
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Material picker: Material recognition
in images using deep learning

Bachelor Thesis

2020
Filip Jurčák

ii

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Material picker: Material recognition
in images using deep learning

Bachelor Thesis

Study Programme: Computer Science
Field of Study: Computer Science
Department: FMFI.KI - Department of Computer Science
Supervisor: prof. RNDr. Roman Ďurikovič, PhD.
Consultant: Mgr. Petr Vévoda

Bratislava, 2020
Filip Jurčák

iv

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Filip Jurčák
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Material picker: Material recognition in images using deep learning
Material picker: Rozpoznávanie materiálov v obrazoch pomocou hlbokého
učenia

Anotácia: Jedným z dôležitých krokov pri modelovaní realistických 3D scén je nastavenie
vzhľadu povrchu rôznych objektov v scéne. Cieľom tohto projektu je
zjednodušiť túto často zdĺhavú úlohu tým, že poskytneme 3D umelcovi
inteligentný nástroj na výber materiálu. Tento nástroj umožní „vybrať“
materiál z ľubovoľne vybraného obrázka jednoduchým kliknutím na daný
objekt. Na dosiahnutie tohto cieľa sa použije hlboká neurónová sieť.
K dispozícii bude rozsiahly súbor trénovacích dát, kde bude k dispozícii
komplexná korešpondencia medzi obrazovými pixelmi a podkladovým
objektovým materiálom. Neurónová sieť bude natrénovaná na obnovenie tejto
korešpondencie s pixelmi z nových, predtým nevidených snímok.

Vedúci: prof. RNDr. Roman Ďurikovič, PhD.
Konzultant: Mgr. Petr Vévoda
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Dátum zadania: 29.10.2019

Dátum schválenia: 30.10.2019 doc. RNDr. Daniel Olejár, PhD.
garant študijného programu

študent vedúci práce

vi

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Filip Jurčák
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Material picker: Material recognition in images using deep learning

Annotation: One of the important steps in modeling realistic 3D scenes is setting material
appearance of the various scene objects. The goal of this project is to simplify
this -- often tedious -- task by providing the 3D artist with an intelligent material
picker tool. The tool will allow to ‘pick’ a material from any given input image
by simply pointing to an object. A deep neural network will be trained to achieve
this nontrivial goal. An extensive set of training data will be provided, where the
complex correspondence between the image pixels and the underlying object
material will be available. The network will be trained to recover this pixel-
material correspondence from new, previously unseen images.

Supervisor: prof. RNDr. Roman Ďurikovič, PhD.
Consultant: Mgr. Petr Vévoda
Department: FMFI.KI - Department of Computer Science
Head of
department:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 29.10.2019

Approved: 30.10.2019 doc. RNDr. Daniel Olejár, PhD.
Guarantor of Study Programme

Student Supervisor

iii

Acknowledgments: I want to say sincere thank you to all people involved in
writing this thesis, specifically to: Jaroslav Křivánek (doc. Ing., Ph.D.) who came up
with the idea of this thesis but sadly passed away in early stages of writing the thesis;
prof. RNDr. Roman Ďurikovič, PhD., for taking over the supervision and providing
important insight into computer graphics; Petr Vévoda for his advice and day-and-
night support with all kinds of questions; Matej Sládek, my friend in need; my family
for giving me space and support throughout the whole process of writing; and lastly,
but probably most importantly to my girlfriend Eďa for helping me to stay afloat and
sane, as I would certainly not be able to finish this thesis without her support.

iv

Abstrakt

Proces nastavenia vlastností materiálu k nadobudnutiu realistického vzhľadu je zvyčajne
únavný a často vyžaduje zručnosť na dolaďovanie parametrov, keďže rôzne kombinácie
týchto parametrov môžu vyprodukovať rôzne materiály. Aby sme tento proces zjednodušili
predstavujeme návrh riešenia pozostávajúceho z hlbokých neurónových sietí na
segmentovanie materiálu a odhad vnútorných vlastností scény, ako difúzne a lesklé
albedo, povrchové normály, lesk, pohľadový vektor a osvetlenie z jedného obrázka.
Naša metóda teda poskytuje riešenie dvoch z najzákladnejších problémov počítačového
videnia a počítačovej grafiky - inverzného renderovania a segmentácie materiálu. Použité
siete sme trénovali na datasete vygenerovanom pomocou fyzikálne korektných techník
pre zabezpečenie dobrej generalizácie na reálnych obrázkoch.

Kľúčové slová: Hlboké učenie, inverzné renderovanie, materiálová segmentácia, strojové
učenie, počítačová grafika, rozpoznávanie materiálov

v

Abstract

The process of setting material properties for realistic appearance is usually tiresome
and often demands skill for fine-tuning the parameters, as different combinations of
these parameters can produce different materials. To simplify this process, we introduce
a pipeline consisting of deep neural networks to segment material and predict intrinsic
scene characteristics, like diffuse and specular albedo, surface normals, glossiness, view
vector, and illumination from a single image. Our pipeline thus provides solution to
two of the most fundamental problems in computer vision and computer graphics -
inverse rendering and material segmentation. We trained the networks on the dataset
generated using physically-based techniques to ensure good generalization on real
images.

Keywords: Deep learning, inverse rendering, material segmentation, machine learning,
computer graphics, material recognition

vi

Contents

Introduction 1

1 Problem statement and background 3
1.1 Our goal . 3
1.2 Terminology and methods in rendering 4

1.2.1 Rendering . 4
1.2.2 Bidirectional Reflectance Distribution Function 4
1.2.3 Reflection equation . 5
1.2.4 Monte Carlo integration . 5
1.2.5 Inverse rendering . 6

1.3 Terminology and methods in machine learning 6
1.3.1 Machine learning . 6
1.3.2 Neural networks . 7
1.3.3 Deep learning and deep neural networks 8
1.3.4 Convolutional neural networks 9
1.3.5 Residual neural network . 10

2 Prior work 11
2.1 Inverse rendering from a single image 11
2.2 Material Classification and Segmentation 12

3 Our approach 13
3.1 Inverse rendering . 13
3.2 Material Segmentation . 14

4 Dataset 17

5 Architecture Design 21
5.1 EnvMap . 21
5.2 IRN . 22
5.3 RAR . 23
5.4 MSN . 23

vii

viii CONTENTS

6 Implementation and training 25
6.1 Training procedure . 25

7 Results 27
7.1 Inverse rendering . 27

7.1.1 IRN . 27
7.1.2 RAR . 27

7.2 Material Segmentation . 30

Conclusion 33

Appendix 39

List of Figures

1.1 Rendering vs inverse rendering . 6
1.2 Connections between two layers of neural network 8
1.3 Example of a simple neural network . 8
1.4 Typical CNN architecture for digit recognition 10
1.5 Example of residual block . 10

