylus/). It is hard to say which of them is the best. Any of them

can be helpful with your project and which one you choose is most of time on you.

In this thesis, I’m writing about the Sass. It is my choice, because of the community, relation

with Ruby and my experiences with this language. It’s recommended that reader of this

tutorial is advanced in the CSS, while the CSS code in the examples will not be always

explained. Most of time the knowledge of the CSS2 would be enough, except few sections

that talks about Sass and the CSS3. In the second chapter I’m going to explain how works and

what brings Compass framework (http://compass-style.org/). It is one of the first frameworks

for Sass and has great website reference.

The tutorial will at first explain how to prepare your workstation to work with Sass and than

explain the syntax. It starts with the basics like variables and nesting. Moving to the more

advance concepts as mixins, SassScript and directives. The example code is created for every

explained situation. After that it moves to the Compass chapter. There it explains the basics

about the command line tool for creating projects and the Compass core with it’s mixins and

functions.

This tutorial was created with Sphinx Documentation Generator (http://sphinx-doc.org/).

It helped creating the online version of this document, that can be found at

the vacuumapps.com/compass-sass-tutorial (http://vacuumapps.com/compass-sass-tutorial).

1

http://sass-lang.com
http://lesscss.org
http://learnboost.github.io/stylus/
http://compass-style.org/
http://sphinx-doc.org/
http://vacuumapps.com/compass-sass-tutorial

Tutorial to Compass and Sass

The content in this work and on the site is the same, only the structure is changed. It does not

explain everything what is possible in the Sass and Compass. The motivation is to provide

fast way to start with Sass and find the reference for important parts of Sass in one place.

2

Chapter 1

Sass

1.1 First steps to the Sass

1.1.1 History

Sass (Syntaticly awesome stylesheet) is meta-language created on top of CSS. It’s main pur-

pose is to provide more enhanced features to the CSS that are useful for creating manageable

stylesheets. It was originally created by Hampton Catling (http://www.hamptoncatlin.com/).

He and Nathan Weizenbaum (http://nex-3.com/) designed Sass through 2.0 version. Nathan

is the primary designer of Sass and the main developer since its inception. In late 2008 Chris

Eppstein (http://chriseppstein.github.com/) joined the Sass team. Chris and Nathan designed

Sass from version 2.2. Another accomplishment of Chris is the Compass (http://compass-

style.org/), the first Sass-based framework.

The official implementation is done in Ruby. And through this manual I will be using

only this one. There are attempts to make Sass interpreter in Javascript so you can run

it on the server with Node.js or PHP version named PHPSass (http://www.phpsass.com/).

Sass is available under the MIT License (http://sass-lang.com/docs/yardoc/file.MIT-

LICENSE.html).

3

http://www.hamptoncatlin.com/
http://nex-3.com/
http://chriseppstein.github.com/
http://chriseppstein.github.com/
http://compass-style.org/
http://www.phpsass.com/
http://sass-lang.com/docs/yardoc/file.MIT-LICENSE.html

Tutorial to Compass and Sass

1.1.2 Installation

After few words from history is time to move on. Before we can start with the syntax, it’s

necessary to install the Sass interpreter. How I said before we will be using Ruby implemen-

tation. And because we have many operating systems with different dependencies I will give

you hints how to prepare your system.

Windows

The Windows does not come with Ruby installed at default. The fastest way how to install

it is to download RubyInstaller (http://rubyinstaller.org/downloads/). When it is done, go to

Start Menu, Accessories and run Command Prompt. But faster would be to press Win+R and

put in the cmd command and press Run. Next step is same for all platforms.

Linux

This category is more general, while there are many distribution with Linux kernel. But the

most used systems today have roots in Debian. In this group you can add Debian, Ubuntu,

Linux Mint and so on. If you are using Arch, then I don’t think think you need to read how

to install Ruby.

For Debian based systems you just need to start Terminal and run in it

sudo apt-get install ruby1.9.1

It will ask your password and after that it will install Ruby.

MacOS X

Your new Mac comes with Ruby installed. So only thing that you must do is to find your

terminal. You can use Spotlight and write in it Terminal. And run it.

Last step

At the end to install the Sass gem just write following command into the terminal or com-

mand prompt. When the installation ends, you are done.

gem install sass

4

http://rubyinstaller.org/downloads/

Tutorial to Compass and Sass

1.1.3 Hello World example

It’s good idea to try if it works. Run in terminal or command prompt

sass --scss

Your input would be

$header-color: #fe3242;

h1 {

color: $header-color;

}

And when you are done press Ctrl+D. You should get

h1 {

color: #fe3242;

}

As you can see, the line starting with dollar sign disappeared and the color value has changed

to value defined for $header-color. This is simple example of using variables in Sass. When

there was no problems you can move to the next chapter.

