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Abstrakt

Hlavným pojmom práce je užitočnosť informácie. Ako formálny základ používame
teóriu formálnych jazykov. Práca je zameraná na regulárne jazyky a užitočnosť infor-
mácie definujeme ako binárnu reláciu na regulárnych jazykoch. Ako výpočtový model
používame nedeterministický konečný automat. Skúmame vlastnosti užitočnosti ako
relácie. Prezentujeme uzáverové vlastnosti tried definovaných pomocou dodatočnej
informácie (trieda jazykov, ktoré môžu byť zjednodušené pomocou fixnej dodatočnej
informácie). Taktiež skúmame pojem informačnej sily dodatočnej informácie a možné
vzťahy v ktorých môžu byť dve dodatočné informácie za rôznych predpokladov.

Kľúčové slová: užitočnosť informácie, trieda definovaná dodatočnou informáciou,
informačná sila, nedeterministický konečný automat



v

Abstract

The core concept of this thesis is the usefulness of information. For a formal background
of research we use the theory of formal languages. The thesis is focused on regular
languages and we define usefulness as a binary relation on regular languages. We
choose nondeterministic finite automaton for our computational model. We examine
properties of usefulness as a relation. We present closure properties of families defined
by advice (family of languages, which can be simplified using fixed advice). We also
examine the informational power of supplementary information and possible relations
of two languages providing supplementary information.

Keywords: usefulness of supplementary information, family defined by advice, in-
formational power, nondeterministic finite automaton
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Chapter 1

Introduction and definitions

One of the core concepts of computer science is information. An algorithm is "just
a modification of information". Computer networking is "just transportation of in-
formation". Cryptography is "just safety of information". The database is "just an
effective way to store information". In many languages, computer science or science of
computation is translated as informatics, the science of information.

Even though the information is such an essential notion, it is only an intuitive
concept. Same as an algorithm it has no rigid formal definition. If it is not formalized,
you can not use formal techniques in proofs. So on the one side, information and the
algorithm are an important part of computer science, on the other side, we can not
study them formally. Without formal definition, we can not answer questions such as:
is there an algorithm for every problem, or is there a lower bound for the amount of
information that we need to obtain about the sequence, to be able to sort it? To get
a formally correct answer, we have to find a formal definition for these concepts. That
is not an easy task since we can not prove that our definition is correct.

There were many attempts to formalize an algorithm. The one that stuck is a
Church-Turing thesis. It says that every algorithm can be simulated by the Turing
machine or as Savage said in 1987: "an algorithm is a computational process defined
by a Turing machine". With a formalization at disposal, it was possible to prove the
properties of an algorithm. For example, it was shown that there are problems, that
can not be solved by any algorithm (e. g., a halting problem).

Before such a thesis was accepted by a community, a lot of work had to be done.
A lot of different approaches were studied. Many of them were found to be equivalent
to Turing’s approach, which amplified its chance of success. Surely there were many
attempts to show that the Turing machine is too weak. That there exists an algorithm
that can not be simulated by a Turing machine. Since no one has come up with a
strong argument against the thesis, it got a broad acceptance.

Shannon took a similar approach in his study of information and its size. He

1



2 CHAPTER 1. INTRODUCTION AND DEFINITIONS

formalized information as a sequence of symbols and its size as the length of the
sequence. His approach had great success. Both literally and figuratively it helped
the human race to land on the moon.

Even though Shannon has already proposed a formalization of information and it
has brought great achievements, we shall take a different approach. The reason is that
we shall focus on a different element of information. While Shannon worked mostly
with the size of the information, we shall study the usefulness of the information.

Although we shall work with only one formal definition and study usefulness through
this definition, we shall always ask whether our reasoning is not based on a detail of
definition. Whether a slight change of definition would not break the chain of thoughts.
The goal is to present formally and intuitively correct reasoning.

As the background for the formalization of the concept, we shall use the theory
of formal languages. Basic knowledge of this field is expected, e.g., definitions and
understanding of nondeterministic finite automaton, configuration, acceptance of a
word and a language . . . For these definitions see [2].

The following definitions shall lead to the key concept of the thesis, the usefulness
of information (of advice). Our research concerns regular languages, so both the advice
and the problem shall be regular. We shall, therefore, define usefulness as a relation
on regular languages. As the title of the thesis suggests, we shall concentrate on
nondeterminism and all our definitions shall be in the nondeterministic setting. For
analogous definitions and work done in deterministic settings see [5].

Note. We shall work with the nondeterministic automata without epsilon transitions.
Most of the time, the only important information about the alphabet shall be its size.
Therefore sometimes we might skip the details of the alphabet and only mention its
size s. If we do that, we shall assume that the alphabet is the first s letters of the Latin
alphabet. For example, if we say that an automaton works with a unary alphabet, we
shall assume it is {a}.

Definition 1.0.1. The state complexity of a nondeterministic finite state automaton
A = (Q,Σ,∆, q0, F ) (#s(A)) is the number of its states , #s(A) = |Q|.

Definition 1.0.2. The nondeterministic state complexity of a regular language L
(nsc(L)) is the minimal number of states required by an NFA to accept L, nsc(L) =

min{#s(A)|L(A) = L}.

Example 1.0.1. Languages over the unary alphabet with state complexity 1 are Σ∗,
an empty language ∅, and a language containing only an empty string {ε}. Languages
with state complexity 2 are {ε, a}, {a}, Σ+, {a2k|k ∈ N} and {a2k+1|k ∈ N}. This can
be shown by an exhaustive search. The choice we have when we are constructing an
automaton with two states is in a set of accepting states and a transition function. Each



3

state can be accepting or non-accepting so that is 22 options. Each possible transition
will be or will not be present, so that is 24 options. Together it is 26 = 64 possibilities.
But that can be reduced. For example, the second state must be reachable, or there
must be at least one accepting state.

