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Abstrakt

Distribuované dátové sklady hrajú dôleºitú rolu v spracovaní a analýze ve©kých dát.

Ich zvý²ená citlivos´ vo£i pádom v²ak môºe ma´ zna£ný vplyv na konzistenciu a dos-

tupnos´ dát, £o sú jedny z hlavných poºiadaviek ich klientov. V tejto bakalárskej

práci sa zaoberáme moºnými dizajnami dátových skladov, ktoré sú odolné vo£i pá-

dov a technikami obnovenia, ktoré sa v rámci nich vyuºívajú. Pre ú£ely porovnania

rôznych prístupov v prostredí ve©kých dát sme implementovali distribuovaný dátový

sklad s pouºitím nástrojov pre ve©ké dáta ako sú Hive a Spark. Experimenty boli

zamerané na vyhodnotenie efektivity optimalizovanej Dependency Analysis metódy v

porovnaní s naivným prístupom. Výsledky ná²ho porovanania ukazujú, ºe Dependency

Analysis zna£ne skracuje proces obnovy a predstavuje efektívny spôsob na zachovanie

konzistencie dát aj v prostredí distribuovaných dátových skladov.

K©ú£ové slová: analytické databázy, dátové sklady, ve©ké dáta, odolnos´ vo£i chy-

bám, konzistencia dát



Abstract

Distributed data warehouses play an essential role in big data processing and analytics.

However, their increased exposure to failures has a detrimental e�ect on the business

requirement for consistent and available data. In this thesis, we consider various de-

signs of fault-tolerant data warehouse systems and their resumption strategies. We

implement a distributed data warehouse using big data tools like Hive and Spark to

test the e�ciency of the error-handling methods in a big data environment. In par-

ticular, we evaluate the performance of the optimized Dependency Analysis method

compared to the naive resumption approach. The results of our testing suggest that

the Dependency Analysis can improve the performance considerably and proves to be

e�cient even in a distributed setting.

Keywords: analytic database, data warehouse, big data, fault-tolerance, data con-

sistency
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Introduction

Data management and analytics have become standard practices in any modern en-

terprise. They are essential for making con�dent, data-driven business decisions. As a

result, an immense amount of data is generated, collected, and subsequently analyzed

every day. Data warehousing and business intelligence (DW/BI) systems provide an

infrastructure to store and process the extensive consequent data sets. Over the years,

the amount of data generated and stored in certain systems has become too vast to

be maintained using conventional methods, which has led to the creation of a new

paradigm in data processing, the so-called big data.

In the area of big data, it is anticipated that the input data cannot be computed or

transformed in a timely manner using conventional resources. This led to the develop-

ment of several big data-speci�c tools, which operate on top of a cluster of computers,

often referred to as nodes, to achieve acceptable speed. The data transformation is

often executed in a distributed manner on several nodes, with the input data being

split between these transformations. This approach enables data-driven computations

on vast input data sets, but due to the nature of clusters, it introduces a new problem,

namely node failures.

With the importance of data analytics in clients' decision-making process, the issue

of data quality and consistency arises. If users cannot rely on the veracity of the

data, they cannot make con�dent decisions based on them. Consequently, numerous

strategies were presented throughout the years to ensure data consistency. However,

the speci�cs of big data processing introduce new challenges in this area.

In this thesis, we compare the e�ciency of the Dependency Analysis resumption

method introduced in paper [17] to a non-optimized approach. We aim to review its

�ndings in a big data environment with a distributed data warehouse. Our goal is

to show that Dependency Analysis remains an e�cient error-handling method in a

distributed environment.

The basis of the data warehouse design is a fabricated use case in which the client

is a �ctitious music streaming platform. The goal is to provide the client with infor-

mation about the music preferences of its users. This use case provides us with enough

�exibility to design a minimalistic data warehouse schema that is complex enough to

demonstrate the required behavior. In addition, we are able to generate a su�cient
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amount of quality data for the use case.

In Chapter 1 we provide the basics of data warehousing and expound on the concept

of consistency and fault-tolerance within the context of a data warehouse and big data.

In Sections 1.4 - 1.6 we introduce the strategies for a fault-tolerant system and the

related recovery methods.

In Chapter 2, we give an overview of the system architecture and the technologies

employed in this thesis. In Section 2.1 we present the details of the cluster we use for

our implementation. In Section 2.2 we provide a shortlist of tools we consider for the

implementation of the distributed data warehouse, followed by the reasoning behind

our particular choices.

In Chapter 3, we present the logical design of the data warehouse implemented. We

�rst introduce the model of the source system in Section 3.1, followed by the logical

design of the data warehouse in Section 3.2. Last, in Section 3.3 we de�ne the extent

of data transformation between the two designs.

In Chapter 4, we describe the details of the implementation process. First, the

creation of test data sets is described in detail, followed by the provisioning of the

data warehouse system on the existing cluster. In Sections 4.3 - 4.4 we present the

implementation design of the data transformation with and without the Dependency

Analysis method. Finally, in Section 4.5 we present the performance comparison results

between the di�erent methods.



Chapter 1

Background and Basic Concepts

In this chapter, we provide a short overview and main concepts related to data ware-

housing and big data. Next, we describe the state of the art in the area of consistent

data warehousing based on two methods for error-recovery published in papers [6], [15]

and [17].