1.1.4 Compiling Sass

In “Hello World example” the code runs in the interactive mode of the Sass, but in real life

you write code into files. For that sass console application has options that helps with that.

There exist GUI applications for working with Sass, but I’m a CLI guy and I think you will

like it too.

The easiest way how to convert .sass or .scss file to the .css version is using following com-

mand.

For files

sass --watch input.scss:output.css

For whole directories

5

Tutorial to Compass and Sass

sass --watch input-dir:output-dir

1.2 Sass Syntax

After details how to setup up your working environment for Sass, it’s time to move on to

the syntax of this language. How I said earlier anything written in CSS is valid Sass code.

It’s not always true. The thing is that Sass has two possible syntaxes. The older one, called

simply Sass with extension .sass, takes inspiration in Haml (http://haml.info/). There are no

semicolons, no curly brackets and few more differences from style that will be used. The

important thing in it is using indention. If you met languages like Ruby or Python, then you

should be familiar with the concept. For people who have no clue what I’m talking about, is

here small example.

First is the code in Sass (.sass extension)

#main

background: red;

color: white

a

font:

weight: bold

size: 2em

family: serif

color: yellow

&:hover

color: green

And now CSS equivalent to code above.

#main {

background: red;

color: white;

}

#main a {

font-weight: bold;

6

http://haml.info/

Tutorial to Compass and Sass

font-size: 2em;

font-family: serif;

color: yellow;

}

#main a:hover {

color: green;

}

This approach to the syntax has some advantages and if you have some experience with

languages where indention is so important than go for it. But in this materials I will be using

most often the SCSS (Sassy CSS) syntax. It’s more similar to CSS so there would be no

problems to start using Sass, what is main purpose of this tutorial.

1.2.1 Variables

How often happened to you that you were writing CSS, in which you need to set up color

for some element, but you don’t remember the code of used color? You can still find it in

document, but it could take some time. Another example. You got some code at which had

worked other developer and only thing that you need to do is to change colors of all links in

the document. The problem is that you don’t know in how many declarations is that color

used in document and how we can see later, code written in Sass is often divided in many

files. If the previous developer used variable to store the color value, than your work would

be just to find the declaration of color for link and change it.

In this example situations variables come to be handy. It’s true that they are often used as

constants in Sass. There are no problems to change their values later, but it is not good

practice to do so, while it can start to be mess and you can not be sure which value is used

at the moment so easily. The definition of variable starts with symbol $ following with the

variable name, double-colon and the variable value. The value can be color code in any

format supported in CSS, string, number or length with unit.

.scss

7

Tutorial to Compass and Sass

$color-var-name: rgba(42,42,42,1);

$length-var-name: 960px;

$string-var-name: "|";

$number: 0.2;

#main {

width: $length-var-name

}

a {

color: $color-var-name;

opacity: $number;

}

.css

#main {

width: 960px;

}

a {

color: rgba(42,42,42,1);

opacity: 0.2;

}

Note: Naming conventions They are inherited from CSS. The name for variable should be

created from alphanumeric symbols and separated by hyphen. The name should say enough

about the value that is saved in it. Try to avoid names like $red-color and than use it for all

your links. Better approach is to create color scheme like $red: #E03838;,than create $link-

color: $red; and use it for links. If you came to state that you need to change the color from

red to green, you will just declare $green and set the $link-color to it. It’s better, because

if you stay with $red-color, than you will probably change the value stored in $red-color to

green and it does not make sense.

8

Tutorial to Compass and Sass

1.2.2 Nesting

I’d like to start with simple CSS code for horizontal navigation.

nav { position: absolute; right: 5em; bottom: 2em; }

nav ul { list-style: none; }

nav ul li { display: inline; }

nav ul li a { color: #4590DE; text-decoration: none; }

nav ul li a:hover { text-decoration: underline; }

You probably met similar code already. If you look at it you can see that I repeated some

selectors. They are important for the final style, but when you are writing code, you don’t

want to repeat yourself. Computers are good for repetitive work so why don’t use them for

this too? Sass has solution for this. It’s called nesting. It’s main idea is that child elements

are written inside of the parent curly brackets. Than I can rewrite the CSS code into the Sass

CSS (.scss) version

nav {

position: absolute;

right: 5em;

bottom: 2em;

ul {

list-style: none;

li {

display: inline;

a {

color: #4590DE;

text-decoration: none;

&:hover {

text-decoration: underline;

}

}

}

}

}

9

Tutorial to Compass and Sass

The indention in code is not important, but it’s recommended, for easier reading of the code.

