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Abstrakt

Ako rozdeliť jednoduchý mnohouholník na trojuholníky? Ako nájsť diagonálu mno-
houholníka? Prvé pokusy odpovedať na tieto otázky vedú k nesprávnym algoritmom. V
tejto práci vysvetľujeme nesprávne a správne algoritmy triangulácie podľa metodológie
Forišek-Steinová, aby sa dali ľahko pochopiť a ukazujeme ich prípadné nedostatky.
Navyše implementujeme jednoduché prostredie, ktoré ukazuje tieto algoritmy v akcii.
Dá sa použiť na vizualizáciu ďalších algoritmov výpočtovej geometrie na mnohouhol-
níkoch v rovine alebo rozšíriť na vizualizáciu ďalších typov algoritmov.

Kľúčové slová: triangulácia jednoduchého polygónu, algoritmické stratégie, kinestet-
ické myslenie, vizualizácia algoritmov
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Abstract

How to divide a simple polygon into triangles? How to find a diagonal in a polygon?
The first algorithms that come to mind are incorrect. In this thesis we offer explanations
of incorrect and correct triangulation algorithms according to the Forišek-Steinová
methodology, making them easier to understand and pointing out the flaws where
necessary. Additionally we implement a simple environment that displays said algorithms
in action. It can be used to visualize other computational geometry algorithms on
polygons in a plane or extended to visualize additional types of algorithms.

Keywords: simple polygon triangulation, algorithmic strategies, kinesthetic thinking
in computational geometry, algorithm visualization
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Introduction

The computational geometry problems were always the hardest. Asking anyone at any
level of competitive programming what the category of problems you fear the most is,
the answer was always the same: computational geometry. To be able to solve them,
you not only need intelligence and creativity, as in the case of the other problems but
also remember how to correctly implement points, angles, distances, dot products, cross
products. . . The task statements used to be dry, the solution was usually a combination
of the already mentioned techniques and solving these problems just wasn’t ejoyable.
But later, at the university, I started thinking about this again. What makes a problem
more attractive and fun to solve? Why are we devoting resources to solving already
thoroughly explored problems?

Computer science advanced a great deal in the last decades. The landscape of
the unknown where discoveries lurk was shrinking as the optimal solutions to most
common and practical problems were being found. Development nowadays consists
primarily of putting together existing building blocks and using highly optimized
algorithms imported from libraries. Computational geometry is no exception and
canonical algorithms like polygon triangulation and convex hull are also entering the
import-when-needed territory.

However, once in a while, the need to understand one of the building blocks arises.
Perhaps it doesn’t behave in the desired way, or it may be more efficient to implement
a modified version than to use the output straight away. Studying the source code of
an algorithm can take a while, and at this point, a simple explanation can save a lot of
time.

Many teachers and scientists believe that the perfect understanding of a topic is the
ability to explain it effectively to others. So until a minimal explanation for a topic
exists, we can’t be sure we have explored it completely.

Additionally, a deeper understanding of a subject can lead to new discoveries
elsewhere using the same principles or finding previously invisible similarities. Visual
representation is especially helpful in this regard because visual similarities are the easiest
to notice. The second half of this thesis is dedicated creating a visual representation
of algorithms. The purpose is to offer the ability to see an algorithm with minimal
adjustments in the code.

1



2 Introduction

At the Formal Languages and Automata class the idea of minimalization first
fascinated me. It can be implemented in many areas, ranging from minimal automata
to practical explanations. This thesis aims to explain the first incorrect and correct
triangulation algorithms in a simple way and summarize the polygon triangulation
journey from the problem definition to an optimal solution.



Chapter 1

Definitions

Polygons are essential geometric structures with many practical applications, ranging
from blueprints to shape recognition. They are an excellent digital representation of
real-world objects. Most of the time, however, the real world is not simple and this
needs to be reflected in its representation as well. Dealing with polygons in their entirety
can be too complicated and most of the time it would be best to divide them into
simpler structures. As triangles are the simplest polygons with a multitude of desirable
properties, so arises the problem of polygon triangulation — th edecomposition of a
polygon into triangles.

The problem of polygon triangulation is a thoroughly explored topic in computational
geometry with many published correct and incorrect algorithms. In this chapter, we
will define the problem and the terminology used to offer an overview and explanation
of some algorithms.

1.1 Notation

In this thesis we will be working with simple polygons on a two-dimensional plane.

Definition 1. Vertex is a point on a two-dimensional euclidean plane. Points are
represented by cartesian coordinates a = (x, y); x; y ∈ R. Vertices will be labelled as
upper case letters, like A or X.

Definition 2. Edge is a segment connecting two adjacent vertices of a polygon. Edges
will be labelled as pairs of uppercase letters or a lowercase letter, indicating that edge
e = AB connects vertices A and B.

Definition 3. Polygon is a sequence of vertices such that every two consecutive vertices
(also the first and the last) are connected by edges. Polygons will be labelled as upper
case letters, P = ABC is a polygon with vertices A, B and C.

3



4 CHAPTER 1. DEFINITIONS

Definition 4. Simple polygon is a polygon with straight, pairwise non-intersecting
edges and no holes.

The definitions of vertices, edges and polygons were more or less intuitive. Let’s
define the triangulation of a polygon.

Definition 5. Triangulation of a polygon P is any set of triangles (polygons with three
vertices) such that

1. Each vertex of each triangle must be one of the vertices of P

2. No two triangle interiors share a common point

3. The union of these triangles is exactly P

Now we will prove that every polygon can be triangulated. First, we have to prove
two other facts, then the existence of a triangulation will be proven easily.

Definition 6. Convex vertex is such a vertex of a polygon that it’s two edges form a
convex angle (with regard to the inside of the polygon).

Lemma 1. Each polygon has at least one strictly convex vertex.

Imagine a walker walking along the edges of a polygon P in counter-clockwise
direction. The interior of the polygon is always to the left of this walker. A convex
vertex is a left turn and a concave vertex is a right turn. Let x be the left-most vertex
of P (with minimal x coordinate in P ), if there are multiple, then the lowest one. x has
to be a convex vertex because the walker has to turn left at the left-most point of the
polygon, otherwise x wouldn’t be the lowest.

Definition 7. Diagonal is a segment connecting two non-adjacent vertices of a polygon.

Definition 8. Inner diagonal is a diagonal that is entirely inside its polygon.

Lemma 2. Every polygon with more than three vertices has an inner diagonal.

Finding an inner diagonal is a crucial part of several triangulation algorithms. This
will be proven later in the wrong algorithm analysis, let’s assume it’s true when proving
the existence of a triangulation.

Theorem 1. Each polygon P with n vertices can be triangulated (divided into non-
overlapping triangles).

