COMENIUS UNIVERSITY IN BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

AN END-TO-END PIPELINE FOR DETECTION OF
ENDOLYSIN PROTEINS FROM RAW SEQUENCING
READS
BACHELOR THESIS

2022
JURAJ VASUT

11

COMENIUS UNIVERSITY IN BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

AN END-TO-END PIPELINE FOR DETECTION OF
ENDOLYSIN PROTEINS FROM RAW SEQUENCING
READS
BACHELOR THESIS

Study Programme: Bioinformatics

Field of Study: Computer Science and Biology
Department: Department of Applied Informatics
Supervisor: MSc. Andrej Baléz

Bratislava, 2022

Juraj Vasut

v

(e}
iy
o
N
v
w
o
£

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZAVERECNEJ PRACE

Meno a priezvisko Studenta: Juraj Vasut

Studijny program: bioinformatika (Medziodborové §tadium, bakalarsky I. st.,
denna forma)

Studijné odbory: informatika
biologia

Typ zdverecnej prace: bakalarska

Jazyk zaverecnej prace: anglicky

Sekundarny jazyk: slovensky

Nazov: An end-to-end pipeline for detection of endolysin proteins from raw sequencing

reads

Program na detekciu endolyzinov z nespracovanych sekvenacnych citani

Anoticia: Bakteriofagy su virusy Specializujiice sa na infikovanie baktérii. Ich zivotny
cyklus sa sklada z lyzogénnej a lytickej fazy. Na konci lytickej fazy rozkladajt
bunkovl stenu hostitela, ¢im zabijaju baktérie. Protein, ktory pouzivaji
na rozkladanie bakteriadlnej bunkovej steny, sa nazyva endolyzin.

Endolyziny maju potencidl v lie¢be vaznych bakteridlnych infekcii, ale
ich identifikacia vyzaduje vela experimentov v laboratériu. Potreba
bioinformatického programu, schopného zredukovat’ priestor moznosti a tym aj
pocet experimentov, je signifikantna.

Cielom prace bude vytvorit' bioinformaticky program, ktory napomoze
objaveniu novych endolyzinov. Vstup pre program bude vo forme ¢itani
zo sekvenaéného experimentu. Program poskladd Ccitania do kontigov,
identifikuje virusové sekvencie, odpredikuje poziciu génov, identifikuje ich
funkciu a vyhodnoti vysledky. Vystupom bude mnozina génov, ktoré su
s vysokou pravdepodobnost'ou endolyziny.

Ulohou $tudenta bude nastudovat’ bioinformatické nastroje pre jednotlivé kroky
programu a navrhnuat, ktoré z nich budt integrované do programu. Nésledne
Student vytvori Tahko inStalovateny program na detekciu endolyzinov
a porovna vytvoreny program s inymi dostupnymi rieSeniami.

Veduci: MSec. Andrej Balaz
Katedra: FMFI.KALI - Katedra aplikovanej informatiky
Veduci katedry: prof. Ing. Igor Farkas, Dr.

Datum zadania: 15.10.2021

Détum schvalenia: 22.10.2021 doc. Mgr. Bronislava Brejova, PhD.

garant Studijného programu

Student veduci prace

vi

Imin
Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics
THESIS ASSIGNMENT
Name and Surname: Juraj Vasut
Study programme: Bioinformatics (Joint degree study, bachelor I. deg., full time
form)
Field of Study: Computer Science
Biology
Type of Thesis: Bachelor’s thesis
Language of Thesis: English
Secondary language: Slovak
Title: An end-to-end pipeline for detection of endolysin proteins from raw sequencing

Annotation:

Supervisor:
Department:
Head of
department:

Assigned:

Approved:

reads

Bacteriophages are viruses specialized in infecting bacteria. Their life-cycle
consists of a lysogenic and a lytic phase. At the end of the lytic phase, they
disintegrate the host’s cell wall, effectively killing bacteria. The protein they use
to disintegrate the bacteria is called endolysin.

These endolysins have the potential to be used in the treatment of serious
bacterial infections, but their identification requires a lot of experiments in
the laboratory. The need for an end-to-end bioinformatics pipeline, capable
of reducing the search space and therefore the number of experiments, is
significant.

This work aims to develop the bioinformatics pipeline, which can assist the
discovery of novel endolysins. The input for the pipeline will be in the form of
reads from the sequencing experiment. The pipeline will consist of assembling
the reads into contigs, identifying the viral sequences, predicting the location of
the genes, identifying their function and evaluating the results. The output will
be a set of genes with a high likelihood of being endolysins.

The student’s tasks will be to study multiple bioinformatics tools for each step
of the pipeline and to propose a selection of tools, which will be integrated into
the pipeline. The student will create an automatic end-to-end pipeline that can
be easily installed and used to detect endolysins and compare the pipeline with
existing solutions.

Master of Science Andrej Balaz

FMFI.KALI - Department of Applied Informatics
prof. Ing. Igor Farkas, Dr.

15.10.2021

22.10.2021 doc. Mgr. Bronislava Brejova, PhD.
Guarantor of Study Programme

Student

Supervisor

111

Acknowledgments: [would like to thank my supervisor MSc. Andrej Balaz for

his helpful advice and guidance during the work on this thesis.

Abstrakt

Nadmerné pouzivanie antibiotik viedlo k vyvoju multirezistentnych baktérii. Tieto
baktérie s odolné vodi velkému mnoZstvu antibiotik, ¢o stazuje liecbu infekcii nimi
sposobenymi. Z tohto dévodu sa vyvijaju dalsie metody lie¢by bakteridlnych infekeii.
Jednou z metdd je fagova terapia zahrnajica pouzitie bakteriofagovych endolyzinov na
zacielenie na konkrétne baktérie. Kvoli nedostatku néstrojov navrhnutych na analyzu
virusovych genémov si objavovanie novych endolyzinov vyzaduje pouzitie zlozitych
zretazenych spracovavani s velkym poc¢tom krokov. Aby sme ulah¢ili objavenie novych
endolyzinov, predstavujeme jednoduchy nastroj Phendol schopny presne predpovedat

endolyziny v nespracovanych parovanych sekvenénych c¢itaniach.

Kruacoveé slova: endolyzin, anotécia génov, baktériofag, skladanie kontigov, zretazené

spracovanie

Abstract

The overuse of antibiotics has led to the evolution of multiresistant bacteria. These
bacteria are resistant to a large number of antibiotics, making the infections caused by
them more difficult to cure. For this reason, other methods to cure bacterial infections
are being developed. One of the methods is phage therapy involving the use of bacte-
riophage endolysins to target specific bacteria. Due to the lack of tools designed for the
analysis of viral genomes, the discovery of new endolysins requires the use of complex
pipelines with a large number of steps involved. To facilitate an easier discovery of
new endolysins, we introduce a simple end-to-end pipeline Phendol capable of accurate

prediction of endolysins in raw paired-end sequencing reads.

Keywords: endolysin, gene annotation, bacteriophage, contig assembly, pipeline

vi

Contents

Introduction

1

2

3

Biological background

1.1 Bacteriophages vs. Antibiotics L.

1.2 Life cycleof aphage L

1.3 Endolysins

1.4 Data preparation
1.4.1 Propagation and extraction

1.4.2 Sequencing

Available tools
2.1 multiPhATE
2.2 RASTtk

Pipeline

3.2.1 Terminology
3.2.2 Algorithm
3.3 Phanotate
3.3.1 Algorithm
3.4 BEDTools
3.5 Transeq
3.6 Blast
3.6.1 Algorithm
3.7 Blast2out
3.8 Snakemake
3.9 Phendol
3.10 Condao
311 Summary

vii

0 N J O ok w W

viil

4 Testing

4.1 Sourceofdata
4.2 Settings
4.2.1 Phendol

4.2.2 multiPhATE

423 RASTtk

4.3 Comparison

Conclusion

Appendix A

CONTENTS

List of Figures

1.1
1.2
1.3
1.4

3.1

3.2

4.1

Structure of a bacteriophage. 3
Lytic cycle. 5
Lysogenic cycle.)
Library preparation (a) and sequencing (b) using Illumina Miseq|15]. 8
Potential errors in the graph: bulge (A), tip (B), chimeric read (C),

repeat (D) [3]. 17
Steps the pipeline takes while annotating. 28
Number of predicted endolysins per sample by analysis method. 34

X

LIST OF FIGURES

Introduction

The overuse of antibiotics leads to the evolution of multiresistant bacteria immune to
a larger amount of antibiotics [23]. This is facilitated by the ability of bacteria to quickly
adapt to their environment. In presence of antibiotics, the surviving bacteria adapt to
unfavourable conditions by gaining resistance, making antibiotics less effective. Since
antibiotics are the main remedy in combating bacterial infections, infections caused
by multiresistant bacteria are difficult to treat, making them dangerous and possibly
deadly [20]. To prevent such bacteria from potentially gaining resistance to every
available antibiotic, several types of antibiotics are kept outside of regular use to act
as the last resort against highly resistant bacteria.

Since the last resort antibiotics only act as a buffer, making them a temporary
solution, and the discovery of new antibiotics is difficult and time-consuming, research
is conducted to develop new methods to treat bacterial infections. One of the methods
developed is phage therapy [30]. This method is based on the ability of a bacteriophage
to infect and kill bacteria as a byproduct of the reproduction of the bacteriophage
during its lifecycle [8]. The protein used to disintegrate the cellular membranes of the
bacteria is called endolysin. Since the disintegration of cellular membranes is sufficient
to kill the bacteria, the application of endolysins to bacteria consequently causes the
death of the bacteria.