3.1 Incorrect segmentation by DeepLab model 15
3.2 Proof of work - MSN . 15

4.1 Examples of images in our dataset . 18
4.2 Different camera views for the same scene 18
4.3 Different lighting for the same camera view 19
4.4 Example of GT data for a scene . 20

5.1 Our pipeline . 21

6.1 Our Tensorboard logging setup . 25

7.1 Training and validation error for IRN 27
7.2 IRN results - train data . 28
7.3 IRN results - test data . 29
7.4 Training and validation error for RAR 30
7.5 RAR results - train data . 30
7.6 RAR results - test data . 30
7.7 Training and validation error for MSN 31
7.8 MSN results - train data . 31
7.9 MSN results - test data . 31
7.10 Comparison of direct render results . 39

ix

x LIST OF FIGURES

Introduction

Setting material appearance is one of the most crucial steps in modeling 3D scenes and
probably the most important one for creating a realistic model look. This task is often
long, tedious, and requires non-trivial skill, as a lot of parameters need and can be
set up for a model to look realistic after rendering. The number of parameters varies
between used material models, but realistic models often need tens of correctly set up
parameters.
As a result of this thesis, we want to ease the whole process by providing artists with
a material picker tool. This tool is a deep neural network that would estimate a lot
of intrinsic properties of an image, which would help us recover material from a user-
specified object in an image.
We do so by inventing a pipeline for solving two fundamental problems in computer
graphics and computer vision - inverse rendering and material segmentation, both from
a single image. In addition to segmenting the input image, our method performs per-
pixel estimation of the number of intrinsic scene characteristics, such as diffuse and
specular albedo, surface normals, glossiness, and view vector. We use all of these
inferred properties to simulate the rendering process, yielding close approximation of
an input image.
To train all models in our pipeline, we present a new way to create a modern dataset
by using advanced features of a physically-based V-Ray renderer to bridge the gap
between synthetic data and real images. This is crucial, as we most often want to
generalize well on real images, which is hard to achieve with synthetic images only.

1

2 Introduction

Chapter 1

Problem statement and background

In this chapter, we shall define what kind of problem we want to solve, so we better
understand why it is interesting to work on such a task, and also specify the terminology
and methods that we will use throughout this thesis.

1.1 Our goal

Defining properties of materials in the scene is essential for matching appearance of
real world materials, but it is time consuming. This procedure can be dramatically
simplified, as artists and graphic designers create new looks from already existing
artworks. If they were able to transfer material characteristics from an image of these
designs, it would be a time saver. Our goal is therefore to offer them a tool that would
determine the most used material attributes from a single image.
To accomplish this goal, we need to perform per-pixel material segmentation, and then
for this segmented material approximate selected scene or material characteristics. This
approximation can be achieved by doing inverse rendering of a scene.
As we will show in chapter 2, there has been a lot of research lately regarding inverse
rendering. Using deep learning techniques to tackle problems from different areas of
interest proved to be very successful, so it was naturally applied to the computer vision
field, and in our case, to inverse rendering as well. We believe that combination of these
approaches will enable us to solve our task successfully.
As this work requires knowledge of terminology, methods and concepts from both
computer graphics and machine learning, we elucidate both of these areas in the next
sections.

3

4 CHAPTER 1. PROBLEM STATEMENT AND BACKGROUND

1.2 Terminology and methods in rendering

1.2.1 Rendering

Rendering is a major subfield of the computer graphics area. Rendering is a sequence
of steps to produce a 2D image from 3D representation of a scene stored in a computer.
During this sequence – which is also called the rendering pipeline – the algorithm for
handling rendering of a scene needs to take model representations, apply transformations,
illuminate the scene from all lights presented, map textures to objects, throw away parts
of the scene which will not be rendered, and finally draw an image from the camera view.
There are several types of renderings based on different rendering algorithms, mostly
divided into two categories: non-photorealistic rendering and photorealistic rendering,
sometimes also called physically based rendering (PBR). The latter implements the
concepts of transport and scattering of light in the real world, which is far more
computationally expensive than the former approach but produces more plausible
results. To look real when rendered, PBR needs (among other parameters) to have
correctly set up material model, usually referred to as BRDF.

1.2.2 Bidirectional Reflectance Distribution Function

Bidirectional Reflectance Distribution Function (or BRDF for short) is a probabilistic
function fr(ωi, ωo) (fr(ωi → ωo)) describing how light is reflected based on surface
attributes. More specifically, given incoming light direction ωi and outgoing direction
ωo, it gives the probability that a photon arriving from direction ωi will be reflected to
direction ωo.
There are several categories of BRDF models, of which the most impactful ones are
the physically based BRDFs. To consider a BRDF model to be physically based, it
must meet the following properties:

• positivity: fr(ωi, ωo) ≥ 0

• obeying Helmholtz reciprocity: fr(ωi, ωo) = fr(ωo, ωi)

• conserving energy:
∫

Ω
fr(ωi, ωo) cos θi dωi ≤ 1 ∀ωo

where cos θi represent decrease of radiance with increasing θi (angle between ωi and
surface normal).
To achieve realistic material look, it is important to use such BRDF that satisfies these
properties. Example of such BRDF can be physically based Phong BRDF, which is
equal to

fPhongr =
ρd
π

+
ρs(n+ 2) cosn θr

2π
(1.1)

1.2. TERMINOLOGY AND METHODS IN RENDERING 5

where ρd stands for diffuse albedo, ρs for specular albedo, n for glossiness and θr for
angle between view vector and reflected light vector.

1.2.3 Reflection equation

Knowing the BRDF of a surface allows us to compute how much light coming from
direction ωi is reflected from the surface to direction ωo. For that one has to multiply
radiance Li from direction ωi, BRDF fr(wi → wo) and cos θi. Summarized in mathematical
notation:

Lr(ωi → ωo) = Li(ωi) · fr(ωi → ωo) · cos θi (1.2)

In order to compute the total radiance reflected to direction ωo we need to sum up the
contributions from all light sources, direct or indirect. This can be done by integrating
these contributions over upper neuron hemisphere H(x), which gives us the following
equation

Lr(ωo) =

∫
H(x)

Li(ωi) · fr(ωi → ωo) · cos θi dωi (1.3)

also called reflection equation. This integral generally does not have an analytical
solution and has to be computed numerically.