Proof by induction. If n = 3, the polygon is a triangle and the theorem is true.
Otherwise, let d = XY be an inner diagonal of P , which exists because of 2. An inner
diagonal divides a polygon into two smaller polygons P1 and P2, to which d is an edge.
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Because these polygons have fewer vertices than P , if they can be triangulated, P can
be triangulated as well, because the conjunction of the triangulations of P1 and P2 is a
triangulation of P .

We can observe that every triangulation of an n-gon (polygon with n vertices)
contains exactly n− 2 triangles, similar proof by induction.

This proof is basically a constructive algorithm that constructs the triangulation by
adding inner diagonals to the polygon.

1.2 Terminology

1.2.1 Kinesthetic thinking

Sellarés and Toussaint [1] distinguish between logico-mathematical thinking and kines-
thetic thinking.

The term kinesthetic thinking (. . . ) signifies direct cognitive operations
on tactile kinesthetic sense experiences. A kinesthetic heuristic is any
heuristic in which cognition, undertstanding and learning takes place through
perceptible results of dynamic manipulation [1].

Our knowledge and intelligence are originally acquired through visual, audial and
other interactions with our environment, especially in the field of computational geometry.
We live in a three-dimensional world that is often simplified into two dimensions in order
to analyze it effectively. After we acquire information and form concepts though, we are
able to perform logico-mathematical thinking without the influence of the ’real world’.
Understandability of proofs and algorithms is crucial to facilitate progress. The faster
we can teach existing scientific progress to new generations of researchers, the more
time they will have to move the research forward. In addition, being able to explain
a subject clearly is some indication of truly understanding the subject in great depth.
There are various levels of understanding, but to be able to transfer knowledge to others
effectively, one really has to have the deepest understanding of the topic himself.

Kinesthetic heuristics are easier to understand and easier to come up with. Sometimes
even faster than their logico-mathematical counterparts. (In the case of the convex hull
problem, for example.) Sellarés and Toussaint [1] call kinesthetic heuristics ’a double-
edged sword’. As we will see in the case of polygon triangulation, some published
algorithms in computational geometry turned out to be wrong. All of them were
based on kinesthetic heuristics, and they were efficient. Because algorithms based on
kinesthetic heuristics are usually faster, they are an excellent pedagogical strategy for
the design of fast algorithms. On the other hand, correctness of these algorithms is
harder to prove because of the gap between the logico-mathematical and kinesthetic.
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Kinesthetic metaphors can be compelling, but the proof of correctness needs to be
logico-mathematical, so some conversion is necessary.

We can illustrate the usefulness of kinesthetic thinking on the Knapsack problem.
The formal definition as an NP optimalization problem is as follows:

relation R, target max and value function m such that

R = {(x, y) | x = d(w1)#d(w2)# . . .#d(wn)#d(c1)#d(c2)# . . . d(cn)#W

y = d(S), S ⊆ {1, 2, . . . n},
∑
i∈S

wi ≤ W

m(x, y) =
∑
i∈S

ci ≤ W

(d(x) is a binary representation of x).
The problem is then for any given x to find yx where ∀y m(x, yx) ≥ m(x, y).
Did you understand the problem definition? How long did it take?
Now let’s say we are going on a vacation and quickly need to pack. We have one

bag with limited space W and the choice of N items; item i has a value ci and will take
up space wi; i ∈ N. How can we choose some items so that they fit together in the bag
and have the largest total value?

The metaphor is generally easier to understand and even leads to the design of
the solution right away. What if we consider the items one at a time? How does the
decision of taking or not taking one item depend on the decisions regarding the previous
items? And so on.

1.2.2 Metaphor & Analogy

As we will be talking about metaphors and analogies, it is important to define how we
understand these terms. In the book Explaining Algorithms Using Metaphors, there
are 2 relevant definitions based on Lakoff & Johnson [2].

A (conceptual) metaphor is a cognitive process that occurs when a
subject seeks understanding of one idea (the target domain) in terms of a
different, already known idea (the source domain). The subject creates a
conceptual mapping between the properties of the source and the target,
thereby gaining new understanding about the target [2].

An analogy is a cognitive process in which a subject transfers information
from one particular object to another. The word analogy can also be used
as a noun describing the similarity between the two particular objects [2].
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As is usually the case, these terms mean different things in different contexts. For
example, ’the homework was a breeze’ is a metaphor in the context of literature, but we
can hardly draw conclusions about the homework from thinking about a breeze. There
is a difference between these terms. An analogy shows some properties of the target on
the source, but a good metaphor allows the inference of other information about the
target based on the connection with the source. On the other hand, a bad metaphor
leads to wrong conclusions and confusion as a result.

1.3 Methodology

In this thesis, we will explain algorithms using the Forišek-Steinová methodology. In
the main chapters of the book Explaining Algorithms Using Metaphors [3], topics from
selected areas in computer science are presented using the same structure consisting of
five parts.

Overview A brief overview of the topic is given, stating the problem definition and
necessary background to follow the next sections.

Metaphor The core part where the metaphor is developed and it is shown how it can
be used to teach the topic.

Analysis The problem is approached from a scientific point of view. The metaphor
is extended to a complete algorithm solving the problem if necessary. A deeper
analysis of the topic, mentioning the best solutions and research on the topic.

Experience Some didactic notes for teachers and possibly a recollection of the author’s
experience when teaching this topic.

Exercises Several exercises relevant to the topic are presented, providing an opportu-
nity to apply the newly acquired knowledge to an unknown problem and measuring
their understanding of the topic.

This thesis is focused on a deeper analysis of one problem instead of an overview
across multiple topics. We apply a modified version of this structure to multiple
algorithms and metaphors related to this topic. The sections Experience and Exercises
are not included because they refer to the problem rather than the individual algorithms.
On the other hand, the Metaphor and Analysis sections are essential in the following
effective explanations of selected correct and incorrect triangulation algorithms.





Chapter 2

Algorithms

As mentioned in the previous chapter, the proof of existence of triangulation in any
simple polygon is basically a constructive algorithm creating the triangulation. In fact,
this was the first published solution to this problem, designed by Lennes in 1911 [4]. It
is a Divide & Conquer algorithm, where for any polygon P :

1. If P is a triangle, we are done. If not, find an inner diagonal of P .

2. Using this diagonal divide P into two new polygons P1 and P2

3. Recursively find the triangulation of P1 and P2. their union is the triangulation
of P

The problem of triangulation is thus reduced to the problem of finding an inner
diagonal of a polygon.

Let’s take a look at some kinesthetic heuristics for finding inner diagonals in polygons.

2.1 Inner diagonals

All algorithms follow the same pattern:
Find the left-most vertex of polygon P ; call it B. If there are multiple such vertices,

take the lowest one (with minimal y coordinate). Then based on Lemma 2 B is a convex
vertex.