1.1 Data Warehouse

A data warehouse is a type of analytic system designed to support business intelligence

analytics. In article [3] it is de�ned as �a centralized repository of integrated data from

one or more heterogeneous sources�.

Book [1] describes several di�erences between operational and analytic database

systems. The operational system handles individual transactions. Its primary function

is to manage data; it is optimized to perform updates to the database. On the other

hand, the analytic system focuses on aggregated transactions � to analyze a business

process, we need to consider all related transactions. Historical data are relevant for

future analysis and stored in a data warehouse, in contrast to operational systems,

which focus mainly on current data.

Several DW/BI architectures were proposed throughout the years, although they

all share essential characteristics. In this thesis, we implement the dimensional data

warehouse architecture proposed by Ralph Kimball in book [7] (see Figure 1.1).

While building a data warehouse, data are usually collected from operational sys-

tems. These source systems are autonomous, and their structure rests solely on their

own design, unrelated to the needs of the data warehouse. Due to this, a data warehouse

often receives data di�ering in format or structure from its distinct source systems. An

ETL process is responsible for e�ective and reliable data migration and integration

from data source systems to a data warehouse. Input data need to be extracted from

the source systems and validated. Subsequent transformations (e.g., joining, �ltering,
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Figure 1.1: The dimensional data warehouse architecture proposed by Ralph Kimball

splitting or merging columns) ensure that the data conforms to the rules of a data

warehouse database and are loaded in a uni�ed format, utilizable for future analysis.

Source systems tend to be updated frequently, and these changes need to be mi-

grated into a data warehouse. While it is possible to run transaction-based loading

using streaming ETL, traditionally, an ETL process runs periodically using bulk load-

ing. Based on the decision of the business, a data warehouse might become unavailable

for clients while an ETL process is running to avoid using partially loaded data sets.

For this reason, the execution of an ETL process is often limited by a speci�ed time

window. Both frequency and time window length are subject to the business logic.

Communication between a client and a data warehouse occurs through Data Query

Language (DQL), meaning that the client can only fetch data, not change or manage

them. Since the volume of data may be signi�cant, data warehouses are optimized to

perform data retrieval e�ciently, even at the expense of write e�ciency.

1.2 Dimensional modeling

Book [7] proposes dimensional modeling, a technique explicitly designed for analytic

systems, addressing the need for both high performance and comprehensible data for-

mat. Each dimensional model is based on a particular business process the user is

interested in. Consequently, the analytic system can evaluate related queries faster

and provide all information the user requires.

In this thesis, we apply a dimensional model known as a star schema. This model

consists of a central fact table and several dimension tables stored in relational database

management systems.

A fact table stores measurements (numerical values) relevant for the business pro-

cess evaluation. While it generally does not have many attributes, the number of rows

grows rapidly. Clients might be interested in di�erent aggregates or statistics of in-
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dividual facts, so it is important that the facts are additive or at least semi-additive.

Non-additive facts, such as percentages, are impractical for analysis considering large

data volumes.

Dimension tables provide context for the fact table. Standalone facts have no infor-

mative value. We need to know the circumstances surrounding a measurement event

in order to be able to analyze various aspects of a business process. We use dimension

attributes to �lter facts and de�ne the aggregation level. It follows that facts are de-

pendent on their related dimensions. They are linked together using primary/foreign

key relationships. Each row in a dimension table is assigned a surrogate key, usually

generated during an ETL process. The foreign keys are then stored in a fact table to

relate measurements to their dimension attributes.

Unlike fact tables, dimension tables tend to have many attributes (dimensions), but

the accumulation of rows is considerably slower and not necessarily periodic. Addition-

ally, dimension tables may change if information in the source system changes. We use

Slowly Changing Dimensions (SCD) to determine how to handle dimensions that are

subject to change. The two most commonly used SCD types are type 1 and type 2.

In a type 1 change, we overwrite the dimension losing any information about historical

values. This type is usually used to correct errors in records. A type 2 change is con-

nected to the requirement for maintaining historical data in a data warehouse. With a

type 2 change, we insert a new record with current attributes into the dimension table.

We retain the previous value by having several versions of the same entity, each having

a distinct surrogate key but having the same natural key. It enables us to associate

each fact with the correct version of the dimension table record.

1.3 Consistency and fault tolerance

Maintaining the data in a data warehouse consistent and high quality is one of the

top business requirements. It is virtually impossible to avoid all inconsistencies with

multiple independent source systems and large data sets. Nevertheless, this does not

mean that the whole data warehouse is inconsistent and unusable. Assuming that a

large volume of data is available, a small-scale data loss does not a�ect the overall

data analysis. In general, we demand a reasonable level of consistency depending on

business logic � the client (business) decides what the acceptable level is.

In Paper [10] the authors study inconsistencies in data warehouses. One of the

reasons for inconsistency is data itself, e.g., di�erent ways of recording the same value

across company departments or multiple copies of the same data. The transform stage

of an ETL process should be able to eliminate such inconsistencies e�ciently.