Despite the need for the discovery of endolysins, the lack of interest in the analysis
of viral genomes in the past led to a low number of tools designed for this purpose.
The lack of tools designed for virus analysis forced researchers to work using tools
not equipped to work with viral genomes properly, generally designed for analysis of
bacterial genomes, leading to the creation of complex pipelines. Presently, more tools
designed for the analysis of viral genomes are available. However, many pipelines are
yet to adopt these tools into their workflow. Out of the existing pipelines, none are
designed to directly output predicted endolysins.

To accommodate for this lack of pipeline, the goal of our thesis is to introduce an
end-to-end pipeline designed to detect endolysin proteins from raw sequencing reads.
The pipeline assembles raw paired-end reads from sequencing equipment into contigs,
locates sequences coding viral genes, and predicts, which genes have a high likelihood

of being endolysins. In the creation of the pipeline, we prioritize simplicity and ac-

2 Introduction

cessibility to allow usage of the tool for researchers not accustomed to working with
bioinformatics tools.

In the first chapter of the thesis, we explain the advantages of phage therapy com-
pared to antibiotics. We describe the life cycle of a bacteriophage and the role of
endolysins in it. Next, we describe the structure of endolysins and the mechanism
behind their behaviour. We also outline common procedures used to acquire samples
for analysis.

In the second chapter, we introduce pipelines addressing a similar issue as the one
outlined in this work. We explain the differences between them and compare them to
our solution.

In the third chapter, we describe our pipeline. We describe every tool we use in
detail and clarify the algorithms operating them. In this chapter, we also convey how
we use each tool and how we connect them to form a single pipeline.

In the fourth chapter, we evaluate our pipeline. We explain the method used to
obtain data for testing, and parameters used in testing and compare results from our

pipeline with results from tools described in the second chapter.

Chapter 1
Biological background

In this chapter, we explain the advantages of phage therapy compared to antibiotics.
We introduce biological processes happening when bacteriophage infects bacteria and
the lytic properties of endolysins. We also outline chemical processes used for the

extraction and sequencing of bacteriophage DNA.

1.1 Bacteriophages vs. Antibiotics

Capsid head —»
Head

DNA

Tail

Figure 1.1: Structure of a bacteriophage.

Bacteriophages or phages are a type of virus which evolved specifically to be able
to infect bacteria. They are composed of a molecule of nucleic acid encased in a
protein structure (Figure 1.1). While there are thousands of varieties of phages, each
phage usually infects only one type or a few types of bacteria [11]|. This characteristic
is utilized in phage therapy, which uses phages as an alternative to treatment using

antibiotics.

4 CHAPTER 1. BIOLOGICAL BACKGROUND

There are two main advantages of phage therapy [18] when compared to antibiotics
treatment. Antibiotics eliminate bacteria regardless of whether the bacteria are harm-
ful, beneficial or do not affect the body. This in turn leads to damage of gut microbiota,
which can create a change in bacterial metabolites, disrupt bacterial signalling and an-
timicrobial peptide secretion or damage regulation of the function of gut immune cells
[32]. Unlike antibiotics, phage therapy targets only a specific type of bacteria allowing
the body to maintain a healthy microbial environment [18].

Another advantage is that, unlike antibiotics, bacteriophages are alive and as such
are subject to evolution. Because bacteria are evolving, they can gain resistance to
antibiotics to which they are exposed. When a large variety of bacteria gain resistance
to an antibiotic, the antibiotic is rendered ineffective. Similarly, when a bacteria gains
resistance to multiple antibiotics, the treatment becomes even more difficult. Presently,
many multiple antibiotics resistant bacteria strains already exist, like some strains of
Staphylococcus aureus or Mycobacterium tuberculosis [10]. As a result, it becomes
necessary to develop a new antibiotic. However, this demands arduous research as well
as substantial financial support.

In contrast, when a bacteria develops resistance to a particular strain of bacte-
riophage, the bacteriophage as a result of its evolution develops another method of
infecting that bacteria, bypassing the resistance to the virus. Since this process hap-
pens naturally, uncovering new phages capable of infecting bacteria is significantly less
demanding. It also implies an inexhaustible supply of treatment for bacterial infections,
which is becoming increasingly more important with bacteria gradually developing re-

sistance to an increasing number of antibiotics.

1.2 Life cycle of a phage

For the phage to infect a bacteria, its tail fibres bind to specific receptors on the
surface of the bacteria. While tail fibres and receptor pairing are highly specific, differ-
ent types of phages might use the same receptors on membrane [11]. The phage then
creates a puncture in the bacterial membrane. Next, the nucleic acid is expelled from
the phage through its tail and injected into the bacteria. When in the cytoplasm, the
viral genome in some cases becomes circular and resembles a plasmid. After entering
the bacteria, nucleic acid enters one of two cycles: lytic or lysogenic.

In the lytic cycle (Figure 1.2), the viral nucleic acid is transcribed into messenger
RNA (mRNA). If the viral genome consists of DNA, it is directly transcribed into
mRNA. In case when it consists of RNA, it is first transcribed using an enzyme, reverse
transcriptase, into DNA and then transcribed into mRNA. This mRNA utilizes cellular
mechanisms of the host to destroy the nucleic acid of the host [11]. After the destruction

1.2. LIFE CYCLE OF A PHAGE)

O

Bacteriophage
@ Viral genome ﬂ'
Bacterial _ . N Z N A
3\
-/

T (T (>

Landing Attachment Penetration

t lp

Newly formed /
bacteriophages Viral genome &, Capsomere

L oy % = AT

A) b 7.\ o 4)

\@ . J \ﬁ) - \Eﬁ ° o g

Lysis Assembly DNA and protein
synthesis

Figure 1.2: Lytic cycle.

of the host nucleic acid, the viral genome is replicated and transcribed to produce
proteins required for the assembly of new viruses. After enough proteins and the viral
genome is produced, they are assembled to create new bacteriophages. Next, the phage
produces the enzyme, endolysin, which causes the lysis of the cellular membrane. By
destroying the membrane, newly formed bacteriophages are released, ending the lytic

cycle.

Bacteriophage O O
I O Viral genome k“'\IL*‘
el S
Bacteria \ @ —b @ ’/—F\ (ﬁ)

Landing Attachment Penetration

- oy
Ve ¥ Incorporation of
Viral genome

—
(») -
new bacterial \ g /

cells o = (T |
N =

Lysogeny

Figure 1.3: Lysogenic cycle.

The lysogenic cycle (Figure 1.3) differs from the lytic cycle by not immediately de-
stroying the nucleic acid of the bacteria. Instead, it integrates its nucleic acid into the
host genome, creating prophage. This is accomplished either by site-specific recombi-
nation or by random transposition [11]. After integrating into the host genome, the
prophage remains in a dormant state. The cellular mechanism of the bacteria remains
unaffected by the prophage, so the bacteria continues its regular functions without
alteration. During cell division, the prophage replicates with the host chromosomes
resulting in the new bacterial cells already being infected by the phage. This process of
replication is repeated until the conditions of the environment deteriorate. The deterio-
ration can be induced by physical factors like UV radiation, low nutrient concentration
or chemical factors. When the conditions deteriorate, the prophage might switch from

lysogenic to the lytic cycle.

6 CHAPTER 1. BIOLOGICAL BACKGROUND

The lysogenic cycle of the phage has the advantage of increasing the number of
bacteriophages created from a single specimen. Since the phage is replicated during
cell division along with the host cell, the number of proteins required to infect the same
number of hosts is halved with each division, meaning the phage utilizing the lysogenic

cycle can reproduce in worse conditions than a phage only utilizing the lytic cycle.

1.3 Endolysins

Because the purpose of phage therapy is the treatment of bacterial infection, the
part of the life cycle of a bacteriophage of most interest is the production of endolysin.
Endolysins, alternatively termed phage lysins, are peptidoglycan hydrolases used by
bacteriophages to enzymatically degrade the cellular membrane of the host bacteria,
resulting in osmotic imbalance leading to rapid lysis of the membrane [26]. The struc-
ture of lysins is in big part affected by whether the targeted bacteria are Gram-positive
or Gram-negative, as the cellular membranes of these groups have different structures.

Endolysins of bacteriophages targeting Gram-positive bacteria have evolved in a
way, where catalytic activity and substrate recognition are separated into two distinct
varieties of functional domains, enzymatically active domains and cell wall binding
domains [26]. Enzymatically active domains impart the catalytic mechanism of lysin,
the mechanism for cleaving specific bonds in a cellular membrane of bacteria. The cell
wall binding domain is responsible for targeting the lysin to its substrate and keeping
it bound to parts of the cell wall after cell lysis, reducing the probability of lysis of
surrounding cells not yet infected by the phage.

On the contrary, endolysins of phages targeting Gram-negative bacteria tend to be
small single-domain globular proteins without a specific domain for binding to the cell
wall [26]. Unlike endolysins from Gram-positive background, damage to surrounding
bacteria in the case of Gram-negative bacteria is prevented by its characteristic outer
membrane, which protects the cell wall from the outside environment. Lysin is encased
in the outer membrane, resulting in the prevention of damage to other bacteria. It is
surmised, that these endolysins fulfil their catalytic role more effectively as opposed
to endolysins for Gram-positive bacteria [26], which are bound to one site on the
membrane and as such reduced effectivity.

To further increase the diversity of possible endolysin architectures, the structure
of endolysins from Gram-positive background can have more than two domains. Most
prominent structures include two N-terminal enzymatically active domains and one C-
terminal cell wall binding domain, central cell wall binding domains separating two ter-
minal enzymatically active domains, among others [26]. Almost all currently described

Gram-positive endolysins are encoded by a single gene, simplifying their localization

1.4. DATA PREPARATION 7

in the phage genome.