Note. While working with languages over the unary alphabet, we can associate words
with numbers written in the non-positional system. Word aaaa can correspond to
number 4, ε to 0. An important family of regular languages over the unary alphabet are
languages with the structure {ax∗k|k ∈ N} where x is a natural number. If we associate
words with its numbers than these languages correspond to divisibility problems. Only
and all numbers divisible by x are in {ax∗k|k ∈ N}. Since we shall use these problems
frequently, we shall abbreviate their notation to L[x] .

Definition 1.0.3. The nondeterministic usefulness is a relation Un ⊆ R×R defined
as follows. A regular language Ladv is a nondeterministically useful advice for a regular
language Lprob ((Ladv, Lprob) ∈ Un) if:

• ∃Lnew ∈ R : Lprob = Ladv ∩ Lnew ∧ nsc(Lnew) < nsc(Lprob)

• nsc(Ladv) < nsc(Lprob)

Example 1.0.2. Advice L[2] is useful to a problem L[6] . The formal proof shall be
presented in the next chapter 2.1.3. But on the intuitive level we know, that if we need
to find out whether a number is divisible by 6 and we receive a hint that it is divisible
by 2, all we need to do is to check the divisibility by 3.

Note. The first condition of nondeterministic usefulness says that we must be able to
construct a simpler solution Lnew to the old problem Lprob after receiving the advice
Ladv . The second condition says that the advice must be simpler than the problem
Lprob as well.

The necessity for definition of nondeterministic usefulness comes from the fact,
that deterministic and nondeterministic usefulness differ, as shown in [3]. They found
a problem Lprob that is deterministically decomposable (there exists a useful advice,
that allows us to solve the old problem more easily) and nondeterministically indecom-
posable (there is no advice that could help us simplify the problem).

In this thesis we shall mostly work with a nondeterministic setting, therefore we
shall shorten nondeterministically useful to useful, nondeterministic state complexity
to state complexity or just complexity and instead of Un we might use U .

Another important concept of the thesis is the family of languages that can be
simplified using the same advice. Later we shall explore its properties (mainly the
closure properties).



4 CHAPTER 1. INTRODUCTION AND DEFINITIONS

Definition 1.0.4. The family defined by advice Ladv (L(Ladv)), is a family of all
languages that can be simplified using the advice Ladv , L(Ladv) = {L|(Ladv, L) ∈ Un}.



Chapter 2

Supplementary information

In this chapter, we shall examine the properties of usefulness Un and closure properties
of families defined by advice. In the first Section 2.1, we shall study the usefulness as
a relation. In Subsection 2.1.1 we shall show that Un is asymmetric and irreflexive. In
the following subsection 2.1.2, we shall address the transitivity, prove the divisibility
lemma 2.1.3 and present the first schema 2.1. Then we shall direct our attention to
the uniqueness of decomposition 2.1.3. In the last Subsection 2.1.4 of the first Section,
we shall discuss whether a finite language can be useful.

In the second Section 2.2, we shall examine the closure properties of families de-
fined by advice. In Subsection 2.2.1 we shall present two proofs about closure under
intersection as well as the second schema 2.4. The following will be closure under union
2.2.2 and closure under concatenation and iteration 2.2.3.

2.1 Relation Un

For advice to be useful to a problem, it has to satisfy two conditions. First, it has to
simplify the problem (there has to be a new easier solution to the problem), second, it
itself has to be easier than the problem. Let us consider only the second condition in
the definition of Un and call the new relation En . We only consider the fact that the
advice has to be easier than the problem. The relation En is a superset of Un . We
shall use this fact since some properties of the relation are inheritable. In other words,
if a property holds for En it might automatically hold for Un as well.

2.1.1 Un is irreflexive and anti-symmetric

A relation R is said to be anti-symmetric if for each pair of distinct elements a and
b at most one of R(a, b) and R(b, a) holds. A relation R is said to be irreflexive, if
there is no element a such that R(a, a) holds 1. The relation En is based, just on the
state complexity of the two languages (requiring nsc(L1) < nsc(L2) for En(L1, L2) to

5



6 CHAPTER 2. SUPPLEMENTARY INFORMATION

hold). Therefore it is easy to see that En is irreflexive and anti-symmetric, just like
the relation < on natural numbers. Since Un ⊆ En it easily follows the following:

Theorem 2.1.1. The relation Un is irreflexive and anti-symmetric.

2.1.2 Un is not transitive

In the previous subsection we were able to simplify our arguments using the relation En

and the fact the irreflexivity and anti-symmetry are inheritable properties of relations.
This is no longer possible when considering transitivity. While En is transitive, we
shall prove that Un is not transitive. We shall proceed as follows.

Note that the advice and the problem are both regular languages, thus we can
consider the same language once as the advice and once as the problem. The following
question arises, is usefulness transitive? In other words, suppose we have a language
Ladv , that is useful to an intermediate problem Lint and Lint, as advice, is useful
to a problem Lprob. Is Ladv automatically useful to Lprob ? We shall show that
usefulness is not transitive, by presenting a counterexample. First, as a preparation
for the transitivity, we shall present the divisibility lemma.

Lemma 2.1.2. Let n be a non-zero natural number. The nondeterministic state com-
plexity of L[n] is n.