This thesis focuses on another frequent reason for data inconsistency � failed ETL
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jobs. A failure of an ETL job may lead to severe data corruption with an extensive

impact on data analysis results. Repairing the a�ected data can be potentially very

complicated, if not impossible. For example, there is no way to restore SCD attributes

of type 1 without backup since the source systems generally do not store historical data.

For this reason, while designing an ETL process, we should always expect failures and

have a strategy for how to respond to them. Even though an ETL process implemented

should be idempotent, simply rerunning it in cases of failure is not necessarily su�cient.

If the failure occurs during a load stage, a data warehouse would contain a partially

loaded data set. Rerunning an ETL job without prior damage control may result in

duplicated data.

A critical aspect to consider when designing a fault-tolerant ETL process is the

performance. Given that we expect ETL jobs to run within a certain time window, the

objective of a recovery strategy is not only to maintain data consistency but also to be

e�cient and �nish in a timely manner. If a failure occurs and there is not enough time

to repeat the whole ETL process, it may be skipped altogether, resulting in outdated

data in a data warehouse as discussed in paper [8]. Based on the client expectation,

this behavior might be the preferred strategy.

1.4 Naive Approach

The straightforward response to a failure of an ETL job is �xing the error and executing

the whole process again. In order to avoid corruption and duplication of data caused

by partially loaded data sets, it is necessary to recover a�ected tables prior to that.

The recovery process needs to identify the data that has already been loaded and purge

them from the data warehouse. Afterward, we can rerun the ETL job.

As mentioned in paper [17], this strategy is highly ine�cient since both the volume

of data that has to be potentially revisited and the number of repeated operations may

be signi�cant. If the data scope is too big or the requested time window for the ETL

process is too short, this approach is not convenient.

1.5 Checkpointing

Checkpoints are �xed points in a sequence of ETL steps in which we store the current

data state. A checkpoint ensures that all the operations executed before this point in a

work�ow were executed correctly. For this reason, a checkpoint may serve as a recovery

point. When a failure occurs, we use the last checkpoint saved before the failure to

restore the consistent state of data. The follow-up recovery process can then use this

state as a starting point, avoiding the need for a complete ETL job restart.
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In order to fully utilize checkpoints, an ETL process should be divided into separate

logical sections with well-de�ned functionality. Aside from the apparent bene�ts such

as �exibility or facilitation of failure location, it also allows checkpointing to reach its

full potential by enabling to skip or rerun speci�c parts of the code during the recovery

process.

It is vital to assess the reasonable frequency. Creating checkpoints, as proposed

in Paper [6], inevitably increases latency and reduces e�ciency. Consequently, it is

unattainable to place them after every step. It is common to leave the placement to the

programmer's individual preference, for example, after a sizeable operation. However,

ETL procedures are often complex, and they may have various additional objectives

to ful�ll. Paper [15] while studying the ETL work�ow and its fault-tolerance claims

that without a comprehensive strategy, �nding an optimal design may be challenging.

Simitsis et al. (2010) in Paper [15] propose several di�erent strategies for the

e�cient calculation of checkpoint placement considering several metrics. They propose

to formulate the issue as an optimization problem that aims to maintain performance

and minimize the recovery time.

Gorawski et al. (2007) describe the Checkpoint-based resumption algorithm that

combines checkpointing with the Design-Resume (DR) algorithm. They aim to reduce

the overhead caused by checkpointing in a regular ETL process. Both algorithms take

the graph representation of an ETL work�ow as its input, with the nodes being the

ETL steps.

The Design-Resume (DR) algorithm was proposed by Labio et al. (2000) in paper

[8]. The Design stage of the DR algorithm considers high-level properties of transform

operations to �lter out the rows that have been successfully loaded before a failure

occurred. Consequently, only a subset of the original data set has to be processed again

in the Resume stage. This approach signi�cantly increases the e�ciency of a recovery

process without any additional operation needed during a regular ETL work�ow.

As a result of the DR algorithm addition, only checkpoints in the transform nodes

are required to be created regularly. In case of an error, we restore the state from

the last saved checkpoint, making it the starting point o the recovery process. We

then apply the DR algorithm to create new �lter nodes, which are inserted into the

work�ow. Finally, we can resume the ETL job on the modi�ed graph.

1.6 Dependency Analysis

Paper [17] from Shitao et al. proposes a fault-tolerance algorithm based on the analysis

of dependency relationships between fact and dimension tables. It considers the se-

quence of ETL process steps to optimize the recovery process. As we mention in Section
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1.2, facts are dependent on their dimensions. This relationship must be acknowledged

in any ETL work�ow by loading dimension tables prior to fact tables. Consequently,

a failed dimension table processing tends to have a more prominent e�ect than a fact

table one.

Before launching a regular ETL job, we need to determine the relationships between

the tables in a data warehouse. From that, we then derive the previous steps each

ETL action is contingent on and store the dependencies in a temporary table. Another

temporary table is used for logging each step's execution result during an ETL run.

We use these temporary tables to determine whether we execute or skip a step in an

ETL work�ow. We trace which preceding steps the current operation relies on and

execute it only if all of the prerequisites were carried out successfully. By applying this

procedure, we avoid potential data corruption.