1.2.4 Monte Carlo integration

A typically used numerical method for solving integrals in rendering is Monte Carlo
integration. This technique uses random numbers to sample points at which the
integrand is evaluated. Let’s denote an integral that we want to approximate, as

I =

∫
g(x)dx (1.4)

Monte Carlo estimation of I is defined as

〈I〉 = 1

N

N∑
k=1

g(Xk)

p(Xk)
, (1.5)

where N is the number of samples taken, Xk, k = 1, ..., N are the samples and p(x) is
a probability density function from which the samples were drawn.
By substituting equation 1.3 into equation 1.5, the result is

〈Lr(ωo)〉 =
2π

N

N∑
k=1

Li(ωi,k)fr(ωi,k → ωo) cos θi,k (1.6)

where 2π stands for the probability density function (p(Xk) =
1

2π
) of uniform sampling

directions on the hemisphere and ωi,k, k = 1, ..., N are the sampled directions.
An image can be rendered by evaluating equation 1.6 for each of its pixels. Given such
an image, our goal is to estimate what material (i.e. fr(ωi,k → ωo)) was used when the
image was rendered.

6 CHAPTER 1. PROBLEM STATEMENT AND BACKGROUND

1.2.5 Inverse rendering

One of the possible methods for estimating what materials are present in an image is
inverse rendering. Inverse rendering is one of the principal and long-standing problems
in computer vision and computer graphics. Its main goal is to, provided an image or
several images of a scene, estimate intrinsic properties of a scene, like depth, albedo,
normals, reflectance, lighting and so on. This problem is hard for several reasons,
mainly, as stated in [15]: „This is an ill-posed task: these scene factors interact in
complex ways to form images and multiple combinations of these factors may produce
the same image.“ As we can see, there is an infinite number of solutions for parameters
for a single image, which makes the problem hard or almost impossible to solve.
However, some solutions are statistically more admissible than others. Citing [2],
which says: „Our goal is therefore to recover the most likely explanation that explains
an input image.“ To make this work, we need to come up with such statistics that
would correctly approximate the real world. This is not straightforward, but recent
advances in both optimization and learning based approaches show that it’s possible to
estimate a handful of properties correctly [2] and even better results when physically
based datasets were used for training neural networks [23][15]. With these properties
in hand, we want to estimate what is the material on the user-specified object in the
image.

Figure 1.1: Rendering vs inverse rendering

1.3 Terminology and methods in machine learning

1.3.1 Machine learning

For quite some time, mathematicians wondered if it’s possible to create thinking
machines. The solution to this idea was to allow computers to learn complex concepts
from simple ones or experience. We provide this experience in the form of a dataset,
which consists of information (usually called features) about the task that we want
to train the model for. Generally, we let the algorithm decide which features are

1.3. TERMINOLOGY AND METHODS IN MACHINE LEARNING 7

important and how will individual features contribute to its final prediction. We call
this ability of computers as machine learning. Machine learning is an outstandingly
fast advancing area of research, and it helps to push research forward in other areas as
well. Computer graphics is not an exception as machine learning techniques are used
in calculating direct illumination [27] for example.

1.3.2 Neural networks

Human brains consist of nerve cells, which are called neurons. These neurons form
large networks where they can propagate information from one neuron to the other.
The purpose of neural networks (NNs) as a machine learning method is to mimic
these networks to be able to learn and make decisions. The main difference between
neural networks and traditional programming is that while in traditional programming
we explicitly instruct a computer what to do in each step of the program, we don’t
instruct neural networks how to behave or how to solve the task. We simply allow it to
examine the provided data and let it propose a solution. This solution can be viewed
as mapping F ′, where F is the underlying mapping that we want to approximate. F ′

should be optimal in some sense - we need such F ′ that minimizes∑
x∈X error(F(x)−F ′(x))

|X|

where X is a set of inputs to the neural network.
Neural network consists of several layers, which are called input, hidden and output
layer, with input and output layers required in every neural network, but any non-
negative number of hidden layers is allowed. Every layer consists of several neurons. In
the most common type of neural network, all neurons from previous layer are connected
with all neurons in the next layer. These connections are called weights and network
learns them throughout the training. We can see weights between one layer to other
in figure 1.2 and an example of a simple neural network in figure 1.3. Neural network
performs two operations – forward propagation and back-propagation. The
former is used to get the prediction, the latter to adjust weights in the system to account
for the computed error. During forward propagation, neural network computes values
for all neurons in the next layer based on the previous layer. These values are then
fed through some non-linearity function f to keep all the values in certain range (for
example between 0 ≤ x ≤ 1 or −1 ≤ x ≤ 1). Computed values are called activations
of neurons. This process repeats until the network compute values in output layer.
Equation 1.7 summarizes the process of computing activation of one neuron, where n
and m are the number of neurons in first layer and second layer respectively. Common
thing to help neural network learn better is to add a bias term to the layer and set it

8 CHAPTER 1. PROBLEM STATEMENT AND BACKGROUND

x0...
xj...
xn

y1...
yi...
ym

wi,j

Figure 1.2: Connections between two layers of neural network, circles are neurons and
lines represent weights, weight wi,j represents connection between neuron j in first layer
and neuron i in second layer

Figure 1.3: Example of a simple neural network with input, hidden and output layer.
Circles represent neurons, lines between neurons show connections from neuron in one
layer to neuron in the next layer. Taken from [18].

as x0 = 1.

yi = f(
n∑
j=0

wi,j ∗ xj) ∀i ∈ {1, . . . ,m} (1.7)

When we have computed the prediction, we need to adjust weights in a network to
account for the difference between predicted value and the actual value. The error is
then propagated back through the network in order to compute gradient, which is in
turn used by some optimization method (for example gradient descent) to find local
minimum of an error function, which is a metric for evaluating network’s performance.
The process of forward and back-propagation is repeated many times for every entry
in the dataset until convergence.

1.3.3 Deep learning and deep neural networks

Deep learning is a special kind of machine learning which is capable to learn more
complex functions than simpler methods of machine learning. Every neural network
that has more than one hidden layer can be considered a deep neural network. These

1.3. TERMINOLOGY AND METHODS IN MACHINE LEARNING 9

multiple layers help the network to develop several levels of abstraction, which can
give deep networks an upper hand in recognizing complex patterns over other methods
or models [7]. This is why so many solutions to pattern recognition problems employ
this technique, but because of the relatively high computation power required for it’s
training, it wasn’t used until very recently. Most models for inverse rendering use deep
convolutional neural networks, which we will define in the next section.