How you can see I didn’t repeat any selector. There is interesting syntax with the ampersand.

&:hover. The ampersand stands for the parent selector. The reason why I didn’t used it in

previous declaration is that it’s added there automatically. So if you write

nav {

ul {

}

}

it can be rewritten using &-syntax to

nav {

& ul {

}

}

We need to refer on the parent selector in case that there is no need for space between

selectors. For example when we use pseudo-classes or pseudo-selectors.

table {

&.users-mode {

}

}

will be translated to

table { }

table.users-mode { }

There is one more way where to use nesting: CSS properties. Some of them are created with

some prefix like font-, text-, border-,etc. and if you are going to set more of them you can use

the short version, but sometimes you need to specify it more explicit. Then nesting comes

handy. The example would be best for it.

.scss

10

Tutorial to Compass and Sass

.block {

border: {

width: thin thin 0 0;

color: red blue;

style: solid;

}

}

.css

.block {

border-width: thin thin 0 0;

border-color: red blue;

border-style: solid;

}

1.2.3 SassScript

Extra features that you don’t find in CSS brings the SassScript. It allows to use arithmetic

operations, interpolation and functions. If you want to just try some of it without writing

files, than for you is there Interactive Shell.

sass -i

>> 1px + 1px + 1px

3px

>> #123 - #010101

#122334

>> #777 + #888

white

Data types

The SassScript supports 6 data types. There is no need to declare them. It will be automati-

cally done. They are

• numbers, e.g. 1.2, 13, 10px

11

Tutorial to Compass and Sass

• strings with and without quotes, e.g. “cube”, ‘triangle’, line

• colors, e.g. red, #123456, rgba(234,123,0, 0.8)

• booleans, e.g. true, false

• null

• list of values separated by spaces or commas, e.g. thin solid black

You don’t need thing about these types a lot. Only in cases that you store for example string

into variable, but you want to use it to set a size of font. In this case it doesn’t make sense.

Functions

The classic CSS does not have many functions. One example could be the calc() function

for the arithmetic operations, but it’s not supported in all browsers.

SassScripts brings more handy functions. For the full reference and examples to them

I recommend the official documentation SassScript Functions Reference (http://sass-

lang.com/docs/yardoc/Sass/Script/Functions.html). You can find there all functions with

short example. For that reason I’m not going to copy it. I give you in moment one example

where can be functions useful.

You can sort them base on the target area of use.

• Color functions

– RGB

– HSL

– Opacity

– Other

• String functions

• Number functions

• List functions

• Introspection functions

Generating a color palette

12

http://sass-lang.com/docs/yardoc/Sass/Script/Functions.html

Tutorial to Compass and Sass

Nice example of using the functions is generating color palette. You need only to set the base

color. In case that you would change it for any reason, other colors will change depending

on it. Experimenting with the color palette is the rather simple.

$base: #633;

$complement1: adjust-hue($base, 180);

$complement2: darken(adjust-hue($base, 180), 5%);

$lighten1: lighten($base, 15%);

$lighten2: lighten($base, 30%);

1.2.4 @-rules and directives

Sass supports all CSS @-rules like @import, @media or @font-face, but some of them

extend and gives them more power.

@import

Once using Sass, you’ll probably meet this rule quite often. It extends CSS import rule, so

you can import .scss and .sass files. The output will be merged into one single CSS file and

all variables and mixins defined in the imported files will be available in the main file. With

this behavior you can split your styles into smaller files defining specific elements. It makes

easy to append or edit the code.

There are some special circumstances at which will the @import rule works like the CSS.

• The file’s extension is .css.

• The filename begins with http://.

• If the filename is url().

• If the @import has any media queries.

.scss

@import "cube.css";

@import "cube" screen;

@import "http://cube.edu/style";

@import url(cube);

13

Tutorial to Compass and Sass

.css

@import "cube.css";

@import "cube" screen;

@import "http://cube.edu/style";

@import url(cube);

If we want to import the file cube.scss we can write

@import "cube.scss";

or just simply

@import "cube";

If you want to import more files, it’s possible to write

@import "first", "second";

If you name the .scss file with underscore before filename _cube.scss, then its code will be

added to the main .css file, but it will not be compiled to CSS file. In @import you don’t

need to write the underscore, but it’s important that in the same folder can not be more files

with the same name. (If in folder is cube.scss, than you can not use _cube.scss). This type

of naming of files is called partials.

One of earlier mentioned features of Sass is nesting and it’s possible to use it with @import.

Most of time you will use the @import at the top of the document. But there can come

situation when it would be handy to include whole another file into some class. At that case

you can call @import under class.

