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Abstrakt

Mikrosatelity sú krátke repetitívne DNA sekvencie, ktoré vykazujú vysokú variabil-
itu v počte opakovaní medzi jedincami v populácii. Niektoré typy rakoviny vykazujú
mikrosatelitovú instabilitu, ktorá je charakterizovaná vysokým výskytom mutácií v
krátkych repetitívnych oblastiach genómu. V práci sme sa konkrétne zamerali na
analýzu mononukleotidových mikrosatelitov, ktoré sú taktiež nazývané homopolyméry.
Analyzovaním genotypov slovenskej populácie sa nám podarilo určiť populačné frekven-
cie tohto typu variability. Následne sme porovnávali dĺžky homopolymérov medzi
geneticky nepríbuznými populáciami a taktiež medzi zdravými jedincami a onkolog-
ickými pacientmi. V našej analýze poukazujeme na značnú odchýlku homopolymérov
identifikovaných zo vzoriek onkologických pacientov od bežne sa vyskytujúcich foriem
v populácii. Z toho dôvodu by mohli homopolyméry potenciálne slúžiť ako genetické
markery pre diagnostiku a monitorovanie onkologických ochorení.

Kľúčové slová: mikrosatelity, mikrosatelitová instabilita, krátke tandemové repetí-
cie, genomická variabilita, ľudský genóm
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Abstract

Microsatellites are repetitive stretches of short DNA sequences with a highly variable
number of repetitions between individuals in the population. Certain cancer types
are associated with the microsatellite instability that refers to the hypermutability of
short repetitive sequences. In the bachelor thesis we specifically focused on monomeric
microsatellites also called homopolymers. We analysed genotypes of the Slovak pop-
ulation and determined the population-specific frequencies. Then we compared the
genetic variants of genetically remote populations as well as healthy individuals with
oncological patients. In our analysis, we show that homopolymers identified in samples
of oncological patients significantly divert from common forms observed in general pop-
ulations, and thus may be used as a potential biomarker for detection and monitoring
of oncological diseases.

Keywords: microsatellites, microsatellite instability, short tandem repeats, genomic
variability, human genome



vi



Contents

Introduction 1

1 Biological background 3
1.1 DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Genome variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Short tandem repeats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Importance for genetic testing . . . . . . . . . . . . . . . . . . . 8
1.3.2 Importance for oncology . . . . . . . . . . . . . . . . . . . . . . 8

2 Analysis of genomes 9
2.1 Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Variant calling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Analysis of homopolymers 13
3.1 Sequenced DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Calling homopolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Identification of homopolymer loci in the reference genome . . . 15
3.3.2 Genotyping of sequenced samples . . . . . . . . . . . . . . . . . 16
3.3.3 Calculation of population frequencies . . . . . . . . . . . . . . . 17

4 Results 21
4.1 Comparison of Slovak and Indian samples . . . . . . . . . . . . . . . . 21
4.2 Comparison of Slovak and oncological samples . . . . . . . . . . . . . . 22
4.3 Analysis of oncological sample pairs . . . . . . . . . . . . . . . . . . . . 23

Conclusion 27

Appendix 33

vii



viii CONTENTS



List of Figures

1.1 Human chromosomes and the double helix structure of DNA. One of the
DNA strands within the double helix represents the following sequence
of nucleotides read in the 5’ to 3’ direction: ATGACACTGTGACA.
Source: https://www.yourgenome.org/facts/what-is-dna . . . . . . 4

1.2 Different types of structural variation, source: https://www.pacb.com 5
1.3 Schematic illustration of the strand slippage during DNA replication [4] 7

2.1 An example of a single entry in a FASTQ file . . . . . . . . . . . . . . 11
2.2 An example of a single entry in a SAM file . . . . . . . . . . . . . . . . 11

3.1 Counts of homopolymers in the human genome . . . . . . . . . . . . . 16
3.2 Coverage of homopolymer positions from Slovak sample set . . . . . . . 18

4.1 Distributions of Slovak and Indian sample sets using different metrics
applied to relative frequency values . . . . . . . . . . . . . . . . . . . . 22

4.2 Distributions of Slovak healthy and oncological samples using different
metrics applied to relative frequency values . . . . . . . . . . . . . . . . 24

4.3 Distributions of Slovak and Indian sample sets using different metrics
applied to relative frequency values . . . . . . . . . . . . . . . . . . . . 26

ix

https://www.yourgenome.org/facts/what-is-dna
https://www.pacb.com


x LIST OF FIGURES



List of Tables

3.1 Properties of data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

xi



xii LIST OF TABLES



Introduction

Nowadays, genomic analyses are gaining in popularity and simultaneously genetic tests
are becoming more accessible. Modern sequencing technologies enable generating up
to billions of reads per run representing DNA fragments of an examined sample in
digital form in a relatively short period of time. Therefore, large amounts of genomic
data can be analysed and used in various fields of research. However, there are still
substantial costs associated with the sequencing process which can be limiting espe-
cially for large-scale genome-wide studies, that are typically based on the aggregation
of sequencing data from thousands of individuals. It has been shown that the re-use of
low-coverage sequencing data acquired from routine prenatal testing can be used as an
affordable method for the detection of small variation [1] and certain types of structural
variation [19] in a population. The detection of common microsatellite variation has
been however neglected in these studies, even if it represents an invaluable source of
genomic information with wide use in forensics, genealogy, clinical diagnostics, even
detection and monitoring of certain oncological diseases.

We analysed repetitive stretches of short DNA sequences also called microsatellites
that are a rich source of genomic variability in a population. Although this type of
genetic variation has been already widely used in many areas of research such as forensic
analysis, paternity testing, genetic mapping, and population genetics, the application
of microsatellites in the field of oncology still lacks a reliable tool for detecting and
monitoring oncological diseases. Therefore, we aimed to study microsatellites in the
context of cancer research focused on the Slovak population. Oncological diseases are
known to be accompanied by a dysregulation of the repair mechanism called mismatch
repair resulting in the accumulation of mutations within the microsatellite loci. This
condition of genetic hypermutability present in the short repetitive regions of a genome
is called microsatellite instability and can be detected by identification of artificial
forms of microsatellites in the examined sample that are not observed in the common
population.