Enzymatically active domains encompass the ability of an endolysin to catalyze
a breakdown of the cell membrane. Based on the bond of the cell membrane the
endolysin attacks, endolysins can be classified into five different groups: N-acetyl-3-D-
muramidases (lysozymes) and lytic transglycosylases that cleave one of the glycosidic
bonds of a sugar strand, N-acetyl-3-D-glucosaminidases cutting another glycosidic bond
in the sugar strand, N-acetylmuramoyl-L-alanine amidases hydrolysing amide bond
between sugar and peptide parts and endopeptidases cleaving the peptides making up
interconnecting stem portion of the membrane [26]. Any of these methods lead to
destabilization and breakdown of the cell membrane.

Cell wall binding domains allow an endolysin to recognise and bind (not using a
covalent bond) to ligands within the cell membrane or other molecules associated with
the cell wall. This significantly reduces the range of activity for the enzymatically
active domains. The spectrum of the cell wall binding domains can range from encom-
passing an entire genus of bacteria (lysostaphin domain targeting SH3b-like cell wall
common to staphylococcal strains), making it generally broader than the host range of
the particular phage, to the specificity of a single strain (endolysins of Listeria phage

binding to groups of Listeria containing very specific ligands) [26].

1.4 Data preparation

To gain usable information about bacteriophages, it is necessary to extract their
DNA and be able to analyse it. As a result of the phage DNA being relatively small,
the phage needs to be replicated to provide a viable sample. The DNA then needs to
be extracted from the phage. Once the phage DNA is extracted, it can be sequenced

to provide data for bioinformatics analysis.

1.4.1 Propagation and extraction

The propagation and extraction of phage DNA are dependent on the species of phage
in question [14]|. In general, however, the process is carried out by following similar
steps. Since phages do not have their own replication apparatus, in order to acquire
a sufficient amount of DNA for sequencing, it is necessary to utilize the replication
apparatus of bacteria. For this purpose, bacterial hosts are first grown independently
in an advantageous environment.

Once the hosts are sufficiently grown, a solution containing phages is mixed in with
the host culture. The resulting culture is then incubated to facilitate phage replication.
In the process, the lysis of the host is achieved, releasing the replicated phages into

the environment. After a period of time, the culture is transferred to a centrifuge and

8 CHAPTER 1. BIOLOGICAL BACKGROUND

spun. The bacterial pellet settled at the bottom of the substrate is discarded while
the remaining supernatant is kept. The resulting substrate is then treated with RNase
and DNase. After, a solution of NaCl and PEG (poly(ethylene glycol)) is added to the
culture and incubated. As a result, the phage particles then precipitate.

The resulting substrate is then centrifuged, creating a phage pellet from the precip-
itated particles. The pellet is extracted from the substrate and resuspended in a buffer.
To remove phage protein capsid, phenol is added and the substrate is incubated. After
the protein dissolves, the aqueous layer is removed. Ethanol is then added to the DNA

and the substrate is centrifuged. Finally, extracted DNA is concentrated.

1.4.2 Sequencing

After the extraction of phage DNA is completed, the DNA needs to be sequenced
in order to be analysed by our tool. There are many ways to sequence DNA. Since
our tool is specialized to work with reads from Illumina sequencers, the process of

sequencing described is focused on Illumina MiSeq [25].

i - Adapter
] DNA fragment
DNA # /
l B erce taum
. — \ of primers
= Adapter
b =]
Adapters Ul :]ll [e
1 h 1
Prepare genomic DNA sample I Attach DNA to surface
Randomly fragment genomic DNA 1 b Bind single-stranded fragments
and ligate adapters to both ends of !‘] randomly to the inside surface
the fragments. | of the flow cell channels.
Nucleotides i
—_ \L*Auaded
T]
(B p L I 1 1.8
] "\'K!‘/ " ‘lll‘ll‘ 7
1 ! " — e
et Bridge amplification I 111y Denature the double
g Add unlabeled nucleotides ' stranded molecules
L and enzyme to initiate solid: L
1 phase bridge amplification. l
° (T
l First chemistry cycle:
I . determine first base .
i We? Toinitiate the first

. .7 sequencing cycle, add
. allfour labeled reversible (G

B
/ terminators, primers, and
I;?‘ 'H DNA polymerase enzyme

| to the flow cell.
1 R
Al VANTHEL LD Before initiating the
N : f
'A- R I Image of fir y cycle ycycle
' 1 After laser excitation, capture the image. The blocked 3 terminus.
(" of emitted fluorescence from each and the fluorophore
1 cluster on the flow cell. Record the fiom each incorporated
i identity of the first base for each cluster. base are removed.
Laser
[J ® a G [J
& =Y - >G @ —> GCTGA...
LB] ® G ® 0 ® 0 G 6

Sequence read over multiple chemistry cycles

Repeat cycles of sequencing to determine the sequence
of bases in a given fragmenta single base at a time

Figure 1.4: Library preparation (a) and sequencing (b) using Illumina Miseq[15].

Before starting the sequencing, the sequencer requires a DNA library (Figure 1.4a).

1.4. DATA PREPARATION 9

To create a DNA library, DNA is first fragmented into small parts (500-1000 bp). After
the addition of special barcoding sequences to the fragments, short oligonucleotides
(adaptors) are bound to the fragments. The adaptors are complementary to primer
sequences on a glass disc. The fragment is attached to the glass disc by a primer on
one end, while the other is held close to another primer using its adaptor. After the
attachment to the glass disc, a new strand of DNA complementary to the attached
strand is synthesized. This new strand is attached to the primer the first strand is held
close to by its adaptor. After the synthesis, the two strands separate, and the bond
between the adaptor and the primer is released. This form of replication is repeated
many times, creating thousands of copies of the fragment in close proximity forming a
cluster. This happens on the glass disc for every fragment of DNA, creating a DNA
library.

With the library created, the sequencing can proceed (Figure 1.4b). During se-
quencing, a substrate called "mastermix" is used. Mastermix contains primers, DNA-
polymerase and 4 different types of marked fluorescent nucleotides with a sequence
inhibiting polymerization (terminators) on its 3’ -end. The nucleotides are bound to
the fragments of DNA based on complementarity. Next, the excess mastermix is re-
moved from the disc. The sequencer then measures the fluorescence of the bound
nucleotides to determine their identity. After the measurement, the terminators split
from the sequence allowing another nucleotide to connect. This process is cyclically
repeated until the entire library is read. The result is a set of sequences of DNA with

adaptor sequences. These sequences are then processed by bioinformatic pipelines.

10

CHAPTER 1.

BIOLOGICAL BACKGROUND

Chapter 2

Available tools

The discovery of antibiotics reduced interest in phage research, leading to a lack of
tools designed for phage annotation. When the analysis of phage DNA is required,
many companies either execute the analysis manually by using individual bioinformat-
ics tools or use a tool not designed for phage annotation. In this chapter, we introduce
some tools used not designed for phage annotation as well as some recent tools purpose-
built for this task. We also explain the main differences between our approach and the

tools mentioned.

2.1 multiPhATE

One of the most recent tools for phage annotation is multiPhATE [6]. It is a high-
throughput pipeline driver invoking the PhATE annotation pipeline, allowing the an-
notation of a specified set of phage genomes. PhATE uses up to four gene callers:
GeneMarkS, Glimmer, Prodigal and Phanotate with Phanotate being developed most
recently and more optimized for use with phage genomes [21]. As input, multiPhATE
uses a configuration file with a list of genomes for PhATE and a set of parameters
controlling software execution. The user specifies the names of files in fasta format
containing phage genome, output directories, and other data required for genome anal-
ysis. The user can also specify some optional analyses.

For each genome, PhATE begins by using gene callers previously specified by a user
to perform gene calling. In case of multiple gene callers being used, PhATEs output
is a table containing side-by-side comparisons of the gene calls as well as numbers and
lengths of gene calls for each algorithm. It also includes several common and unique
calls to each algorithm.

After the gene calling, PhATE uses blastn (nucleotide databases search), blastp
(protein databases search) and jackhmmer to identify similarities to the phage genome

and predict its gene and peptide sequences using multiple databases: National Center

11

12 CHAPTER 2. AVAILABLE TOOLS

of Biological Information (NCBI) virus genomes, Refseq proteins, refseq genes, virus
proteins and Non-Redundant protein sequence database, Swissprot, Phage Annotation
Tools and Methods, Kyoto Encyclopedia of Genes and Genomes and a fasta sequence
dataset derived from the database of phage Virus Orthologous Groups (pVOG).

The output of PhATE includes: output from gene call algorithms, gene and trans-
lated peptide files in fasta format, combined-annotation summary files, raw Blast and
HMM outputs, fasta files containing predicted peptides and the members of identified
pVOG families where the peptide may be assigned. Using multiPhATE results in all
genomes being annotated.

Our pipeline in large part emulates this behaviour, however, there are some differ-
ences. While multiPhATE uses phage genomes as an input, our tool uses raw reads
from the sequencer, making it more specific to the data assemblies are from. Unlike
multiPhATE, our tool does not require the entire genome for its operation. We have
also prioritized locating possible endolysin sequences as opposed to annotating the
entire genome. This means that while results from multiPhATE need to be further
analysed to find phage endolysins, our tool outputs endolysins directly. To do this, our
tool uses a different database. Our database used in Blast is custom made and only
includes known endolysins. Almost all differences between our tool and multiPhATE
are caused by our desire to be able to input raw reads from the sequencer and receive
a direct output containing endolysins. In simpler terms, we prioritize simplicity of

execution to the possibly more versatile tool.

