
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Usefulness of information for
non-unary languages

Bachelor Thesis

2023

Andrej Ravinger

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Usefulness of information for
non-unary languages

Bachelor Thesis

Study Programme: Computer Science

Field of Study: Computer Science

Department: Department of Computer Science

Supervisor: prof. RNDr. Branislav Rovan, PhD.

Bratislava, 2023

Andrej Ravinger

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Andrej Ravinger
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Usefulness of information for non-unary languages
Užitočnosť informácie pre neunárne jazyky

Anotácia: Práca bude pokračovaním skúmania pojmu užitočnosti informácie. Doterajšie
výsledky boli často dosiahnuté pre jazyky nad unárnou abecedou. Cieľom práce
je skúmať užitočnosť informácie pre triedy jazykov nad abecedami s viac
symbolmi. Napríklad pre ohraničené jazyky.

Cieľ: Práca bude pokračovaním skúmania pojmu užitočnosti informácie. Doterajšie
výsledky boli často dosiahnuté pre jazyky nad unárnou abecedou. Cieľom práce
je skúmať užitočnosť informácie pre triedy jazykov nad abecedami s viac
symbolmi. Napríklad pre ohraničené jazyky.

Vedúci: prof. RNDr. Branislav Rovan, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Spôsob sprístupnenia elektronickej verzie práce:
bez obmedzenia

Dátum zadania: 12.10.2022

Dátum schválenia: 13.10.2022 doc. RNDr. Dana Pardubská, CSc.
garant študijného programu

študent vedúci práce

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Andrej Ravinger
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Usefulness of information for non-unary languages

Annotation: This thesis shall continue the research of the notion of usefulness of information.
Many of the existing results were achieved for languages over unary alphabet.
The main goal of this thesis is to study usefulness of information for families
of languages over alphabets with
more symbols. For example for bounded languages.

Aim: This thesis shall continue the research of the notion of usefulness of information.
Many of the existing results were achieved for languages over unary alphabet.
The main goal of this thesis is to study usefulness of information for families
of languages over alphabets with
more symbols. For example for bounded languages.

Supervisor: prof. RNDr. Branislav Rovan, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 12.10.2022

Approved: 13.10.2022 doc. RNDr. Dana Pardubská, CSc.
Guarantor of Study Programme

Student Supervisor

Acknowledgment: I would like to thank my supervisor prof. RNDr. Branislav

Rovan, PhD. for his guidance, advice, and language corrections in work.

vii

Abstrakt

Táto práca pokračuje vo výskume pojmu užitočnosti informácie. Prídavná informácia

niekedy zjednoduší riešenie problému. Toto sa dá formalizovať pomocou formálnych

jazykov, deterministických konečných automatov a rozkladu jazyka. Deterministická

rozložiteľnosť unárnych regulárnych jazykov bola už skúmaná [1] a my pokračujeme

vo výskume deterministickej rozložiteľnosti regulárnych jazykov ohraničených a∗b∗ (ja-

zykov, ktoré sú podmnožina a∗b∗). Skúmame dva typy rozložiteľnosti: do takých re-

gulárnych jazykov, ktoré sú ohraničené a∗b∗ a do ľubovoľných regulárnych jazykov.

Definujeme podtriedu jazykov ohraničených a∗b∗, ktoré charakterizujeme vzhľadom

na rozložiteľnosť do jazykov ohraničených a∗b∗. Uvádzame tiež niektoré postačujúce

podmnienky na rozložiteľnosť pre ostatné jazyky ohraničené a∗b∗ a nejaké postačujúce

podmienky pre rozložiteľnosť do ľubovoľných jazykov.

Kľúčové slová: Užitočnosť informácie, Rozložiteľnosť, Deterministické konečné au-

tomaty, Stavová zložitosť, Ohraničené jazyky

viii

Abstract

This thesis continues the research of the usefulness of information. Additional infor-

mation can sometimes simplify a solution to a problem. This can be formalized using

formal languages, deterministic finite automata and decomposition of a language. The

deterministic decomposition of unary regular languages has already been studied [1]

and we continue the research on decomposition of regular languages bounded by a∗b∗

(languages that are a subset of a∗b∗). We study two types of deterministic decom-

position: into regular languages that are bounded by a∗b∗ and into arbitrary regular

languages. We define a subfamily of languages bounded by a∗b∗ which we characterise

upon decomposability into languages bounded by a∗b∗. We also present some sufficient

conditions for decomposability for other languages bounded by a∗b∗ and some sufficient

conditions for decomposability into arbitrary regular languages.

Keywords: Usefulness of information, Decomposability,

Deterministic finite automata, State complexity, Bounded languages

ix

Contents

Introduction 1

1 Decomposability of unary regular languages 3

2 Languages bounded by a∗b∗ 11

3 Simple bicyclic languages 15

3.1 Decomposability into ab languages . 22

4 Other ab languages 35

4.1 Bicyclic languages . 35

4.2 All ab languages . 44

5 General decomposition of ab languages 47

Conclusion 53

xi

Introduction

In this thesis we continue to study the aspect of the usefulness of additional information

which has been studied for many years. We follow up on work made by Pighizzini,

Rovan and Sádovský [1].

When solving a problem, we can receive additional information. We say that ad-

ditional information is useful if it can help us solve a problem easier. We need to put

bounds to the amount of additional information we receive. Having an information

about the entire solution of a problem would not help solving the problem easier, be-

cause that would just transfer the task to the source of the information. To study this

aspect of information, we need to clarify questions such as what is a problem, what

does it mean to solve a problem and how to detect, when additional information helps

us solve a problem easier.