Firstly, we explained the used terminology and described the biological background.
Next, we illustrated the steps that are typically involved in the genomic analysis.
Due to technical limitations of analysed sequenced reads (low coverage and short read
lengths), we decided to focus only on monomeric microsatellites called homopolymers.
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2 Introduction

We identified genotypes of the Slovak population and calculated the population-specific
frequencies of homopolymer lengths over more than 7,000,000 genomic loci. We utilized
computed frequencies to determine a microsatellite instability status of tested subjects
indicating the presence or absence of an oncological disease.

In our work we also compared the genomic variation of homopolymers among ge-
netically distinct populations as well as examined differences of homopolymer lengths
between healthy samples and samples of oncological patients.



Chapter 1

Biological background

In this chapter, we are going to introduce the biological background and explain the
used terminology.

1.1 DNA

The deoxyribonucleic acid (DNA) is a molecule, which carries the specific genetic in-
formation of each organism and contains the important instructions needed for the
synthesis of proteins and the regulatory processes in the cell. The DNA consists of
subunits called nucleotides which are joined by phosphodiester bonds to form a DNA
strand. Each nucleotide is composed of a phosphate group, a sugar group deoxyribose,
and a nitrogen base. There are four possible types of nitrogen bases in the DNA:
adenine (A), thymine (T), guanine (G) and cytosine (C) and their first letters are
used as the abbreviation to represent easily the order of nucleotides in the DNA chain
as a string. The DNA is present in the cell in form of a double helix which means
that there are two separate strands of nucleotides joined together with hydrogen bonds
between the nitrogen bases according to the complementary base pairing rule (ade-
nine with thymine and guanine with cytosine). The double-stranded DNA molecule is
packaged with the proteins into a compact aggregate called chromosome and a genome
is a set of all chromosomes in the nucleus of the cell and the mitochondrial DNA. A
human genome consists of 23 pairs of nuclear homologous chromosomes and altogether
a human haploid genome is made up of about 3 billion base pairs of DNA [22].

1.2 Genome variability

A genome variability describes the differences in the genome among individuals of the
same species. Although most of the DNA sequences are the same within a species, there
are virtually no two humans having identical genome, not even monozygotic twins. The

3



4 CHAPTER 1. BIOLOGICAL BACKGROUND

Figure 1.1: Human chromosomes and the double helix structure of DNA. One of
the DNA strands within the double helix represents the following sequence of nu-
cleotides read in the 5’ to 3’ direction: ATGACACTGTGACA. Source: https:

//www.yourgenome.org/facts/what-is-dna

ability of DNA sequences to vary enables individuals to be unique in appearance and
behavior.

Mutation is a change in a DNA sequence and it is one of the main sources of the
variability. It can have positive, neutral or negative impact on life of an organism.
There are parts of the genome containing strictly conserved sequences that do not
change over time and remain the same within and many times also across the species.
These sequences usually fulfill some essential vital functions and therefore, the vari-
ability does not commonly appear within these genomic regions because a mutation
could cause disfunction of mechanisms important for life. However, a genome consists
also of nonfunctional DNA sequences that are usually not conserved and thus are rich
source of variability across individuals and species.

We distinguish between inherited, germ-line, and somatic variants. The inherited
variation appears in the parental germ cells (a sperm or an egg) and such genetic variant
can be inherited from one generation to another. Therefore, an inherited variant from
a parent occurs in every cell of an offspring. Another source of genetic variability are
de novo mutations. In case a de novo mutation arises in a germ-line cell of an organism,
the resulting mutant variant will occur in each descendant cell derived from the cell
carrying a novel variant. The somatic variation can be acquired during the life and
affects the somatic cells. This alteration occurs only in one affected somatic cell and
can be replicated during cell division, but can not be passed down the generations. [22]

There are different types of a genetic variation spreading over one to many nu-

https://www.yourgenome.org/facts/what-is-dna
https://www.yourgenome.org/facts/what-is-dna


1.3. SHORT TANDEM REPEATS 5

cleotides of a DNA sequence. The difference in one nucleotide between genomes is
called a single nucleotide polymorphism (SNP) and it is the most common variation
type in the human population [22]. The variation can also arise from insertion or
deletion mutations on a smaller scale and such genetic variants are called indels. The
next type of variability is called a structural variation, which usually occurs over larger
regions of the DNA sequence and changes the structure of a chromosome. It includes
deletion, duplication and insertion events and chromosomal rearrangements like inver-
sions and translocations. Furthermore, the sequence variations include repetitive tracts
of DNA (microsatellites, minisatellites and satellites) where the genetic variation ap-
pears in the length of a repetitive sequence between genomes among the individuals.

Figure 1.2: Different types of structural variation, source: https://www.pacb.com

1.3 Short tandem repeats

Short tandem repeats (STRs) are also called microsatellites and are composed of a
motif sequence, which is repeated consecutively and consists of 1 to 6 base pairs (bp)
[5]. Different authors do not always agree on the definition of a microsatellite and
therefore there is no consistency in the motif length as well as in the total length of
repeat units but a microsatellite locus is typically considered to contain up to 100
nucleotides (nt) [15].