Let A, C be it’s neighbours. If triangle T = ABC doesn’t contain any other vertices,
AC is an inner diagonal.

Otherwise, choose a vertex inside T and say that BD is an inner diagonal.
The difference between these algorithms is the way they select vertex D. Each of

them is some kind of kinesthetic heuristic, each of them was published and each of them
is incorrect.

9
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There are three fundamental transformations in computational geometry: scaling,
translation and rotation. The following heuristics are intuitively inspired by these
transformations.

2.1.1 Wrong heuristics

The easiest way to prove the incorrectness of an algorithm is to show an example
input where the algorithm produces an illegal output. At copmetitive programming
competitions, the algorithms are tested on random large inputs to reduce the probability
of an incorrect algorithm passing these tests to the minimum or even impossibility. This
is in attempt to guarantee that only the correct algorithms are accepted. But in the
case of manually simulating an algorithm to understand why it is incorrect, large inputs
are impractical. It is better to design tricky inputs that make as many algorithms fail
as possible while being as small as possible. In this case, the example that disproves
all of the following heuristics has to have at least five vertices: A, B, C that form the
triangle T = ABC and two more inside the triangle; a correct vertex D such that BD

is an inner diagonal and another vertex E such that BE is not an inner diagonal. With
four vertices, there would be only one candidate for the vertex D and thus all heuristics
would find it (observe that at this stage, BD has to be an inner diagonal).

As it turns out, there is an example that fails all three and together with its twin
(2.1) makes a solid sample test case. The second version shows incorrect algorithms
approaching the problem f̈rom the other sidë, either rotating or sweeping from the other
direction.

Figure 2.1: Minimal counterexample (left); with D and E inverted (right)

Scaling

Find the closest vertex to B inside triangle T [1]
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B

C

E

D

A

B

C

E

D

A

Figure 2.2: D and E are inside triangle ABC

The very first and simplest heuristic that comes to mind is simply taking the closest
vertex to B. It is basically equivalent to growing a circle from B and whichever vertex
inside T it hits first is chosen as the other end of the diagonal. Hence, the connection
to scaling. The common analogy for this type of algoritm is spilled water. If B was a
fountain and the other vertices were water outlets, the water would flow through D

first.

B

C

E

D

A

Figure 2.3: Scaling heuristic

This heuristic doesn’t always produce an inner diagonal because it does not consider
the boundaries of the polygon. The overall closest vertex to B does not have to form
an inner diagonal with B, because there is nothing preventing the circle from crossing
some edges of the polygon before choosing vertices.
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Rotation

Find the vertex D inside T such that the angle CAB is the smallest. [1]

Imagine the polygon as a clock. It seems a little far-fetched at first, but we can set
B as the middle and the other vertices inside T as hour marks. Different distances of
the hour marks from the middle are a little unusual, but every clock tells the correct
time at least twice a day. The heuristic is then very simple: set the time to A and wait
a minute. The first point the minute arm crosses is the the inner diagonal’s other end.

B

C

E

D

A

Figure 2.4: Rotation heuristic

Using a rotating line to find D doesn’t always yield an inner diagonal. The reason
for that is similar to the Scaling heuristic; the line doesn’t take into account any edges
inside T . Rotating the line in a counter-clockwise direction from C could also result in
an incorrect vertex.

Translation

Find the left-most vertex inside triangle T . [1]

This would probably be the second most common heuristic. If the overall closest
vertex doesn’t work, what about the left-most vertex? Again, we draw a vertical line
passing through B, but instead of rotating it we start moving it across the polygon.
Whichever vertex it hits first we choose as D. We basically sweep the points until we
hit one inside T .

As was the case in the previous heuristics, we again disregard the edges of the
polygon. Nothing is preventing the line from leaving the inside of the polygon before
hitting the vertex.
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B

C

E

D

A

Figure 2.5: Translation heuristic

2.1.2 Correcting the heuristics

In this section, we will take a look at some corrections of the incorrect heuristics [1]
and one other correct kinesthetic heuristic [3]. Any of these corrected heuristics is a
constructive proof of existence of an inner diagonal (if the polygon has more than 3
vertices) mentioned in the previous chapter.

Correct Translation

Our algorithmic intuition should indicate that if we choose some constant when solving
a more complex problem, there has to be a reason. For example, in this triangulation
algorithm, we always select the left-most vertex as B. But that is because it is always
convex. In the case of the Translation heuristic, there is no reason to choose vertical as
the direction of the line straight away. The correction of this heuristic requires rotating
the line to have the same direction as ca before sweeping. Then the first polygon found
by this line always forms an inner diagonal with B. The essential difference is that at
no point can any part of the line be outside the polygon AND inside T before hitting
the first vertex.

Observe that when we sweep the vertices in T with any line starting at B, the line
has to hit a vertex before any part of the line inside T leaves the polygon. This could
be A or C or one of the candidates for D. In the case of a fixed horizontal line we were
able to make the line hit A first, which can’t be D, so we continued sweeping. But
now a part of the line is outside of the polygon and exactly that part hits the incorrect
vertex before the part inside T . By aligning the line with AC we force the line to hit A
and C at the same time, at which point the line also leaves T . So the first vertex the
line hits is guaranteed to be one of the candidate vertices and at that point no part of
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Figure 2.6: Correct translation heuristic

the line that is inside T has left the polygon.

Correct Scaling

If we were able to make the water respect the edges by turning them into some kind of
boundaries, the water would choose the correct vertex because it is always inside P and
T . This correction is hard to implement, maybe even increases the time complexity.
Another correct variant requires looking at the problem in reverse. One approach
to solving problems that often gets overlooked is to ’go backwards’ while solving an
opposite problem. In this case instead of searching for the vertex closest to B we search
for the vertex that is farthest away from AC. Because of this connection, this always
finds the same vertex as the correct Translation algorithm.

Correct Rotation

The correct version of the Rotation algorithm places the clock in C instead of B and
sets the time to B.

Interestingly enough, similar observations can be made about this situation as in
the case of correct Translation heuristic. When we sweep the vertices with a rotating
the line this way, before any part of the line in T leaves the polygon it has to hit a
vertex. And as it again can’t be A, B or C so it has to be one of the candidate vertices.
When we set the time to A and started rotating in the incorrect version, some part of
the line inside T was outside the polygon and we were able to make that part hit a
vertex before the correct part did.
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Figure 2.7: Correct rotation heuristic

Gravity

The metaphor described by Forišek and Steinová [3] uses a ball, a rubber band and
gravity. First, find any concave angle of the polygon. Rotate the polygon so that both
sides of this angle point upward and no edge is horizontal. Attach the rubber band to
the ball and the vertex that is the tip of the concave angle, then drop the ball. It will
fall until it hits a side. Let the ball slide down the side until it reaches a vertex. At this
point if the rubber band is straight, then the vertex it ended in and the tip form an
inner diagonal. If not, the band had to hit another vertex. The first vertex it hit and
the tip form an inner diagonal.