The recovery work�ow of an ETL process is launched in the event of an error. We

consider the information collected in a regular run and repeat only those steps that

failed or were skipped. In general, using this recovery technique reduces both the

number of repeated operations and the volume of data that needs to be restored and

thus increases the e�ciency and performance of an ETL process.

1.7 The World of Big Data

The processing of large volumes of data places heavy demands on computation re-

sources. Some of the challenges stemming from the vast data volumes are processing

capacity or storage limitations. For this reason, cluster computing is utilized to per-

form the so-called big data computations. Big data tools are speci�cally designed to

operate across clusters of computers and carry out distributed data processing.

The scope of big data operations ampli�es the need for fault-tolerant approaches

in big data systems. While employing multiple computers allows for sharing resources,

it also adds new potential failure points. Moreover, tools for big data processing often

run on a cluster with a master-slave architecture, including those used in this thesis.

In a non-fault-tolerant setting, the master node represents a single point of failure �

if the master node fails, the whole cluster and all of the ongoing computations are

a�ected, which potentially leads to a signi�cant amount of corrupted data.



Chapter 2

High-level Architecture and Design

Considerations

In this chapter, we present the architecture of the system and the underlying toolkit

facilitating the data warehouse itself. We build the data warehouse on a cluster of

servers, described in Section 2.1. In Section 2.2 we present an overview of possible

tools facilitating di�erent aspects of the data warehouse, providing short reasoning

why we choose certain tools over others.

2.1 Overview of the Cluster

In this section, we provide the details of the cluster dedicated to the data warehouse.

The servers provided by IBM impose certain restrictions on the system, which we need

to incorporate into the system architecture.

The cluster consists of �ve virtual servers, each having 4 CPUs and 16GB of memory.

Additionally, all servers contain a pre-installed blank image of CentOS 8.5 without GUI,

and all servers are able to connect to the internet. For security reasons, the incoming

communication to the servers is protected by VPN.

From the setup of the cluster, two restrictions follow. First, all virtual servers are

located in the same location and on the same rack. This means that we are not able

to utilize the rack-awareness functionality of certain tools to further improve the fault

tolerance of the data warehouse.

Second, many of the tools presented in the next section are based on the master-

slave concept. In this concept, certain servers act as masters, handling metadata and

coordinating computations, while other servers act as workers, handling the compu-

tation and storing data. Using this setup, a failure of a master node can lead to the

unavailability of the whole cluster. To achieve high availability, many tools provide an

option to de�ne more than one master for a given cluster. As the cluster consists of
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�ve servers, we are using only one master to maximize the resources as worker nodes.

Thus, we use the same server as the master for all tools with a master-slave con�gu-

ration. We are aware that this choice introduces a single point of failure into the data

warehouse architecture.

2.2 Technologies Facilitating the Data Warehouse

This section provides an overview of certain aspects of data warehousing and presents

a shortlist of possible tools facilitating each aspect. We also reason why we pick certain

tools instead of others to build the data warehouse. The lists provided in this section

are not exhaustive.

2.2.1 Data Transformation

One of the main requirements of data warehouses is to enrich the source data and

provide it in an easily presentable format to business users either directly or via reports.

This transformation is done by a dedicated tool, often called an ETL tool.

Apache Hadoop is a Java-based open-source framework that provides distributed

storage and data processing of large data sets across multiple computers. It is a scal-

able, fault-tolerant, and designed to run on low-cost hardware [2]. The MapReduce

framework provided by Hadoop allows users to do distributed computations following

the divide and conquer approach, which enables tasks to be run in parallel and on

multiple machines. A Hadoop cluster follows the master-slave architecture. It consists

of one NameNode acting as a master that maintains the whole system and several

DataNodes that store data and execute computations.

Apache Spark is a distributed computing engine capable of processing large amounts

of data e�ciently. It is a widely used tool with various applications across the big data

�eld, mainly because of its performance and �exibility. Spark achieves this perfor-

mance by keeping the data in the memory and not strictly following the MapReduce

framework. Therefore intermediate results are more readily available for re-use. Spark

can run on top of a Hadoop cluster, using YARN to orchestrate the computations, or

it can be installed as a stand-alone cluster. In both cases, Spark uses the master-slave

architecture.

For ETL, some of the conventional tools are also utilized in big data projects. The

most common ETL tools are Informatica PowerCenter, Oracle Data Integrator, and

IBM DataStage. These tools can also be installed on clusters under certain conditions.

In contrast to Hadoop and Spark, these tools are licensed.

We choose Spark to facilitate the data transformation for our data warehouse as it

is currently viewed as a business standard. We use Pyspark, a Python API for Spark,
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to implement the ETL job for our data warehouse.

2.2.2 Data Storage

Apache Hive is an open-source data warehouse solution built on top of Hadoop. It

uses Hadoop to store the data in the cluster and uses HiveQL, a language very similar

to SQL, to query and manage data sets in a distributed �le system using Hadoop's

MapReduce framework. Data stored in Hive is presented in the well-known table

format similar to relational database management systems.

As alternatives, we mention two commercial solutions to store data in cloud: Hor-

tonworks Data Platform and Snow�ake, which are not feasible for our needs.

Cassandra and HBase are also well-known distributed database management sys-

tems. Both specialize in handling transactional data instead of analytical workload.