There are different types of STRs depending on the length of a repeated motif.
When the STR variant consists of one nucleotide, it is called a homopolymer or a
monomeric STR. When the unit of two nucleotides is repeated, these are dimeric STRs.
We call the STRs trimeric, when the motif sequence contains 3 nucleotides and STRs
with longer repetitive patterns are called tetra-, penta- and hexameric respectively.
Usually the longer a repeated unit the less often is this type of STR present in a genome
[4]. STRs can be also classified according to their structure as perfect, imperfect,

https://www.pacb.com
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interrupted or composite. Perfect microsatellite consists of only identical copies of
the motif within the repetitive sequence while in an imperfect STR there are one or
more mismatches present which do not match the motif sequence. An interrupted
STR contains a small sequence different from a motif which has been inserted into the
repeated sequence and in the case of a composite STR there can be found more than
one type of motif [17].

STRs are ubiquitous, highly polymorphic and cover approximately 3% of the human
genome [4]. Their placement across the chromosomes is not uniform and in the human
genome STRs are located most densely on the chromosome number 19 [23]. Most of
STRs are located within noncoding DNA while approximately 8% occur in the coding
regions [3]. Especially motifs consisting of 3 or 6 nt are most frequently found in the
exon sequences because of their triplet structure which represents codons encoding
amino acids [20].

Majority of STRs do not have any known function, are not conserved DNA se-
quences and therefore such STRs are typically rich source of variability. We can observe
their extensive length polymorphisms across species and populations because mutations
can be accumulated within these nonfunctional DNA sequences without any phenotypic
alteration causing some disfunction or having negative impact on life. However, there
are also STRs that fulfil some functions. It has been already proven that microsatellites
have an effect on the regulation of a gene expression and also some molecular pheno-
types [5]. They may also encode proteins, be involved in regulating the transcription
and affect recombination and maintenance of chromatin spatial organization [4, 27, 9].

Microsatellites exhibit a mutation rate ranging approximately from 10−4 to 10−3

per locus per generation which is far higher in comparison to single nucleotide poly-
morphisms having mutation rate 10−8 nucleotides per generation in the human genome
[24]. The main cause why microsatellites tend to mutate more often than other loci
of a genome is the slippage of the DNA polymerase during the replication process of
a DNA strand 1.3 [4]. The slippage occurs when replicating DNA strands temporarily
dissociate from each other and realign in a different position. As a result, the newly
synthesized DNA strand ends up with either more or fewer motif copies of the STR
locus. These mistakes in replication during meiosis or mitosis are induced by the repet-
itive character of tandem repeats and when the failure occurs and is not corrected, the
replicated STR variant is fixed and carries permanently a different number of repeti-
tions in comparison to the template. The other possible but not so frequent mechanism
for the STR mutation is an unequal crossing over in meiosis where the satellites of two
homologous chromosomes are exchanged unequally [4].

Slippage events during DNA replication happen more often than is the actual
amount of mutations resulting from the slipped strand mispairing. The reason behind
this is the correction mechanism called a mismatch repair (MMR), which is capable of
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Figure 1.3: Schematic illustration of the strand slippage during DNA replication [4]

finding, removing, and correcting the errors in the DNA sequences and thus eliminates
permanent mutations.

The mutation rate of STRs is influenced by many factors including [4]:

• repeat number - the longer the STR the higher rate of mutations, usually exten-
sion of a STR locus (gain of nucleotides) is present more often in short sequences
and reduction of STR (loss of nucleotides) in longer ones,

• repeat unit - for instance, it is proven that dimers mutate more frequently than
trimers,

• repeat structure - some studies imply that the more complex the repeat structure
is, the less frequently mutations arise,

• base composition of repeat unit - AT-rich sequences (genomic regions containing
a higher proportion of nucleobases adenine and thymine) mutate more often than
GC-rich sequences because of the lower stability of the template,

• sex - sperm cells are replicated more times than eggs and therefore their mutation
rate is higher,

• age - the mutation rate in the sperms depends on the age of men, higher mu-
tability is present in the sperm cells of men whose age is greater, because they
undergo more mitoses,

• interruptions in STRs - mutations such as transitions, transversions, single-
nucleotide insertions or deletions and others can change the STR sequence and
thereby the mutation rate of this locus will be different.
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1.3.1 Importance for genetic testing

Many inherited genetic diseases are associated with specific forms of STRs including
Mendelian diseases like cystic fibrosis or Gilbert syndrome, complex traits, and cancer
[5]. It is also well known that specific trinucleotide repeat expansions cause neurological
disorders such as Huntington’s disease, fragile X syndrome, myotonic dystrophy, and
others [18].

STRs are highly variable in their lengths and alleles in a population and thanks
to these attributes microsatellites are extremely useful in identification of people in
forensic analysis and also in determining parentage by comparing the number of repeats
at the specific multiple STR loci between a parent and a child and expecting the
similarities to some extend [6, 26, 4]. Another application of STR data is in research of
evolution processes. STRs are informative for determining the relationships between
closely related species in an evolution and estimating distances in phylogenetic trees
[25]. They are used as well to study a human evolution and a history of migration [4].

1.3.2 Importance for oncology

Several types of oncology diseases are characteristic with the microsatellite instability
(MSI) that is a state of the genome to be hypermutable which means that also the
STR loci are more prone to mutations and spontaneously lose or gain of nucleotides
in their sequences. This instability in a genome induces the production of the novel
forms of microsatellites that differ in their lengths from germline. MSI is the result
of a dysregulated reparation mechanism called MMR. MMR repairs the errors in a
DNA right after the replication under normal circumstences but when this mechanism
works abnormally, the mutation rate is higher and errors are accumulated in the DNA
sequences including microsatellites in a great measure. It is estimated that homopoly-
mers could be suitable markers for detection and analysis of the MSI status, along with
the underlying oncology disease [21].

Many cancers are usually caused by an acquired somatic mutations rather than
those who are hereditary. The somatic variability can lead to the disfunction of MMR
and then the cell growth can get out of control. In a human genome the growth of
the cells is strictly controlled by many genes, but mutations present at one or more of
these genes can promote the growth of abnormal cells resulting in a cancer. Cancers
where the sporadic MSI status has been already detected include colon, colorectal,
endometrial, ovarian, and gastric cancers [21].