In the theory of formal languages, we say that a problem is knowing, whether a

word w belongs to a language L. The additional information, or advice is knowledge

that w belongs to a different language Ladv. What does it mean to solve the problem

easier and what are the restrictions on advice depends on the family of languages and

model we are working with.

With regular languages and deterministic finite automata we measure the com-

plexity of solving the problem by number of states of the minimal deterministic finite

automaton (DFA) accepting the language. The minimal deterministic automaton ac-

cepting a language is a DFA with the fewest states, i.e., there exists no automaton

accepting that language with fewer states. The language L is defined by minimal DFA

A and Ladv by Aadv. The restriction on Aadv is that it has to have fewer states than

A. With this advice we want to find a simpler DFA Anew accepting Lnew, such that

if w ∈ Ladv and w ∈ Lnew then w ∈ L. We also want this advice to work for every

word belonging to L, i.e., if w ∈ L then w ∈ Ladv and w ∈ Lnew. We can write this as

1

2 Introduction

Ladv ∩ Lnew = L.

Let us illustrate this on a simple example. The language L = {a6k | k ∈ N} is a

language of words of length divisible by 6. The minimal DFA accepting this language

has 6 states. However, if we know that the input word has even length, we only

need to check that its length is divisible by 3. This gives us Ladv = {a2k | k ∈ N},

Lnew = {a3k | k ∈ N}. Aadv only needs two states and Anew three states. With this

advice, we have solved the problem easier.

Since the condition on Ladv and Lnew is the same - having a simpler minimal DFA,

there is no difference on which is the advice language and which is the new one. We can

therefore denote these languages L1 and L2. We say that these languages decompose

L. Studying usefulness of information on regular languages basically means studying,

whether a language is decomposable into simpler languages.

Besides deterministic finite automata, aspect of useful information has been studied

using other models or different ways the advice is given. For example nondeterministic

finite automata, deterministic pushdown automata (advice is still regular language),

advice being received at some time during the computation or advice that had to be

first translated by a transducer. More information on other studies can be found in

Rovan’s and Sádovský’s article Framework [2].

In this thesis we continue the resarch by Pighizzini, Rovan and Sádovský about

unary regular languages [1], and study a subfamily of non-unary regular languages.

Chapter 1

Decomposability of unary regular

languages

In this chapter, we summarize the results in deterministic decomposability by Pighizzini,

Rovan and Sádovský [1]. These results are necessary for our work. First, we formally

define deterministic decomposability.

Notation 1.1. [1] We denote number of states of DFA A by sc(A).

Definition 1.1. [1] Let A be a DFA. We say that two DFAs A1 and A2 form a

decomposition of A if L(A) = L(A1) ∩ L(A2), sc(A1) < sc(A) and sc(A2) < sc(A). In

case such decomposition of A exists we say that A is decomposable.

Definition 1.2. [1] Let L be a regular language. We say that L is deterministically

decomposable if the minimal DFA accepting L is decomposable.

Notation 1.2. [1] We denote the family of all deterministically decomposable regular

languages by Ddet.

One can observe, that deterministic finite automata over a unary alphabet (UDFA),

have similar shape. Since there is only one input symbol and the automaton is deter-

ministic, the sequence of states in a computation may return to some previous state

in the sequence (must, if the automaton accepts infinite language) and from there on

it continues in this cycle. We call the part of the path before the cycle a tail. The

following definitions explain this more precisely and Figure 1.1 shows graph of unary

DFA.

3

4 CHAPTER 1. DECOMPOSABILITY OF UNARY REGULAR LANGUAGES

q0 q1 . . . qµ−1 qµ

qµ+1

...

qµ+λ−1

Figure 1.1: [1] Unary DFA of size (λ, µ)

Definition 1.3. [1] The size of a UDFA A is the pair (λ, µ) where λ is the number of

states in the cycle of A and µ is the number of states in the tail of A.

Notation 1.3. [1] When we say that we consider UDFA A = (K, {a}, δ, q[0], F) of size

(λ, µ), then, if it is not stated otherwise, we implicitly mean that K = {q[i] | i ∈ N; 0 ≤

i < λ+µ} and for the transition function δ it holds that (∀i ∈ N, 0 ≤ i < µ) δ(q[i], a) =

q[i+ 1] and (∀j ∈ Zλ) δ(q[µ+ j], a) = q[µ+ (j + 1) mod λ].

Definition 1.4. [1] Let L be a unary infinite language and λ ∈ N. We say that L is

λ-cyclic if there exists a UDFA A of the size (λ, 0) such that L(A) = L. L is called

properly λ-cyclic if it is λ-cyclic, but not λ′-cyclic for any λ′ < λ. We say that L is

ultimately λ-cyclic if for some µ ∈ N there exists a UDFA A of the size (λ, µ) such that

L(A) = L. L is called properly ultimately λ-cyclic if it is ultimately λ-cyclic, but not

ultimately λ′-cyclic for any λ′ < λ.

Since we are doing decomposition, which uses minimal automata, it would be useful

to know when an automaton is minimal. Here we present a characterisation of minimal

UDFA.

Theorem 1.1 (Minimal UDFA characterization,[3],[4]). A UDFA A = (K, {a}, δ, p[0],

F) of size (λ, µ) is minimal if and only if both of the following conditions hold:

(i) for any proper divisor d ∈ N of λ (i.e., λ = α ·d for some α ∈ N such that α > 1)

there exists h ∈ Zλ, such that p[µ+h] ∈ F if and only if p[µ+((h+d) mod λ)] /∈ F ,

i.e., aµ+h ∈ L if and only if aµ+h+d /∈ L.