Therefore, we use Hive as our distributed database management system adhering

to the industry standards.

In big data systems, the data is often stored in human-readable CSV �les or colum-

nar �le formats, providing more e�cient access to the data during querying. The most

common columnar �le formats are ORC and Parquet. We use the latter to store data

on the Hadoop Distributed File System utilizing Hive.

2.2.3 Installation and Con�guration

We use Ansible, open-source con�guration management and automation tool, to set

up the cluster. Ansible eliminates the need to set up each server manually. It uses the

infrastructure as code method, where the required state of each server is described in

a YAML-like language, which can be executed against the cluster and versioned in git

for easy traceability.

2.2.4 An Alternative Architecture

Currently, there is a trend to utilize Kubernetes to orchestrate job execution over

a cluster of servers. This subsection presents an alternative architecture, where the

servers are joined into a single Kubernetes cluster. Both Spark and Hive support

execution on top of a Kubernetes cluster. The Kubernetes cluster's main advantage is

the easy addition of further compute resources, while maintaining a Kubernetes cluster

comes with an overhead. As our cluster is of a �xed size, this architecture is not feasible

for us.
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2.2.5 Cloud Native Architectures

Another new trend is an industry-wide push towards cloud solutions and cloud-based

architecture. In this subsection, we present another commercial architecture based on

the capabilities of Amazon AWS. As this solution is costly, it is not feasible for us.

AWS Glue or Spark on Amazon EMR can be used for data transformation. AWS

Glue is a serverless data transformation o�ering based on Apache Spark. Amazon also

provides several database management systems for data warehouses, e.g., RedShift,

storing data in S3 and using RedShift Spectrum to query data, or Apache Hive on

Amazon EMR.



Chapter 3

The Logical Model and Data

Transformation

In this chapter we present the dimensional design of the data warehouse implemented

in this thesis. We also provide the model of the source system for our data warehouse

and the description of ETL transformations between the source system and the data

warehouse.

3.1 Source System

The source system for our data warehouse is a dump in a .csv format from an opera-

tional database recording streaming-related user interactions.

The interactions are stored in the table Event which records the date and time of

interaction, the email address of the user, the title of the streamed track, the name of

the artist and album, and the speci�c action the user performed. We are interested in

two types of user actions � playing and pausing a song.

The table User contains the information from a user's pro�le. Each user is uniquely

identi�ed by their email address, making it the table's primary key. Additionally, a

user's name, birthday, gender, subscription plan type, and complete physical address

are stored.

The music-related information is stored in tables Track and Album. The Track

table holds the information about individual tracks � title, artist, album, genre, and

duration of a track. The composite primary key of this table consists of the columns

title, artist, and album since we need all three to identify a particular track.

Tracks are naturally organized into albums which are stored in the table Album.

Each album has a title, artist, release date, and publisher. The primary key is the

combination of columns title and artist.
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Figure 3.1: The logical model of the source system

3.2 Data Warehouse

In this section, we present the logical model of the data warehouse. The design process

follows the steps of Kimball's four-step dimensional design, which consists of selecting

a business process, de�ning the grain and identifying the dimensions and the facts.

3.2.1 Business Process

Based on Chapter 1 the whole design of a data warehouse depends on the modeled

business process. For this reason, identifying a business objective is the �rst step in a

data warehouse design process.

The client of our data warehouse is a �ctional music streaming service interested

in what music their users listen to. Moreover, they need to know what music is pop-

ular among speci�c user groups. Therefore, the business process we model is music

streaming.

3.2.2 Grain

The �ctional client wants to understand who their users are and the correlation between

tracks and users. Both of these questions require a low level of grain.

To determine the grain, we specify what a single row in a fact table describes.

In our case, it is one row per each instance of a streaming of a song. With this

grain, the business users are able to answer questions such as which artists are popular

among teenage male users or the di�erence in user music preferences on weekends

versus weekdays. Our �ctional client deems that the ability to answer such questions

is crucial for successful targeted marketing.
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3.2.3 Dimension Tables

Dimension tables provide context for facts � they describe various aspects of events

recorded in the fact table. We de�ne grain as "one row per an instance of a song

stream", which is expanded into "which user played which song and for how long"

using the corresponding dimensions. Using this wording, we identify the dimensions

and dimension tables needed for the design.

The dimension table User_Dim contains the following attributes: the user's email,

name, birthday, gender, country, and region. These dimensions provide details about

individual users necessary for categorizing them into target groups. The email attribute

serves as a natural key used for identifying speci�c users. Although the source system

records the full address of a user, we consider country and region su�cient to ful�ll the

business objective.

Next, we de�ne the dimension table Track_Dim providing information about songs.

It contains the song's title, artist, album, genre, duration in milliseconds, release date,

and publisher. Based on the design of the source system, to uniquely identify a row, we

need the combination of the attributes title, artist, and album. Therefore, we choose

this triplet to be the natural key of the table.

The Calendar_Dim dimension table is a common feature in the dimensional design.