MSI detection has an important clinical significance and because of the high mu-
tation rate of STRs, they can be useful as genetic markers for a cancer diagnosis,
prognosis and also monitoring of the disease.



Chapter 2

Analysis of genomes

In this chapter we will focus on description of steps which are typically involved in
an analysis of a genome. Generally, the process of analysing genomes at first involves
sequencing where the order of nitrogen bases in the DNA fragments isolated from
a sample are converted into digital form. As a next step, the obtained sequences
are compared with the reference genome, that is a representative genome assembly,
and finally the identified differences and genetic variants are further analysed and
interpreted.

2.1 Sequencing

Sequencing is the process of determining the order of 4 nucleotide types in a DNA chain.
The sequencers are machines that can automatically sequence the DNA strands. Due
to the limitations of the underlying laboratory processing, the sequencers are typically
not able to analyze a whole DNA molecule. At first, genetic material containing the
DNA of a tested organism is extracted from a sample and fragmented (DNA strands
are split into shorter sequences where the length of fragments depends on a type of
technology that is used). This is the genetic input material for the sequencers which
can be further analyzed. The output of sequencing are reads which are the strings
of letters A, T, C, G representing the nitrogen bases (adenine, thymine, cytosine and
guanine) of the sequenced DNA fragment. Sequencers usually detect also the quality
scores for each base indicating the confidence that a nucleotide, that has been read,
was determined correctly. The quality values are subsequently reported in an output.
Nowadays, there are three generations of sequencers differing in the used technologies
and in the guarantees of the output reads.

The first generation sequencers are based on Sanger sequencing method which uses
the chain termination technique. It requires the clonal amplification of the DNA frag-
ments to detect the nucleotides and produces reads of the average lengths ranging from

9



10 CHAPTER 2. ANALYSIS OF GENOMES

400 to 900 bp [11]. This sequencing method is low-throughput and only one read is
produced per run. It is cheap for low numbers of DNA strands but very expensive and
extremely time-consuming for sequencing whole genomes. The guaranteed accuracy is
approximately 99.7% [11].

The second generation is called next generation sequencing (NGS) and differs from
the first generation in the number of sequenced fragments. It is also called the massive
parallel sequencing because of its ability to process millions of fragments simultaneously
per run. The fragments have to be amplified to get a signal which is strong enough to
distinguish the bases. There is a limitation in the length of the fragments which can
be approximately 35-150 bp long but on the other hand, the accuracy is high (more
than 99%) [11].

The third generation sequencing is different from the previous two generations be-
cause the amplification of the fragments is not needed anymore. These sequencers can
analyze single-molecule templates and produce long reads (tens to hundreds of kilobase
pairs) [11]. The disadvantage of this method is its accuracy because the error rate is
relatively high in the range from 12% to 15% [11].

The most popular sequencers are from the second generation because of their high
accuracy, low price, and high speed of analysis. Their advantage is also the ability to
sequence large amounts of fragments at a time and to cover whole genome [11].

NGS enables a genome-wide analysis and determines a primary structure of DNA.
The sequencing process involves more stages and the quality of resulting data depends
on the precision of each step of the analysis. At first genetic material needs to be
processed. DNA is isolated from a sample, fragmented to the desired length, and
modified by adding specialized adapters to the ends of DNA fragments which are
designed to interact with an NGS platform. As a next step, a DNA library is prepared
by attaching the fragments to either a flow-cell (Illumina) or beads (Ion Torrent) [8].
This is followed by an amplification of fragments whereby the clonal DNA colonies
called DNA clusters, each arising from a single library fragment, are formed. Finally,
the sequencing procedure is carried out where the sequence of each cluster from a
library is read. It is realized by repeated cycles of nucleotide incorporation at which
each added nucleotide into a newly synthesized complementary strand is monitored
by a fluorescence detection or by changes in electrical charge depending on the used
technology during the sequencing process [13].

Sequenced reads are typically stored in a FASTQ file. Each read in the FASTQ for-
mat is represented by 4 consecutive lines 2.1. The first line starts with a "@" character
followed by a sequence identifier that unambiguously specifies sequencer, sequencing
run, and the physical location of the sequenced cluster. The nucleotide sequence itself
is present on the second line and is typically composed of abbreviations A, T, C, G,
N representing adenine, thymine, cytosine, guanine, and uncertain nucleotide observa-
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tion, respectively. The third line serves as a separator and contains a "+" character.
On the fourth line quality scores corresponding to bases of the sequence from the sec-
ond line are provided and are represented by ASCII characters. An ASCII code of each
character can be converted to the actual quality score which is linked to the probability
of an incorrect base call.

There are two options how the DNA fragments can be sequenced. In case a DNA
strand is sequenced from only one end, as a result a single read is generated for each
fragment. There is also a paired-end sequencing where both ends of each DNA fragment
are sequenced and can overlap. Generally, for standard genetic testing the sequencing
process typically generates about millions reads per run [11]. However, some sequencers
are also capable of generating up to billions reads per run which are required in whole
genome analyses with high coverage [11].

Figure 2.1: An example of a single entry in a FASTQ file

Figure 2.2: An example of a single entry in a SAM file

2.2 Mapping

A fundamental step in high-throughput sequencing analysis is finding positions of se-
quencing reads on the reference genome where reads most likely come from. The process
of aligning generated reads against a reference genome is called mapping. There are
numerous mapping tools including BWA, Bowtie, Bowtie2, MAQ, and others [7]. Map-
ping programs typically require to build an index of the reference genome which speeds
up their alignment algorithms. The resulting aligned reads to a reference genome are
usually stored in SAM 2.2 and BAM file. A BAM file is the compressed binary version
of a SAM file, thus takes up less storage space, while preserving the same information.
A BAM file is usually sorted by genomic coordinates and indexed which allows faster
access to reads aligned within a certain genomic region of interest. On the other hand,
SAM is a text-based format and therefore is appropriate for viewing a file by operator.
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Using the Samtools view command it is possible to easily convert between SAM and
BAM formats [14]. Every SAM or BAM file contains an optional header section with
the information about a reference which is followed by an alignment section. Each
alignment line representing a mapped read consists of 11 mandatory fields providing
essential alignment information such as the read identifier, a bitwise set of information
describing the alignment (FLAG), the sequence of a read and its quality, mapping po-
sition, mapping quality reflecting the alignment confidence, CIGAR string indicating
the presence of any SNP’s or indels in the read and an information about its mate read
(if paired-end sequenced), and other optional fields for additional information.