(ii) (If µ > 0 then) p[µ− 1] ∈ F if and only if p[µ+ λ− 1] /∈ F , i.e., aµ−1 ∈ L if and

only if aµ+λ−1 /∈ L.

The first condition states that the cycle cannot be made smaller. The second states

when the last cycle of the tail cannot be ‘rolled in’, i.e., merged with the last state of

the cycle.

5

As seen in Definition 1.4 Pighizzini, Rovan and Sádovský have divided unary regular

languages into two sub-families, based on whether their minimal DFA has nonzero

length tail or no tail - ultimately λ-cyclic languages with µ > 0 and λ-cyclic languages.

They characterized each class upon deterministic decomposability. We present these

results, but first we illustrate them on concrete examples.

Example 1.1. Let L = {a3k+r | k ∈ N, r ∈ {3, 4}}. Its minimal DFA is shown in

Figure 1.2. We could ‘roll in’ the last state of the tail into the cycle and get automaton

A1 accepting L(A1) = {a3k+r | k ∈ N, r ∈ {1, 3}} = L ∪ {a}. We can ‘filter out’ a

with automaton A2, L(A2) = {ak | k > 1}. A1 and A2 are depicted in Figure 1.2. It is

clear that L(A1) ∩ L(A2) = L and since sc(A1) < sc(A) and sc(A2) < sc(A), we have

successfully deterministically decomposed L.

q0 q1 q2

q3

q4

A

q0 q1

q2

q3

A1

q0 q1 q2

A2

Figure 1.2: Type 1 decomposition of ultimately λ-cyclic language

Ultimately λ-cyclic languages can also be decomposed in a different way, as shown

in Example 1.2.

Example 1.2. Now consider language L = {a6k+r | k ∈ N, r ∈ {2, 3}} ∪ {a, ε}. Its

minimal DFA A is shown in Figure 1.3. If we tried to ‘roll in’ the last state of the tail,

like in the previous example, we get A2, L(A2) = {a6k+r | k ∈ N, r ∈ {1, 2, 3}}∪{ε}. It

holds that L(A2) = L∪{a6k+7 | k ∈ N}. Now we need to ‘filter out’ an infinite language

using an automaton with fever states than A. This is possible with A2 accepting

L(A2) = {a3k+r | k ∈ N, r ∈ {0, 2}} ∪ {a}. A1 and A2 are depicted in Figure 1.3.

Reader can verify that L(A1)∩L(A2) = L. Since sc(A1) < sc(A) and sc(A2) < sc(A),

we have deterministically decomposed L. We were able to do this thanks to the fact

that the state q[4] is not accepting in A. If it was, the words accepted there would

have to be accepted in the state q[4] in A2. But q[4] cannot be accepting in A2 to filter

out extra words accepted by L(A1).

6 CHAPTER 1. DECOMPOSABILITY OF UNARY REGULAR LANGUAGES

q0 q1 q2

q3 q4

q5

q6q7

A

q0 q1

q2 q3

q4

q5q6

A1

q0 q1 q2

q3

q4

A2

Figure 1.3: Type 2 decomposition of ultimately λ-cyclic language

Before we present the theorem, we mention that all properly ultimately 1-cyclic

languages, which include all finite unary languages are not deterministically decom-

posable. This is trivial to prove.

Theorem 1.2. [1] Let L be a properly ultimately λ-cyclic language for some λ ≥ 2

such that the minimal UDFA A accepting L has size (λ, µ) for some µ > 0. Then

L ∈ Ddet if and only if at least one of the following holds:

(i) aµ−1 /∈ L

(ii) there exists λ′ ∈ N such that 1 < λ′ < λ and λ′|λ for which it holds that L ⊆

a∗ − {aµ+kλ′−1 | k ∈ N+}.1

From the proof of this theorem it follows that the two languages L1, L2 that de-

compose L have minimal DFAs of sizes (λ1, µ1) and (λ2, µ2) respectively for which this

holds: λ1 = λ, µ1 < µ, λ2 < λ, µ2 = µ. The cycle in the second automaton has size 1

(λ2 = 1) if condition (i) holds and size λ′ if condition (ii) holds.

Now we present characterization of λ-cyclic languages. The example from Introduc-

tion {a3k | k ∈ N} ∩ {a2k | k ∈ N} = {a6k | k ∈ N} is the simplest of these languages.

Based on this example, we can form a simple theorem:

Theorem 1.3. [2] Let n ∈ N, Ln = {akn | k ∈ N}. The language Ln is decomposable

if and only if n is not a power of a prime.
1As usual, we shall write w∗ instead of {w}∗ for all singleton sets {w}

7

Sometimes we can decompose even if the minimal automaton has more than one

accepting state.

Example 1.3. Let L = {a6k+r | k ∈ N, r ∈ {0, 2}}. For the remainder r = 0 we

know that we can decompose it into 2 and 3-state automata with initial states of both

being accepting. For r = 2, initial state of two-state automaton accepts such words,

because 2 is even. In the three state automaton, we need to mark state q2 as accepting.

This gives us languages L1 = {a2k | k ∈ N} and L2 = {a3k+r | k ∈ N, r ∈ {0, 2}};

L1 ∩ L2 = L. The minimal automata accepting these languages are shown in Figure

1.4.