2.2 RASTtk

Another tool used for phage annotation is the RAST tool kit (RASTtk) [4]. It is a
modular version of the annotation tool RAST designed to allow the creation of custom
annotation pipelines. Even though RAST itself is designed to work with bacterial and
archaeal genomes, using the tool kit gives users the opportunity to create pipelines
capable of annotating phage genomes using scripts featured in it. During annotation,
RASTtk uses the specified scripts to produce data, which is then collected to form the
whole genome. While the workflow of custom pipelines is highly specific, There exists
an abstract layout that the RASTtk pipeline follows.

The pipeline begins by transforming a set of contigs into a file format called Genome
Typed Object (GTO). The transformed file is formatted as a human-readable JSON
file. To do this, RASTtk uses the script "rast-create-genome." Following this trans-
formation, each step takes an input GTO and enhances it using another script. This

creates a new and enhanced GTO file. The set of scripts used to enhance the informa-
tion in the GTO file is defined by the user.

2.2. RASTTK 13

In the case of phage annotation, one of the useful features is rast-call-features-
prophage-phispy, which can be used to find the section of contigs with phage DNA. This
is done by using a tool PhiSpy designed to find prophages in bacterial genomes by com-
bining similarity- and composition-based strategies. Other useful scripts are rast-call-
features-CDS-genemark /-glimmer3/-prodigal that use gene callers GeneMarkS, Glim-
mer or Prodigal to find coding sequences in the contigs. The user can also use different
methods to annotate proteins.

After every specified script enhanced the input, the resulting GTO file can be
exported using rast-export-genome. This script can return the results in different
formats, including FASTA, Genbank, and feature table. [4]. The output includes all
input sequences with features annotated by selected scripts. For phage annotation,
these results need to be filtered afterwards to only include sequences containing phage
DNA.

Since RASTtk, similarly to default RAST, is designed to work with bacterial and
archaeal genomes, many of its scripts are designed to deal with the annotation of those
types of genomes. For example, every gene caller available in RASTtk is designed to
look for genes in bacterial genome [4]. These gene callers are still able to find phage
genes since phages generally use the same start and stop codons. However, they are
largely incapable of discovering overlapping genes, which can appear in a viral genome
due to its reduction. For this purpose, Phanotate used by our tool is better, since it is
designed to work specifically with the phage genome.

As mentioned with multiPhATE, RASTtk is not designed to work with raw reads
from a sequencer, allowing it to receive input from a larger variety of sequencers at
a cost of increased complexity. Since the resulting output from RASTtk contains all
sequences, not just the requested ones, the output needs to be further modified by re-
moving sequences not fulfilling the search criteria. This again increases the complexity
of the annotation process.

Both tools share a common issue in not having a conda package. Instead, both tools
need to be manually downloaded and installed. Additionally, every dependency needs
to be installed separately. This results in the installation of the tools itself being very
complex and tedious. Our pipeline does not possess this problem and can be installed

with all of its dependencies by using a single command, making it much simpler.

14

CHAPTER 2. AVAILABLE TOOLS

Chapter 3
Pipeline

Our pipeline uses a combination of various tools to modify input from Illumina
sequenced paired-end reads. In this chapter, we explain used tools and their integration

into the pipeline.

3.1 Seqtk

Seqtk[17] is a tool capable of fast processing of sequences in FASTA or FASTQ
format. In our pipeline, we use the ability of seqtk to extract a subsample of reads
from an input file. By using the same random seed for two paired FASTQ files, we get
a fixed set of paired reads with the requested number of sequences. The subsampling
is especially useful when working with large files because due to the nature of SPAdes,
which requires notably larger available memory than the size of the input files. If the
client does not possess the required amount of memory, by using random subsampling,
the tool is still able to assemble the sample into contigs.

Lowering the number of reads results in shorter runtime of SPAdes at the cost of
accuracy. At this stage our tool focuses on accuracy, so the number is set to the highest
value. The value is adjustable for added flexibility allowing our tool to operate with

lower memory demands.

3.2 SPAdes

SPAdes|3]| si a short read assembler designed for the assembly of small single-cell and
multi-cell bacterial reads. While assemblies of viral DNA are not its speciality, it has
been proven that SPAdes produces consistently accurate results even when compared
to virus-oriented assemblers [29]. SPAdes works on reads from Illumina and IonTorrent.
It can also create hybrid assemblies using PacBio, Oxford Nanopore and Sanger reads.

The reads from Illumina can be either paired-end, mate-pairs or single reads. The

15

16 CHAPTER 3. PIPELINE

method used for assembly is based on using k-mers, subsequences with a length of k
from reads, to create a de Bruijn graph on which further theoretical operations are
executed. The assembler also performs an error adjustment, increasing the reliability

of produced contigs.

3.2.1 Terminology

To understand the algorithm SPAdes uses, several terms need to be explained. Hub
is a vertice of a directed graph with the number of edges leading to it is different from
one. The number of edges leaving it is different from one as well. When two hubs are
connected by a path of non-hub vertices, the path is called a hub-path (h-path). Each
edge in the graph belongs to a unique h-path. For every h-path, its first edge is called
a hub-edge (h-edge).

3.2.2 Algorithm

The algorithm of SPAdes can be simplified into four stages: assembly graph construc-
tion, k-bimer adjustment, paired assembly graph construction and contig construction
[3].

The first stage begins with the construction of a multisized de Bruijn graph. This
graph is created from k-mers by creating vertices with the first labelled by the prefix
of the k-mer and the second by its suffix. These vertices are connected by an edge
representing the k-mer. Merging vertices with the same labels results in the creation
of a de Bruijn graph. To make this graph multisized, a different value of k is used
based on the coverage of a region. In regions with lower coverage, the value of k used
is lower. Conversely, in high-coverage regions, the value used is higher.

With the graph created, SPAdes locates and corrects errors in the graph caused by
errors in reads. To discover which h-paths in the graph are correct, it implements an
improved gradual h-path removal strategy. One of the improvements lies in iterating
through h-paths and updating the list of h-paths as soon as one is removed. It also
at some points runs only bulge corremovals, which are considered safer than other
removals, because they maintain information on removed h-paths. Lastly, it restricts
the removal of h-paths to only those, which start with a hub with at least two outgoing
edges and end with a hub with at least two incoming edges. For tips, this restriction
only applies to the hub which has both incoming and outgoing edges. Every type of
error corrected using this strategy has a procedure designed to fix it [3].

Miscalled bases and indels in the read tend to create two distinct paths, with at
least one being an h-path, connected to the same start and stop hubs, called bulges
(Figure 3.1A). To fix these bulges, SPAdes uses a procedure called "bulge correction
and removal" (bulge corremoval). In this method, SPAdes iterates through all h-paths

3.2. SPADES 17

Figure 3.1: Potential errors in the graph: bulge (A), tip (B), chimeric read (C), repeat
(D) [3].

in increasing order of coverage. Once it locates a bulge, from the two paths forming
the bulge, every edge of the h-path is mapped to an edge in the other path. After
the mapping, the mapped path is removed from the graph, and the coverage of the
remaining path is increased. The information about the path removed in the corremoval
is stored in a map, which makes it possible to backtrack corremovals. SPAdes takes
advantage of the backtracking of corremovals later when creating a paired assembly
graph.

Errors at the start or end of a read can lead to a sequence of multiple stray edges
protruding from the graph called tip (Figure 3.1B). SPAdes determines, whether an
h-path is a tip by considering whether there is an alternative h-path, if the length of
the h-path is below a specified threshold and if the average coverage of the h-path is
below a specified threshold. To perform the removal of tips, SPAdes iterates through all
h-paths in order of ascending length up to the length threshold. Each h-path satisfying
the conditions of being a tip is removed from the graph. When a path is removed, the
parameters of the affected part of the graph are recomputed to reflect the new version
of the graph. This makes it possible to remove all tips in a single iteration through the
graph.

Chimeric reads and incidental short overlaps between reads sometimes lead to the
creation of chimeric h-paths (Figure 3.1C). For an h-path to be considered chimeric,
its start hub has to have at least two outgoing edges and its stop hub has to have no
more than two incoming edges, and its length and coverage must be below a specified
threshold. Additionally, some heuristics are employed to remove chimeric h-paths that
do not satisfy the coverage limit because of amplification in the reads. To find h-paths
satisfying the conditions, SPAdes iterates through all h-paths in order of ascending

coverage.

After these graph simplifications, all isolated h-paths with lengths lower than 200

are removed.

In the second stage, SPAdes uses read-pairs to estimate the genomic distance be-

18 CHAPTER 3. PIPELINE

tween h-paths linked by them. The pair of h-paths is then connected by aggregation
of the estimated distances between reads in read-pairs linking the h-paths. To connect
the paths, read-pairs undergo a series of transformations [3].

In B-transformation, the read-pairs are transformed into k-bimers. Each k-bimer
contains two k-mers from the read-pairs and a distance between the k-mers calculated
as:

d—1iy+ 1
where 7; and 75 are starting positions of the k-mers on the reads and d is the approximate
genomic distance between reads. Since each k-mer is represented in the graph as an
edge, the k-bimer is also referred to as a "biedge".