2.3 Variant calling

Variant calling is the process of identifying genetic variants from mapped reads and
consists of two fundamental steps: genotype assignment and variant identification. It
is a very specific stage of a genome analysis depending on the type of studied variation.
Typically, aligned reads are compared with the sequence of the reference genome and
identified variants and detected differences can be further analysed. Various bioin-
formatics tools have been already developed for a variant calling such as Samtools
mpileup, Genome Analysis Toolkit, Freebayes and Ion Proton Variant Caller [10] but
custom variant callers designed specifically for the examined type of genetic variation
are used as well. There are also many databases of genomic variants which are available
and helpful for comparing the variants of examined samples with population frequen-
cies. Nowadays, it is still of great importance in research to collect amounts of genetic
data and create population specific frequencies of various DNA variants. The data sets
comprising human genotypes are especially essential for different biomedical applica-
tions. On the other hand, retrieval of large quantities of genetic information destined
for large-scale population studies is still associated with substantial costs. However,
population frequencies are extremely helpful and important in clinical studies, provide
valuable insights into causes of diseases and their underlying risk factors, and later on
can be used for a diagnostic assessment.



Chapter 3

Analysis of homopolymers

In our work we focused specifically on homopolymers. We studied a genotype of each
individual from available sample sets and in the analyses we used various bioinformatics
tools as well as the custom scripts. As the output we wanted to obtain the genotypes
of all fully covered homopolymer loci for each sample. Subsequently, we were able to
further analyse and compare identified genetic variants.

3.1 Sequenced DNA

Our data set of reads was sequenced using NGS technology, concretely Illumina se-
quencing platform. The samples, where DNA molecules were extracted from, were
gained from blood plasma of pregnant women from Slovak and Indian populations and
were originally dedicated to non-invasive prenatal testing (NIPT). We reused these
sample sets [1] for the purpose of our analyses. The data sets that we used were very
specific in certain aspects and nonstandard for the type of our study. We had to deal
with the following attributes of the data:

• The sequenced reads were 35 bp long and due to their short length we decided
to limit our study to analyse only homopolymers. Specifically, we studied ho-
mopolymers with the number of repetitions ranging from 2 to 29 nt.

• Samples were sequenced using low-coverage massively parallel whole-genome se-
quencing method, which means that there were nucleotides and regions of a
genome that have not been sequenced, and thus not all homopolymers from each
individual sample could be read and detected. Approximately 14.46% of ho-
mopolymers were covered in average per sample and that was also predominantly
performed by a single read.

• Positions of detected homopolymers were different among samples and thus could
not be straightforwardly compared.

13
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• The data set comprised of the large amount of Slovak samples (10,645 individuals)
dedicated to calculate the population frequencies. On the other hand, there
were also many homopolymer loci across the human genome which could be
analysed. However, the usage of the data generated during NIPT testing for
population specific frequency determination of small sequence variants such as
single nucleotide and insertion-deletion variants has been already presented and
published in the study [1]. In our case we had even considerably larger data set in
comparison to the amount of samples (1,501) used in the above mentioned study.
Therefore, we assumed that the quantity of samples could reasonably balance and
overcome the problems associated with the coverage deficiency and the length of
reads.

Illumina allows sequencing from both ends of the DNA fragments, which has been
used in our case, and therefore we worked with paired-end reads. Paired-end reads
are convenient in an aligning process of reads to a reference genome because it is
expected that each pair of reads obtained from one DNA fragment should map within
a certain distance of each other and in a certain order and thus improves the quality
of mapping and reduces the problem of multi-mapping. Thus, there were two FASTQ
files generated by a sequencing process from each sample, one file with all reads in
forward direction, and the other one with all reads in reverse-complement orientation
to its corresponding mate pairs from the first file.

3.2 Data sets

We worked with the following data sets:

• samples of healthy individuals from the Slovak population dedicated to be used
for population frequency determination of genetic variants (SVK-POP),

• Slovak samples of healthy individuals used as the independent control data set
in comparisons using population frequencies (SVK),

• samples of healthy individuals from the Indian population (IND),

• samples of oncological patients obtained from the Slovak population (ONC).

All sample sets we used consisted of sufficiently large amount of samples which enabled
us to sensibly compare samples of different data sets 3.1. We decided to analyse the
genetic variation of homopolymers from 2 different aspects. Firstly, we wanted to look
at the differences between unrelated populations where we used Indian and Slovak
sample sets and secondly, we wanted to examine homopolymer lenghts in context of
MSI via samples obtained from oncological patients and healthy individuals of the same



3.3. CALLING HOMOPOLYMERS 15

Data set Number of samples
Proportion of covered homopolymers

Minimum value Maximum value Median
SVK-POP 10,645 1.1226e-05 0.506 0.1028

SVK 200 0.0082 0.367 0.0998
IND 306 0.0455 0.3706 0.1079
ONC 82 0.07501 0.4027 0.1932

Table 3.1: Properties of data sets

population. The data set of oncological samples was special because contained always
two samples per one patient. One set of samples (ONC0) comprised genetic material
obtained from plasma on the day of an operation before surgery and the other half
of samples (ONC3) contained DNA isolated from blood plasma which was taken from
patients three days (in two cases one day) after the surgery.