1.3.4 Convolutional neural networks

Convolutional neural networks (CNNs, or sometimes just convolutional networks), are
neural networks that are specially designed to process grid-like structured data, like
images or videos.
Neural networks use matrix multiplication and activation function to compute the
activation of neurons in the next layer. CNNs on the other hand, use a different
approach - at least in one of their layers, they use a special kind of linear operation
called convolution, which is defined as

s(t) =

∫
x(a) ∗ w(t− a)da

with x is often referred to as the input and function w as the kernel. The output of
the convolution is referred to as the feature map(s). Convolutional layers convolve the
input with the help of the kernel function – which is just a function that transforms
original input space into space, where it can be easier to train the model due to change
from non-linear to a linear problem – and pass its result to the next layer. This is
similar to the response of a neuron in our brain to a specific impulse. Because of
this property, CNN is a great model for extracting edge information from images.
Convolution layer in CNNs consists of convolution stage, detector stage and pooling
stage. During convolution stage, several convolutions are run in parallel to produce
many layers of linear activations. During detector stage, all of these layers are run
through some non-linear function to produce activations in certain range. And finally,
during pooling stage, we use pooling function to produce statistical analysis of a specific
neighbourhood in every layer. Typical CNN architecture for digit recognition can be
seen in figure 1.4.
Another important property of CNN is its effectiveness when compared to traditional
neural networks - performing convolution in layers of CNN is faster and requires orders
of magnitude less storage then using NN for the same kind of problem [7]. As a result,
CNNs perform tremendously on image recognition tasks and are now one of the state-
of-the-art solutions for this challenging problem.

10 CHAPTER 1. PROBLEM STATEMENT AND BACKGROUND

Figure 1.4: Typical CNN architecture for digit recognition, taken from [22]. The
original image is run through several convolutional layers before finally being flattened
with digit predictions as output

Figure 1.5: Example of residual block

1.3.5 Residual neural network

As we stated in section 1.3.3, deep networks have the ability to learn several layers of
abstraction, which means that depth is important. This is especially valuable when
working with images or videos, as these layers can help decompose input image into low
to high level features of the image. However, just adding more and more layers brings
problems like non-convergence of the whole network or accuracy degradation. The
former was mostly resolved by normalized initialization, the latter by introduction of
residual learning, with residual neural network as its architecture [12]. Residual neural
network is network consisting of residual blocks, as shown in figure 1.5. Idea behind
this block architecture is that rather than finding mapping H(x) that would be optimal
for this block without any prior, we reformulate the mapping that the block should
learn to F(x) = H(x)−x, so the output mapping then becomes F(x)+x = H(x). This
helps with training particularly where output of the block should be very similar to its
input, like in cases where identity mapping is the optimal mapping. We use residual
blocks in our networks a lot because they enable us to train deeper models, as they are
easier to optimize than conventional CNN networks [12].

Chapter 2

Prior work

In this section, we would like to point out research that was done related to the two
problems we are trying to solve: inverse rendering and material segmentation.

2.1 Inverse rendering from a single image

As inverse rendering of a scene is difficult, previous research in the field focused either
on subproblems of this problem (like inverse rendering of an object instead of a whole
scene), or the research focused on estimation of a small number of properties of a scene
[15] [23] or a small number of materials [3].
To estimate intrinsic characteristics of an image authors in [15] [23] used neural networks.
To obtain the data for training, they augmented SUNCG dataset [25] by mapping
photorealistic materials to geometries in this dataset or completely re-render images
by using physically based renderer, as the original dataset was rendered only with
OpenGL using Phong BRDF model and does not look realistic.
In [23], authors proposed pipeline for estimating diffuse albedo, environment map
and normals from a single image by using Inverse Rendering Network (IRN) and
combination of two modules - direct renderer for computing direct illumination and
Residual Appearance Renderer (RAR) for computing shading and reflections - to re-
synthesize the input image from estimated components and to learn from real images
where ground-truth data is not available. To train IRN to correctly predict environment
map, they had to generate ground-truth data, as the environment map that the scene
was rendered with was used as exterior lighting, which does not reflect illumination
inside the scene. To address this issue, they also trained neural net (EnvMap net)
to predict best average environment map for the whole scene (including illumination
inside the scene), which they then set as their ground-truth for this parameter of
IRN. The environment map predicted by IRN was then used in the direct renderer to
approximate incoming illumination using numerical quadrature.

11

12 CHAPTER 2. PRIOR WORK

Different approach was presented in [15]. In this paper, authors were able to predict
diffuse albedo, normals, specular roughness, depth, and spatially-varying lighting,
which is a technique for estimating per-pixel illumination. Obtaining such data unwisely
is computationally expensive and memory consuming, thus they resolved to use spherical
Gaussian lobes, that preserve all lighting frequencies but require far less parameters to
store. This very detailed pre-computed irradiance enabled them to include differentiable
renderer in their pipeline to simulate image creation process without any rendering
related code written by the authors. Due to this precise estimation of parameters,
state-of-the-art object insertion and material editing were made possible.

2.2 Material Classification and Segmentation

Material segmentation is especially challenging, as real-world materials have a rich
texture, and the final look of the material is a combination of many scene properties
like lighting, depth, normals, and so on.
There exists a large number of classifiers for classifying images into classes (like dogs,
cats, etc.): e.g. AlexNet [14], VGG [24] and GoogLeNet [26]. These classifiers take
an input image and their output is per-class probability of the object in the image
belonging to that class. Most used approach to image segmentation we found was the
use of transfer learning on models pre-trained as classifiers [16] [3]. Transfer learning
is method for re-using parts of already trained model (and possibly change the output
layers), and retrain only those layers that were not taken from the pre-trained model.
In [16], authors removed final classification layer and used several upsampling layers to
output 21 feature maps of the same size as input image. These 21 maps represented
per pixel probability of the pixel belonging to 21 classes they had in the dataset. To
get the final image they had to apply post-processing by taking per-pixel maximum
over these feature maps, with index of the map that contained maximum assigned as
the final value. It is worth noting that the new model was trained on the exact same
dataset as the pre-trained model.
On the other hand, Bell et al. [3] introduced completely new and larger dataset with 23
material categories on which they fine-tuned a pre-trained model. Authors thus proved
that transfer learning also works on different dataset than it was originally trained on,
at least for image segmentation.
Unsurprisingly, the deeper the trained model was, the better it performed, with either
GoogLeNet (22 layers) or VGG (16 layers) as winners in both publications.
After introduction of residual networks, the state-of-the-art network for segmentation
became DeepLab [4], taking advantage of its unprecedented depth - model that was
retrained had more than 100 layers.