Proof. The upper bound is trivial (the straightforward construction of an automaton
for this language has n states, each corresponding to one possible remainder after
division by n). To show that the state complexity is at least n we shall use a proof by
contradiction.

A border case is n = 1. For this case, we do not have to prove its lower bound,
since 1 is a minimal state complexity of all languages. From now on suppose that n is
greater than 1.

Suppose there is a non-deterministic automaton A that accepts the language L[n]

and has less than n states. The word an is in language L[n] , therefore there must
be an accepting computation on this word. Let q0, q1, . . . , qn be the sequence of states
that A reaches during the computation and let the state qi to be a state that A is in
after reading the prefix ai. Since A has less than n states, there must be two indices k
and l such that qk = ql, l > k, and l − k < n. Part of the computation from qk+1 to
ql can be either repeated or cut out and the new computation will still be accepting
(this idea comes from the pumping lemma). If we cut out this part we get an accepting
computation on word an−(l−k). Since l − k is smaller than n and greater than 1, A
accepts a word that is longer than 0 but shorter than n which is a contradiction.

1A relation that is irreflexive and anti-symmetric is sometimes called asymmetric. An example of
such relation is, e.g., the relation < on natural numbers
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Lemma 2.1.3 (Divisibility lemma). Let k and l be natural numbers and let k be smaller
than l. The advice L[k] is useful to L[l] if and only if there exists a natural number
m smaller than l satisfying scm(k,m) = l.

Proof. First implication: there exists a natural number m smaller than l satisfying
scm(k,m) = l =⇒ L[k] is useful to L[l] . From the previous lemma 2.1.2 we know
that a state complexity of L[k] and L[m] is smaller than the state complexity of L[l] .
If a number is divisible by two numbers, then it is divisible by their smallest common
multiple. Therefore if a number is divisible by k and m it is divisible by l as well. Thus
L[l] = L[k] ∩ L[m] and L[k] is a useful advice to L[l] .

Second implication: L[k] is useful to L[l] =⇒ there exists a natural number m
smaller than l satisfying scm(k,m) = l. The advice L[k] is useful to L[l] , so there
exists a language Lnew with state complexity smaller than l and the intersection of L[k]

and Lnew is L[l] . Let A be the nondeterministic automaton accepting Lnew. A must
accept the word al. Similarly to the previous proof, let q0, q1, . . . , ql be the sequence of
states that A is in during the accepting computation on the word al. Since A has less
than l states, there must be two indices i and j such that qi = qj, i > j, and j − i < l.
The part of the computation from qi+1 to qj can be either repeated or cut out and the
new computation will still be accepting. Let r be the length of that part (r = j − i).
By repeating the part we can construct accepting computation on a word al+n∗r, where
n is any natural number. Let x be the smallest common multiple of r and k. Both
L[k] and Lnew contain the word al+x, therefore L[l] contains this word as well and x
must be divisible by l. Since k divides l (otherwise L[k] would not be a super-set of
L[l] ) there must exist a number m that divides r such that scm(k,m) = l. Since m
divides r, m is at least as small as r and r is smaller than l so m is smaller than l as
well and the proof is complete.

Now that we have the divisibility lemma prepared, we are ready to prove that
usefulness is not transitive.

Theorem 2.1.4. Usefulness is not transitive.

Proof. We shall prove the theorem by presenting a counterexample. A language Ladv

will be useful to an intermediate language Lint, Lint will be useful to Lprob but Ladv

will not be useful to Lprob.
Let k and l be natural numbers greater than 1, with gcd equal to 1. Let Ladv = L[k],

Lint = L[k∗l] and Lprob = L[k2∗l]. The facts that Ladv is useful to Lint, Lint is useful
to Lprob and that Ladv is not useful to Lprob are clear consequences of the divisibility
lemma and the theorem is proved.

The Figure 2.1 shows an intuitive schema behind the proof. Every schema of the
thesis is very informal. It is not supposed to work as proof. It is supposed to help to
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Ladv

Ladv

∩

Ldif
Lhard

Ldif

∩

Lint Lprob

Figure 2.1: Schema for the transitivity.
The figure shows the schema used in the proof of theorem 2.1.4. In the proof we used
L[k] as advice, L[l] as a different problem (gcm(k, l) = 1) and L[k2] as a harder

version of advice.

build intuition and to see the ideas of the proof in a bigger picture. Languages that
are used in the schema are:

• Ladv -an infinite language with state complexity greater than 1

• Ldif - different language than Ladv

• Lhard - harder version of Ladv

An example could be Ladv = L[2], Ldif = L[3] and Lhard = L[22]. The language Ldif

is neither a subset nor a superset of Ladv . The state complexity of an intersection
of Ladv and Ldif is a product of the state complexities of Ladv and Ldif (similar
to the fact that random variables are independent if their joint entropy is the sum of
individual entropies). The divisibility by 2 can be also seen as keeping only every other
number. If we repeat this on the numbers that are left we will get the divisibility by 4.
So the divisibility by 4 is in a sense two times repeated divisibility by 2 and therefore
we can see it as a harder version of it.

The schema used in the proof is shown in Figure 2.1. In our proof we used L[k] as
advice, L[l] as a different problem (gcm(k, l) = 1) and L[k2] as a harder version of
the advice. Arrows show how a language is useful to the problem, which sub-problem
of the problem it solves.

2.1.3 Uniqueness of decomposition

An alternative view of the advice, the problem, and the new solution is a decomposition.
Instead of being in the position, where someone helps us by providing supplementary
information and we are trying to simplify the solution to the problem, we can try to
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decompose the problem into two simpler subproblems. Imagine we have a job to be
done as soon as possible, and we have two workers that can work simultaneously, but
they cannot work together on the same assignment. We have to split the problem into
two easier assignments, one for each worker. For example, if we need to check whether
a number is divisible by 6, one worker can check divisibility by 2, the other divisibility
by 3, and combining their results we can get a result for the divisibility by 6.