This algorithm is also correct because the band is always inside the polygon, so it is
guaranteed that it hits any vertex from the inside of the polygon. Consequently, the
diagonal it creates is also completely inside.

2.1.3 Analysis

As already described, these heuristics lead to a Divide & Conquer algorithm. Each of
them can be implemented in linear time and we have to repeat the algorithm n − 3

time (for each diagonal), resulting in O(n2) time complexity.

The implementation of these heuristics if mostly straight-forward. After sorting
the vertices, finding A, B and C in any subpolygon is trivial, then we separate those
inside triangle ABC and for each of them calculate the distance from AB or the angle
BCD. The implementation of the Gravity algorithm is well described in Explaining
Algorithms Using Metaphors [3].
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2.2 Ears

2.2.1 Metaphor

Imagine the polygon as some exotic fruit. It isn’t practical to eat it as it is, so we first
want to slice it into triangles that we can munch on one by one. We rotate the fruit
until we find a spot, where we can comfortably make a cut from vertex to vertex and
slice a triangle off. We repeat this process until there is only a triangle left.

2.2.2 Analysis

This algorithm was first discovered by Meisters [5], who published a greedy ear-finding
algorithm leading to an O(n3) time algorithm. He proved the two-ears theorem, which
states that each simple polygon with more than 3 vertices has at least 2 non-overlapping
ears. Vertex Vi is an ear If triangle Vi−1ViVi+1 contains no other vertices. The trivial
algorithm for finding an ear checks this requirement for each vertex in O(n2) time. But
later a linear-time algorithm was discovered and published by Toussaint [6]. Interestingly
enough, it is similar to the triangulation algorithm itself in that it slices chunks off
the polygon until only an ear remains. And it can be transformed into another, more
efficient triangulation algorithm.

A good subpolygon of a polygon P is a subpolygon whose boundary differs from
that of P in at most one edge. The edge not in P is also called a cutting edge. Before
presenting the idea of the algorithm, we need to understand some facts.

An inner diagonal of a good subpolygon divides it to one good subpolygon and
one that is not good. That is because one of the new subpolygons will also contain
the cutting edge of the original one. (Assuming the original one has a cutting edge,
otherwise both will be good subpolygons) The idea of the algorithm is following:

Given a strictly good subpolygon G of P and vertex Vi

1. Check if Vi is an ear. If so, we are done.

2. Find an inner diagonal d = ViVj . It is the cutting edge of a new good subpolygon
G′. Rename it’s vertices so that Vi = U0 and Vj = Uk−1 (or Vi = Uk−1 and Vj = U0)

3. Repeat with G′ and U⌊k/2⌋

In each iteration we either find an ear or cut off approximately half of the polygon.
We are guaranteed (from 2nd iteration onward) that i = ⌊k/2⌋ and that V0Vk−1 is
the cutting edge. When we find Vj such that ViVj is an inner diagonal, the good
subpolygon always has at most ⌊k/2⌋ + 1 vertices. (If j < i then G′ = Vj . . . Vi,
otherwise G′ = Vi . . . Vj) The only obstacle in the correctness of the algorithm now is a
proof that if Vi isn’t an ear, it is one end of an inner diagonal. But if that is the case,
wither Vi is a convex vertex such that there are some vertices in Vi−1ViV i+ 1 or it is
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an concave vertex. In either case a constructive linear algorithm for an inner diagonal
exists, desribed in the previous chapter.

The first and second steps can be performed in linear time so this algorithm’s time
complexity is T (n) = cn+ T (⌊n/2⌋+ 1). c is a constant so T (n) ∈ O(n).

An interesting observation is that the ear finding algorithm is basically the same
as the Divide & Conquer algorithm from the previous chapter. We perform the same
steps: check if B is an ear and if not find an inner diagonal.

2.3 Faster algorithms

More complicated algorithms are naturally harder to explain, so here is merely an
overview of some faster triangulation algorithms. Some of them are described in
Toussaint’s Efficient triangulation of simple polygons [7]. Explaining these using the
Forišek-Steinová methodology is a good idea for some future work.

Following research involved designing algorithms for different classes of polygons. If
there is some constraint on the input polygon, we can use a faster algorithm leveraging
this constraint.

There are many classes of polygons: convex, monotone, edge-visible, star-shaped,
spiral, L-convex, intersection-free, and many more. Specifically, the named classes have
something in common: the existence of a triangulation algorithm in O(n) time [7].

2.3.1 Garey (1978)

The first algorithm to break the O(n2) upper bound is a different take on the Divide
& Conquer strategy. Instead of recursively solving the subpolygons we first divide the
polygon into monotone subpolygons and then triangulate each of them separately. [8]

Different versions of the decomposition algorithm and the triangulation of monotone
polygon were later published.

2.3.2 Tarjan and van Wyk (1988)

Even faster algorithm was designed by Tarjan and van Wyk in 1988. It uses complicated
data structures to achieve O(n log log n) time complexity. However, this was later
matched by Kirkpatrick (1990) using simple data structures.

2.3.3 Chazelle (1990)

In May 1990 Chazelle finally showed that a polygon can be triangulated in linear time
[9]. The algorithm, however, is very complicated and there are doubts regarding it’s
complete correctness.
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2.4 Delaunay triangulation

The problem of triangulation we defined can be generalized. Instead of triangulating
a polygon, the input is a set of vertices and the output is a set of non-intersecting
edges between these vertices that divide the convex hull of these vertices into triangles.
Additionally, if the circumference of these triangles can not contain another vertex, the
problem is called Delaunay Triangulation. Our definition is then an instance of the
Constrained Delaunay Triangulation (CDT), where some edges have been pre-filled (i.
e. the edges of the polygon) and the resulting triangulation has to respect these edges.
There may be some redundant edges outside of the polygon, but those can be easily
excluded. So any solution of the CDT problem can be used to triangulate a simple
polygon.



Chapter 3

Visualization

Understanding the algorithm metaphor is one thing, but it is only the first step in
solving a problem. One more step is necessary to test the correctness and actually use
the algorithm: implementation. Translating an algorithm into a language a computer
can understand is often not a straight-forward step-by-step copying of the idea. For
example, implementing the gravity heuristic for finding inner diagonals in the previous
chapter, we don’t rotate the polygon, but merely use the axis of the concave angle as
the direction of gravity and find the first intersection of the axis and an edge. To truly
understand an algorithm, one also needs to know how it’s implementation works.