Chapter 3

Our approach

3.1 Inverse rendering

As we explained in chapter 2, the two publications related to inverse rendering used
improvements of SUNCG dataset. This dataset however, is subject to ongoing lawsuit
[6], so authors of both papers could not made their datasets or trained models publicly
available. At the time of writing this thesis, the lawsuit was still not resolved or settled,
so we were not able to try and compare the trained models.
To solve this problem we decided to replicate paper by Sengupta et al. [23], as it
was easier to reproduce and thus would serve as better baseline moving forward. Our
approach, however, was little different. As most of the materials in real world are not
only made of diffuse component, but rather as combination of diffuse and specular
part, we aimed to (on top of 3 properties estimated by Sengupta et al.) train neural
network to also predict specular albedo, glossiness and view vector, i.e. to estimate
all Phong parameters from one image. To do this, we extended IRN architecture by
stacking more residual blocks for each added parameter.
As only diffuse albedo ρd, environment map and normals were estimated from IRN in
the original paper, the only choice for BRDF was ideal diffuse BRDF defined as

fr =
ρd
π

(3.1)

When inspecting code for direct renderer written by Sengupta et al., we found out that
the equation for computing direct illumination was as follows:

fdirect =
4π ∗ π

2

648

648∑
i=1

ρd
π
∗ L(ωi) ∗ (ωi ·N) (3.2)

where 648 corresponds to 18x36 light directions (one for each pixel of the environment
map predicted by IRN), ρd stands for diffuse albedo (and thus the term ρd

π
for diffuse

BRDF), ωi for direction of incoming light vector, L(ωi) for incoming illumination from

13

14 CHAPTER 3. OUR APPROACH

direction ωi (i.e. value of the corresponding pixel of the environment map) and N for
normal of the surface. Term 4π∗ π

2
/ 648 corresponds to size of one pixel of environment

map when mapped to sphere.
Equation 3.2 is incorrect, as pixels mapped closer to the poles of the sphere will occupy
less sphere surface than those mapped closer to equator of the sphere. To account for
this distortion, the contribution of incoming light from direction ωi should be multiplied
by the constant size of a pixel 4π ∗ π

2
/648 times cosine of deviation of the direction

from the equator, i.e. cos θl for ωi = (θl, φl) in spherical coordinates. To summarize,
fixed direct render function derived from equation 3.2 is then

fdirect =
4π ∗ π

2

648

648∑
i=1

ρd
π
∗ L(ωi) ∗ cos θl ∗ (ωi ·N) (3.3)

As our modified IRN predicts all Phong parameters, we decided to use physically based
Phong as our BRDF model. To recall, BRDF for physically based Phong is

fPhongr =
ρd
π

+
ρs(n+ 2) cosn θr

2π
(3.4)

where ρd and ρs are diffuse and specular components respectively, n stands for glossiness
and cosn θr = (V ·R)n, V representing view vector andR corresponds to reflected vector,
which is a light vector flipped according to normal and its calculation is specified in
equation 3.5.

R = 2(L ·N)N − L (3.5)

In conclusion, our direct render function with physically based Phong BRDF is defined
as

fPhong =
4π ∗ π

2

648

648∑
i=1

(
ρd
π

+
ρs(n+ 2) cosn θr

2π
) ∗ Li(ωi) ∗ cos θl ∗ (ωi ·N) (3.6)

When implemented by matrix multiplication, our direct renderer function runs almost
as fast as the original implementation of the direct renderer, even though our function
deals with twice as many parameters. Comparison of results from original direct render
function and our own implementation can be found in Appendix.

3.2 Material Segmentation

We tried to follow the transfer learning approach for material segmentation. As our
primary goal is not to know precisely what is the class of the segmented material,
our solution focused on material segmentation in the image without classification,
which slightly simplifies the problem. When initialized, most architectures described
in the previous chapter take number of classes as an argument, with this number

3.2. MATERIAL SEGMENTATION 15

describing how many feature maps should the model have in the output layer. To get a
segmented image from neural network without post-processing (as we do not have the
exact number of classes for materials in real world), we trained DeepLab model with 3
feature maps as output to mimic RGB image. To our surprise, the model was not able
to learn underlying segmentation, even when trained from scratch, as shown in figure
3.1.

(a) Original image (b) GT segmentation (c) Predicted segmentation

Figure 3.1: Incorrect segmentation by DeepLab model

To solve this problem, we chose different architecture, in particular the one that we
are using in IRN for estimating normals or albedo. This architecture had no problem
to learn underlying segmentation, as presented in figure 3.2. We named this network
Material Segmentation Net, or MSN for short. Exact architecture of the model is
described in section 5.4.

(a) Original image (b) GT segmentation (c) Predicted segmentation

Figure 3.2: Proof of work - MSN

16 CHAPTER 3. OUR APPROACH

Chapter 4

Dataset

The main goal of machine learning is to gain the ability to generalize well on new,
previously unseen data, in our case real-world images. This generalization is often only
possible if the testing data comes from the same distribution as the training data. This
distribution is sometimes difficult to obtain, especially in computer vision and computer
graphics as we usually work with real-world imagery, for which is problematic to obtain
ground-truth data. While we can collect depth and normals of a scene via depth sensors
[17], it is complicated to generate data for albedo, lighting or other parameters.
This is where physically based rendering comes into play. When we render a scene
following physically based techniques (thus, physically simulate light transportation
in the scene), we can generate real-world like images for which we can obtain many
properties of the rendered image, hence bridging the gap between synthetic datasets
and real images.
Because of the lawsuit regarding SUNCG dataset we deciced to render our own dataset
using PBR techniques to match the required image quality. Its scene complexity and
richness of materials is unmatched by previously used datasets, which makes it superior
for training. Some examples of images in our dataset are shown in figure 4.1.
We started generating the dataset from ≈140 scenes downloaded from Evermotion
website [5] by placing ≈10 virtual cameras inside every scene using 3ds Max [1]. All
images were rendered via V-Ray renderer [8] from the viewports of those cameras to
produce unique geometry for every camera view, with example in figure 4.2.
To further enlarge the dataset, we make use of V-Ray’s Light select feature [9] to turn
on 1

10
of lights presented in the scene, which generated up to 10 images of the same

geometry under different lighting. As we found out during rendering, V-Ray optimizes
computation for the main image, which has most of the lights turned on. When only a
subset of lights is turned on for light select element, rendered image can be quite noisy,
or due to poor selection of the lights, it can even be full black image. In scenes where
this approach did not work and rendered light select images were noisy, we had to do