The undecomposable problem, as the name suggests, is a problem that can not be
divided into two simpler problems. If we correlate decomposition of problems with
the factorization of numbers, undecomposable problems correspond to prime numbers.
While factorization is unique (it does not matter whether you first decompose 30 to
2∗15 or 3∗10, you will always end up with the same primes in the end) decomposition
is not.

Note. There is a difference between the decomposition and the decomposition into
undecomposable problems. L[2] ∩ L[15] is the decomposition of L[30] but it is not the
decomposition into undecomposable problems yet.

Theorem 2.1.5. Regular languages do not have a unique decomposition to undecom-
posable problems.

Proof. To prove the theorem we shall use the generalization of the divisibility problem.
Instead of asking whether a number is divisible by 6, we are going to ask whether the
number has remainder 1 after dividing by 6, Lprob = L[6] · a.

A straightforward decomposition of Lprob is (L[3] ·a)∩ (L[2] ·a). The language L[3] ·a
does not contain ε. Therefore if we add ε to the second language it will not affect the
result of the intersection. Therefore decomposition (L[3] · a) ∩ (L[2] · a ∪ {a}) is also
correct.

To finish the proof we need to show that both decompositions are decompositions
into the undecomposable problems. We need to prove that all three subproblems are
undecomposable. Problem L[2] · a is undecomposable, because its complexity is 2 and
languages with state complexity 1 are not useful to any problem.

Both L[3] · a and L[2] · a ∪ {a} are languages with state complexity 3, as shown
in Figure 2.2. Languages with state complexity 1 are not useful to any problem, so
the complexity of the advice and the new solution (if they exist) must be 2. From
Example 1.0.1, we know that there are 5 languages with state complexity 2 : {ε, a},
{a}, Σ+, {a2k|k ∈ N} and {a2k+1|k ∈ N}. The advice and the new solution have to be
a superset of the problem, therefore only Σ+ is an option. The same language can not
be an advice and a new solution simultaneously, so both L[3] · a and L[2] · a ∪ {a} are
undecomposable.
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q0 q1 q2
a a

a

(a) Automaton for L[3] · a

q0 q1 q2
a a

a

(b) Automaton for L[2] · a ∪ {ε}

Figure 2.2: State complexity of L[3] · a and L[2] · a ∪ {ε} is lower or equal to 3.

q0

q1 q2

q3 q4

q5

a,b
d

e,f

c
d

g

(a) Automaton for {ade, adf, bde, bdf, cdg}

q0

q1 q2

q3 q4

q5

a
d

e

b,c

d

f,g

(b) Automaton for {ade, bdf, bdg, cdf, cdg}

Figure 2.3: Automata for {ade, adf, bde, bdf, cdg} and {ade, bdf, bdg, cdf, cdg}.

2.1.4 Finite language can be useful

At first sight, it might seem impossible. We know that if advice is useful to a problem,
then the problem is a proper subset of the advice. If the finite language is over the unary
alphabet, we can get all subsets of the advice by changing some of the accepting states
to non-accepting states. We are not adding any states therefore the state complexity
of a subset of the language can not have greater complexity.

This does not have to hold for languages with a non-unary alphabet. The reason
is that for the unary alphabet, every accepting state corresponds to one word. We can
see in the automata in figure 2.3a, that there are states that correspond to more than
one word, e. g. , state q5.

We shall use the automaton 2.3a as an advice and 2.3b as a new solution. Therefore
the problem that we shall simplify has to be Lprob = {ade, bdf, cdg}. In the following
lemma we shall prove a lower bound for the state complexity of Lprbo and then we shall
be ready to prove the theorem, that finite language can be useful.

Lemma 2.1.6. The state complexity of Lprob = {ade, bdf, cdg} is at least 8.

Proof. We shall use the proof by contradiction. Suppose that the state complex-
ity of Lprob is smaller than 8. That means that there exists an automaton A that
accepts Lprob and it has less than 8 states. Let F be the following set of pairs
{(ε, ade), (a, de), (ad, e), (b, df), (bd, f), (c, dg), (cd, g)}. This set has a property, that
if we take any pair (x1, x2) and we construct a word w = x1 · x2 we get a word from
Lprob. But if we take any two pairs (x1, x2) and (y1, y2) and construct a word w = x1 ·y2,
we get a word that is not in Lprob (it is also called the fooling set).
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Fix one accepting computation for every word of Lprob. The automaton A has less
than 8 states, therefore there must be two pairs (x1, x2) and (y1, y2) from F , such that
A reaches the same state after reading the first parts of those pairs. Therefore switching
the prefix x1 for y1 does not affect whether A accepts that word or not. Since A accepts
x1 ·x2 it also accepts y1 ·x2. That is a contradiction considering the properties of F .

Theorem 2.1.7. Finite language can be useful.

Proof. Let Ladv = {ade, adf, bde, bdf, cdg}, Lprob = {ade, bdf, cdg} and Lnew = {ade, bdf,
bdg, cdf, cdg}. Problem Lprob is equal to Ladv ∩ Lnew. Previous lemma and Figure 2.3
show that both Ladv and Lnew are simpler than Lprob. Therefore Ladv is useful to
Lprob.