Consider now the language L′ = {a6k+r | k ∈ N, r ∈ {0, 1}}, similar to L but with

one of the remainders changed. If we were to decompose L′ to 2 and 3-state automata,

we would need to mark both states of the two-state automaton as accepting and two

states of the three-state automaton as accepting. This would not work correctly. L′ is

not deterministically decomposable.

q0

q1 q2

q3

q4q5

A

q0 q1

A1

q0

q1

q2

A2

Figure 1.4: Decomposition of λ-cyclic language

Using graph theory it can be specified when the decomposition such as in Example

Example 1.3 can (cannot) be found. If we want to decompose a λ-cyclic language L to

λ1 and λ2-state automata A1 and A2, we create a bipartite graph defined as follows:

Definition 1.5. [1] Let L be a properly λ-cyclic language for some λ ∈ N and let

λ1, λ2 ∈ N. The bipartite graph induced by L, λ1 and λ2 is the bipartite graph GL,λ1,λ2 =

(Zλ1 ,Zλ2 , E) where the set of edges E is defined as follows:

E = {(r1, r2) | r1 ∈ Zλ1 ; r2 ∈ Zλ2 ;

(∃m ∈ N) m ≡ r1 (mod λ1) ∧ m ≡ r2 (mod λ2) ∧ am ∈ L}.

For a vertex r let d(r) denote its degree. Let V ′
1 = {r ∈ Zλ1 | d(r) > 0} and V ′

2 = {r ∈

Zλ2 | d(r) > 0} be the sets obtained by removing all isolated vertices from GL,λ1,λ2 .

8 CHAPTER 1. DECOMPOSABILITY OF UNARY REGULAR LANGUAGES

We say that the graph GL,λ1,λ2 decomposes L if for all (r1, r2) ∈ V ′
1 × V ′

2 it holds that

if there is some natural m such that m ≡ r1 (mod λ1) and m ≡ r2 (mod λ2), then G

contains the edge (r1, r2), i.e.,

(r1, r2) ∈ E ∨ ((∄m ∈ N) m ≡ r1 (mod λ1) ∧ m ≡ r2 (mod λ2)).

Intuitively, the partitions of the bipartite graph correspond to states of the decom-

posing automata. We set the edges between the states as in definition and set the

states with an edge as accepting in A1 and A2. This ensures that L ⊆ L(A1) ∩ L(A2).

The condition in the last line of the definition ensures that the two automata do not

accept more words, i.e., L(A1) ∩ L(A2) ⊆ L.

Let us see the bipartite graphs of the languages from Example 1.3 on Figure 1.5

0 1

0 1 2

GL,2,3

0 1

0 1 2

GL′,2,3

Figure 1.5: Bipartite graphs

The characterization of λ-cyclic languages upon deterministic decomposability is

summarized in the following theorem.

Theorem 1.4. [1] Let L be a properly λ-cyclic language for some λ ∈ N. L ∈ Ddet if

and only if there exist λ1, λ2 ∈ N such that λ1, λ2 < λ, lcm(λ1, λ2) = λ and the bipartite

graph GL,λ1,λ2 induced by L, λ1 and λ2 decomposes L.

In the proof of this theorem, A1 and A2 are constructed from GL,λ1,λ2 in the way

explained above.

For properly λ-cyclic languages the following also holds: If L is decomposable into

automata of sizes (λ1, 0) and (λ2, 0) and we move the initial state to different state in

the cycle, the new language is also decomposable into automata of sizes (λ1, 0) and

(λ2, 0). That means, that only the relative position of the accepting states matter to

decomposability. First, we illustrate it by example.

Example 1.4. Suppose we move the initial state of automaton A from Example 1.3 to

the state q[3]. We call this automaton A′ and it holds that L(A′) = L′ = {a6k+r | k ∈

9

N, r ∈ {3, 5}}. The automaton A′ is shown on Figure 1.6. The distance from the

new initial state to the old one is d = 3. L is decomposable into L1 and L2, with the

corresponding automata A1 and A2. We can move the initial state of these automata

to obtain new languages L′
1 and L′

2 decomposing L. In A′, the computation reads d

symbols to reach the former initial state (the initial state of A). We want this to hold

in A′
1 and A′

2 as well. They can have cycles smaller than d, so we move them such that

the distance is d mod λi, i ∈ {1, 2}. In A′
2, d mod λ2 is 3 mod 2 which is 1, so it

moves to the other state. In A′
1, d mod λ1 is 3 mod 3 which is 0, so we do not move.

We get languages L′
1 = {a2k+1 | k ∈ N} and L′

2 = {a3k+r | k ∈ N, r ∈ {0, 2}}. It holds

that L′
1 ∩ L′

2 = L′ so we have decomposed L.

q0

q1 q2

q3

q4q5d = 3

A′

q0 q1

d mod 2 = 1

A′
1

q0

q1

q2

d mod 3 = 0

A′
2

Figure 1.6: Moving of initial state in λ-cyclic language

Lemma 1.1. Let L be a properly λ-cyclic language with minimal DFA A = (K, {a}, δ,

q[0], F) that is decomposable into λ1-cyclic language L1 and λ2-cyclic language L2. Let

L′ be λ-cyclic language with minimal DFA A′ = (K, {a}, δ, q, F) where q ∈ K is any

state. Then L′ is also decomposable into λ1-cyclic and λ2-cyclic languages. It also holds

that the automata of these decomposing languages are similar to the automata for L1

and L2 but the initial states are different.