This is demonstrated in the example that follows. The box.scss and screen.scss contain

following code

// Content of the box.scss

.box {

color: red;

.button {

background: #444;

}

14

Tutorial to Compass and Sass

}

// Content of the screen.scss

.screen {

@import ’box.scss’;

}

The compiled version is

.screen .box {

color: red;

}

.screen .box .button {

background: #444;

}

There are few exceptions. There exists directives that can be only at the base level of the

document. So if you are calling @import into selector than the imported file can not contain

@mixin and @charset. It’s not possible to @import in mixins and control directives.

@media

@media directive can be used as defined in the plain CSS, but it has one extra capability - it

can be nested in CSS rule. If it appears nested, than it bubble to the base level, containing all

selectors in which it’s included. This approach helps to make your code readable if you are

using the @media.

.scss

.sidebar {

width: 300px;

@media screen and (orientation: landscape) {

width: 500px;

}

}

.css

15

Tutorial to Compass and Sass

.sidebar {

width: 300px;

}

@media screen and (orientation: landscape) {

.sidebar {

width: 500px;

}

}

This way you don’t break the flow of your selectors that are nested into each and again you

don’t need to repeat to writing the selector that you want to specify with @media. You can

complain that you often write the value for the @media, but we have variables. This is nice

place where you can use it.

.scss

$landscape: ’screen and (orientation: landscape)’;

.sidebar {

width: 300px;

@media #{$landscape} {

width: 500px;

}

}

.content {

width: 400px;

@media #{$landscape} {

width: 600px;

}

}

.css

16

Tutorial to Compass and Sass

@media screen and (orientation: landscape) {

.sidebar {

width: 500px;

}

.content {

width: 600px;

}

}

.sidebar {

width: 300px;

}

.content {

width: 400px;

}

You can define more @media properties for specific devices at the start and if you need to

change some properties you don’t need to look through documents where you write device-

specific rules and no selectors were written twice.

@extend

There are often cases when you need to use the all rules from one selector and add only some

new. Most used way how to do that is using some general class and than more specific class

that sets the different properties. Than the HTML will be following

<div class="error error-login">

Sorry, bad login or password. Try it again.

</div>

The css to the code will be

.error {

border: thin solid #FF5151;

background-color: #F9E9E9;

}

17

Tutorial to Compass and Sass

.error-login {

border-width: thick;

}

This approach is functional and it’s often used, but you must not forgot the error class. The

@extend directive helps to avoid the some problems that are possible using this way. Than

in the HTML will be written

<div class="error-login">

Sorry, bad login or password. Try it again.

</div>

.scss

.error {

border: thin solid #FF5151;

background-color: #F9E9E9;

}

.error-login {

@extend .error;

border-width: thick;

}

.css

.error, .error-login {

border: thin solid #FF5151;

background-color: #F9E9E9;

}

.error-login {

border-width: thick;

}

@extend works by inserting extending selector anywhere the extended selector appears. For

better illustration I add an example.

.scss

18

Tutorial to Compass and Sass

.error {

border: thin solid red;

padding: .5em;

color: red;

}

.error.icon {

background: url(’images/error.png’);

}

.error-login {

@expand .error;

font-weight: bold;

}

.css

.error, .error-login {

border: thin solid red;

padding: .5em;

color: red;

}

.error.icon, .error-login.icon {

background: url(’images/error.png’);

}

.error-login {

font-weight: bold;

}

If you are familiar with Object Oriented languages such Java or C++ you sure know the

meaning of abstract class or function. There are not allowed instances from abstract classes,

so they must be inherited by another class. In Sass exists similar way to define the selector.

It’s called “placeholder selectors”. They are defined in Sass version of code, but they are not

compiled to the CSS. Only if they are extended by another selector. It helps to avoid names

collisions and the in the output CSS they show up only if they are needed. They are most of

19

Tutorial to Compass and Sass

time used if you are creating framework. The syntax difference from the selectors for classes

and ids only in first characters. You don’t use the . or #, but %. So “placeholder selector” for

the error could be %error. Everything else works like for normal selector.

The main difference between using extend and mixins is in the output CSS. Say that we want

to create four buttons and only the color of the background would be changed. If you use

mixins for that, the output would have the same code for every button generated and only the

color codes would be different. On other hand, if you extend generic “placeholder selector”

for buttons and set for each one only different color, than the generated CSS will have shorter

code. In situation when you want to load your site as fast as possible is this approach good

idea. But always this things depends on the situation.

If you want to use @extend inside of the media block, there is some restrictions. You can

extend only selectors that are inside of the media block.

1.2.5 Mixins

Some of many advantages of Sass is keeping your code readable and don’t repeating yourself.