It stores individual dates, and it contains numerous attributes describing year, month,

week, and day in various ways, e.g., we record the full name of a month together

with its abbreviated and numeric representation. The abundance facilitates �ltering

the records in a fact table for the business user. This table is not extracted from the

source system, but it is populated with dates in advance before the �rst ETL process

is executed. The whole schema of the Calendar_Dim dimension, as well as the other

two dimensions, can be seen in Figure 3.2.

Additionally, all dimension table contains a unique synthetic (or surrogate) key,

acting as a primary key internally, in the scope of the data warehouse.

The last dimension we include in our dimensional model is the type of subscription

plan of the user streaming a song. However, subscription management on its own

is a separate business process, which is out of the scope of our use case. Therefore,

we consider the subscription plan of the user as a context of each instance of song

streaming, depicting the active subscription plan of the user when a particular song

was started. Hence, we add the subscription as an additional attribute to the fact table

to avoid redundant dimension tables in our model. Dimension attributes stored in a

fact table are called degenerate dimensions.
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Figure 3.2: The logical model of the data warehouse

3.2.4 Fact Table

The last table in our dimensional design is a fact table, named Stream_Fact. It records

the measurements, also called facts, which serve as metrics for analysis. The only fact in

our table is the attribute stream_duration, the number of milliseconds a particular user

spent listening to a given song. The table also contains foreign keys user_id, date_id,

and track_id to the User_Dim, Calendar_Dim and Track_Dim respectively.

3.3 Data Transformation

Based on the logical models we propose in Sections 3.1 and 3.2, the schemata of the

source system and the data warehouse di�er considerably. Therefore the source data

is transformed during the load of the data warehouse tables. In order to determine

how the source data need to be processed and transformed during an ETL process,

we de�ne a set of rules describing the relationship between the columns of the source

system and the columns of the data warehouse.

To load data into the dimensional tables, the natural key, the primary key of the

source system, is used to identify the entities. The surrogate keys are auto-generated.

All other columns are de�ned using one of the methods collectively called Slowly Chang-

ing Dimensions, described in Section 1.2.

The mapping for the Track_Dim table is straightforward. The natural key of

the table consists of attributes title, album, artist. Attributes genre and duration are
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Figure 3.3: Slowly Changing Dimensions identi�ed for dimensions

directly mapped from the Track source table using SCD type 1 logic. The release_date

and publisher attributes are directly mapped from the Album table using SCD type 1

logic. There is no need to additionally conform any attributes.

For the User_Dim table, the natural key consists of the email attribute. Attributes

name and birthday are loaded from the User table using SCD type 1 logic. The gender

attribute in the source table is represented as an integer with possible values zero,

one, and two representing unknown, male, and female respectively. We convert the

integer representation to a string representation for ease of understanding. The gender

attribute uses SCD type 1 logic. The country attribute is pulled from the User source

table using an SCD type 2 logic to ensure the correctness of historical facts when a user

moves. To populate the region column, we employ the method called data enrichment

� we use external sources to obtain the information not present in the source system.

In this case, we use an external table to derive the value of the region attribute based

on the country column.

The Streams_Fact table contains a degenerate dimension subscription, which we

map from the column premium of the User table from the source system. The value of

the subscription attribute never changes, and its value is either premium if the premium

attribute is true or basic otherwise.

In order to calculate the only measurement in our table � stream_duration � we

need to identify the actions corresponding to the start and end of streaming of a par-

ticular song in the Events table in the source system. The stream_duration attribute
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is computed as the time di�erence between the end and start of given streaming.

We assume that the source system registers any streaming interruption as a pause

action, not only the manual pausing by a user (e.g., the song ends, the streaming

service closes). If a user jumps to a di�erent part of the song, the system successively

registers a pause action and a play action. As a result, there is a corresponding pause

action for each play action in the source system.



Chapter 4

Implementation

In this chapter, we present the technical details of the implementation of the error-

correction method within the scope of this thesis, namely Dependency Analysis and

naive error correction. We compare the e�ciency of these methods on test data sets of

di�erent sizes. Additionally, we compare their implementation complexity compared

to a non-error-corrective implementation.

4.1 Obtaining Test Data

To test the implemented ETL process, we generate data sets representing the data

coming from the operational database. This section describes the open-source data

sets we use and how we transform them to create the source data.

A user's name comes from the data set [16] containing thousands of �rst names and

surnames. The data set of email domains [4] is used for the email address generation.

For user's address details, we use the data set of European streets and their zip codes

[13] and the data set of world cities [11]. The data set [11] is also used to create the

external table needed for data enrichment in the data warehouse ETL process. Aside

from some minimal �ltering, all of the previously mentioned data sets are usable as

they are without the need for additional editing.

To generate a user for the �nal User table, we choose a random �rst name, surname,

and email domain which are then used to create the unique email address. We then

pick a random record from the street and city data sets, which comprise the user's

address details. Lastly, we generate a random birthday, gender, and subscription type.

The Track and Album source tables are created from the data sets [9] and [14].

The records in both data sets contain the title and author of a track, but they di�er in

the rest of the track properties they capture. Out of the columns relevant to the �nal

source tables, the data set [9] contains the duration (in milliseconds) and release date

attributes, while the data set [14] has the album attribute. Neither of the data sets
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contains information about publishers and genres.

Track records that do not contain the information about the album are considered

singles, meaning that we use the same value for both the track title and album title.