Proof. Let A1 and A2 be the automata accepting L1 and L2. Let d be the distance

from the initial state of A′ to the initial state of A in the graph representation of A. If

q[i] is the initial state, then d = (λ−i) mod λ. Let P = {p1, p2, ..., pn} be the numbers

belonging to the final states in A, i.e., p ∈ P ⇔ q[p] ∈ F . These are also the lengths

of the words shorter than λ, that are in L. For A1 and A2 we define similar sets of

numbers and call them R and S. It holds that R = {p mod λ1 | p ∈ P} and S = {p

mod λ2 | p ∈ P}. This holds from the definition of edges in Definition 1.5 and the fact

10 CHAPTER 1. DECOMPOSABILITY OF UNARY REGULAR LANGUAGES

that the vertices with edges in the bipartite graph are final states in the decomposing

automata. If we relabel the states of A′ so that q[0] is initial, then the set of indices of

final states, which we call P ′, is P ′ = {(p+ d) mod λ | p ∈ P}.

We shall denote the languages decomposing L′ by L′
1 and L′

2, accepted by A′
1 and A′

2.

A′
1 is like A1, but the initial state is q[(λ1 − d) mod λ1]. Similarly, initial state of A′

2

is q[(λ2 − d) mod λ2]. Now we relabel the sets like in A′ and define sets R′ = {(r+ d)

mod λ1 | r ∈ R} and S ′ = {(s+ d) mod λ2 | s ∈ S}.

Now we prove L′
1 ∩ L′

2 = L′:

an ∈ L′
1 ∩ L′

2 ⇔

⇔ (q[0], an) ⊢∗
A′

1
(q[r′], ε) ∧ (q[0], an) ⊢∗

A′
2
(q[s′], ε) ∧ r′ ∈ R′ ∧ s′ ∈ S ′ ⇔

⇔ n ≡ r′ (mod λ1) ∧ n ≡ s′ (mod λ2) ⇔

⇔ n ≡ r + d (mod λ1) ∧ n ≡ s+ d (mod λ2) ⇔

⇔ n+ λ− d ≡ r (mod λ1) ∧ n+ λ− d ≡ s (mod λ2) ⇔

⇔ (q[0], an+λ−d) ⊢∗
A1

(q[r], ε) ∧ (q[0], an+λ−d) ⊢∗
A2

(q[s], ε) ∧ r ∈ R ∧ s ∈ S ⇔

⇔ an+λ−d ∈ L1 ∩ L2 ⇔

⇔ an+λ−d ∈ L ⇔

⇔ (q[0], an+λ−d) ⊢∗
A (q[p], ε) ∧ p ∈ P ⇔

⇔ n+ λ− d ≡ p (mod λ) ⇔

⇔ n ≡ p+ d (mod λ) ⇔

⇔ n ≡ p′ (mod λ) ∧ p′ ∈ P ′ ⇔

⇔ (q[0], an) ⊢∗
A′ (q[p′], ε) ∧ p′ ∈ P ′ ⇔

⇔ an ∈ L′.

Chapter 2

Languages bounded by a∗b∗

In this chapter we shall discuss some properties of regular languages bounded by a∗b∗,

which we shall be trying to decompose. We first define bounded languages.

Definition 2.1. A language is a bounded language if there exists n ∈ N and words

w1, ..., wn such that L ⊆ w∗
1...w

∗
n.

For brevity, we use the following notation for regular languages bounded by a∗b∗.

Definition 2.2. Let a and b be symbols. We shall say that L is an ab language if it is

a regular language bounded by a∗b∗.

It turns out to be useful to use such operation on an ab language, where we ‘cut’

the words where the symbols a and b meet to get two unary languages over alphabets

{a} and {b}. Formally, this operation can be defined using homomorhpisms.

Notation 2.1. We denote by ha and hb the following homomorphisms: ha : {a, b}∗ →

{a}∗ : ha(a) = a, ha(b) = ε, hb : {a, b}∗ → {b}∗ : hb(a) = ε, hb(b) = b. Let L be an ab

language. We say that La = ha(L) and Lb = hb(L).

Example 2.1. Let us illustrate the previous notation by the following example: L1 =

{a2kb3l+5 | k, l ∈ N}, L2 = {a3k+1b4l+2 | k, l ∈ N} ∪ {a3k+2b2l | k, l ∈ N} are ab

languages. La
1 = {a2k | k ∈ N}, Lb

1 = {b3k+5 | k ∈ N}, La
2 = {a3k+r | k ∈ N, r ∈ {1, 2}},

Lb
2 = {b2k | k ∈ N}.

Notation 2.2 (Notations for DFAs of ab languages). Just like DFAs of unary languages,

DFAs of ab languages have distinct parts that we can name. We call parts of unary DFA

11

12 CHAPTER 2. LANGUAGES BOUNDED BY a∗b∗

. . .

. . .

. . .

. . .

. .
.

. . .

qD
a a a

a a

aa b b

b b

bb
b

b

b
b b

bb

b

b

a

a

a, b

a-tail a-cycle b-path b-cycle

b-path

b-cycle

Figure 2.1: A DFA of an ab language

a cycle and a tail and we can use these names with DFAs accepting an ab language

as well. Any automaton of an ab language has at most one cycle, where symbols a

are being read. This cycle can be preceded by a tail. We shall call these parts of an

automaton a-cycle and a-tail and together, they form the a-part of the automaton.

From the a-part, there may be transitions on b that can eventually reach several cycles

where symbols b are read. We shall call these cycles b-cycles. We shall call the part

between the a-part and a b-cycle a b-path. Together, b-paths and b-cycles from the b-

part of the automaton. Finally, there is a ‘dead’ state where the computation finishes

reading rejected words. This dead state is neither part of a-part nor b-part. Every

automaton accepting an ab language has a dead state, because it needs to reject words

that have symbol a after b. Figure 2.1 shows a scheme of an automaton. For clarity,

not all transitions leading to the dead state are shown in the scheme.