For the purpose of DRY (don’t repeat yourself) mixins exist and like many things in Sass

come from “Ruby universe”, mixins exists there too. The way how mixins work is to include

their code at the place where they were called.

Defining a Mixin with ‘@mixin‘

Mixins are defined with the directive @mixin following with the name of mixin and option-

ally the arguments. After that is there a block containing content of mixin closed into curly

brackets.

@mixin button {

border: thin solid #40AECA;

background: #85C7D8;

border-radius: 5px;

color: white;

&:hover {

background: #7EB7C6;

}

20

Tutorial to Compass and Sass

}

If you try to compile this with sass, than the output will be empty. The reason is that you

don’t use the mixin. And the second thing what you can see at definition of mixin is &:hover.

We met with it in nesting, but there we knew who was parent. Here will be the parent selector

defined at the moment of calling the mixin.

For inserting the content of the mixin use @include directive.

.scss

.button {

@include button;

height: 30px;

}

.css

.button {

border: thin solid #40AECA;

background: #85C7D8;

border-radius: 5px;

color: white;

height: 30px;

}

.button:hover {

background: #7EB7C6;

}

But this is not all what comes with mixins. I give you example when you need to have same

styled buttons, but with different background colors. You can define the new color after

@include button, but there comes some repeating work. You must always define the new

behavior for the hover state too. All because of using different color. How can we improve

it? We can use the arguments that would be passed to the mixin. The best way how to explain

it would be with example.

Say that you want to create three different color buttons. One would be normal with light

gray background and would be for classic actions. Next on would be the error button that

21

Tutorial to Compass and Sass

has red background and finally information button with blue background. And we want to

define one mixin and then change just colors when we include it.

.scss

@mixin button($color) {

border: thin solid $color - #222222;

background: $color;

border-radius: 5px;

color: white;

padding: 5px;

&:hover {

background: $color - #161616;

}

}

.button {

@include button(#B1B1B1);

}

.error-button {

@include button(#FB4242);

}

.info-button {

@include button(#549EE5);

}

.css

.button {

border: thin solid #8f8f8f;

background: #b1b1b1;

border-radius: 5px;

color: white;

padding: 5px; }

22

Tutorial to Compass and Sass

.button:hover {

background: #9b9b9b; }

.error-button {

border: thin solid #d92020;

background: #fb4242;

border-radius: 5px;

color: white;

padding: 5px; }

.error-button:hover {

background: #e52c2c; }

.info-button {

border: thin solid #327cc3;

background: #549ee5;

border-radius: 5px;

color: white;

padding: 5px; }

.info-button:hover {

background: #3e88cf; }

Knowledge of this techniques is enough for you to start using the Sass on daily basis. There

exists some more advanced things that comes handy, but their main purpose is for make more

flexible code that can be part of framework like Compass. If you work on large projects and

you use some styling techniques often, than it could be good idea to invest some time to

write them into simple framework for you and use it in your projects, but before you start

writing everything on your own, it could be good idea to jump to the chapter about Compass

and look if things that you need do exist in it.

1.2.6 Control Directives

SassScript supports control directives for including styles only under specific condition or

including same style several times with variations. Their main purpose is to use them in

mixins, those that are part libraries like Compass and requires flexibility.

23

Tutorial to Compass and Sass

@if

IF is one of the basics directives for control the flow. The style would be applied only if the

condition returns anything else than false or null. In conditions are allowed logical operations

and and or that require at least two conditions and the negation not.

p {

@if 1 + 1 == 2 { border: 1px solid; }

@if not(5 > 3) { border: 2px dotted; }

@if null { border: 4px dashed;}

}

p { border: 1px solid; }

At case that you need to check if the variable content is one of many, than comes handy the

@else if. The last must be @else.

.scss

$language: ruby;

p {

@if $language == python {

background: green;

} @else if $language == c# {

background: blue;

} @else if $language == ruby {

background: red;

} @else {

background: yellow;

}

}

.css

p { background: red; }

@for

In case that you need to repeat some action with different value in the output, you can use

24

Tutorial to Compass and Sass

@for loop. It sets the value in variable from starting point to end. There are two forms of for-

loop in Sass. First is @for $var from <start> through <end> and the second is @for $var

from <start> to <end>. The variable $var is normal variable that can be named arbitrarily.

It’s common to name it $i. The <start> and <end> can be any expressions that return

integer. The difference between these two forms is in the trough and to. If you use through

the <end> value will be used at the end. If you use to the loop stops at the <end>-1 value.

.scss

@for $i from 1 to 4 {

.item-#{$i} { width: 2em * $i; }

}

.css

.item-1 { width: 2em; }

.item-2 { width: 4em; }

.item-3 { width: 6em; }

@each

The for-loop is good if you are working with numbers. But if you want to work with list of

words, than using the @each is better decision. The syntax for each is simple. @each $var

in <list>. The variable $var is working the same way how in the for-loop. So in every step

the $var value is equal to one of the items in the list.