17

18 CHAPTER 4. DATASET

Figure 4.1: Examples of images in our dataset

Figure 4.2: Different camera views for the same scene

19

Figure 4.3: Different lighting for the same camera view

it the other way around - we turned on 9
10

of all lights in the scene. Combination of
these two approaches generated 5-7 different lighting conditions for most of the scenes.
Examples of mentioned light alternations are shown in figure 4.3. As we decided to
choose similar approach as showed in [23], we also had to include environment maps
into our dataset. To ensure that we had enough maps for training, we opted for
combination of publicly available HDRI maps on HDRI Haven website [11] - with 105
maps - and our own dataset of environment maps by generating 360◦ panoramas of size
18 × 36 pixels for every scene, yielding 1005 maps. In total, we have about 5× more
environment maps than was used in [23].
All of the rendering was done on powerful 30 core CPU machines. Altogether, the
dataset took about 1000 hours to render. Some scenes took very long to render, so
we also tried rendering on GPU, but for some unknown reason we were not able to
match the same image quality. If we want to render larger dataset in the future, we
will have to find a way to fix the setup for GPU rendering, as it presents great promises
in reducing rendering time.
In the end, our dataset consists of 1041 unique scene geometries, 1110 environment
maps and 5709 images in total under different lighting conditions with ground-truth
data like diffuse albedo, specular albedo, normals, depth, glossiness and view vector
obtained as render elements feature of V-Ray [10]. V-Ray provides also a render element
containing index of a directly visible material for every pixel which we used to create
ground-truth data for material segmentation. We modified output of the original render

20 CHAPTER 4. DATASET

(a) Main Image (b) Diffuse Albedo (c) Normals

(d) Specular Albedo (e) Glossiness (f) Material Segmentation

(g) View vector (h) Depth
(i) Env Map

Figure 4.4: Example of ground-truth data for a scene

element by replacing each index by an RGB color computed by taking the most frequent
diffuse albedo ρ∗d and specular albedo ρ∗s in all pixels with the same index and combining
them using formula:

ρ∗d + ρ∗s
2

In our testing, we found this to work well in assigning different colors to different
materials and not overlap too much. One problem, however, arises. For now, we do
not have to know the values of diffuse and specular albedo that made the final pixel
value in the segmented image. If we wanted to get those values (for example, to adjust
values predicted by neural net), we would have to choose an invertible coding. In figure
4.4, you can see example of ground-truth data for one scene.
As V-Ray supports more than 60 render elements, our dataset is easily extendable with
new characteristics of a scene for additional work in the future.

Chapter 5

Architecture Design

In this chapter, we present architecture for all models that we decided to train, specifically
EnvMap for estimating environment maps, IRN for estimating intrinsic properties,
RAR for indirect illumination and MSN for material segmentation. Our whole
pipeline for inverse rendering and material segmentation is shown in figure 5.1.

Figure 5.1: Our pipeline

5.1 EnvMap

Our EnvMap model’s architecture is defined as follows:

ReflectionPad(3) → Conv7×7(3, 64) → Conv3×3(64, 128) →
Conv3×3(128, 256) → 4 × ResNetBlock(256) → Conv1×1(256, 256) →
Conv3×3(256, 256) → Conv3×3(256, 128) → Conv3×3Tanh(128, 3) →
Upsample(18, 36)

21

22 CHAPTER 5. ARCHITECTURE DESIGN

where ConvN×N(x, y) indicate 2D convolutional layer with kernel of size N ×N and
stride 2, x input channels and y output channels, succeeded by batch normalization
and ReLU activation; ConvN×NTanh(x, y) stands for ConvN×N(x, y), but with Tanh
as activation function; ReflectionPad(N) represents reflection padding with N padded
items in each direction; Upsample(x, y) denotes layer that upsamples input into output
with size x × y using bilinear interpolation and 4 × ResNetBlock(N) is a series of 4
consecutive block, with each ResNetBlock being

ReflectionPad(1) → Conv3×3(N, N) → BN(N) → ReLU →

ReflectionPad(1) → Conv3×3(N, N) → BN(N)

where BN(N) denotes batch normalization over input of size N × N.

5.2 IRN

IRN consists of encoder Enc, defined as

ReflectionPad(3) → Conv7x7(3, 64) → Conv3x3(64, 128) → Conv3x3(128, 256)

which output is then fed through 9 × ResNetBlock for each estimated parameter except
for light estimation, which is handled separately. Each parameter (except for light) is
then upsampled to original input size by decoder Dec, defined as

TransConv3×3(256, 128) → TransdConv3×3(128, 64) → ReflectionPad(3) →

Conv7×7(64, 3) → Tanh

with glossinness as an exception, which the second-to-last layer is Conv7×7(64, 1).
TransConvN×N(x, y) represent transposed convolution with kernel size N × N, x input
and y output feature maps respectively.
Input to light estimation module is concatenation of Enc output and output after 9 ×
ResNetBlocks for every estimated parameter along channel dimension, which yields

Conv1×1(1536, 256), → Conv3×3(256, 256), → Conv3×3(256, 128), →

Conv3×3Tanh(128, 3), → Upsample((18, 36))

5.3. RAR 23

5.3 RAR

RAR architecture is implemented in encoder-decoder fashion, which is taken from U-
Net [21], alongside encoder for the input image. Encoder for the input image is defined
as

ReflectionPad(3) → Conv7×7(3, 64) → Conv3×3(64, 128) →
Conv3×3(128, 256) → Conv1×1(256, 128) Conv3×3S1(128, 64) →
Conv3×3(64, 32) → Conv3×3(32, 16) → Linear(4800, 300)

with transformation between output of second-last layer of spatial resolution (16 × 15
× 20) into 4800 features as input into the last linear layer; ConvN×NS1(x, y) denotes
the same as ConvN×N(x, y), but with stride 1.
U-net encoder Enc takes all estimated parameters, concatenated along channel dimension

Conv3×3S1(13, 64) → Conv3×3(64, 64) → Conv3×3(64, 128) →
Conv3×3(128, 256) → Conv3×3(256, 512)

and decoder Dec specified as

UpConv3×3(513, 512) → UpConv3×3(768, 256) → UpConv3×3(384, 128) →
UpConv3×3(192, 64) → Conv1×1Tanh(64, 3)

where UpConvN×N(x, y) is block defined as

Upsample(2) → Convolution3×3P1(x, y) → BN(y) → ReLU.

where Upsample(2) is layer that upsamples input by factor of 2 and Conv3×3P1(x, y)
denotes 2D convolutional layer with kernel of size 3×3, x input a y output channels,
stride 2 and padding 1. Skip connections are implemented between Conv3×3(*, N)
and UpConv3×3(*, N).

5.4 MSN

Architecture for MSN is set as Enc→ 9 × ResNetBlock→ Dec with ResnetBlock
defined in section 5.1 and Enc and Dec defined in section 5.2.