The brain processes visual input acquired by the eyes all the time, so it developed an
effective process for parsing and understanding visual data. This is important because
visual stimuli are the most significant source of information about the world around
us. Listening and reading about an algorithm may not be enough. Sometimes, to fully
understand or to understand faster the algorithm needs to be seen. For this purpose,
we will create a program with the potential to visualize every step of any computational
geometry algorithm. There are some limitations and room for improvement, but it lays
a solid foundation for a sandbox of sorts where any algorithm can be visualized.

3.1 Specifications

The aim is to create a tool that helps visualize any geometric algorithm with minimal
adjustments in the code. There are various applications for such a tool, be it debugging,
examination of an unknown algorithm or illustrating an algorithm in a classroom setting.
For the implementation of this visualization tool, a couple of principles are followed.

universality – Keeping everything as general as possible so that the individual build-
ing blocks can be used as utlilities separately in other ways. This way the logging
part of the project can be used to visualize any type of algorithm when paired with

19
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appropriate visualizer. The class decorators may also have some other practical
uses on their own.

simplicity – Keeping everything as simple as possible.

While trying to stay as universal as possible to pave the way for visualizations of
other types of algorithms, here we focus on visualizing triangulations or other algorithms
on simple two-dimensional polygons.

3.1.1 Previous work

There are many visualizations of algorithms online displaying specific algorithms. But
the task of animating one concrete algorithm is easier than animating universally
any algorithm or even one class of algorithms. It doesn’t even necessarily require
programming. We also found one project aiming for something similar [10]. It does a
good job, but requires multiple lines of specific modifications in the code. So to visualize
an algorithm one needs to understand it beforehand and then basically implement the
visualization into the code. Therefore it doesn’t quite fit my requirements.

3.1.2 Programming language

The main choices for the programming language were Python and C++. The primary
target for this visualization is computational geometry algorithms and in C++, there is
a comprehensive Computational Geometry Algorithms Library [11] implementing all
essential computer geometry operations and even algorithms including convex hull and
polygon triangulation. It is also the language primarily used to implement computer
science algorithms, because it is fast and has a close connection to system calls and
bitwise operations.

On the othe hand, in Python standard library, there is a default GUI module
Tkinter which allows relatively simple visualization bypassing the need to include
external modules. Python is also a simple and easy to learn programming language
taught to students as an example or sandbox language nowadays. During research we
discovered that the core of CGAL was recently migrated to Python as the scikit-

geometry [12] module. Because of the superior Python experience in previous projects
and all necessary computational geometry tools already implemented, Python ended up
being the language of choice.

3.1.3 scikit-geometry

The scikit-geometry [12] module provides essential computational geometry objects
such as Point, Segment, Polygon, Ray, Vector etc. and essential operations on these
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objects for example Polygon.oriented_side(Point) returns Sign.POSITIVE if the
point is inside the polygon, otherwise Sign.NEGATIVE outside and Sign.ZERO on the
boundary. This module will be used to implement some triangulation algorithms that
will then be visualized.

Even though it is basically a Python copy of the CGAL C++ library, the docu-
mentation of scikit-geometry is non-exhaustive and lacks the reference to important
classes, Polygon for instance. There is no reference to CGAL either. So most of the
Polygon functionality had to be reverse-engineered.

The setup process was pretty complicated. It can be installed through conda

environment or by manual build of the repository. The build didn’t work, but the
setup of the conda environment was successful which in turn allowed the installation of
scikit-geometry.

3.2 Logging

To visualize an algorithm, each step of the algorithm has to be converted into one
visual frame representing this step. There are two options for achieving this: transform
the source code and a given input with into the visual representation or run the source
code on a given input and track it’s actions. The first option wouldn’t require any
modifications to the source code, but it would be needlessly complicated as it is basically
creating another compiler, or in the case of Python interpreter. It is easier to use
the existing interpreter and just track all objects, logging each action. To create the
visualization data we then just run the program.

The most practical way to track an algorithm in Python is to decorate all relevant
objects so that they log their actions at runtime. This requires some minimal adjustments
in the code, the only requirement is transforming used classes and objects with this
decorator.

3.2.1 Python objects and classes

In order to understand the implementation of the logger, some background is necessary
about how Python treats objects. All data in a Python program is represented by
objects or by relations between objects. Every object has an identity, a type and a value.
The identity is basically its address in memory; it is returned by the id() function.
An object type determines what properties it might have and possible values for that
object. It is returned by type() function. Types are also objects, more on that later.

The identity and type of an object are unchangeable, but the value might change.
There are also immutable objects whose value can’t change after initialization. This is
determined by object’s type; types int, float and tuple are immutable while list
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and dict are mutable for example. User-defined classes are basically custom types.
The class (or a type) can be called to create an instance object (or a class object).

Let’s take a closer look at class creation in Python. As previously mentioned, classes
are objects. As such they also have a type and have to be an instances of something.
Classes of classes are called metaclasses. The default metaclass is type. Call type(obj)
returns the type of object obj and type(name, bases, namespace) returns a class
object. The latter is basically the dynamic variant of the class statement. The process
of class object creation involves determining the correct metaclass, preparing the class
namespace and creating the class object itself. Every instance ins has two special
attributes; __dict__ is a mapping of the class namespace and __class__ is a reference
to its class. Special syntax dir(instance) or dir(class) returns the keys of the
namespace of the given object.

A class instance are created by calling the __new__() method of a class object
and initialized by calling the __init__() method before the object is returned to the
caller. Instance attributes are usually fetched by calling __getattribute__(attr_name

) method, which returns the attribute named attr_name or raises an AttributeError

exception if it doesn’t exist. This happens when invoking instance.attr_name in
code. However, there are some exceptions; classes have special methods that skip the
__getattribute__ machinery. This allows significant speed optimizations. They are
surrounded by two underscores, like __len__() or __eq__() and invoked by special
syntax, like len(instance) or instance == other. If they are called explicitly, i.
e. instance.__len__(), __getattribute__() is invoked with __len__ as attribute
name.

3.2.2 Decorating a class

For the purposes of logging, decorating instances of classes is impractical, as it requires
the transformation call at every instance creation. It is simpler to decorate the class
object and then make instances of the transformed class which will then automatically
log their actions.

The task now is to decorate every method of the class so that it logs each call. There
are two main solutions here.

Replacing the attributes

The first option is to iterate through the class namespace and decorate each callable
attribute. Using setattr then replace the attributes with the decorated ones.