.scss

@each $shape in circle, triangle, square {

.#{$shape}-icon {

background-image: url(’/images/#{$shape}.png’);

}

}

.css

.circle-icon { background-image: url("/images/circle.png"); }

.triangle-icon { background-image: url("/images/triangle.png"); }

.square-icon { background-image: url("/images/square.png"); }

25

Tutorial to Compass and Sass

@while

If the step one that is in the for-loop is not good for you, than you must use the while. It will

run until the condition is true. The syntax is as showed here:

@while condition {

// code

}

And example

.scss

$i: 6;

@while $i > 0 {

.box-#{$i} {

width: 2em * $i;

$i: $i - 2;

}

}

.css

.box-6 { width: 12em; }

.box-4 { width: 8em; }

.box-2 { width: 4em; }

26

Chapter 2

Compass

At this point you should know enough about Sass and what is possible to do in it. There are

many ways how to use it. You can use the approach of writing everything for yourself and

only if you need it. There are probably some of you who always work this way. But many

developers want to save time to start with next project. They often take some framework,

that has the common things written and they just write the new parts specific for their project.

The community about Sass is not different. There is not just one framework that you can use,

but in this tutorial I will talk about the oldest and probably the most used of them. Compass.

If you have some time to spare and learn something more, than I recommend to go

through the code of the Compass, that you can find in it’s public repository on the GitHub:

github.com/chriseppstein/compass (https://github.com/chriseppstein/compass). There are

more than just Sass code, while Compass has own tools to create projects. Important for

you is to target the framework and then compass folder, where you can find only styles

written in Sassy CSS (.scss).

2.1 Installation

Installation of this framework is simple. Important is to have installed Sass. If you for some

reason don’t, than go to the chapter about Sass, where is written the guide for installation.

Put following command into console:

27

https://github.com/chriseppstein/compass

Tutorial to Compass and Sass

gem install compass

There is possibility that on the UNIX/Linux systems will you need to add sudo before the

command, while it will want to write into protected folders own data. It will download and

set up path to compass files and prepare it to using for you.

2.2 Working with projects

In every project in which you want to use the Compass, you need to have configuration file,

that says to the compiler where to look for files, where to save the output and some other

options important for work. For all that there is command line tool called simply compass.

I’m not going through all it’s options, only the primary. If you want to see all options

use option for help. In case that you need something, that it’s not written in following

text, I recommend the Compass Tutorials (http://compass-style.org/help/tutorials/), where

are covered even more advance topics.

compass -h

Now if you have some time try to look at the list of all options that compass has. I’m going

to explain the primary ones and what they do.

create

The most important is to create new Compass project. It’s done with the option create. After

the option follows the name of the project.

compass create HelloWorld

The start of its output will be following

directory HelloWorld/

directory HelloWorld/sass/

directory HelloWorld/stylesheets/

create HelloWorld/config.rb

create HelloWorld/sass/screen.scss

create HelloWorld/sass/print.scss

28

http://compass-style.org/help/tutorials/

Tutorial to Compass and Sass

create HelloWorld/sass/ie.scss

create HelloWorld/stylesheets/print.css

create HelloWorld/stylesheets/screen.css

create HelloWorld/stylesheets/ie.css

It creates the folder HelloWorld with config.rb, in that is stored the settings that will be

used by the compass compiler, and two folders one for yours Sass code - sass and one for

generated css called stylesheets. It even creates three .scss files for your styles and compile

them to their CSS versions. At the end of the output is how to include the styles to your

HTML or some similar document, where you need the styles, but this you should know.

The names of the files don’t need to be equal to the version generated by compass. Only the

config.rb file name needs to stay without change. It stores the settings for the compiler where

to look for the sass files and where save the output. It even sets where are saved images that

you use and your javascript if you have any.

Content of the config.rb:

Require any additional compass plugins here.