Following B-transformation, H-transformation transforms biedges into h-biedges.
Every biedge defined by edges residing on h-paths undergoes this transformation. Since,
as mentioned earlier, every edge in the graph belongs to an h-path, H-transformation
is performed on all biedges. For biedge with edges a and b and distance between them
d, a h-biedge H(alb,d) is constructed as follows:

H(a|b,d) = (h-edge(a)|h-edge(b), D)

The variables h-edge(a) and h-edge(b) represent h-edge on the same h-path as the edge

in question. The value of D is calculated as:
D=d+i, —iy

with i, (i) being an index of which edge from the beginning is a (b). By executing this
transformation, information about every h-biedge is collected into a histogram. Every
histogram is a multiset of h-biedges with the same h-edges. Since the index for edges
on the same h-path can be different, the distance estimate specified in h-biedge may
vary.

After creating the h-biedge histogram, it undergoes a transformation. The his-
tograms and the paths of the graph are analyzed by a fast Fourier transform algo-
rithm. The analysis derives accurate distance estimates between h-edges. Using an
adjustment operation, each histogram is transformed into a small number of adjusted
h-biedges with distance estimates.

The h-biedges adjusted with A-transformation are then used by E-transformation to
recalculate distances between biedges. For each h-biedge («|f3, D), E-transformation
creates a set of biedges (alb,d), where a (b) belongs to the same h-path as a (f).

Distance d for each biedge is calulated in the same way as in H-transformation:
d=D —i,+ i

where i, (i) is an index of which edge from the beginning is a (b). The result of the

transformation is a set of biedges with accurate distance estimates.

3.3. PHANOTATE 19

In stage three, SPAdes constructs a paired assembly graph. To construct a paired
assembly graph, SPAdes attempts to find an Eulerian cycle consistent with all biedges
in the de Bruijn graph [3]. An Eulerian cycle is considered consistent with a biedge if
it contains instances of both edges from biedge at a distance specified in biedge. By
creating a de Bruijn graph from a set of biedges where vertices are labelled as the start
or stop of a biedge and directed edges labelled as biedges, the h-paths of the resulting
graph are shared by the Eulerian cycles consistent with biedges. To reduce the time
and memory requirements, SPAdes uses h-biedges to create the graph [3]|. It creates
a graph in a way, where vertices are labelled as start with the biedge with the lowest
offset and stop with the biedge with the highest offset. The edge between the vertices is
then labelled with the h-biedge. Since doing this only simplifies the graph, the h-paths
in it are shared by Eulerian cycles consistent with biedges as well. The cycles are found
in the assembly graph by pairing it with the h-biedge graph.

In the final stage, SPAdes outputs created contigs from the paired assembly graph.
The contigs are represented by the h-paths in the paired assembly graph.

Since our tool is designed to work with paired-end reads, we use SPAdes in a
configuration using the paired-ends library. Our tool also uses the default values for
k-mers of 21, 33 and 55. Even though the input reads contain metagenomic data, we
do not use metaSPAdes because we are unsure if technical sequences are present in the
data and quality control could increase the runtime of the tool. For the same reason,

we also avoid using -careful flag.

3.3 Phanotate

Phanotate[22| is a gene caller designed to identify the location of genes in phage
genomes. The location of a gene in the DNA is called an open reading frame (ORF).
The DNA covered by an ORF is transcribed and further utilized. Phanotate identifies
the location of genes by locating ORFs. Since gene callers designed to work specifi-
cally with phage genomes are sparse, the prediction of phage genes is more accurate
compared to many different gene callers. It accomplishes this by working under two
assumptions. Firstly, since the phage genome is limited by physical constraints, the
genome needs to be compact [13|. The compactness is partially provided by allow-
ing a minimal amount of non-coding DNA. Secondly, because phage genes tend to be
co-transcribed, they are ordinarily situated on the same strand of DNA [1]. Taking
this into account, Phanotate handles the genome as a network of paths where ORFs
are more favourable while overlapping ORFs and switching of DNA strains are less
favourable. Phanotate then utilizes the Bellman-Ford algorithm to find the best path
in the resulting weighted graph.

20 CHAPTER 3. PIPELINE

3.3.1 Algorithm

First, Phanotate creates a weighted graph representing ORFs. As a start for ORF,
it allows ATG, GTG and TTG codons. To end an ORF, codons allowed are TAA,
TAG and TGA. By default, the minimal length of an ORF is set to 90 nucleotides.
In the graph, the nodes represent only start and stop codons. Edges between them
have different meanings depending on what nodes they connect. Edges connecting
the start node with the following stop node in the same read frame and on the same
strand of DNA represent ORF. Gaps are represented by edges connecting the stop
codon and either subsequent start codon in any reading frame on the same strand or
subsequent stop codon on an alternate DNA strand. Overlaps are also represented by
edges connecting the stop codon. However, they connect to either the preceding start
codon in another reading frame on the same strand or the preceding stop codon on an
alternate strand. Since phages seldom have gaps between ORFs, only ORFs separated
by around 300 bp and less are connected by an edge. If the sequence contains a large
section of DNA without an ORF, the ORFs on both sides of the section are connected
with an edge with a linear penalty.

The weight of the edges is calculated based on their nature. For the edge repre-
senting ORF, Phanotate calculates weight as an adjusted likelihood of not finding a
stop codon in an ORF of the length. This is done by first counting the fraction of each
base in each ORF. This then determines the probability of encountering a specific end

codon, which is used to calculate the probability of encountering any stop codon:
P(stop) = P(TAA) + P(TAG) + P(TGA)

Calculated probability is then used to calculate the probability of not encountering any
stop codon:
P(not stop) = 1 — P(stop)

The P(not stop) value is sufficient in genomes having an average content of nucleotides
G and C (GC content). To avoid the creation of spurious ORFs with substantial
length in genomes with high GC content, Phanotate utilizes minimum and maximum
GC frame plots (GCFP). The GCFPs are generated in several steps.

First, three read frames of the genome are read starting from an appropriate base
and looking at a codon starting with that base to calculate the percentage of GC bases
on a 120 bp window of each frame. Next, by iterating through codons of a set of ORFs
starting with the ATG codon, Phanotate determines, which position of codon has the
highest GC content and maintains a running total for that position. For a minimal
GC frame plot, the process determines the lowest GC content. This results in a set
of frequencies of GC bases for each of the three positions in ORFs starting with the

ATG codon. The frequencies are then used to estimate the favoured reading frame at

3.3. PHANOTATE 21

any location. Each of the frequencies is then divided by the highest, resulting in values
ranging between zero and one, with one being the maximal or minimal GC frame.
These values are then used to exponentiate P(not stop).

The scores of ORFs are further modified by the weighted ribosomal-binding site
(RBS) score. The RBS score is determined using the Shine-Dalgarno RBS system
[12]. ORF scores are adjusted more by the probability of the first codon being a start.
The probability is calculated as a normalized frequency of start codons from genes on
2133 phage genomes contained in GenBank. The weight of edges representing ORF is
negated in the final calculation to denote them as favourable in the graph. The final

calculation of the weight of the edge representing ORF is:

1
Wy = — .RBS - START

codons
H (P(not Stop)GCFPmaxmaxGCframe(c)GCFPminminGCframe(c))

c=1

In cases, where the edge represents a gap or an overlap, the next ORF can be on
any strand of the DNA. Since the phage genes tend to be on the same strand, the
switch of strands is penalised by adding a multiplicative inverse of the probability of
switch to the resulting weight of the edge. The probability is expressed by a variable
P(switch) attaining a value of 0 or 0.05 calculated from a set of annotated genes from
2133 phage genomes available on GenBank.

The weight of the gap is calculated using a similar method to the weight of ORF.
The differences are that gaps are not corrected by the GC frame plot and that the
average probability of not finding a stop codon is genome-wide and exponentiated by
the length of the gap. In the case of a switch, a multiplicative inverse of variable
P(switch) is added to the multiplicative inverse of the calculated probability resulting

in the equation:
1 1

Woap = P(not stop)ter * P(switch)

For edges representing overlaps, the weight is calculated as the average of the two

weights of the ORFs in the overlap by the length of the overlap. Similarly to the
weight of the gap, in the case of a switch, a multiplicative inverse of variable P(switch)
is added, resulting in an equation:

1 1

Wgap = (Dot stop)1 +P(not stop):) en * P(switch)
2

The calculated weights are afterwards transformed into distances by using the mul-
tiplicative inverse. With the distances and nodes, the resulting weighted graph is pro-
cessed by the Bellman-Ford algorithm. Phanotate then writes ORFs from the shortest
path calculated by the algorithm as an output.

Our tool slightly modifies Phanotate. The reason behind this is that since Phan-

otate is designed to work on whole genomes, it assumes that every input sequence

22 CHAPTER 3. PIPELINE

contains at least one ORF. However, our tool does not produce entire genomes for
Phanotate to work on due to redundancy and a possible decrease in processing speed.
Therefore, we modified the script so that if a sequence does not contain any ORFs,
Phanotate will skip that sequence. We also set the format of the output as tabular,
since when Phanotate exports output in fasta format, it does not include the informa-
tion on which strand was an ORF found. This information is not crucial to our tool,

however, it could prove useful in further analysis.

3.4 BEDTools

BEDTools|24] is a set of utilities created to efficiently perform common operations
on genomic features. It uses a genome-binning algorithm. This algorithm assigns
genomic features to 16 kb segments (bins) for the length of the chromosome using a
hierarchical indexing scheme. Due to the assignment of bins, the tool only needs to
compare features of two sets shared between the same or nearby bins, resulting in an
accelerated search for overlapping features.

Our tool employs operation getFasta. This operation extracts parts of FASTA
sequences based on a file in bed format. The bed file format is used to contain infor-
mation on locations of examined features of sequences. The format can have between
3 and 12 columns per feature with 3 required being the name of the sequence and the
first and last position of the feature. Additionally, our bed file contains a name for the
feature and the strand on which the feature is located. The score is required in the file
to maintain the correct file structure. Since we do not need it for other purposes, the
score is marked as a dot, meaning it is omitted.