Listing 3.1: Decoration: first approach
1 def decorate_methods_parametrized(cls , get_decorator , exclusion =[]):
2 """
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3 Decorates all callable attributes of a class ,
4 replacing the original ones.
5 Internally excludes __class__ , __repr__ and __new__.
6 """
7 exclusion_function = \
8 exclusion if callable(exclusion) else lambda x: x in exclusion
9 excl = [’__class__ ’, ’__repr__ ’, ’__new__ ’]

10 for attr_name in dir(cls):
11 if attr_name not in excl and not exclusion_function(attr_name):
12 attr = getattr(cls , attr_name)
13 if callable(attr):
14 setattr(cls , attr_name , get_decorator(attr_name)(attr))
15 return cls
16
17 def decorate_methods(cls , decorator , exclusion =[]):
18 return decorate_methods_parametrized(cls , lambda attr: decorator , exclusion)

This approach has some limitations and some possible problems. We can only
decorate callable attributes this way because the class namespace rarely contains all the
attributes from the instance namespace. All attributes defined inside the __init__()

for example. Some care has to be taken not to override every callable attribute this
way. The __class__ attribute is writable, but it must be a class object. An attempt to
overwrite it by a function, which is presumably what the decorator is, will result in an
exception, even though the function internally calls the class and returns the instance.

When decorating special methods, there is the danger of infinite recursion. If we
try to decorate the __repr__() attribute, which all classes have, with a function that
prints its arguments before executing, we get infinite recursion. The first argument
passed to a class method is always a reference to the instance. When the function tries
to print its arguments, __repr__() is called implicitly to convert the instance to string
representation, but then it tries to print it’s arguments again before converting and
then we are in infinite recursion. We need to be careful not to call other decorated
methods from inside the decorator.

Modifying access

The second approach only overrides the __getattribute__() method of the decorated
class, leaving all attributes as they are.

Listing 3.2: Decoration: second approach
1 def decorate_attributes_parametrized(
2 cls ,
3 get_callables_decorator=None ,
4 get_non_callables_decorator=None ,
5 exclusion =[],
6 ):
7 """
8 Decorates callable and non -callable attributes of a class.
9 The decorators are obtained by calling get_ <decorator > with

10 arguments <instance >, <attribute name > respectively.
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11 """
12 exclusion_function = exclusion if callable(exclusion) else \
13 lambda x: x in exclusion
14 def __modified_getattribute__(self , __name):
15 val = cls.__getattr__(self , __name)
16 if exclusion_function(__name):
17 return val
18 if callable(val) and get_callables_decorator is not None:
19 return get_callables_decorator(self , __name)(val)
20 if get_non_callables_decorator is not None:
21 return get_non_callables_decorator(self , __name)(val)
22 return val
23 setattr(cls , ’__getattribute__ ’, __modified_getattribute__)
24 return cls
25
26 def decorate_attributes(
27 cls ,
28 callables_decorator=None ,
29 non_callables_decorator=None ,
30 exclusion =[]
31 ):
32 return decorate_attributes_parametrized(
33 cls ,
34 (lambda instance , attr: callables_decorator) \
35 if callables_decorator is not None else None ,
36 (lambda instance , attr: non_callables_decorator) \
37 if non_callables_decorator is not None else None ,
38 exclusion ,
39 )

This approach modifies the attributes accessed and returns their modified version. It
is more convenient this way because there is no need to implement arbitrary exclusions.
It is even possible to decorate the __class__ attribute without raising an exception.
There are some advantages compared to the first solution, but some problems nonetheless.
It doesn’t modify the attributes of the decorated class other than __getattribute__.
There is an option to utilize the __getattr__ method to obtain the attribute inside
__getattribute__. __getattribute__ is the default attribute access function and
__getattr__ gets called only when __getattribute__ raises AtrributeError. Some
classes don’t even implement __getattr__, the built-in class int, for example. Inciden-
tally, all the scikit-geometry classes used to implement the triangulation algorithms
don’t have __getattr__ attribute either. Instead, the original __getattribute__
gets stored in a new class method __original_getattribute__ and then called from
the modified version. Although there may be a namespace clash if the class already
implements __original_getattribute__, this option is overall more reliable.

Since all non-callable attributes use the __getattribute__ lookup, they can also
be decorated this way. Although decorated methods are even more prone to infinite
recursion, it opens some interesting possibilities. The get_non_callable_decorator

function can’t access any decorated non-callable attributes because that triggers another
call of the decorator function. The non-callable attribute decorator then does not
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return a modified function but the modified value of the attribute. Therefore it is more
practical to implement the option to provide it separately from the callables decorator.
Otherwise, the decorator would have to implement different behaviour based on the
type of attribute it decorates.

Infinite recursion

There may be a way to prevent infinite recursion by calling the decorator only once.
We could achieve this by manipulating the arguments of the call, passing a new private
keyword argument indicating that the call is made from inside the decorator. It can
then adjust it’s behaviour to avoid recursion. For example if the previously mentioned
decorated printing __repr__ method knew when it’s being called from inside another
__repr__ call, the printing would be omitted.

There may be some problems, however. There are possibilities of namespace clashes
again and there may be errors caused by a different number of expected arguments. I
didn’t explore this possibility further as it is outside this project’s scope.

Immutability

All of the above class decorators mutate the given class, so the undecorated version won’t
exist after decorate_methods or decorate_attributes is called. However, sometimes
it is desirable to keep the undecorated version as well. This functionality can be
implemented in the following way.

Listing 3.3: Immutable decoration
1 def decorate_attributes_parametrized_immutable(
2 cls ,
3 get_callables_decorator=None ,
4 get_non_callables_decorator=None ,
5 exclusion =[]
6 ):
7 """
8 Decorates callable and non -callable attributes of a class.
9 The decorators are obtained by calling get_ <decorator > with

10 arguments <instance >, <attribute name > respectively.
11 """
12 exclusion_function = exclusion \
13 if callable(exclusion) else lambda x: x in exclusion
14
15 class DecoratedClass(cls):
16 def __getattribute__(self , __name: str):
17 val = cls.__getattribute__(self , __name)
18 if exclusion_function(__name):
19 return val
20 if callable(val) and get_callables_decorator is not None:
21 return get_callables_decorator(self , __name)(val)
22 if get_non_callables_decorator is not None:
23 return get_non_callables_decorator(self , __name)(val)
24 return val



26 CHAPTER 3. VISUALIZATION

25
26 return DecoratedClass
27
28 def decorate_attributes_immutable(
29 cls ,
30 callables_decorator=None ,
31 non_callables_decorator=None ,
32 exclusion =[]
33 ):
34 # same as before , transform decorators , call the
35 # parametrized version

In this version, we subclass the given class in a completely new class and override
the new class’ __getattribute__ method. There is no need to create a new reference
to the old __getattribute__, because the original class object is available, providing
the original. Moreover, if the original would be later overwritten, we would want to use
the new version, which is the case in this approach.

Class decorators

Python supports class decorators in the same syntax as function decorators; if a function
takes exactly one argument, a class object, following code passes the class object to the
decorator before returning it to the caller.

1 @class_decorator
2 class MyClass:
3 pass

The decorators described in this section can be viewed more as transformation
functions. They are able to transform already created class objects. But they can easily
be converted into class decorators in the following way.