Set this to the root of your project when deployed:

http_path = "/"

css_dir = "stylesheets"

sass_dir = "sass"

images_dir = "images"

javascripts_dir = "javascripts"

You can select your preferred output style here

(can be overridden via the command line):

output_style = :expanded or :nested or :compact or :compressed

To enable relative paths to assets via compass helper

functions. Uncomment:

relative_assets = true

To disable debugging comments that display the original

29

Tutorial to Compass and Sass

location of your selectors. Uncomment:

line_comments = false

There are comments that explain a lot of things, if you are not sure what does some option

mean. You are probably not going to change a lot of the code in here. Only at the time

of deployment of the project is nice to uncomment the line_comments (just delete the hash

sign #) and set the output_style to :compressed. This way will compass generate for you the

smallest version of your style.

init

If you had started some project and later you figure out that you need to use Compass, than

comes the init option handy. It create all important files for compass in the directory where

is your project. Enter the folder with your project. For example, it’s called web_app and run

following command.

compass init

After that you are done. It created config.rb and the folders for the sass styles and generated

CSS. You can say that you can create it on your own, while it’s just one configuration file

and few folders. But init makes it for you.

compile

Probably the most important option. It looks at the configuration file and base on the settings

it generates CSS from your Sass.

compass compile [/path/to/project]

If you are in the same directory as is the config.rb file, than the path won’t be there. The path

to project is important if you in other directory as the configuration file.

watch

This option will be used most of the time. It does the same thing as the compile with one

feature at the top. It waits for changes of your sass code and if there are any, watch will

compile your code automatically.

30

Tutorial to Compass and Sass

compass watch [/path/to/project]

Again the path is important only in case that you are not in the same directory as is the

config.rb file.

2.3 Compass core

The Compass library is created from two frameworks at the time of writing. The one is the

core of the Compass about which would be this section. Another is the Blueprint framework.

I’m not going to talk about the Blueprint while it will be deprecated from newer versions of

Sass. If you need some toolkit to work with grid and layouts, than I recommend to look at

the Susy (http://susy.oddbird.net/). It’s build with the Sass and works nice with Compass.

The Compass core is spliced into six parts.

• CSS3 - how the name suggests it contains mixins to make life with CSS3 easier

• Typography

• Utilities

• Layout

• Reset - global reset based on the Eric Meyer’s reset 2.0

(http://meyerweb.com/eric/tools/css/reset/index.html)

• Helpers - functions that add new functions to existing in the SassScript

Each one will be dedicated own section where I go through the features that it has. If you

need only to find something specific and you don’t need comments for it than I recommend

the Compass reference at Compass Reference (http://compass-style.org/reference/compass/).

Easiest way how to start using Compass is to use

@import "compass";

After that you can access everything included in the CSS3, typography and utilities category.

31

http://susy.oddbird.net/
http://meyerweb.com/eric/tools/css/reset/index.html
http://compass-style.org/reference/compass/

Tutorial to Compass and Sass

2.3.1 Reset

All browsers have default styles that are called if the site has not own stylesheet for re-

quired element. With one small problem. They have slightly different predefined styles

for some elements, so for example the padding for div haven’t have to be the same. And

there are many different places when you need no padding and margins defined. For that

most of the developers specify at the begin of the CSS the ‘reset’ rules. Because this

is often done, Compass has built-in support for it. Just at the begin of Sass code in-

clude the reset and it will append the global reset based on the Eric Meyer’s reset 2.0

(http://meyerweb.com/eric/tools/css/reset/index.html).

@import "compass/reset";

If you need specific version only for some elements only include utilities from the reset.

Most of the time you will use the global reset, if not than at Reset Utilities (http://compass-

style.org/reference/compass/reset/utilities/) you can find the reference for mixins for more

specified reset.

@import "compass/reset/utilities";

2.3.2 CSS3

The CSS3 brings many new features to modern browser. From basic things like border radius

through box-shadow to advance effects created with transitions and key-frames. Everything

would be great if CSS3 would be completed and all features in it implemented in all browsers

the same way. But this is just wish of all web-developers. Truth is that browsers came with

their own prefixes for function of CSS3 which has not yet been accepted to the final version

or they have their own ideas that they want to make their browser more advance for example.

Every web-developer today must have seen vendor prefixes like -webkit-, -ms-, -mz- and -o-.

If you need to create button, that drops shadow, in perfect universe you will write

.perfect-button {

...

box-shadow: 2px 2px 5px 4px rgba(42,42,42,0.8);

32

http://meyerweb.com/eric/tools/css/reset/index.html
http://compass-style.org/reference/compass/reset/utilities/

Tutorial to Compass and Sass

...

}

But in this world you must write something like

.just-button {

...

-webkit-box-shadow: 2px 2px 5px 4px rgba(42,42,42,0.8);

-moz-box-shadow: 2px 2px 5px 4px rgba(42,42,42,0.8);

box-shadow: 2px 2px 5px 4px rgba(42,42,42,0.8);

...

}

This is one of the better cases when there not all browsers have their own prefixes. But we

need to add two more lines just to secure that it will work in as many browsers as possible.

Finally the same example written in Sass using Compass.

@import "compass/css3"

.scss-button {

...

@include box-shadow(rgba(42,42,42,0.8) 2px 2px 5px 4px);

...