2.2 Closure properties of families defined by advice

This section is devoted to an examination of families defined by advice, the problems
that can be simplified using some fixed advice. We shall focus on closure properties,
e. g., let L1, L2 ∈ L(Ladv). Does it follow that intersection (union, ...) of L1 and L2 is
also in L(Ladv) ?

2.2.1 Intersection

We shell present 2 counterexamples. The first counterexample might be seen as "just
playing with the alphabet". It is an example of reasoning, that is based on the details
of formalization. It would not work if we slightly generalized our definition of L(Ladv)

by allowing 1 to 1 homomorphisms, it does not offer a lot of insight into the concept
of usefulness.

Theorem 2.2.1. There exists Ladv such that L(Ladv) is not closed under intersection.

Proof. The main idea of the proof is that Lprob1 and Lprob2 are the same problems, but
they use a different alphabet so their intersection will be an empty language. Since the
alphabet is important we can not use the simplified notation for divisibility problems.

Let Ladv={a2k|k ∈ N}∪{b2k|k ∈ N}, Lprob1 = {a6k|k ∈ N} and Lprob2 = {b6k|k ∈ N}.
It is clear that both Lprob1 and Lprob2 can be simplified using Ladv. Now Lprob =

Lprob1∩Lprob2 is the empty language and it can not be simplified by any advice, showing
that L(Ladv) is not closed under intersection.

The second proof will be more general and it will not be strictly based on the details
of definition. The schema used in this proof is shown in Figure 2.4.
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Ladv1

∩

Ladv2

Ladv

Ladv1

∩
Lhard2

Lprob1

Lhard2

∩
Ladv2

Lprob2

Lhard2

∩

Lhard1

Lprob

Figure 2.4: Schema for the intersection.
In the proof, we used L[l] as Ladv1 , L[k] as Ladv2 , L[l2] as Lhard1 and L[k2] as

Lhard2.

Proof. Let k and l be natural numbers greater than 1, such that their greatest common
divisor is 1. Let Ladv = L[k∗l], Lprob1 = L[k2∗l] and Lprob2 = L[k∗l2]. Using the divisibility
lemma we can show that both Lprob1 and Lprob2 can be simplified using Ladv while
Lprob = Lprob1 ∩ Lprob2 = L[k2∗l2] can not be.

2.2.2 Union

Theorem 2.2.2. There exists Ladv such that L(Ladv) is not closed under union.

To prove the theorem we shall again present a counterexample. The main idea shall
be that by uniting two problems we can obtain an easier problem. For example, let L
be any regular language. By uniting it with its complement we obtain Σ∗, whose state
complexity is 1.

Proof. Let Ladv = L[3], Lprob1 = Ladv ∩ L[2] and Lprob2 = Ladv ∩ Lc
[2] = Ladv ∩ (L[2] · a).

We can see that both Lprob1 and Lprob2 can be simplified by Ladv, but the union,
Lprob = Lprob1 ∪ Lprob2, is equal to the advice and it can not be simplified by itself.
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2.2.3 Concatenation and iteration

Using the intersection or union we could not obtain "new" words. As long as we made
an intersection of two languages that could be helped by some advice (were subsets of
that advice), we knew that the intersection was a subset as well. Concatenation and
iteration are different. By concatenating two languages or iterating one we can obtain
a "new" word and potentially create a language that will no longer be a subset of the
advice, therefore the advice will no longer be helpful.

Theorem 2.2.3. There exists Ladv such that L(Ladv) is neither closed under con-
catenation nor under iteration.

Proof. Let Ladv = L[2] · a and Lprob = L[3] ∩ Ladv. Lprob can be simplified by Ladv .
Clearly Lprob · Lprob and L∗

prob contain words of even length, e. g., a6. Thus none of
these languages is a subset of Ladv and therefore they can not be in L(Ladv).
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Chapter 3

Informational power of supplementary
information

This chapter is devoted to the concept of informational power. We shall present our
approach to this intuitive (informal) concept and we shall explore questions such as
"can some advice have greater informational power than another", or "can some advice
be better than another?" Better in the sense that it has greater informational power
and smaller or equal price (state complexity).

Our approach is centered around the number of problems that advice can simplify.
The more the better. The problem that we have to face is that most languages providing
supplementary information are useful to infinitely many problems. For example L[2] is
useful to the problem L[2∗p] , where p can be any prime number besides 2. Since there
are infinitely many primes, the cardinality of L(L[2]) is infinite. Because of that, we
shall not focus on the informational power of a single language, but we shall compare
two languages. We say that Ladv1 has greater informational power than Ladv2 when
the family defined by Ladv1 is a strict superset of the family defined by Ladv2 . We
say that Ladv1 and Ladv2 have the same informational power when the families
defined by those languages are equal and we say Ladv1 and Ladv2 have incomparable
informational power when their families are incomparable.

Example 3.0.1. The advice L[2] has greater informational power than the empty
language. The empty language and a language consisting of only one word have equal
informational power. The languages L[2] and L[3] are incomparable.

Note. Instead of greater informational power, we shall sometimes use phrases as stronger
advice, greater power, or more useful. We shall use similar phrases for equal informa-
tional power and incomparable informational power.

In the example above, we have seen that there are examples for each of those three
cases. In what follows we shall explore the possibilities for the information power

15
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comparison of two languages Ladv1 and Ladv2 given they are in some relation. In
Section 3.1 it is the case when Ladv1 ⊂ Ladv2 and in Section 3.2 it is (Ladv1, Ladv2) ∈ U .
Next we shall explore how the operations ∪ and ∩ on advice languages translate to
relations between the corresponding families. In Section 3.3 we shall explore possible
relations between L(Ladv1 ∪ Ladv2) and L(Ladv1) ∪ L(Ladv2). In Section 3.4 we shall
address the same question for the intersection.