3.3 Calling homopolymers

Due to the specific nature of our sequenced reads, we designed our own method for
genotyping STR loci. At first, we identified locations of homopolymer loci on the
reference genome. Then, we extracted sequenced reads that were mapped to them.
Finally, we extracted the number of repetitions for each covered locus and summarised
them into numeric vectors.

3.3.1 Identification of homopolymer loci in the reference genome

We decided to use the latest major version of human reference genome GRCh38, which
is available online for free download for our analysis. Firstly, we created an index over
this genome, enabling faster retrieval of genomic content in regions of interest, using
the Samtools faidx command. Subsequently, we identified all homopolymers and their
positions throughout the human genome using custom Python scripts and statistically
evaluated the occurrence of homopolymers in the human genome. For passing through
all regions of the genome we used the Pysam Python module which allows reading
and writing different formats including e.g. SAM, BAM, BED, FASTA and FASTQ
file formats and also supports random access to the genomic data through indexing.
The minimal length of searched homopolymers was set to 6 nt and we looked only
for perfect monomeric STRs without any mismatches within the repeat. We stored
identified homopolymers in the BED file format which is a standard file format for
recording coordinates of genomic regions. Generally, a BED file is a tab-delimited text
file and consists of 3 required and 9 additional optional fields. In our BED file only

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwiS5LiPporlAhXDY1AKHd8iB98QFjAAegQIBBAB&url=ftp%3A%2F%2Fftp.ncbi.nlm.nih.gov%2Fgenomes%2Fall%2FGCA%2F000%2F001%2F405%2FGCA_000001405.15_GRCh38%2Fseqs_for_alignment_pipelines.ucsc_ids%2FGCA_000001405.15_GRCh38_no_alt_plus_hs38d1_analysis_set.fna.gz&usg=AOvVaw0dM3KEO_rvHT9bHao40Dne
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the mandatory fields and one extra nonstandard BED field containing the repeated
base within the homopolymer were present. The required BED fields consisted of the
name of the chromosome or scaffold, the 0-based starting position, and 1-based end
position of the locus where the homopolymer was identified. By analysing the human
reference genome we also created a file containing lengths of monomeric microsatellites
and its counts. The results confirmed our expectations that with the increasing length
of a homopolymer the count of such microsatellite systematically decreases across the
human genome 3.1. Altogether, we detected 7,749,621 homopolymer loci with length
at least 6 nucleobases in the human genome. We counted homopolymers separately
for each nucleotide and length as well. Interesting fact resulting from this data was
much higher occurrence (approximately one to two orders of magnitude higher) of the
nucleobases adenine and thymine in comparison to cytosine and guanine within the
same length of a homopolymer.

Figure 3.1: Counts of homopolymers in the human genome

3.3.2 Genotyping of sequenced samples

The first step of analysing samples was to map all reads against the reference genome.
We created the mapping index over the human genome reference with the Bowtie2
tool. We also used Bowtie2 tool for mapping reads from both FASTQ files coming
from one sample to the reference genome and as a result, a SAM file was created for
each individual sample. Each SAM file was subsequently converted to a BAM format
using Samtools view and each BAM file was sorted using Samtools sort and indexed
using Samtools index tool. Finally, each generated sorted BAM file was processed by
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our own Python script. By running this script we excluded all reads which were not
mapped to any homopolymer from the reference genome from further analyses. Also,
the script identified and stored the lengths of all homopolymers which were properly
aligned to the reference genome based on the following criteria:

• W e set the condition that each analysed aligned read needed to have a mapping
quality higher than or equal to 2 to eliminate reads with uncertain mapping
location.

• W e specified the minimal length of a homopolymer to 2 nt.

• Each homopolymer in the read, we took into consideration, had to be surrounded
from its both ends by at least 3 flanking bases. The maximal usable homopolymer
length, given 35 bp long reads in our data set, could be therefore 29 nt. Via this
filtering step we especially aimed to exclude incompletely covered homopolymers
from further analyses.

We used a compressed, one-dimensional NumPy [16] array to store detected geno-
types of each sample from Slovak, Indian and oncological data sets. Positions in a
vector representing homopolymers that were not identified from any read and had an
unknown length contained a default value 0. We opted to use the NumPy objects
because NumPy library in Python provides among other things efficient numerical
computation and contains sophisticated broadcasting functions allowing to effectively
operate on the NumPy arrays. Another advantage of using NumPy objects is that
they can be used as input parameters of functions when creating graphs or performing
statistical tests on data.

We worked with a large amount of FASTQ files which needed to be processed in
the same way. Therefore, the process of analysing all reads of Slovak, Indian and
oncological samples was performed using very useful tool called Snakemake [12] which
enables distributed running of scripts and shell commands on many files. We created a
Snakefile consisting of several rules defining the workflow which automatically processed
each sample and took two FASTQ files containing reads as an input and generated a
NumPy vector, which was determined as a target output file, for each sample.

3.3.3 Calculation of population frequencies

The next step of analysing monomeric microsatellites was the aggregation of 10,645
randomly chosen vectors out of all 10,845 one-dimensional NumPy arrays obtained
from the sample set of the Slovak population. We kept 200 samples, which we did
not involve in aggregation we performed on the vectors, as the control data set for
comparisons and statistical evaluations. We wrote a Snakefile with workflow description
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Figure 3.2: Coverage of homopolymer positions from Slovak sample set

to process automatically the above mentioned arrays and we also wrote a Python
script to manipulate with arrays and store the result of aggregated numpy vectors
in a two-dimensional NumPy array. We decided to represent genotypes of detected
homopolymer lengths from the Slovak population in a matrix G. The i-th row, Gi,
corresponded to a single homopolymer locus and the j-th column, Gj, represented
genotypes of the j-th individual. The homopolymer length itself of the i-th locus and
j-th sample or the value 0 in case the locus was not covered was stored in the matrix
at position Gi,j. Subsequently, we calculated occurrences of homopolymer lengths
separately for each position from the matrix G. The counts of genetic variants identified
in the Slovak population were stored in the NumPy matrix C in a such way that the i-th
row, Ci, stood for the i-th locus out of all homopolymers and the order of homopolymer
loci was the same as stored positions of homopolymers in the BED format. Therefore,
rows of the two-dimensional array C corresponded to lines in the BED file. Each
column index represented the number of repetitions and in the array itself the counts of
homopolymers, which were identified in the Slovak sample set, were stored at positions
of the matrix determined by a row and a column.