}

The import is needed only once so I will not count it. We are again at one line for the box-

shadow. The code with vendor prefixes will be generated by mixin defined in Compass. I’m

not going to write specifically about mixins defined in the Compass, while they can change

through time. For the most updated version visit their site with Compass CSS3 reference

(http://compass-style.org/reference/compass/css3/).

2.3.3 Helpers

The Sass comes with huge library of functions and the Compass helpers sec-

tion extends it. The full reference of it is at Compass Helpers (http://compass-

style.org/reference/compass/helpers/). I don’t think that you would ever need all of them in

33

http://compass-style.org/reference/compass/css3/
http://compass-style.org/reference/compass/helpers/

Tutorial to Compass and Sass

one project. But few of them can save a lot work so you will be using them more frequently.

It can happen that through development of the web application are two groups. One is

coding the back-end with all logic and interactions and the second is aimed on the front-end

and working on the styles. It can happen that at the deployment changes are made to the

paths for the images. If you are using just CSS, you must go through code and change the

occurrence of the problems. In helpers there exists function

image-url($path, [$only-path])

It looks into the config.rb file and takes the images_dir value. For example I have image

called smiley.png, that is saved in the folder images in the project.

.avatar {

background: image-url(’smiley.png’);

&:after {

content: image-url(’smiley.png’, true);

}

}

.avatar {

background: image-url(’/images/smiley.png’);

}

.avatar:after {

content: "/images/smiley.png";

}

How can you see there is slightly difference, if you set the second argument to true. Than it

will omit the url() in the output. The similar functions exist for the fonts. Only difference is

in the name font-url.

Next useful function is for dimensions of the images. If you need to know the dimensions of

the image, compass comes with functionality for that.

image-height($image);

image-width($image);

34

Tutorial to Compass and Sass

The image is relative path of the image. Another tool for images is the function

inline-images($image, [$mime-type]);

I recommend to use it only for small images, like icons, where it can save the HTTP request,

with little larger CSS file.

2.3.4 Utilities

The Compass Utilities brings mixins for some common tasks. There are utility for control

what will be in the print version displayed or if you need to fast way to style table that you

can use @import “compass/utilities/tables”; example can be find at Table utility example

(http://compass-style.org/examples/compass/tables/all/).

At last I would like to show you how to work with sprites in the Compass. The reason for

using sprites is to save HTTP request and speedup the load of the site. They are most of time

used if you have many small icons. Without using sprites every one image must be loaded

separately. With sprites it loads all images and that using CSS use only needed.

In our example we have all 3 icons for social networks with dimensions 32x32 pixels saved

in the directory social.

images/icons/social/fb.png

images/icons/social/gplus.png

images/icons/social/tweet.png

I will show you the basic and easiest way how to create sprite. At the top of your Sass file

put

@import "icons/social/*.png";

@import all-social-sprites;

It will generate

.social-fb,

.social-gplus,

.social-tweet {

background: url(’/images/icons/social-s34fe0232ab.png’) no-repeat; }

35

http://compass-style.org/examples/compass/tables/all/

Tutorial to Compass and Sass

.social-fb { background-position: 0 0; }

.social-gplus { background-position: 0 -32px; }

.social-tweet { background-position: 0 -64px; }

The numbers in the name of the generated sprite will you get different. If you want to

learn more about the generating sprites in the Compass, than read Tutorial about sprites at

Compass (http://compass-style.org/help/tutorials/spriting/).

36

http://compass-style.org/help/tutorials/spriting/
http://compass-style.org/help/tutorials/spriting/

Conclusion

This tutorial should have learn you enough about Sass to start working with it on daily basis.

At first it shows you how to obtain the Sass compiler and install it. Than it follows with the

explaining the syntax and possibilities of the Sass. For each topic is simple example code. In

second chapter moves our attention to the Compass framework. It is explained how to work

with the project and where you can find more informations about it. Finaly, this tutorial looks

at the Compass core and explain in my opinion important parts of it.

37

Bibliography

[1] Blog about Sass. http://thesassway.com/. [Online; accessed 26-May-2013].

[2] Compass homepage. http://compass-style.org/. [Online; accessed 26-May-

2013].

[3] Sass homepage. http://sass-lang.com. [Online; accessed 26-May-2013].

38

http://thesassway.com/
http://compass-style.org/
http://sass-lang.com

	Introduction
	Sass
	First steps to the Sass
	History
	Installation
	Hello World example
	Compiling Sass

	Sass Syntax
	Variables
	Nesting
	SassScript
	@-rules and directives
	Mixins
	Control Directives

	Compass
	Installation
	Working with projects
	Compass core
	Reset
	CSS3
	Helpers
	Utilities

	Conclusion