To present our results in a compact form allowing for an easy overview of the results
achieved the theorems shall be presented in the form of a table. Each table shall consist
of six columns (one for each possible relation between sets - ⊃,⊇,=,⊆,⊂, 6⊇ ∧ 6⊆) and
two rows - universal case and existential case. Each theorem thus contains 12 assertions.

The following simplified example of a theorem is provided to illustrate the meaning
of the "table form" statement of theorems.

Example 3.0.1. Theorem: Let Ladv1 and Ladv2 be in relation �. Then the following
holds for L(Ladv1) and L(Ladv2) :

⊃ =

universal case no (A)
existential case yes (B)

The two assertions shown in the table are to be read as follows:

1. It is not true that L(Ladv1) ⊃ L(Ladv2) for arbitrary Ladv1 and Ladv2 such that
Ladv1�Ladv2. This assertion is proved in Case A part of the proof.

2. There exist Ladv1 and Ladv2 such that Ladv1�Ladv2 and L(Ladv1) = L(Ladv2)

holds. This assertion is proved in Case B part of the proof.

3.1 Relation between L(Ladv1) and L(Ladv2) assuming

Ladv1 ⊂ Ladv2

Theorem 3.1.1. Let Ladv1 and Ladv2 be such that Ladv1 ⊂ Ladv2. Then following
holds for L(Ladv1) and L(Ladv2) :

⊃ ⊇ = ⊆ ⊂ 6⊇ ∧ 6⊆
universal case no (A) no (A) no (A) no (A) no (A) no (B)
existential case yes (B) yes yes (D) yes yes (C) yes (A)

Proof.
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Case (A). Let Ladv1 = L[2], Ladv2 = L[4]. Using divisibility lemma 2.1.3, we can find a
language that can be simplified using Ladv1 and can not be simplified using Ladv2 .
For example L[12] . On the other hand L[6] can be simplified by Ladv1 , but is not
a subset of Ladv2 and therefore Ladv2 can not help and we have shown, that Ladv1

and Ladv2 are languages with incomparable informational power.

Case (B). Let Ladv1 ⊆ Σ∗ be any language useful to at least one problem and Ladv2 =

Σ∗. Since Σ∗ is not useful to any problem, Ladv1 can not be Σ∗ and therefore it is a
proper subset of Ladv2 (it satisfies the assumption). The advice Ladv1 is helpful to
at least one problem while Ladv2 is not helpful to any problem. Therefore Ladv1 has
greater informational power than Ladv2 .

Case (C). This case shall be similar to the previous one, but instead of Σ∗, we shall
use the other extreme the empty language.

Let Ladv2 be any language useful to at least one problem and Ladv1 = ∅. The
advice Ladv2 can not be the empty language, since it is useful to at least one problem
and therefore the subset assumption is satisfied, as well as the fact, that Ladv2 is
stronger than Ladv1 .

Case B and C together show, that for any advice that is useful to at least one
problem there exist subset and superset languages that are weaker.

Case (D). In this case, we shall use both the empty language and Σ∗.

Let Σ be any alphabet, Ladv1 be the empty language and Ladv2 = Σ∗. The subset
assumption is satisfied and as we have already seen, neither the empty language nor
Σ∗ are useful to any problem. Thus their informational power is the same.

3.2 Relation between L(Ladv1) and L(Ladv2) assuming

(Ladv1, Ladv2) ∈ U

Based on the fact usefulness is anti-reflexive ((Ladv2, Ladv2) 6∈ U) and using our as-
sumption ((Ladv1, Ladv2) ∈ U) we know that L(Ladv1) 6⊆ L(Ladv2). If usefulness was
transitive than Ladv1 would be always stronger than Ladv2 . But since we have already
shown that usefulness is not transitive, there are more possible relations between these
two families.

Theorem 3.2.1. Let Ladv1 and Ladv2 be such that (Ladv1, Ladv2) ∈ Un. Then
following holds for L(Ladv1) and L(Ladv2) :
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⊃ ⊇ = ⊆ ⊂ 6⊇ ∧ 6⊆
universal case no (A) no (A) no (A) no (A) no (A) no (B)
existential case yes (B) yes no no no yes (A)

Proof.

Case (A). Let Ladv1 = L[2] and Ladv2 = L[6]. Divisibility lemma 2.1.3 shows that Ladv1

and Ladv2 satisfy usefulness assumption. As mentioned earlier Ladv2 is a problem
that can be simplified using Ladv1 but can not be simplified using Ladv2 . On the
other hand, L[12] can be simplified using Ladv2 but can not be simplified using Ladv1

and therefore Ladv1 and Ladv2 have an incomparable informational power.

Case (B). The advice has to be a proper superset, so language consisting of 0 words
(empty language) automatically can not be useful to any problem. Since empty lan-
guage can not be simplified (its state complexity is already minimum) languages con-
sisting of 1 word can not be useful to any problem as well. However, as we have seen in
Subsection 2.1.4, a finite language can be useful. That means there exists a boundary
k, such that languages with less than k words are not useful to any problem and there
is a useful advice with exactly k words. Let Ladv1 be any useful advice with k words
and Ladv2 be any problem that Ladv1 can simplify. Since Ladv2 is a proper subset
of Ladv1 , Ladv2 has less than k words and it is not useful to any problem. Therefore
the advice Ladv1 has greater informational power than Ladv2 .

In this case, we have answered the question from the beginning of the chapter,
whether there exists a better advice. Advice Ladv1 is strictly better than Ladv2 . It
has greater informational power, as well as it has a lower cost ( Ladv1 is useful to Ladv2

therefore it has smaller state complexity).