Listing 3.4: Second approach as a class decorator
1 def class_decorator(
2 get_callable_dec=None ,
3 get_non_callable_dec=None ,
4 exclusion =[],
5 ):
6 def decorator(cls):
7 return decorate_attributes_parametrized(
8 ...
9 )

10 return decorator
11
12 ...
13
14 @class_decorator(callable_dec_generator , ...)
15 class MyClass:
16 pass

With this syntax we can’t the attribute decorators directly to decorate all attributes
of a class, that’s why the class decorators and transformators are necessary.
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3.2.3 Logging

The objective here is to create a log describing each step of a given algorithm. Every
method call in the algorithm has to add an entry to the log when the execution is
started and when it is finished. Before explaining the implementation, let’s look at the
log structure.

The Log

The log structure is basically an array containing log entries. Aside from this array, a
dictionary state is maintained, with all active objects mapped to unique keys. Each such
object must have a __log_repr__ method that returns an immutable representation
of the object in its current state. The visualizer then parses these representations and
visualizes them in a meaningful way. Following function _log_call() creates one log
entry for a method call.

Listing 3.5: Creating a log entry
1 def _log_call(origin , call , args=[], kwargs ={}, result=None , call_type=’return ’):
2 key = origin if isinstance(origin , str) else origin._log_key
3 special_keys = [’___call ’]
4 if key not in state and key not in special_keys: return
5 entry = dict(map(lambda x: (x, state[x]. __log_repr__ ()), state))
6 affected_objects = list(
7 filter(
8 lambda x: x is not None and x in state ,
9 arg_to_affected_objects(args) + arg_to_affected_objects(kwargs)

10 )
11 )
12 cargs = args_to_keys(args , include=True , chain=False)
13 ckwargs = args_to_keys(kwargs , include=True , chain=False)
14 cresult = args_to_keys(result , include=True , chain=False)
15 log.append ((key , call , cargs , ckwargs , cresult , affected_objects , entry ,
16 call_type))

We will first describe the arguments, then the log structure.
1 def _log_call(origin , call , args=[], kwargs ={}, result=None , call_type=’return ’):

origin – The instance of a logger class on the given method. Each such instance has to
have _log_key and __log_repr__ attributes. If the origin is a logged function,
origin = ’___call’.

call – Name of the called method.

args – Arguments given to the called method, if any.

kwargs – Keyword arguments given to the called method, if any.

result – Value returned by the called method, if any.
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call_type – "call" when the execution is started, "return" when the execution is
finished.

args_to_keys – Function that replaces objects with their keys if they have a _log_key
attribute. The function recursively replaces elements of arrays and dictionaries.

If the include switch is set, it leaves the non-logger objects as they are, otherwise
it replaces them with None. If the chain switch is set, only a list of related
logger-object keys is returned.

The log entry structure is apparent based on line 15 of the previous listing:

15 log.append ((key , call , args , kwargs , result , affected_objects , entry , call_type))

key – _log_key of the origin or ___call in case of a function call.

call – Name of the called method.

args – Arguments given to the called method if any.

kwargs – Keyword arguments given to the called method if any.

result – Value returned by the call if any.

affected_objects – This is an array containing keys of all objects relevant to the call.
The premise is that all objects the method worked with are in args and kwargs.
So these are searched in-depth to extract the relevant keys.

entry – A snapshot of the state at the moment of the call. All active objects are
converted using their __log_repr__ method.

call_type – call when the execution is started, return when the execution is finished.

The premise is that the arguments and result are references to actual objects where
possible so that the log can reflect their relevance in each call. Argument objects and
the result object can then be highlighted. Since the objects get replaced by their keys
in the log entries, there may be a clash when the keys are generic. If a logger function
returns "A" and an object has log key "A", it gets highlighted. It is desirable to make
the keys unique to avoid such scenarios.

Logging the calls

The function decorator gets generated by the following function.
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Listing 3.6: Decorator generator
1 def get_callable_attr_decorator(instance , attr_name):
2 def decorator(f):
3 def wrapper (*args , ** kwargs):
4 _log_call(instance , attr_name , args , kwargs , call_type=’call’)
5 result = f(*args , ** kwargs)
6 _log_call(instance , attr_name , args , kwargs , result , call_type=’return ’)
7 return result
8 return wrapper
9 return decorator

A call entry is created, then the function is executed, a return entry is created
and the value is returned. Note that we can pass this generator directly as the
get_callable_decorator argument in the class decorator described in the previous
section. The function log decorator can then be implemented by calling the generator
with ___call as instance and the function name as the attribute:

Listing 3.7: Transform function into logger
1 def logged_function(f):
2 """ Decorator for a function to log every call """
3 return get_callable_attr_decorator(’___call ’, f.__name__)(f)

with statement

The with statement in Python is useful when working with resources that need to be
opened and closed. For example

1 with open(’input.txt’, ’r’) as datafile:
2 data = datafile.read()
3 # process data
4 # file is closed , program continues
5 ...

We can work with the resources inside the with statement code block and when
they are not needed anymore, they are automatically closed. Internally, the with

statement initializes the resources and then executes their __enter__() method. Their
__exit__() methods are executed at the end of the code block. Any class implementing
these two methods can act as such a resource.

This provides a handy object deletion. When visualizing, there may be temporary
objects whose visual representation is needed only a few steps and then they are
not relevant anymore. Python has a garbage collector and doesn’t explicitly delete
unreferenced objects. Therefore, the __exit__ function provides a convenient way to
remove temporary objects from the visualization.

Logger class

Finally, we describe the function that turns a class object into a logger.
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Listing 3.8: Transform class into logger
1 def transform_into_logger(cls , repr_fn=None , key_fn=None , excluded =[]):
2 """ Transforms a class into a logger that logs
3 every attribute call inside a with statement """
4 log_key_fn = key_fn if key_fn is not None else repr
5 decorated_class = decorate_attributes_parametrized_immutable(
6 cls ,
7 get_callable_attr_decorator ,
8 exclusion =[
9 ’__init__ ’,

10 ’__enter__ ’,
11 ’__exit__ ’,
12 ’__log_repr__ ’,
13 ’_log_key ’
14 ] + excluded
15 )
16
17 class LoggedClass(decorated_class):
18 def __init__(self , *args , ** kwargs):
19 super().__init__ (*args , ** kwargs)
20 enter_on_init = kwargs.pop(’_enter_on_init ’, False)
21 custom_key = kwargs.pop(’_log_key ’, None)
22 self._log_key = custom_key if custom_key is not None else log_key_fn(self)
23 if enter_on_init:
24 self.__enter__ ()
25
26 def __log_repr__(self):
27 return (repr_fn if repr_fn is not None else repr)(self)
28
29 def __enter__(self , *args , ** kwargs):
30 _log_enter(self)
31 return self
32
33 def __exit__(self , *args , ** kwargs):
34 _log_exit(self)
35 return None
36
37 return LoggedClass

The arguments required for this process are the target class, repr_fn and key_fn

functions and exclusions if any.

key_fn – Function that transforms the logger class instance into a unique key. Defaults
to repr

repr_fn – Function that transforms the logger class instance into an immutable
representation. Defaults to repr

The transform function doesn’t mutate the given class, only returns its Logger copy.
First, the class methods are decorated turning them into logger functions excluding
the methods necessary for the logging process. Then a LoggerClass class object is
created, inheriting all methods from given class and implementing mentioned necessary
methods.