24 CHAPTER 5. ARCHITECTURE DESIGN

Chapter 6

Implementation and training

Because of its excellent machine learning support, we chose to write all of our code
in Python and train all the models using the PyTorch framework [20] because of its
straightforward setup for distributing training on multiple GPUs.
We’ve performed training on two powerful servers, both of them equipped with two
NVIDIA GeForce RTX 2080 Ti graphic cards. Thanks to this graphic card’s big RAM,
we were able to fit reasonably large batch sizes, which significantly reduced training
time and stabilized training across all models.
As PyTorch does not support any visualization of the training process out of the box,
we integrated Tensorboard into our training procedure, logging training and validation
error after each epoch of training, of which an example is shown in figure 6.1.

Figure 6.1: Our Tensorboard logging setup, with training (blue) and validation (red)
error

6.1 Training procedure

Following training procedure suggested in [23], we started training EnvMap net, first
on images synthesized by direct renderer presented by Sengupta et al. and then fine-
tune it on raytraced images with loss functions specified in the original paper. With
trained EnvMap net, we generated ground-truth environment map for each image in
our dataset. As we have explained in chapter 3, using their direct renderer did not
work well on our data, as our images were rendered not only with diffuse but also

25

26 CHAPTER 6. IMPLEMENTATION AND TRAINING

specular materials, which caused problems. We realized this problem after we trained
and fine-tuned the model, so we had to retrain it from scratch.
With all the ground-truth data ready, we trained IRN with the following loss:

LIRN = ‖N̂ −N∗‖1 + ‖D̂ −D∗‖1 + ‖Ĝ−G∗‖1 + ‖V̂ − V ∗‖1 + ‖Ŝ − S∗‖1

+
‖fPhong(D∗, N∗, L̂, G∗, V ∗, S∗)− fPhong(D∗, N∗, L∗, G∗, V ∗, S∗)‖1

2

(6.1)

where ∗ stands for ground-truth data,ˆstands for predicted data, N,D,G, V, S correspond
to surface normals, diffuse albedo, glossiness, view vector and specular albedo respectively
and fPhong denotes our Phong direct render function, as specified in chapter 3.
To train RAR

Ir = RAR(I) (6.2)

we adjusted the original RAR loss to account for our new direct renderer as

LRAR = ‖I − (Ir + fPhong(D̂, N̂ , L̂, Ĝ, V̂ , Ŝ))‖ (6.3)

where I denotes input image and D̂, N̂ , L̂, Ĝ, V̂ , Ŝ image properties estimated by IRN.
We chose Adam [13] as our optimizer for minimizing cost function, as this optimization
method outperformed all other methods by constantly giving lower training and validation
error. All models were optimized with learning rate α = 0.001.
The time required to fully train the model varied between architectures, from 2 days
for the smaller ones to one week for IRN.

Chapter 7

Results

In this chapter, we present results of our trained models, on both training and testing
datasets to see how well they generalize.

7.1 Inverse rendering

7.1.1 IRN

We observed that IRN had problems learning normals and view vector much more than
other parameters and was only able to learn somewhat meaningful priors only in later
stages of training. As complex geometries are used for scenes in our dataset, it did not
come as a surprise that IRN had hard time learning normal or view vectors. Other
estimated parameters look very similar to ground-truth data, even on test dataset, as
shown in figures 7.2 and 7.3.

Figure 7.1: Training (blue) and validation (red) error during training IRN

7.1.2 RAR

Training of RAR net was somewhat successful, as the network was able to learn
illumination and shadows that are not present in image computed by direct renderer,
even on test dataset, as shown in figures 7.5 and 7.6. But the reconstruction is not
perfect, as we have used estimated data from IRN to compute direct image, which

27

28 CHAPTER 7. RESULTS

(a) Original image (b) GT diffuse albedo (c) Predicted diffuse albedo

(d) GT normals (e) Predicted normals (f) GT specular albedo

(g) Predicted specular albedo (h) GT glossiness (i) Predicted glossiness

(j) GT view vector (k) Predicted view vector

Figure 7.2: IRN results on train data

7.1. INVERSE RENDERING 29

(a) Original image (b) GT diffuse albedo (c) Predicted diffuse albedo

(d) GT normals (e) Predicted normals (f) GT specular albedo

(g) Predicted specular albedo (h) GT glossiness (i) Predicted glossiness

(j) GT view vector (k) Predicted view vector

Figure 7.3: IRN results on test data

30 CHAPTER 7. RESULTS

already accounts for some error and this error gets amplified even more. We could fix
this by train RAR from scratch with direct image being computed from ground-truth
data.

Figure 7.4: Training (blue) and validation (red) error during training RAR

(a) Original image (b) Direct image (c) Reconstructed image

Figure 7.5: RAR results on train data

(a) Original image (b) Direct image (c) Reconstructed image

Figure 7.6: RAR results on test data

7.2 Material Segmentation

MSN also performed well on both train and test sets, as shown below. Results could
be improved by using deeper architecture, as architectures for material segmentation
in the past used much more layers, which is also subject for our future work.

7.2. MATERIAL SEGMENTATION 31

Figure 7.7: Training (blue) and validation (red) error during training MSN

(a) Original image (b) GT segmentation (c) Predicted segmentation

Figure 7.8: MSN results on train data

(a) Original image (b) GT segmentation (c) Predicted segmentation

Figure 7.9: MSN results on test data

32 CHAPTER 7. RESULTS

Conclusion

In this thesis, we presented a method for the per-pixel estimation of material properties
in the image by training deep neural networks. We demonstrated that deep neural
networks are powerful learning representations that can learn useful priors, even when it
comes to such unconstrained problems like inverse rendering. Our pipeline collectively
estimates diffuse and specular albedo, surface normals, glossiness, view vector, and
illumination, alongside per-pixel material segmentation, from a single image. These
properties are then used to re-synthesize the input image from its components. We
provide an implementation of our direct render function that makes this synthesis
possible.
We acknowledge, however, that our solution is not perfect and there is a significant
amount of work to be done in the future, as our method infers only a handful of scene
characteristics, which is not enough for most real-life use cases. First, we believe that
our results could improve dramatically if we had more data in our dataset, thus leading
to better generalization across all models. Because of that, enlarging our dataset will
be our foremost goal.
To make our tool accessible to artists, we want to create a plugin for 3ds Max as a
wrapper for our trained models. By integrating our models directly into the program,
the estimated properties of a user-specified object in an image would be transferred
onto the 3D model created in 3ds Max, also specified by the user.
One of the potential improvements to our work is to predict spatially varying lighting,
approach very similar to that proposed in [15]. Currently, we have only one environment
map per image, which is a very rough approximation of lighting in the scene. To
improve this estimate, we could generate an environment map (or some less parameter
dependant representation, like spherical Gaussians) at every pixel in the scene, which
is doable, as we know (from V-Ray) what is the first intersection point in the scene
from the camera view.
The next step to further simplify the process of setting material appearance is to
enable texture transfer, as having good texture for the material is equally important
for final material looks as setting correct values for material parameters. Previous
work on texture transfer was only limited to some classes of objects [28], which is not
satisfactory for our use case. We admit that this problem is extremely challenging, but

33

34 Conclusion

we want to try nevertheless.
Altogether, we are convinced that it is worth working on problems like inverse rendering
and material segmentation, as it can find a large variety of applications in the real world,
even beyond the computer science community.