In our pipeline, the output from Phanotate is in tabular format, since in FASTA
format Phanotate removes information on which strand the discovered ORF is located.
Because this information can be useful in further analysis of the sequences, the output
from Phanotate is exported in tabular format. Next, the output is transformed into
bed format using UNIX utilities. Afterwards, the bed file is used to extract FASTA
sequences of discovered ORFs. While our method is slower than directly exporting
the results from Phanotate in FASTA format, the difference in expediency is negligible

even with large inputs.

3.5 Transeq

EMBOSS transeq|19] is a tool designed to translate nucleotide sequences into their
protein equivalent. Translation can be performed in different combinations of reading

frames. If necessary, it can be restricted to specific sections of sequences. The transla-

3.6. BLAST 23

tion is facilitated by a predetermined genetic code with a selection of codes available
in the tool.

Transeq is used by our pipeline to translate ORFs discovered by Phanotate into
protein sequences. Since the function of a protein is set by its protein structure rather
than its nucleotide structure, the translation allows the pipeline to more accurately
predict proteins with the desired function. Input for transeq in our tool is already
filtered to only include ORFs, making restriction of the tool to specific sections un-
necessary. For the same reason, the only translation performed is in the first forward
frame. The genetic code of phages is identical to the standard code used by transeq,

making it possible to omit in the setup of the tool.

3.6 Blast

Basic Local Alignment Search Tool (Blast)[2] is a sequence analysis tool designed
to perform a sequence similarity search of DNA or protein sequences on a database
of known sequences to infer the function of a sequence from similar sequences in
the database. It performs local alignments using a similar method as the Smith-
Waterman algorithm [27]. The main advantage of using BLAST over the standard
Smith-Waterman algorithm lies in its ability to produce results quickly. To achieve
quick results, BLAST uses heuristics. This causes BLAST to be less accurate and per-
mits some similarities to not be detected. The drawback of lower precision is largely
offset by BLAST being approximately 50 times faster than the Smith-Waterman al-
gorithm, making BLAST the most widely used tool for the examination of DNA and

protein sequences.

3.6.1 Algorithm

BLAST workflow is divided into several steps [7]. First, BLAST reads the query
search parameters and the database and removes low-complexity regions and sequence
repeats from the query. The region is considered low-complexity in cases where its
sequence is composed of a small number of elements. These regions are removed to
prevent them from confusing the program by having high scores. The removal of these
regions is facilitated by programs SEG and DUST, used on protein and DNA sequences
respectively. Filtering of tandem sequences is handled by program XNU.

After filtering unwanted regions, BLAST makes a word list of the query sequence.
A word in this sense is a subsequence of fixed length. The list is created by passing
through the sequence one base at a time and creating a word starting from each base
with the fixed length until every base is included in a word. The words are then assigned

scores by comparison to all words of the same length. The score of the comparison of

24 CHAPTER 3. PIPELINE

each pair is created according to a scoring matrix. By using a neighbour word score
threshold, the number of possible matches is reduced. For a word to remain as a viable
matching word, its score is required to be higher than the threshold. The remaining
words form a search tree to allow their fast comparison.

The database is then scanned for exact matches with the remaining words. Matches
in the database are used as seeds for gap-free alignments. Afterwards, BLAST stretches
the alignment from the exact match location in both directions until the total score
of the alignment begins to decrease, creating high-scoring segment pairs (HSP). The
HSPs with scores lower than a cutoff score (S) are removed, leaving only significant
HSPs.

Using Gumbel extreme value distribution, the probability of score S being equal or

greater than variable x can be calculated as:
P(S > 7) = 1 — exp(—e o)

To calculate i, the equation used is:

_ log(Km'n')

e
In this equation, values of A\ and K are estimated by fitting the distribution of gap-free
alignment scores, query sequence and shuffled versions of the database, to the Gumbel
EVD. Since alignment starts near the end of a sequence is not likely to build optimal
alignment, the length of a sequence is shortened to the effective length labelled m’ and

n’ and is calculated as:

o A — In Kmn
H

o A In Kmn
H

The variable H represents the average expected score for each aligned pair of residues
in an alignment of two random sequences. Values in the lookup table given by Altschul
and Gish are A = 0.318, K = 0.13 and H = 0.4. These values can be used instead of
calculating custom ones, however, this method is not accurate.

One of the most significant values produced by BLAST is the predicted number of
times a random sequence from the database would by chance have the score S higher
than x. This value is called the expected score (E), and is calculated for a database

containing D sequences with the equation:
E~1—ePo>0D
When the probability is less than 0.1, the E value can be approximated using the

Poisson distribution:
E~pD

3.7. BLAST20UT 25

After calculating the E value, BLAST combines HSP regions into longer alignments
when possible. The Poisson method is then used to compare the significance of new
HSP regions. These HSP regions can contain gaps as well as insertions and deletions.
With the HSPs solved, BLAST returns an output with only matches, that have an E
value lower than a set threshold.

Our tool uses a custom database of discovered endolysins downloaded from the
database Phalp. Phalp database contains sequences for endolysins and tail fibre lysins
of bacteriophages [5]. From this database, we extract only sequences of endolysins.
We use a version of BLAST called BLASTP, which is used for alignment search on
protein sequences. The output we use from BLASTP is the query sequence id, id of
the subject sequence, start and end of the alignment on the query sequence, percentual
identity between sequences, and the length of an alignment and subject sequence. For

the search, we do not specify any other parameters.

3.7 Blast2out

Blast2out is our custom python script designed to transform tabular output from
Blast to desired output in fasta format containing sequences predicted to encode en-
dolysins. It includes several options for adjustment of the output format. As an input,
it requires a file containing ORFs in fasta format, parameter based on which the output
is sorted, desired minimal length of endolysins, whether Uniprot accessions of hits from
Blast should be included and output from Blast in tabular format. Blast2out requires
the ORF file and Blast output to have sequences sorted in the same order. Since the
script is only used as an output creator and the files are sorted in the same way by
default, it is deemed unnecessary to sort them in the script.

The script starts by reading entries from blast output. For each entry, it checks
if the name of the entry is the same as the name of the ORF sequence it holds in
its memory. While the names are the same, the script appends selected information
about the entries with a length greater than or equal to the minimal length set by the
user. Once the names no longer match, Blast2out calculates the coverage of the current
ORF. The calculation is done by first sorting information on coordinates of the hits
and then counting the number of bases of ORF covered by the entries. The result is
divided by the total length of the ORF. The product is the coverage of the ORF. The
name of the ORF, its coverage, entries covering it and the sequence are then appended
to the list of processed ORFs. After that, the script resumes reading the entries.

Once the entire input is read, the list containing processed ORFs is sorted based
on the option set by the user. The options for sorting include sorting by the name of

the ORF, length of its sequence, coverage by hits from Blast and amount of Blast hits

26 CHAPTER 3. PIPELINE

on the sequence. After sorting, Blast2out prints the results. If the option is set, the
results are printed with Uniprot accessions.

Our pipeline uses Blast2out to transform Blast output, which does not include all
the required information, into a file in fasta format. The sequence is crucial for our tool,
as it is what we consider a possible endolysin. We use the information about coverage as
an indicator of the likelihood that the ORF in question encodes endolysin. We do this
based on the assumption that to retain their lytic properties, the unknown endolysins
have a similar protein structure to endolysins already discovered. The Uniprot accession
is not included in our output, since it can be unnecessarily long and complicate the

reading of the results.

3.8 Snakemake

Snakemake|[16] is a text-based workflow management system designed to facilitate
reproducible and scalable data analyses. It uses a similar pattern to GNU Make [28|.
Analogously to GNU Make, Snakemake workflows are made up of rules that specify how
to create output files from input files. The rules form a directed acyclic graph based
on dependencies automatically resolved by the manager. Snakemake workflows are
described in a human-readable Python-based language, making them highly accessible.
To allow scalability, the scheduling algorithm of Snakemake can be provided with
specific information on priorities in the workflow as well as available resources.

Our workflow consists of six rules. There are no forks in the workflow, meaning
that all rules are executed in an exact sequence.

The first rule uses as an input two files containing paired-end reads and uses the
tool Seqtk to create a sample file with a specified number of sequences.

The second rule takes the output from the first rule, using SPAdes to make contigs
from raw reads. It then modifies the contigs file by removing unnecessary information
following the names of the contigs. The modified file is saved to the results folder along
with a GFA file containing information to create a graph from created contigs. These
files are moved to the folder to be accessible in case of further analysis of results and
are the output of this rule.

The third rule uses a modified contigs file as an input. It uses Phanotate to find the
locations of ORF in a tabular input, which is then modified using the awk command
into a bed file.

Using the bed file as an input, the fourth rule extracts ORF sequences from the
contigs file.

The fifth rule transforms the nucleotide ORF sequences into protein sequences using

Transeq.

3.9. PHENDOL 27

The sixth rule works with the file containing protein ORF sequences. By using
Blastp, it searches a database of known endolysins prepared beforehand for hits with
sequences in the input file. The rule then filters out hits, that have a low identity
or cover only a short part of a sequence from the database, with the awk command.
Finally, it uses Blast2out to attach hits to ORF sequences and calculate the coverage
of ORFs to determine which ORFs have a high probability to be endolysins.