We produce a separate Album table with the album, artist, and release date properties

keeping only one record per album entity. The columns track title, album, artist, and

duration of the original table constitute the Track table. We then �ll in the missing or

incomplete values in the release date and duration columns. Finally, we use the list of

publishers from the website [12] to populate the publisher column in the Album table

and the list of genres from the website [5] to populate the genre column in the Track

table.

The data sets User and Track are used to generate event records for the Event data

set. First, we pick a random user and track. Each selected pair adds two new records

to the Event data set � a play event and a pause event. We then generate a play

timestamp and a percentage representing how much of the track had been streamed

before it was paused. The percentage is then used to calculate a pause timestamp

based on the track duration attribute.

4.2 Provisioning

In this section, we describe the setup of tools needed to implement the data warehouse.

We use Ansible playbooks to facilitate the process.

Hadoop and Spark use a master-slave architecture for their clusters. There are a

few con�guration steps that di�er depending on a role of a server, so we decide which

server acts as a master for both tools. Unless stated otherwise, we act on all nodes.

First, we install JDK since it is required for running both Hadoop and Spark. Addi-

tionally, we install Python as a prerequisite for Spark Pyspark API. We distribute the

master's SSH key to the slave machines to allow communication between the nodes.

Next, we download Hadoop and Spark. To con�gure all required properties, we create

the con�guration �les for both tools and place them within their respective con�gura-

tion directories. Finally, we install Hive on our master node in the same fashion. The

�nal state of our cluster can be seen in Figure 4.1.

4.3 Basic Implementation

We process each target table as an independent Spark job. The order in which the jobs

are launched adheres to the relationship between facts and dimensions established in

Chapter 1 � the fact table is loaded only after the successful loading of the dimension

tables.
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Figure 4.1: Server cluster

As the dimension table Calendar_Dim does not rely on the source data, it can

be created independently of the rest of the ETL process. When the ETL process is

launched, we check if the table exists in the data warehouse and create it if it does not.

The �rst common step of the ETL jobs loading User_Dim and Track_Dim di-

mension tables is reading the corresponding source tables from HDFS. We then apply

transformations speci�c to each dimension table as described in Chapter 3 as well as

some additional transformations related to data quality, such as elimination of null

values and data validation.

For the User table, we start the transform stage by removing the premium column

since it does not appear in the User_Dim table. In order to populate the region

column, which is not present in the User table, we use the external table stored in

HDFS as a CSV �le. We then convert the values in the gender column from the

integer representation to the string representation and validate the dates in the birthday

column � we check whether a date is in the correct format and is an actual date.

To obtain all the columns for the Track_Dim dimension table, we join the Track

table with the Album table. Subsequently, we validate the release_date column values.

It is expected that null values appear in the source tables or that a transformation

results in null values in the target table. The standard practice in a data warehouse

design is to avoid nulls because they can cause inconsistent analysis results. As a general

rule, we replace any null value in a source table with the string unknown. Moreover, we

insert one speci�c record to each dimension table, including the Calendar_Dim. The

ID attribute of this record is -1, and the rest of the columns are �lled with the value

unknown. We utilize this record to avoid nulls in the foreign key columns of the fact

table, which may emerge if the corresponding dimension record is not found.

Before loading the dimension tables User_Dim and Track_Dim, we compare the
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records with the data already in the data warehouse to identify new and changed rows

based on the natural keys.

We generate a unique ID for all records representing a new entity. Additionally,

we add a new maintenance attribute is_current with the value True to new records in

the User_Dim table. Its function is to di�erentiate between record versions since the

table contains an SCD type 2 attribute.

When identifying the changes in the SCD type 2 attribute country, we compare

the records obtained in the ongoing ETL process only to those records from the stored

User_Dim which is_current attribute is True. If the change has occurred, the new

version of a record is inserted as a new row � a new unique ID is generated and its

is_current attribute is set to True. Moreover, we update the value of the is_current

attribute in the previous version to False.

The transformation of the Event source table to the Streams_Fact table starts

with validation of the timestamps in the datetime column and elimination of null

values. Before computing the stream_duration fact, we create a temporary column

action_number, which serves as an event serial number within a group of events with

the common user and track. The reason for this column is the situation in which the

same user streams the same track multiple times. In such a case, we would not be able

to identify the correct pairings of play and pause actions solely using the data present

in the Event table. We assume that the source system logs user actions as they occur,

and thus they are ordered by the timestamp. The action_number column allows us to

rely on the fact that the action_number attributes of related events always di�er by

one. The example of the data after the computation of the action_number column can

be seen in Figure 4.2. Consequently, we populate the stream_duration column by self-

joining the table, �ltering the event pairs based on their action_number attributes, and

computing a stream_duration value from the timestamps columns, as can be seen in

Figure 4.3. Finally, we substitute the natural keys for the foreign keys to the dimension

tables.

All tables are �rst loaded into a new temporary table within the data warehouse. We

then �swap� the table with the previous version � we change the name of the previous

version, then change the new table's name to the target table, and �nally, drop the

previous version. We use this technique to avoid the corruption of the target tables

caused by failed loading. As a result, we can directly employ the naive resumption

method without additional steps.
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Figure 4.2: Data after the computation of the action_number attribute

Figure 4.3: The computation of the stream_duration attribute

4.4 Dependency Analysis

For the Dependency Analysis method, the execution of a job is divided into three stages

� extract, transform-load, and swap stage.