To make it clear to which part a state belongs, we define a-part to be the states

such that there exists a transition on a from this state to state different from the dead

state. The b-part will be states not in a-part and not a dead state.

Formally, Let K be the set of states of an automaton A. We denote states of a-part

13

Ka, states of b-part Kb and the dead state qD.1 For K this holds:

K = Ka ∪Kb ∪ {qD}, Ka = {q ∈ K | δ(q, a) ̸= qD}, Kb = K −Ka − {qD}

Few more notations. A b-path is a series of transitions and states, starting with first

transition that reads b and ending with a transition that leads to a state in a b-cycle

or the dead state. We say that the length of a b-path is the number of transitions in

b-path. Let q1 and q2 be states in the same cycle. Distance from q1 to q2 in a cycle is

the number of transitions from q1 to q2 in the direction of computation. When naming

automata of ab-languages, they will usually inherit subscripts and superscripts of the

language they accept. For example, if A is an automaton accepting a language L, then

Aa accepts La and Ab accepts Lb. Since we speak mostly about languages over the

alphabet {a, b}, we use the symbol Σ for this alphabet in definitions of automata. If

f : A → B is a function and S ⊆ A, then we use the notation f |S for the restriction of

f to S.

In this thesis we explore two types of decomposition of ab languages. First a type

decomposition such that the two decomposing languages are also ab languages. Then a

type of decomposition where the decomposing languages can be any regular languages.

When speaking about decomposition into ab languages, we have decided to use

alternative definition of deterministic finite automata without a dead state. That

means the transition function is partial and the computation can block. Formally

δ : K × Σ → K ∪ {∅}. If computation is in state q and reads a and δ(q, a) = ∅ that

means the computation blocks and the word is not accepted. This makes every minimal

automaton for an ab language one state smaller and thus makes no difference in terms

of decomposability into ab languages. Omission of dead state makes definition, proofs,

but mostly graphs in examples simpler. Figure 2.2 shows both variants of automata

accepting language {a2bn | n ≥ 1}. If a unary language is finite and an is the longest

word in it, its DFA without dead states has size (0,n+1) and q[n] does not have an

out-going transition.

In Chapters 3 and 4 we shall introduce some subfamilies of ab languages and explore

decomposability into ab languages of these subfamilies. In the last chapter, Chapter 5

we show results of general decomposability of ab languages.
1There can actually be more than one dead state in an automaton, but we shall be mostly dealing

with minimal automata, where there is only one.

14 CHAPTER 2. LANGUAGES BOUNDED BY a∗b∗

q0 q1 q2 q3
a a b

b

Without dead state

q0 q1 q2 q3

qD

a a b
b

b

b a
a

a, b

With dead state

Figure 2.2: Comparison of DFA with and without dead state

Chapter 3

Simple bicyclic languages

In this chapter we introduce a subfamily of ab languages and characterize them upon

decomposability into ab languages.

Suppose we have two unary languages La and Lb with their DFA Aa and Ab (La

is over alphabet {a} and Lb is over alphabet {b}). We ‘concatenate’ the automata in

such a way that the computation of Ab begins when the computation of Aa reaches an

accepting state. By this we obtain an ab language L which is a concatenation of the

unary languages, i.e., L = LaLb. We call these languages simple bicyclic languages.

How do we concatenate automata? We could add ε-transitions from accepting states of

Aa to the initial state of Ab, but the resulting automaton would not be deterministic.

In the following examples we illustrate three types of construction.

Example 3.1. La is infinite and Lb is ultimately λ-cyclic for some λ but not λ-cyclic,

i.e., it has a tail. Let La = {a3k | k ∈ N} ∪ {a} and Lb = {b2k+3 | k ∈ N}. Their

minimal DFAs are shown in Figure 3.1. Here the initial state of Ab is the first state of

tail and can be replaced by accepting states of Aa. The automaton A constructed is

also shown in the figure.

Example 3.2. La is infinite and Lb is λ-cyclic for some λ, i.e., it has no tail. Let

La = {a4k+r | k ∈ N, r ∈ {0, 1}} and Lb = {b2k | k ∈ N}. Their minimal DFAs and the

automaton A constructed are shown in Figure 3.2. Here the initial state of Ab is part

of the cycle. It cannot be replaced by accepting states of Aa, so we add a transition on

b from them into q[1] of Ab. Notice that ε ∈ Lb so accepting states of Aa stay accepting

in A.

15

16 CHAPTER 3. SIMPLE BICYCLIC LANGUAGES

q0 q1 q2

q3

q4

a a

a

a

a

Aa

p0 p1 p2 p3
b b

b

b

Ab

q0 q1 q2

q3

q4

p1 p2 p3
a a

a

a

a

b

b

b

b

b

b

A

Figure 3.1: Type 1 construction of simple bicyclic language

q0

q1

q2

q3

a a

aa

Aa

p0 p1
b

b

Ab

q0

q1q2

q3

p1 p0a

a

a

a

b

bb

b

A

Figure 3.2: Type 2 construction of simple bicyclic language

Example 3.3. La is finite. Let La = {a, a3} and Lb = {b2k | k ∈ N}. Their minimal

DFAs and the automaton A constructed are shown in Figure 3.3. Since La is finite,

Aa will have no accepting states in the cycle. The cycle would be a dead state, which

we have decided not to use here. Here we can do another construction and replace the

last accepting state of Aa by the initial state of Ab, regardless of whether Ab has tail

or no.