When the workflow finishes, the folder for results contains four files: contigs.fasta
and assembly_graph_with_scaffolds.gfa from the first rule, ORF_phanotate.fasta
from the fourth rule and endolysins.fasta from the sixth rule. The predicted en-
dolysins are in the file endolysins.fasta while the remaining files are included mainly

for further analysis.

3.9 Phendol

Phendol is a bash script responsible for interaction between the user and the pipeline.
It receives input file names and optional parameters, processes them and starts Snake-
make using them to control it. It processes the parameters as flags, reading them one
at a time and saving them to variables. The input files have to be preceded by flags
-rl and -r2 for forward paired-end reads and reverse paired-end reads respectively.
They also need to be in a fastq.gz format commonly used by Illumina sequencers.

There are currently several available optional flags to modify settings of the tool,
usually having short and long versions. With option -h (--help), the user can browse
all available flags as well as see a usage message. The option -d (--dry) allows the
user to do a dry run of the program, which checks whether the program can run with
set input.

Apart from input files, Phendol has set default values for all flags. By default,
Phendol is set to not sample input data and work with entire files. This can, how-
ever, lead to high memory usage. For this reason, it is advisable to use subsampling
(-s/--subsample) in cases where the used equipment has lower technical specifications.
Threads used by SPAdes (-t/--threads) are set to 16, which is the same number as
default for SPAdes. For the filtering of Blast search, the minimal percentage of identi-
cal matches (-p) is set to 75.0% and the minimal percentage of coverage of sequence
from the database (-c/--coverage) is set to 0.5 (range [0.0-1.0]). Another default
value is for minimal length of predicted endolysins (-m1/--min_length), which is set
to 50 amino acids. This value was deemed optimal since it removes short proteins with
a low probability of being endolysins while keeping the value as low as possible.

When considering output format, the default sorting of the output (-f/--sort) is

by name, as it is easier to work with this form of output in additional analysis. For

28 CHAPTER 3. PIPELINE

similar reason, Uniprot accessions (-u/--uniprot) are not included by default.

We have decided not to include many different options, as too many algorithmic
options can have a discouraging effect on wet lab users. Since this tool aims to be
accessible to less technically proficient users, the options are directed at the functions,

which are easy to understand.

3.10 Conda

Conda|31] is a package and environment management system designed to install, run
and update packages. Its main purpose is to simplify the management and accessibility
of packages. Our tool is highly dependent on different tools. To install every tool
necessary correctly would require a non-trivial effort. By building our tool as a Conda
package, it can be installed by using a single command. Conda then installs our tool
as well as all dependencies and resolves any possible conflicts. This simplification of

installation makes our tool user-friendly.
3.11 Summary

Subample input

. Nucleotides to Transform tabular f
Annotat|0n= amino acids to fasta Align sequences

Predict ORFs

Figure 3.2: Steps the pipeline takes while annotating.

Phendol, our workflow, can be summarized in a few steps (Figure 3.2). The first
step is the assembly of contigs. In this step, the tool processes input reads by first
creating a subsample from the files using Seqtk and then creating an assembly using
SPAdes. The second step is the location of ORFs on the resulting assembly. By using
Phanotate, the tool first finds the coordinates of ORFs likely to contain phage genes.
Using Bedtools on the coordinates, the Phendol finds DNA sequences of the ORFs.
These ORFs are used in the third step. The third step is the comparison with an

endolysin database. In this step, Phendol translates DNA into protein sequences using

3.11. SUMMARY 29

Transeq. Using Blast, the database of endolysins is searched for matches to translated
sequences. The fourth step is the filtering of endolysins. In this final step, sequences
are filtered by Blast2out to leave only those our tool assumes to be endolysins. The

success of this assumption is evaluated in the next chapter.

30

CHAPTER 3. PIPELINE

Chapter 4
Testing

This chapter displays results generated using our tool and compares them with results
from similar programs. It also discusses the source of data used for comparison as well

as settings used by individual programs.

4.1 Source of data

For our tests to have any informative value, we need to know a large amount of
information about the samples used. Since we did not possess samples with sufficient
information, we decided to simulate our samples. We simulate our data using InSili-
coSeq, a tool designed to generate simulated sequenced reads from sequences input by
the user. The reads can be generated using either one of the pre-build error models
or a custom model generated using a bam file with aligned reads. The pre-build error

models include models for Illumina sequencers MiSeq, HiSeq, and NovaSeq.

To generate our samples, we use all three default error models. As the input
sequences, we use a variable number of random phage genomes downloaded from NCBI.
For our purposes, we used either ten or fifty genomes. We also adjust InSilicoSeq
to generate one or five million reads per sample. We have decided that using other
numbers of reads or genomes is redundant and thus do not use them. With these

settings, we generate a total of twelve paired-end input samples.

4.2 Settings

Aside from Phendol, we process the generated samples using multiPhATE and
RASTtk. In this section, we describe the settings used for each tool.

31

32 CHAPTER 4. TESTING

4.2.1 Phendol

We set Phendol to sample two million reads from the generated samples. This allows
us to test Phendol on a full-sized dataset in case of the samples containing one million
reads and test it on a sampled dataset when working with samples containing five
million reads. We used 32 threads to run SPAdes. Contigs generated by SPAdes were
later used in the analysis by other tools as well.

To test different setups of Phendol, we set the minimal percentage of identical
matches in blast search to 75% and 90%. For the same reason, we set the minimum
percentage of coverage of sequences from the endolysin database to 50% and 75%. We
also made an analysis using values of 50% for identity and 30% for coverage.

The minimal length of endolysins was left at the default value of 40 amino acids.
Finally, we sorted the output by the percentage of the sequence covered by hits from
the database.

To reduce the runtime, we ran SPAdes only once per sample by manually copying
its results into the working directories of other analyses. With these settings, we ran

the pipeline five times per sample, resulting in a total of sixty analyses.

4.2.2 multiPhATE

In the comparison, we use multiPhATE2, which is an enhanced version of multi-
PhATE. MultiPhATE uses a config file to specify all parameters. In the config file, we
enabled the use of gene callers Phanotate, Prodigal, and Glimmer. We also enabled
the blastp search. MultiPhATE has two default databases against which it can run
the blastp search. These are Prokaryotic Virus Orthologous Groups (pVOGs) [9] and
The Phage Annotation Tools and Methods (PhAnToMe) database. In our setup, we
use both.

We also set the list of genomes used in the analysis in the config file. In our case,
the genomes set were the contigs produced by SPAdes during the run of Phendol. With

the configuration complete, we ran multiPhATE to get the analyses for every sample.

4.2.3 RASTtk

We attempted to install the command-line version of RASTtk, however, since the
command-line version is outdated and not usable, we used the online browser version.
For the create-genome script, we set the domain as virus and the genetic code

to 11 Archaea, most Bacteria, most Virii, and some Mitochondria). In our custom
pipeline used for annotation, we use most of the scripts used in the default pipeline
except for call-strep-suis-repeat and call-strep-pneumo-repeat, since the se-

quences we are annotating do not contain bacterial DNA. We also switch off the

4.3. COMPARISON 33

resolve-overlapping-features script because viral genomes tend to contain over-
lapping features.

We used this pipeline to analyse the contigs created by SPAdes during the run of
Phendol.

4.3 Comparison

In running RASTtk, we were unable to get results using the sample 50HiSeq1000000.
As a result, we only achieved results in the remaining eleven samples. In these results,
we only counted the number of sequences directly designated by RASTtk as encoding
endolysins, since the number of genes discovered with a less precise designation (e.g.
Hypothetical protein) is impractically large and it is not feasible to verify them in the
laboratory.

While running multiPhATE, we encountered several errors due to unknown reasons.
This led to only analyses on samples MiSeq being completed. As with RASTtk, we
only include sequences designated as encoding endolysins by multiPhATE directly.

Since the number of phages discovered by Phendol tended to vary between the num-
ber discovered with an identity of 75% and coverage of 50% and the number discovered
with an identity of 90% and coverage of 75%, we do not include other combinations of
these values in our comparison. We also filter the results of the analysis with identity
set to 50% and coverage 30% because the unfiltered result contains a large number of
sequences with a low probability of being an endolysin. We consider sequence as having
a low probability of being an endolysin when the coverage of the sequence by Blast
hits is lower than 50%. In the comparison, we include both the filtered and unfiltered
analysis.

When comparing the results, we decided to base our ground truth on the number
of genomes included in each sample. In doing so, we assume that every phage genome
contains at least one endolysin encoding gene to facilitate its ability to complete its
lytic cycle. We also assume that every phage genome contains at most one endolysin
encoding gene. In our comparison, we prefer false positives to false negatives. We make
this preference because the false positives can be further verified in wet-lab while the
false negatives cannot be restored. As a result, our ground truth is ten for analyses
done on samples containing ten genomes and fifty for analyses done on samples with
fifty genomes.

Compared with RASTtk, Phendol was generally capable of annotating a larger
number of endolysins, with the filtered analysis predicting a significantly higher number
of endolysins (Figure 4.1).

When compared with multiPhATE, Phendol discovered mostly a lower number of

34 CHAPTER 4. TESTING

10HiSeq5000000
10HiSeq1000000
10MiSeq2000000
10MiSeql1000000

SONovaSeqS000000
50N ovaSeq] 000000
B0HISeq5 000000 e —
SO SR OO
: R ——
SO S e 0 e —
- E— m|=75%, C=50%
SOMi a1 0000 W =00%, C=75%
10Mov aSeq5000000 = I=50%, C=30% (filtered)
mRASTtk
10Mov aSeql000000 =
= — mmultiPhATE
—
-
=
—
-
—_—
—_—

0 10 20 30 40 50 60 70 30 90 100110120

Figure 4.1: Number of predicted endolysins per sample by analysis method.

endolysins while being closer to our ground truth (Figure 4.1). The only exception was
the filtered analysis, which predicted a similar or higher number of endolysins.