3.3 Relation between L(Ladv1 ∪ Ladv2) and L(Ladv1) ∪
L(Ladv2)

This and the following section shall differ from the previous ones. We shall explore the
union and intersection of languages providing supplementary information compared to
the union and intersection of the families defined by those languages. To simplify the
notation, we shall use Ladv for Ladv1 ∪Ladv2 and in the next Section for Ladv1 ∩Ladv2.

Theorem 3.3.1. Let Ladv1 and Ladv2 be regular languages. The following holds for
L(Ladv1 ∪ Ladv2) and L(Ladv1) ∪ L(Ladv2) :
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⊃ ⊇ = ⊆ ⊂ 6⊇ ∧ 6⊆
universal case no (A) no (A) no (A) no (A) no (A) no (B)
existential case yes (D) yes yes yes (B) yes (C) yes (A)

Proof.

Case (A). Let Ladv1 = L[4] and Ladv2 = L[4] · aa. Concatenation of L[4] and the word
aa means that Ladv2 consists of all words with length, which has remainder 2 after the
division by 4. It is the same generalization of the divisibility problem as we have seen
in Subsection 2.1.3. We are using a similar approach as we have used in Subsection
2.2.2, where we have noticed that the result of the union of two problems can be a
simpler problem. Ladv = Ladv1 ∪ Ladv2 = L[2].

Using the divisibility lemma, we can prove that Ladv is useful to L[6] . Since L[6]

is not a subset of either Ladv1 or Ladv2 , they can not simplify it. The problem L[6]

shows that L(Ladv1) ∪ L(Ladv2) is not a superset of L(Ladv).
Again by using the divisibility lemma, we can show that L[12] can be simplified

using Ladv1 but can not be simplified using Ladv . Therefore L[12] proves the other
side of incomparability.

Case (B). In this case, we shall present a sufficient condition, not just an example. If
Ladv1 is a subset or a superset of Ladv2 then Ladv1 together with Ladv2 are at least
as strong as Ladv .

Ladv1 ⊆ Ladv2 =⇒ (Ladv1 ∪ Ladv2) = Ladv2 =⇒ Ladv = Ladv2 =⇒ L(Ladv) =

L(Ladv1) =⇒ L(Ladv) ⊆ L(Ladv1)∪L(Ladv2). So for all cases where Ladv1 is a subset
of Ladv2 , L(Ladv) is a subset of L(Ladv1)∪L(Ladv2). To prove that the superset is also
sufficient, it is enough to note that Ladv1 and Ladv2 are in the same position and
therefore we can swap them. If Ladv1 is a superset of Ladv2 than Ladv2 is a subset
of Ladv1 and we can use the same proof.

An example could be Ladv1 = L[2] and Ladv2 = L[4] or Ladv1 = Ladv2.

Case (C). We can strengthen the condition from the previous case to get a sufficient
condition for this case as well. If Ladv1 is a subset of Ladv2 and Ladv1 is not weaker
than or equal to Ladv2 then Ladv1 together with Ladv2 have greater informational
power than Ladv .

From the previous case we know that L(Ladv) is equal to L(Ladv2). Considering
the fact that Ladv1 is not weaker than or equal to Ladv2 , we know that there is a
problem that Ladv1 can simplify but Ladv2 (and Ladv ) can not and we get that
Ladv1 together with Ladv2 have greater informational power than Ladv .

For example we could again use Ladv1 = L[2] and Ladv2 = L[4], but we can not use
Ladv1 = Ladv2 since Ladv1 is equal to Ladv2 .
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Case (D). Let k be the same boundary as in Case B of the previous section (there does
not exist useful advice with less than k words but there is useful advice with k words).
Let Ladv be any useful advice with k words. We know thatmmust be at least 2 (empty
language and languages with one word are not useful to any problem). Therefore we
can split Ladv into two languages Ladv1 and Ladv2 such that Ladv = Ladv1 ∪ Ladv2

and both Ladv1 and Ladv2 are proper subsets of Ladv . Both Ladv1 and Ladv2 have
less than k words and therefore they are not useful to any problem. On the other hand,
Ladv is useful to at least one problem. Thus Ladv is stronger advice than Ladv1 and
Ladv2 together.

3.4 Relation between L(Ladv1 ∩ Ladv2) and L(Ladv1) ∩
L(Ladv2)

Theorem 3.4.1. Let Ladv1 and Ladv2 be regular languages. The following holds for
L(Ladv1 ∩ Ladv2) and L(Ladv1) ∩ L(Ladv2) :

⊃ ⊇ = ⊆ ⊂ 6⊇ ∧ 6⊆
universal case no (A) no (A) no (A) no (A) no (A) no (B)
existential case yes (c) yes (B) yes yes yes (D) yes (A)

Proof.

Case (A). Let Ladv1 = L[2] and Ladv2 = L[3]. Similarly to the previous section, to
simplify the notation we shall use Ladv for intersection of Ladv1 and Ladv2 , Ladv =

Ladv1 ∩ Ladv2 = L[6].
The usefulness is anti-reflexive, Ladv is not useful to itself. Using the divisibility

lemma we can show that both Ladv1 and Ladv2 can simplify the problem L[6] and
therefore L(Ladv) is not a superset of L(Ladv1) ∩ L(Ladv2).

Again using the divisibility lemma, we can prove that Ladv is useful to a problem
L[12] but Ladv1 is not and that proves the second condition of the incomparability.