We now present a formal definition of simple bicyclic languages.

Definition 3.1. Let Aa = (Ka, {a}, δa, q[0]a, Fa) be a UDFA of size (λ1, µ1) and Ab =

(Kb, {b}, δb, q[0]b, Fb) be a UDFA of size (λ2, µ2). Both UDFAs are without dead states.

We shall call a language L a simple bicyclic language if it is accepted by DFA A =

(K,Σ, δ, q[0]a, F) constructed from Aa and Ab, which is defined as:

17

q0 q1 q2 q3
a a a

Aa

p0 p1
b

b

Ab

q0 q1 q2 p0 p1
a a a

b

b

b

A

Figure 3.3: Type 3 construction of simple bicyclic language

(i) if µ2 = 0 and L(Aa) is infinite:

K = Ka ∪Kb, δ = δa ∪ δb ∪ δab

Where δab is

(∀q ∈ Fa) δab(q, b) = δb(q[0]b, b)

F =


Fb q[0]b /∈ Fb

Fa ∪ Fb q[0]b ∈ Fb

(ii) if µ2 > 0 and L(Aa) is infinite:

K = Ka ∪Kb − {q[0]b}, δ = δa ∪ δ∗b

Where δ∗b is

(∀q ∈ Kb − {q[0]b}) δ∗b (q, b) = δb(q, b), (∀q ∈ Fa) δ
∗
b (q, b) = δb(q[0]b, b)

F =


Fb q[0]b /∈ Fb

Fa ∪ Fb − {q[0]b} q[0]b ∈ Fb

(iii) L(Aa) is finite, i.e., it has no cycle: Let q[f]a be the last state of Aa.

K = {q[0]a, ..., q[f − 1]a} ∪Kb, δ = δ∗a ∪ δb

Where δ∗a is

(∀i ∈ N, 0 ≤ i ≤ f − 2) δ∗a(q[i]a, a) = q[i+ 1]a, δ∗a(q[f − 1]a, a) = q[0]b,

18 CHAPTER 3. SIMPLE BICYCLIC LANGUAGES

(∀q ∈ Fa − {q[f]a}) δ∗a(q, b) = δb(q[0]b, b)

F =


Fb q[0]b /∈ Fb

Fa − {q[f]a} ∪ Fb q[0]b ∈ Fb

Now we prove that a simple bicyclic language is exactly the concatenation of the

two unary languages it was made from.

Lemma 3.1. Let L be a simple bicyclic language, i.e., L = L(A) for some DFA A

constructed from Aa and Ab by the previous Definition 3.1. Then L is an ab language

and L = L(Aa)L(Ab). It also holds that L(Aa) = La and L(Ab) = Lb, i.e., L = LaLb.

Proof. We are going to prove that L(A) = L(Aa)L(Ab).

L(A) ⊆ L(Aa)L(Ab): Let w ∈ L(A). Then (q[0]a, w) ⊢∗
A (qF , ε) for some qF ∈ F .

Suppose that L(Aa) is infinite. From the definition of A, we can see that to reach

qF , computation must first reach some qaF ∈ Fa and the computation to reach this

qaF is the same in Aa. If L(Aa) is finite, computation must either first reach some

qaF ∈ Fa or q[0]b. In the second case, the computation in Aa is (q[0]a, u) ⊢∗
Aa

(q[f]a, ε).

Therefore w = uv and u ∈ L(Aa). What is left to proof is that v ∈ L(Ab). If v = ε,

then either qF ∈ Ka, i.e., qF = qaF or qF = q[0]b can happen if L(Aa) is finite. Then

by definition of F , q[0]b ∈ Fb. Therefore v = ε ∈ L(Ab). Otherwise v = bv′ and

(qaF , v) ⊢A (q, v′) ⊢∗
A (qF , ε), where q = δb(q[0]b, b). This corresponds to computation

(q[0]b, v) ⊢∗
Ab

(q, v′) ⊢∗
Ab

(qF , ε). Therefore v ∈ L(Ab).

L(Aa)L(Ab) ⊆ L(A): Let w ∈ L(Aa)L(Ab). Then w = uv, u ∈ L(Aa) and v ∈

L(Ab). Suppose L(Aa) is infinite. From the definition we can see that (q[0]a, u) ⊢∗
Aa

(qaF , ε) ⇔ (q[0]a, u) ⊢∗
A (qaF , ε) for any qaF ∈ Fa. If L(Aa) is finite the previous holds

for qaF ∈ F − {q[f]a}. For the last final state, we have (q[0]a, u) ⊢∗
Aa

(q[f]a, ε) ⇔

(q[0]a, u) ⊢∗
A (q[0]b, ε). If v = ε then q[0]b ∈ Fb and by the definition qaF ∈ F , so

w = u ∈ L(A). If v ̸= ε, v = bv′ ∈ L(Ab), so (q[0]b, v) ⊢Ab
(q, v′) ⊢∗

Ab
(qF , ε) for

some q ∈ Kb and qF ∈ Fb. If u is read in state q[0]b in A, the computation on v is

identical. For the cases when u is read in state qaF in A, the computation on v is

(qaF , v) ⊢A (q, v′) ⊢∗
A (qF). Therefore uv ∈ L(A).