Bibliography

[1] Autodesk. 3ds Max. https://www.autodesk.com/products/3ds-max/overview,
2020. Retrieved: 26-05-2020.

[2] Jonathan T. Barron and Jitendra Malik. Shape, illumination, and reflectance from
shading. TPAMI, 2015.

[3] Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. Material recognition
in the wild with the materials in context database. Computer Vision and Pattern
Recognition (CVPR), 2015.

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan Yuille. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PP, 06 2016.

[5] Evermotion. Evermotion. https://evermotion.org/, 2020. Retrieved: 25-05-
2020.

[6] Futurism. A startup is suing Facebook, Princeton for stealing its AI data. https:
//futurism.com/tech-suing-facebook-princeton-data, 2019. Retrieved: 26-
05-2020.

[7] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[8] Chaos Group. V-Ray. https://www.chaosgroup.com/vray/3ds-max, 2020.
Retrieved: 21-04-2020.

[9] Chaos Group. V-Ray light select. https://docs.chaosgroup.com/display/

VRAY4MAX/VRayLightSelect, 2020. Retrieved: 25-05-2020.

[10] Chaos Group. V-Ray render elements. https://docs.chaosgroup.com/display/
VRAY4MAX/Render+Elements, 2020. Retrieved: 21-04-2020.

[11] HDRI Haven. Hdri Haven. https://hdrihaven.com/hdris/?c=indoor, 2019.
Retrieved: 26-05-2020.

35

https://www.autodesk.com/products/3ds-max/overview
https://evermotion.org/
https://futurism.com/tech-suing-facebook-princeton-data
https://futurism.com/tech-suing-facebook-princeton-data
http://www.deeplearningbook.org
https://www.chaosgroup.com/vray/3ds-max
https://docs.chaosgroup.com/display/VRAY4MAX/VRayLightSelect
https://docs.chaosgroup.com/display/VRAY4MAX/VRayLightSelect
https://docs.chaosgroup.com/display/VRAY4MAX/Render+Elements
https://docs.chaosgroup.com/display/VRAY4MAX/Render+Elements
https://hdrihaven.com/hdris/?c=indoor

36 BIBLIOGRAPHY

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[13] Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
International Conference on Learning Representations, 12 2014.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[15] Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan Sunkavalli,
and Manmohan Chandraker. Inverse rendering for complex indoor scenes:
Shape, spatially-varying lighting and SVBRDF from a single image. CoRR,
abs/1905.02722, 2019.

[16] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic
segmentation. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3431–3440, 2015.

[17] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor
Segmentation and Support Inference from RGBD Images. In ECCV, 2012.

[18] Michael A Nielsen. Neural networks and deep learning, volume 2018. San
Francisco, CA, USA:: Determination press, 2015.

[19] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Rendering:
From Theory to Implementation. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 3rd edition, 2016.

[20] PyTorch. PyTorch. https://pytorch.org/, 2020. Retrieved: 28-05-2020.

[21] O. Ronneberger, P.Fischer, and T. Brox. U-Net: Convolutional Networks for
Biomedical Image Segmentation. In Medical Image Computing and Computer-
Assisted Intervention (MICCAI), volume 9351 of LNCS, pages 234–241. Springer,
2015. (available on arXiv:1505.04597 [cs.CV]).

[22] Sumit Saha. A comprehensive guide to convolutional neural
networks — the ELI5 way. https://towardsdatascience.com/

a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53,
2018. Accessed: 02-03-2020.

https://pytorch.org/
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

BIBLIOGRAPHY 37

[23] Soumyadip Sengupta, Jinwei Gu, Kihwan Kim, Guilin Liu, David W. Jacobs, and
Jan Kautz. Neural inverse rendering of an indoor scene from a single image. CoRR,
abs/1901.02453, 2019.

[24] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv 1409.1556, 09 2014.

[25] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas
Funkhouser. Semantic scene completion from a single depth image. arXiv preprint
arXiv:1611.08974, 2016.

[26] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Computer Vision and Pattern Recognition (CVPR),
2015.

[27] Petr Vévoda, Ivo Kondapaneni, and Jaroslav Křivánek. Bayesian online regression
for adaptive direct illumination sampling. ACM Trans. Graph., 37(4):125:1–
125:12, July 2018.

[28] Tuanfeng Y. Wang, Hao Su, Qixing Huang, Jingwei Huang, Leonidas Guibas, and
Niloy J. Mitra. Unsupervised Texture Transfer from Images to Model Collections.
ACM Trans. Graph., 35(6), 2016.

38 BIBLIOGRAPHY

Appendix: Comparison of results of
direct render implementations

In this appendix, we present comparison of results between fixed direct renderer
implementation as defined in equation 3.3 and our own implementation using physically
correct Phong BRDF. As we can see in figure 7.10, due to inclusion of specular albedo
and glossiness into the implementation, we can render much better images that are
more similar to the original image. Images were rendered with an environment map
inferred by our trained EnvMap model and ground-truth data for each scene.

Figure 7.10: Comparison of direct render results, with original image (left), image
rendered by original direct render implementation (middle) and image rendered by our
own implementation of direct render (right)

39

	Introduction
	Problem statement and background
	Our goal
	Terminology and methods in rendering
	Rendering
	Bidirectional Reflectance Distribution Function
	Reflection equation
	Monte Carlo integration
	Inverse rendering

	Terminology and methods in machine learning
	Machine learning
	Neural networks
	Deep learning and deep neural networks
	Convolutional neural networks
	Residual neural network

	Prior work
	Inverse rendering from a single image
	Material Classification and Segmentation

	Our approach
	Inverse rendering
	Material Segmentation

	Dataset
	Architecture Design
	EnvMap
	IRN
	RAR
	MSN

	Implementation and training
	Training procedure

	Results
	Inverse rendering
	IRN
	RAR

	Material Segmentation

	Conclusion
	Appendix