In comparison with both RASTtk and multiPhATE, the predictions made by Phen-
dol with identity between 75-90% and coverage between 50-75% were closer to our
ground truth making Phendol more accurate. By decreasing the identity and coverage
Phendol has the option of decreasing the number of false negatives at the cost of an
increase in the number of false positives. This exchange is advisable in order to discover

endolysins more thoroughly as it facilitates more wet-lab verification.

Conclusion

Results from our comparison of Phendol with other tools show that Phendol is ca-
pable of annotating endolysins with similar or higher accuracy than other annotation
pipelines. The biggest contribution of Phendol lies in the simplicity of its usage. While
installation of other tools took a significant amount of effort, the installation of Phendol
can be accomplished with a single command. For instance, in our effort to compare our
tool with RASTtk, we were unable to execute the command line application. We were
instead forced to use the online browser version which requires a registration manually
approved by the creators of RASTtk.

Execution of Phendol is also considerably easier. Thanks to Conda, Phendol can
be initialized from any directory. The parameters Phendol uses can be adjusted using
flags and the only required user input is the location of files for analysis. On the
contrary, using multiPhATE requires the input files to be in a particular directory,
specific setup using a config file, and preparation of databases beforehand, making
multiPhATE cumbersome.

Since the results of Phendol are predicted endolysins, the tool is more suited for the
analysis than the other tools, which produce results that need to be further filtered to
leave only endolysins remaining.

Every feature mentioned constitutes a more user-friendly interface, which is one of
the goals of this work. In the future, we hope to extend the functionality of Phendol
by including more methods to assemble reads. This would allow Phendol to work
with different sequencing reads than the currently used paired-end reads as well as
facilitate the use of more precise assemblers. We would also like to add the option
of automatically updating the used endolysin database to include new and verified

endolysins in order to make Phendol more user friendly.

35

36

Conclusion

Bibliography

1]

2l

3]

4]

[5]

(6]

17l

8]

Sajia Akhter, Ramy K Aziz, and Robert A Edwards. Phispy: a novel algorithm for
finding prophages in bacterial genomes that combines similarity-and composition-
based strategies. Nucleic acids research, 40(16):e126-e126, 2012.

Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J
Lipman. Basic local alignment search tool. Journal of molecular biology,
215(3):403-410, 1990.

Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A Gurevich, Mikhail
Dvorkin, Alexander S Kulikov, Valery M Lesin, Sergey I Nikolenko, Son Pham,
Andrey D Prjibelski, et al. Spades: a new genome assembly algorithm and its
applications to single-cell sequencing. Journal of computational biology, 19(5):455—
477, 2012.

Thomas Brettin, James J Davis, Terry Disz, Robert A Edwards, Svetlana Gerdes,
Gary J Olsen, Robert Olson, Ross Overbeek, Bruce Parrello, Gordon D Pusch,
et al. Rasttk: a modular and extensible implementation of the rast algorithm for

building custom annotation pipelines and annotating batches of genomes. Scien-
tific reports, 5(1):1-6, 2015.

Bjorn Criel, Steff Taelman, Wim Van Criekinge, Michiel Stock, and Yves Briers.
Phalp: A database for the study of phage lytic proteins and their evolution.
Viruses, 13(7):1240, 2021.

Carol L Ecale Zhou, Stephanie Malfatti, Jeffrey Kimbrel, Casandra Philipson,
Katelyn McNair, Theron Hamilton, Robert Edwards, and Brian Souza. multi-
PhATE: bioinformatics pipeline for functional annotation of phage isolates. Bioin-
formatics, 35(21):4402-4404, 05 2019.

Martin Gollery. Bioinformatics: sequence and genome analysis. Clinical Chem-
istry, 51(11):2219-2220, 2005.

Fernando L. Gordillo Altamirano and Jeremy J Barr. Phage therapy in the postan-
tibiotic era. Clinical microbiology reviews, 32(2):e¢00066-18, 2019.

37

38

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

BIBLIOGRAPHY

Ana Laura Grazziotin, Eugene V Koonin, and David M Kristensen. Prokaryotic
virus orthologous groups (pvogs): a resource for comparative genomics and protein

family annotation. Nucleic acids research, page gkw975, 2016.

Patrick Guilfoile and I Edward Alcamo. Antibiotic-resistant bacteria. Infobase
Publishing, 2007.

Burton Guttman, Raul Raya, and Elizabeth Kutter. Basic phage biology. Bacte-
riophages: Biology and applications, 4, 2005.

D Hyatt et al. Prodigal: prokaryotic gene recognition and translation initiation
site identification. bmc bioinformatics 11, 119-119, doi: 10.1186. 2010.

Han Suh Kang, Katelyn McNair, Daniel A Cuevas, Barbara A Bailey, Anca M
Segall, and Robert A Edwards. Prophage genomics reveals patterns in phage
genome organization and replication. BioRziv, page 114819, 2017.

Manuel Kleiner, Lora V Hooper, and Breck A Duerkop. Evaluation of methods to
purify virus-like particles for metagenomic sequencing of intestinal viromes. BMC
genomics, 16(1):1-15, 2015.

Kamila Knapik. Genetic analysis of bacteriophages from clinical and environmen-
tal samples. PhD thesis, 07 2013.

Johannes Koster and Sven Rahmann. Snakemake—a scalable bioinformatics work-
flow engine. Bioinformatics, 28(19):2520-2522, 2012.

Heng Li. seqtk toolkit for processing sequences in fasta/q formats. GitHub, 767:69,
2012.

Derek M Lin, Britt Koskella, and Henry C Lin. Phage therapy: An alternative to
antibiotics in the age of multi-drug resistance. World journal of gastrointestinal

pharmacology and therapeutics, 8(3):162, 2017.

Fabio Madeira, Matt Pearce, Adrian Tivey, Prasad Basutkar, Joon Lee, Ossama
Edbali, Nandana Madhusoodanan, Anton Kolesnikov, and Rodrigo Lopez. Search
and sequence analysis tools services from embl-ebi in 2022. Nucleic Acids Research,
2022.

Maryn McKenna. The last resort: health officials are watching in horror as bacteria
become resistant to powerful carbapenem antibiotics—one of the last drugs on the
shelf. Nature, 499(7459):394-397, 2013.

BIBLIOGRAPHY 39

21

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

Katelyn McNair, Carol Zhou, Elizabeth A Dinsdale, Brian Souza, and Robert A
Edwards. PHANOTATE: a novel approach to gene identification in phage
genomes. Bioinformatics, 35(22):4537-4542, 04 2019.

Katelyn McNair, Carol Zhou, Elizabeth A Dinsdale, Brian Souza, and Robert A
Edwards. Phanotate: a novel approach to gene identification in phage genomes.
Bioinformatics, 35(22):4537-4542, 2019.

Hiroshi Nikaido. Multidrug resistance in bacteria. Annual review of biochemistry,
78:119-146, 20009.

Aaron R Quinlan and Ira M Hall. Bedtools: a flexible suite of utilities for com-

paring genomic features. Bioinformatics, 26(6):841-842, 2010.

Rupesh Kanchi Ravi, Kendra Walton, and Mahdieh Khosroheidari. Miseq: a next
generation sequencing platform for genomic analysis. Disease gene identification,
pages 223-232, 2018.

Mathias Schmelcher, David M Donovan, and Martin J Loessner. Bacteriophage
endolysins as novel antimicrobials. Future microbiology, 7(10):1147-1171, 2012.

Temple F Smith, Michael S Waterman, et al. Identification of common molecular
subsequences. Journal of molecular biology, 147(1):195-197, 1981.

Richard M Stallman and Roland McGrath. Gnu make-a program for directing

recompilation. 1991.

Thomas DS Sutton, Adam G Clooney, Feargal J Ryan, R Paul Ross, and Colin
Hill. Choice of assembly software has a critical impact on virome characterisation.
Microbiome, 7(1):1-15, 2019.

Dieter Vandenheuvel, Rob Lavigne, and Harald Briissow. Bacteriophage therapy:
advances in formulation strategies and human clinical trials. Annual review of
virology, 2:599-618, 2015.

Yuxing Yan and James Yan. Hands-on data science with Anaconda: utilize the
right mix of tools to create high-performance data science applications. Packt
Publishing Ltd, 2018.

Sheng Zhang and De-Chang Chen. Facing a new challenge: the adverse effects
of antibiotics on gut microbiota and host immunity. Chinese medical journal,
132(10):1135, 2019.

40

BIBLIOGRAPHY

Appendix A: Implementation

This thesis includes an electronic attachment containing the source code of our tool
as well as files necessary to build a Conda package. The scripts used by our tool are
contained in the scripts directory.

We recommend installation using the Conda environment. The instructions for
installation of the tool using Conda are included in the README.md file.

41

	Introduction
	Biological background
	Bacteriophages vs. Antibiotics
	Life cycle of a phage
	Endolysins
	Data preparation
	Propagation and extraction
	Sequencing

	Available tools
	multiPhATE
	RASTtk

	Pipeline
	Seqtk
	SPAdes
	Terminology
	Algorithm

	Phanotate
	Algorithm

	BEDTools
	Transeq
	Blast
	Algorithm

	Blast2out
	Snakemake
	Phendol
	Conda
	Summary

	Testing
	Source of data
	Settings
	Phendol
	multiPhATE
	RASTtk

	Comparison

	Conclusion
	Appendix A