Prior to launching the ETL process, we create two temporary tables to store the

information required for the Dependency Analysis method. The dependencies between

the job stages are stored in the con�g_log table. We describe how these dependencies

are derived in Section 1.6. The cmd_log stores the execution results. For each job stage

of our ETL process, we insert one record with the initial value of the result column

being False.

Storing the con�g_log and cmd_log within the data warehouse would be highly

ine�cient. The more suitable solution is to use a relational operational database.

Figure 4.4: The con�g_log table used in our Dependency Analysis implementation
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Figure 4.5: Query to determine the execution result of predecessors

We choose MySQL since it is an open-source, easy-to-use option with a simple setup

process. The MySQL server runs on the master node of our cluster. The auxiliary

tables created are small and operational in nature; hence a standard relational database

management system is favored over distributed systems, like Cassandra or HBase.

In the basic implementation, a job is either executed fully or not at all. It is not

the case when we use the Dependency Analysis method, in which the outcome of the

ETL process may be a partially executed job. At the end of each stage, we store

an intermediate result as a temporary table in the data warehouse and update the

stage execution result in the cmd_log to True. The following stage then reads and

processes the temporary table instead of processing the extracted table directly. This

modi�cation allows us to resume a job from the �rst failed or skipped stage during

a resumption procedure. We condition the execution of a stage by the successful

execution of its predecessor according to the con�g_log. Moreover, we consult the

cmd_log to check whether the stage has not been already successfully executed in the

previous run to avoid super�uous operations. In case of a failure, we do not need to

perform any additional steps; the ETL process is directly relaunched.

4.5 Comparison and Findings

We shall use the average overall execution time of a failed ETL process as our primary

metric. We test the methods in two failure scenarios � a failure during dimension

table processing and during fact table processing. As can be seen in Figure 4.7, the

Dependency Analysis method performed better in both cases. In case of a fact table

failure, the execution time is reduced considerably.

To be able to measure the benchmarks for the error-handling methods, we simu-

late erroneous/faulty execution as follows. We choose a random table from our date

warehouse schema, which fails in the current ETL run. The reason for this is to dif-

ferentiate between the dimension table and fact table failures. We then generate a

random number of seconds, after which we interrupt the processing of a given table.

Using the simulation of erroneous computations, we measured several execution

times for each method with di�erent input sizes. We present our �ndings in Figure 4.6

Next, we present the aggregated results in the bar chart in Figure 4.7, comparing
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Figure 4.6: Test results

Figure 4.7: Performance of methods by the failed table

the average execution time of di�erent methods under di�erent circumstances.

Figure 4.8 shows the average performance of an ETL with and without a failure.

We conclude that the additional operations in the Dependency Analysis have minimal

e�ect on the execution time of the regular, non-faulty ETL process.

Compared to the basic implementation, the Dependency Analysis method requires

an additional operational database to ensure e�cient execution. Moreover, we need to

perform a few pre-ETL steps to create logs. Incorporating execution conditions and

checks based on the logs is relatively straightforward and does not call for any major

logic restructuring of an ETL pipeline.

We deem the Dependency Analysis as an e�ective method for ETL resumption in

a big data environment. Generally speaking, it provides a satisfactory performance

improvement without substantial deceleration of a regular ETL run. It needs to be

said that based on the substance of the Dependency Analysis method, the di�erence

in performance grows with the number of tables in a data warehouse schema. For this

reason, we expect the optimization to be even more signi�cant in a real-life setting

with more tables.
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Figure 4.8: Performance of methods by the presence of failure



Conclusion

The main goal of this thesis is to analyze the e�ciency of the Dependency Analy-

sis error-handling method introduced in paper [17] in a distributed data warehouse

environment. This is achieved by creating a fabricated use case with minimal appli-

cable complexity, which we use to benchmark the e�ciency of Dependency Analysis

compared to a naive error-handling method.

We build our data warehouse on a cluster of �ve computers using industry-standard

big data tools. In the core of the data warehouse lies Hive, facilitating data storage on

top of a Hadoop cluster. The data transformation process is handled by Spark on top

of the same cluster. Using this cluster, the execution time of Dependency Analysis is

measured and compared to naive error handling on several di�erent input data sets of

di�erent sizes.

As a result of this testing, we conclude that Dependency Analysis is an e�cient

error-handling method in a distributed data warehouse, becoming especially e�cient

in the case of fact tables, where it performs around 33% faster than the naive error-

handling method. The �cost� of this e�ciency is a slightly increased code complexity

and a need for certain auxiliary structures, namely two auxiliary tables, which are

operational by nature.

In our thesis, we store the auxiliary tables in a MySQL server instance. In a

complex real-life system, a traditional database management system might become a

bottleneck during the parallel execution of several jobs. The auxiliary tables are small

and frequently accessed; therefore, it might be interesting in the future to examine

the possibility of storing them in distributed in-memory data stores, such as Redis or

Memcached.
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