Case (B). For this case we shall present a sufficient condition (similarly as in the
previous section). If Ladv1 is a subset of Ladv2 than L(Ladv) is a superset of or equal
to L(Ladv1) ∩ L(Ladv2).

Ladv1 ⊆ Ladv2 =⇒ Ladv1 ∩ Ladv2 = Ladv1 =⇒ Ladv = Ladv1 =⇒ L(Ladv) =

L(Ladv1) =⇒ L(Ladv) ⊇ L(Ladv1) ∩ L(Ladv2) and that is exactly what we needed to
prove.
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q1 q2 q3 q4

a

b a a

(a) Automaton for {akbaa|k ∈ N}

q1 q2 q3 q4

a

a a b

(b) Automaton for {aabak|k ∈ N}

Figure 3.1: Automata for {akbaa|k ∈ N} and {aabak|k ∈ N}.

Case (C). Strengthening the condition from the previous case, by also requiring that
Ladv2 is not equal to or stronger than Ladv1 we get a sufficient condition for this case.

From the previous case we know that Ladv1 ⊆ Ladv2 =⇒ L(Ladv) ⊇ L(Ladv1) ∩
L(Ladv2). Since Ladv2 is not equal to or stronger than Ladv1 , there is a problem,
that can be simplified using Ladv1 and can not be simplified using Ladv2 . From the
previous case we also know that this problem can be simplified by using Ladv and
therefore L(Ladv) is not equal to L(Ladv1) ∩ L(Ladv2) but it is a strict superset.

Case (D). Let Ladv1 = {akbaa|k ∈ N} and Ladv2 = {aabak|k ∈ N}. An advice Ladv is
equal to {aabaa} and L(Ladv) is an empty set, since Ladv is just a one word.

Both Ladv1 and Ladv2 can be accepted by NFAs with 4 states (their state com-
plexity is at most 4) as is shown in Figure 3.1, while a NFA for Ladv needs at least 5
states (the state complexity of a language that consists of only one word is the length
of that word plus one). This together with fact that Ladv = Ladv1 ∩ Ladv2 shows that
Ladv can be simplified using both Ladv1 and Ladv2 , so Ladv ∈ L(Ladv1) ∩ L(Ladv2),
which in combination with the fact that L(Ladv) = ∅ implies that L(Ladv) is a subset
of L(Ladv1) ∩ L(Ladv2).
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Conclusion

The thesis is a continuation of [1], [4], [3], and [5]. It has the highest resemblance to the
thesis [5]. Both theses are focused on regular languages and use a similar definition of
usefulness. While [5] works in the deterministic setting we examine nondeterminism.
Many of the problems we have used have the same deterministic and nondeterministic
complexity, for example, the divisibility problems. Therefore many of the theorems
can be translated to the deterministic setting.

We have tried to make the theorems and proofs as independent of details of our
definition of usefulness as possible. Therefore they should hold for slight modifications
of the notion of usefulness that may be studied in the future. However, substantially
different formalization may bring different results.

We can see several possibilities for future research, they are mainly concerned with
possible modifications of the notion of usefulness. We expect they may eventually lead
to a better understanding of the intuitive notion.

Our definition does not take into account how much does the advice simplify the
problem. It only cares whether the advice can or can not help. In Chapter 3 we have
discussed a possible problem of formalization that takes into account how useful the
advice is. One possible way is to define a simplification as a function of advice and a
problem and its result as a state complexity reduction of the problem using the advice.
For example, simplification of a problem L[6] by advice L[2] would be equal to 3 and
simplification of L[6] by advice L[4] would be equal to 0. Using the simplification,
we can define the usefulness of advice as a sum of simplifications of all problems by
the advice. Problem with this definition, as we have already mentioned in chapter 3 is
that most of the time usefulness would be equal to infinity.

Another possible definition of usefulness, that would consider how much does the
advice simplify the problem, is a definition of usefulness as a function. The function
would have one parameter. The value of the function in n would be the sum of sim-
plifications of problems with smaller state complexity than n. We could compare two
languages providing supplementary information by comparing their functions. There
might exist an upper bound for the functions depending on the state complexity of the
advice. We could say that the advice is using its full potential if its function would be
close to the boundary.

23
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A different possible modification of the definition could allow the advice to be as
hard as the problem. On the one hand, it would make the usefulness symmetric and
potentially decrease the possibilities in the table in Section 3.4, on the other hand, it
would not make much sense considering the view of usefulness as a decomposition of a
problem into two simpler problems.

Even though after reading the thesis it might be natural for the usefulness to not
be transitive, it was not at first sight. The first example of languages, that do not obey
the rules of transitivity, were found by a brute force search done by a computer. A deep
examination of the example presented the "hidden scheme" that is shown in 2.1. The
concept of the different and the harder problem also helped us with closure properties
(with an intersection). We knew that we could construct a counterexample by "playing
with alphabets", but we were not sure whether there exists a "real" counterexample
or we could slightly generalize our definition to make families defined by advice closed
under intersection. These concepts helped us to find the second Schema 2.4. Even
though these concepts were just on an intuitive level, they had a great impact and
we tried to find fitting formalization, but we have not succeeded. We could not find
formalization that would satisfy our assumptions. For example, if a problem Lprob1 is
different from Lprob2, we wanted it to be also different from harder versions of problem
Lprob2. The formalization of different and harder problems is surely an interesting task,
that might bring a lot of insight into the domain.

In Section 3.2 we have answered an interesting question, whether there exists strictly
better advice. The example we have shown would still work even if we would incor-
porate how (not only whether) the advice is useful to the definition since the worse
advice was not helpful to any problem.
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