Relative frequency distribution is defined as the percentage or proportion of data
elements in each class. In our case to get the population frequencies, we computed the
relative frequencies from obtained homopolymer counts observed in our sample set of
the Slovak population using the following formula:

Fi,j =
Ci,j

29∑
k=2

Ci,k

where F is the matrix containing resulting relative frequencies and C is the matrix of
observed counts of homopolymers in the Slovak individual samples. The determination
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of population specific frequencies has a great potential to be further widely used in
various clinical applications and in research focused on monomeric STRs.

Using different metrics we wanted to examine how significantly monomeric STRs
differ among populations. We purposely studied Slovak and Indian individuals which
are considered to be genetically highly remote because it was expected that there would
be observable variability in their homopolymer lenghts. However, the comparison of
these two populations also particularly served as the baseline for the evaluation if on-
cological patients dispose of higher deviation from healthy variants in comparison to
determined interpopulation differences. We processed all NumPy vectors containing
counts of detected monomeric microsatellites from Indian, oncological, and control sam-
ple sets in such way that we took only positions where nonzero values were present and
thus the lengths of homopolymers were detected at these loci. Subsequently, we stored
the corresponding population frequencies of observed homopolymer lengths in a new
NumPy vector which was used and processed in further analyses. We decided to look
at the resulting data from various views and compare Slovak versus Indian population,
Slovak versus oncological samples and pairs of oncological samples using the resulting
relative frequencies of monomeric STRs calculated from the Slovak population accord-
ing to several different metrics. We calculated average and median values of the vector
elements for the estimation of genetic distance between the mentioned populations. We
also compared the occurrences of such homopolymers that appeared rarely, based on
the computed frequency values, in the Slovak population and thus had lower relative
frequency values. This was crucial in our study because we wanted to focus especially
on those homopolymers which showed atypical lengths for the Slovak population and
thus assess the variability. We decided to look separately at 3 categories and set 3
different thresholds for the relative frequencies which were as follows:

• observed homopolymers with frequencies equal to 0 - in this case the lenghts of
these homopolymers were not identified and present in samples from the Slovak
population,

• homopolymers with frequencies lower than 0.1 and lower than 0.05 - lengths of
these homopolymers were not common in the Slovak population.

As the metric for rarely occurring lengths, which we subsequently compared between
our sample sets, we took a count of those detected homopolymers within the vector
which satisfied the given condition and divided it by number of nonzero vector elements.

Finally, we created graphs using Python graphing library called Plotly to display
the distributions of computed metrics within each sample set.
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Chapter 4

Results

In this chapter we will interpret the obtained results of our analyses.

We used non-parametric statistical tests to assess the difference of measured met-
rics between data sets. To confirm that compared distributions are not normally dis-
tributed, we performed the normality test using Scipy.stats package [2]. The corre-
sponding function tests the null hypothesis that a sample comes from a normal distri-
bution. Using this statistical function we got the calculated p-value much lower than
0.05 for each distribution which confirmed that the null hypothesis could be rejected
and thus our data did not follow the normal distribution.

4.1 Comparison of Slovak and Indian samples

We looked at the frequency distributions of Slovak samples from a control data set and
Indian samples. These two populations are not considered to be closely related and
therefore we expected that relative frequencies of homopolymers from Indian samples
should take in general lower values than samples from the control data set. From the
graphs we created, it was not obvious if there is the significant difference and vari-
ability in homopolymer lengths between these two populations. To prove if lengths of
homopolymer loci varied between Slovak and Indian populations only by chance or if
there was the trend that the distributions in the two groups differed significantly we
performed a statistical test. Concretely, we used Mann–Whitney U test from Scipy.stats
package which is designed for 2 groups of independent data with not normal distribu-
tion. P-values in almost each analysed distribution of specific metric showed that there
is a significant difference between Indian and Slovak populations.

21
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(a) Average of frequency
values (Mann–Whitney U =
22159, n1 = 200, n2 =
306, P = 7.64507e-08, two-
tailed)

(b) Median of frequency val-
ues (Mann–Whitney U =
17537, n1 = 200, n2 =
306, P = 2.26578e-16, two-
tailed)

(c) Frequencies lower than
0.1 (Mann–Whitney U =
27894, n1 = 200, n2 = 306,
P = 0.04623, two-tailed)

(d) Frequencies lower than
0.05 (Mann–Whitney U =
28033, n1 = 200, n2 = 306,
P = 0.05523, two-tailed)

(e) Frequencies equal to
0 (Mann–Whitney U =
26250, n1 = 200, n2 = 306,
P = 0.00341, two-tailed)

Figure 4.1: Distributions of Slovak and Indian sample sets using different metrics
applied to relative frequency values

4.2 Comparison of Slovak and oncological samples

When comparing Slovak and oncological sample sets visually via box plots it had been
already noticeable that there were differences between the homopolymer length distri-
butions. We proved again our hypothesis by Mann–Whitney U statistical test. For
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each observed metric except the median of relative frequencies we got a p-value much
lower than 0.05, which confirmed our expectations, and thus we could declare that the
differences in homopolymer lengths between healthy and oncological samples are not
caused by chance. Therefore, we assume that the MSI status should be detectable in
the oncological samples using monomeric microsatellites as the genetic markers.