3.3. WIZER 31

_log_enter and _log_exit only call _log_call with a special ___enter and
___exit call name respectively. When initializing the new class, there is an option to
make it enter the log state straight away. There is also an option to provide a custom
log key and skip the key_fn call.

3.2.4 Usage

Using these tools it is possible to create logging copies of any class object.

Listing 3.9: Logger examples
1 from logger import transform_into_logger , logged_function
2 import skgeom as sg
3
4 Point2V = transform_into_logger(
5 sg.Point2 ,
6 repr_fn=lambda p: (’point ’, [p.x(), p.y()]),
7 excluded =[’x’, ’y’]
8 )
9

10 Line2V = transform_into_logger(sg.Line2)
11
12 Segment2V = transform_into_logger(
13 sg.Segment2 ,
14 repr_fn=lambda s: (’segment ’, [
15 [s.source ().x(), s.source ().y()],
16 [s.target ().x(), s.target ().y()]
17 ]),
18 excluded =[’source ’, ’target ’],
19 )
20
21 Polygon2V = transform_into_logger(
22 sg.Polygon ,
23 repr_fn=lambda p: (’polygon ’, [[x, y] for x,y in p.coords ])
24 )
25
26 @logged_function
27 def compare_lengths(l, r):
28 if l.squared_length () > r.squared_length ():
29 return r
30 return l

Some other examples will follow in the next sections describing the visualization.

3.3 Wizer

In this section we will describe the visualizer that shows each step of an algorithm in
a graphical user interface. For each log entry, relevant information about the call is
displayed and objects active at the time of the call are drawn. Additionally, different
colours are used based on the object’s relevance to the call.
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3.3.1 Drawing

The visualizer is implemented using the built-in tkinter module. By default, tkinter
doesn’t support transparent shapes, but in combination with the PIL module, it is
possible to create a transparent image with the desired shape and then draw it as
an image in tkinter. This is important when displaying the interiors of objects and
overlapping objects.

The usage example in the previous section shows examples of representation functions.
For the purpose of visualization the only information needed is the shape and coordinates
of any given object. The objects are drawn based on this representation. Every
object representation is a tuple consisting of the shape type and an array of vertices.
The supported shape types include Point, Line, Segment and Polygon. The vertex
coordinates define each of them and the colour can be inferred from the additional
information in the entry.

Relevant objects are extracted from the call arguments. In the logging phase, args
and kwargs are searched in-depth, lists and dictionaries recursively. Each object with a
_log_key attribute is replaced by its log key and all such keys are recorded separately
as well. On every call type entry the affected objects are orange to represent that
it is unknown what will happen to them or which one is returned. On every return

type entry the arguments connected to call’s return value are green and other affected
objects are red. Irrelevant active objects are black.

The white canvas represents the plane. The vertex coordinates are adjusted based
on the zoom level and the position of the ’camera’, representing the coordinates of
the center of the screen. They are also modified to be consistent with the tkinter

coordinate system. Point (0,0) is in the upper-left corner and the y coordinates
increase downwards. But in the algorithms, y coordinate increases upwards and it is
more intuitive when the (0,0) point is in the lower-left corner.

Lastly, the shapes are drawn in separate images and displayed on the tkinter canvas.

3.3.2 Call information

The call information, such as the called attribute’s name, arguments and result is always
printed in separate lines in the upper-left corner. First, the representation of the origin
object is printed, then the call name. Arguments, keyword arguments and the result
are printed optionally in following lines if they exist.

3.3.3 Controls

Some basic intuitive form of control over the canvas is implemented. Left and right
arrows switch the log entry number, up and down arrows zoom in and out. Dragging
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across the screen changes the coordinates of the center of the screen to create the illusion
that the mouse moves the canvas. The images are re-drawn only on zoom and log entry
switch as it is possible to change the coordinates at which the images are displayed.

3.4 Usage

At this time, Wizer is a minimal working prototype. The latest version of the code
and updates can be found at https://github.com/bohdanator/wizer. This tool
has the potential to be able to visualize any computational geometry algorithm on a
two-dimensional plane. It works best if every object and every function is a logger and
the log keys are unique. The actual log with the algorithm data is stored in the log

variable inside the logger module.

3.5 Future work

There is a lot of space for improvement in the visualization. The logging base can
be used to display virtually any type of algorithm with the correct visualizer. Since
the way the objects are represented in the log can be customized, it can be used in
combination with any visualizer that can parse and display the log accordingly.

The logging also offers opportunities for extension. Currently, every action gets
logged to the same array. It may be possible to enhance the log entry structure, but
timestamps may be an issue.

Lastly, the class utils implemented for logging purposes can be utilized in other
projects as well. Both the logging and the class decorator subroutines could be optimized
and exported as separate packages.

https://github.com/bohdanator/wizer




Conclusion

Dividing polygons into triangles is one of the fundamental tasks in computational
geometry. It has numerous applications ranging from designing security camera layouts
to pattern recognition. It is a building block for multiple algorithms, for example tiling
algorithms.

We explained four triangulation algorithms using the Forišek-Steinová methodology
for the purpose of teaching and popularization of computational geometry. We provided
an overview of the research in the problem of polygon triangulation throughout history
and described some of the faster solutions.

Additionally, we implemented a visualization tool providing the means to visually
analyze geometric algorithms. It consists of two parts. The first part logs every action of
the algorithm at runtime. The second part, Wizer, displays each step of a computational
geometry algorithm on a plane. It can be used to present how algorithms work or why
they don’t work, to learn new algorithms or to find mistakes and bugs. It provides
decorators to easily turn objects into loggers that create a record of their every method
call during the execution of an algorithm. This log can be consequently parsed and
visualized. The visualizer and the form of the log are customizable to make vizualization
of other types of algorithms possible.

Our hope is that this thesis will be a meaninful contribution to the academic field
of computational geometry.
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Appendix A

Wizer source code

The attachment contains the source code of the minimal working prototype of the
Wizer environment. An example triangulation algorithm is included and visualized. To
successfully run the example, scikit-geometry Python package needs to be installed,
but screenshots of the results are also included.

The latest version of the environment and updates are published at https://github.
com/bohdanator/wizer.
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