4.3 Analysis of oncological sample pairs

As we have already mentioned we had always a pair of samples coming from one patient
in our data set of oncological samples. One sample was obtained before surgery and
the other one 1 or 3 days after. We expected that the MSI status would decrease
after the surgery because the tumour was removed and thus cancer cells should not be
present in the body of a patient at higher levels in comparison to the condition before
surgery. However, the data did not show clearly what we have expected and therefore
did not confirm our assumption. For statistical evaluation of oncological sample pairs,
we applied the two-sided Wilcoxon signed-rank test for the paired groups of data which
are not independent of each other and do not follow the normal distribution. Almost
all p-values resulting from this test were higher than threshold 0.05 and thus we could
conclude that there was no significant difference in homopolymer lengths between the
groups. On the other hand, these results could be negatively affected by many factors,
and thus our hypothesis that the MSI status should be lower after the surgery could
be further analysed in future work.
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(a) Average of frequency
values (Mann–Whitney U =
5344, n1 = 200, n2 = 82, P
= 2.20002e-06, two-tailed)

(b) Median of frequency val-
ues (Mann–Whitney U =
8178.5, n1 = 200, n2 = 82,
P = 0.48653, two-tailed)

(c) Relative frequen-
cies lower than 0.1
(Mann–Whitney U =
5263, n1 = 200, n2 = 82, P
= 1.16896e-06, two-tailed)

(d) Relative frequen-
cies lower than 0.05
(Mann–Whitney U = 5214,
n1 = 200, n2 = 82, P =
7.91084e-07, two-tailed)

(e) Relative frequencies
equal to 0 (Mann–Whitney
U = 3739, n1 = 200, n2

= 82, P = 3.68497e-13,
two-tailed)

Figure 4.2: Distributions of Slovak healthy and oncological samples using different
metrics applied to relative frequency values
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(a) Average of frequency
values (Wilcoxon signed-
rank test Z = 359, n = 41,
P = 0.3542)

(b) Median of frequency val-
ues (Wilcoxon signed-rank
test Z = 306, n = 41, P =
0.1621)
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(c) Frequencies lower than
0.1 (Wilcoxon signed-rank
test Z = 330, n = 41, P =
0.1928)

(d) Frequencies lower than
0.05 (Wilcoxon signed-rank
test Z = 312, n = 41, P =
0.1246)

(e) Frequencies equal to 0
(Wilcoxon signed-rank test
Z = 254, n = 41, P =
0.0222)

(f) Frequencies equal to 0

Figure 4.3: Distributions of Slovak and Indian sample sets using different metrics
applied to relative frequency values



Conclusion

Microsatellites have been widely studied in genealogy and forensics since their highly
variable nature is well-suitable for comparison of individuals. On the other hand, their
potential as oncology biomarkers have emerged recently and should be more explored
to fully assess their usability in clinical diagnostics. We analysed large cohorts of
sequenced genomic data to determine common forms of homopolymers in the Slovak
population. We studied the interpopulation differences of homopolymer lengths with
a spatially distant Indian population and compared genomic variants of a healthy
population with variants of oncological patients.

At first, we located all homopolymer positions across the human genome. Next,
we mapped the reads of all analysed samples to the reference genome and identified
the genetic variants. We aggregated the obtained genomic data and determined the
typical forms and relative frequencies of homopolymer lengths separately for each of
7,749,621 loci in the Slovak population. The computed population-specific frequencies
are of great importance for clinicians who can use this data for different biomedical
applications. Our custom scripts can be also further used to calculate the frequencies
of homopolymer lengths for any population or can be applied to any studied data set
of samples.

Using different metrics we were able to compare the frequency distributions between
various data sets. Via applying the statistical test to each performed comparison
(Slovak vs. Indian, Slovak vs. oncological and oncological before vs. oncological after
surgery) we showed that there was a significant difference between the Slovak control
and Indian data sets as well as Slovak control and oncological samples whereby this
trend was much more notable in the oncological samples. Therefore, we imply that the
determined population frequencies have great potential usage, especially in oncology
to detect and monitor the ongoing oncological disease. However, the determination of
a microsatellite instability status of a tested subject itself have the potential to provide
relevant prognostic information and guide therapeutic choices. The comparison of
oncological paired samples did not reflect our expectations. There are different possible
options that could explain the unexpected results. The tumour could be incompletely
removed, cancer biomarkers could be at that time still present in blood and thus
samples should be taken from patients later than 3 days after surgery or the statistical
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modelling should be improved.
Although there was a significant trend that oncological samples divert from the

common forms of homopolymers in the population, the identified differences were not
sufficient for an explicit classification of healthy and oncological samples. Therefore,
more advanced statistical modelling could be used in a future work that could possibly
involve the development of a classifier that would be capable to recognise and differ-
entiate between pathogenic and healthy samples based on microsatellite variants. It
could be also interesting to focus separately on different types of cancers and examine
a microsatellite instability status within each class because certain cancers are more
commonly associated with high instability status.
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Appendix: content of electronic
appendix

In the electronic appendix of this work are included the following files:

• analysis.py — script analysing sample and creating an NumPy array

• bed_format.py — script locating homopolymer positions and storing them in the
file ref.bed

• count_homopolymers.py — script that counts homopolymers of each length

• counts.npz — NumPy matrix with homopolymer counts in the Slovak population

• create_matrix.py — script aggregating NumPy vectors into a NumPy matrix
counts.npz

• freqs.npz — NumPy matrix containing relative frequencies

• homopolymer_counts, homopolymer_counts_input — files containing counts of
homopolymers in the reference genome

• ref.bed — file containing homopolymer positions

• ref_names

• Snakefile1 — file for distributed running of the script analysis.py

• Snakefile2 — file for running the script create_matrix.py

• SVK — samples from the Slovak control data set

• SVK-POP — samples from the Slovak data set

• analysis.ipynb— jupyter notebook (creating graphs, calculation of the population
frequencies)
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