Now we prove that that L(Aa) = La and L(Ab) = Lb. It holds that L(Aa)
a = L(Aa),

L(Aa)
b = {ε} and similar for L(Ab). Then from the fact that h(L1L2) = h(L1)h(L2)

19

for any languages and homomorphism, we get

La = L(Aa)
aL(Ab)

a = L(Aa);L
b = L(Aa)

bL(Ab)
b = L(Ab)

Now that we have proven that La and Lb are the languages of automata creating

simple bicyclic language L, we shall be using Aa and Ab for these automata. We want

to decompose simple bicyclic languages, so it would be useful to know when their

automata are minimal. The construction of automaton from two UDFAs preserves

minimality.

Theorem 3.1. Let Aa, Ab and A be automata from Definition 3.1. If Aa and Ab are

minimal DFAs, then A is also the minimal DFA.

Proof. Let L be the language accepted by A, K = Ka ∪ Kb its states. It holds that

sc(A) = sc(Aa)+ sc(Ab)+ c, where c = −1 if La is finite or µ2 > 0 and c = 0 otherwise

(µ2 is the length of tail of Ab). Let A′ = (K ′,Σ, q[0]′, δ′, F ′) be any DFA accepting L

without dead states.

First we cover the case when La is infinite. Then it holds that sc(Aa) = Ka.

For any word from La, that A′ reads, the computation must stay in the a-part of

A′. Let F ′′ = {q ∈ K ′a | δ′(q, b) ̸= ∅} ∪ (F ′ ∩ K ′a). We construct automaton

A′a = (K ′a, {a}, δ′|K′a×{a}, q[0]
′, F ′′). Then L(A′a) = La. Because Aa is minimal DFA

accepting La, |K ′a| = sc(A′a) ≥ sc(Aa).

After reading b from any state in K ′a, the computation of A′ is in b-part and can

accept any word from Lb (except ε if it belongs there). That means if A′ had more

disconnected parts of b-part, each of them must accept the same words, so we could

replace them by only one and reduce the number of states. Therefore we can assume

the whole b-part of A′ is connected and there is one state where every computation

is after reading b. Let q be that state. From b-part and additional initial state, we

can construct automaton A′b accepting Lb as A′b = (K ′b ∪ {q′0}, {b}, δ′′, q′0, F ′′), where

F ′′ = (F ′ ∩ K ′b) ∪ ({q′0} if ε ∈ Lb, ∅ otherwise) and δ′′ = δ′|K′b×{b} with additional

transition δ′′(q′0, b) = q. We know that Ab is the minimal automaton accepting Lb, so

sc(A′b) ≥ sc(Ab). Suppose µ2 > 0. Then sc(Ab) = Kb + 1 and sc(A′b) = K ′b + 1. The

previous inequalities give us sc(A′) = sc(A′a)+sc(A′b)−1 ≥ sc(Aa)+sc(Ab)−1 = sc(A).

20 CHAPTER 3. SIMPLE BICYCLIC LANGUAGES

If µ2 = 0, then sc(Ab) = Kb. If sc(A′b) > sc(Ab), then we have inequality sc(A′) =

sc(A′a)+sc(A′b)−1 ≥ sc(Aa)+sc(Ab) = sc(A). A′ would be smaller if sc(A′b) = sc(Ab),

but we show by contradiction that this cannot happen. Automaton Ab does not have

tail, but A′b does, so it must have smaller cycle than Ab. Let (λ′
2, µ

′
2) be the size of A′b.

Suppose the words w1 = bµ
′
2−1 and w2 = bµ

′
2+λ2λ′

2−1. In Ab, they are read in the same

state, because their difference is a multiple of λ2. So w1 ∈ Lb ⇔ w2 ∈ Lb. In A′b, the

states they are read in must both be final or both be not final. The state where w1

is read in A′b is the last state of the tail, q[µ′
2 − 1]′, and w2 is read in q[µ′

2 + λ′
2 − 1].

Theorem 1.1 states, that A′b is not minimal, but that contradicts minimality of Ab

since they have the same number of states.

Now the case when La is finite. That means Ka = sc(Aa) − 1 and Kb = sc(Ab).

The a-part of any automaton accepting L has an a-tail where all the words from

La are accepted and if there is an a-cycle, its made of dead states. We assume A′

does not have a dead state and, similarly as in the previous case, only one connected

b-part. Let q be the state where the longest word from La is read. This state is

part of b-part, as there is not a transition on a from this state. Starting from q,

the computation on A′ can start reading any word from Lb, including ε. We can

construct an automaton A′b accepting Lb as A′b = (K ′b, {b}, δ′|K′b×{b}, q, F
′ ∩K ′b). It

holds that sc(A′b) ≥ sc(Ab). We make automaton A′a accepting La as following. We

replace q with q[f]. Let q[f − 1] be the last state of a-part, the state before q. Then

A′a = (K ′a ∪ {q[f]}, {a}, δ′|K′a×{a} ∪ δ′′, q[0]′, F ′′), where δ′′ is δ′′(q[f − 1], a) = q[f]

and F ′′ = (F ′ ∩ K ′a) ∪ {q[f]}. It holds that sc(A′a) ≥ sc(Aa). We get inequality

sc(A′) = sc(A′a) + sc(A′b)− 1 ≥ sc(Aa) + sc(Ab)− 1 = sc(A).

We have shown that for any automaton A′ accepting L, sc(A′) ≥ sc(A), so A must

be minimal DFA.

We can recognize a simple bicyclic language if we know it was constructed from two

UDFAs. But what if we are given an ab language by its automaton? Here we present

criteria for automata that accept a simple bicyclic language.

Lemma 3.2. Let A = (K,Σ, δ, q0, F) be a minimal DFA of an ab language L. L is a

simple bicyclic language if and only if:

1. After reading the first symbol b, all computations that do not halt are in the same

state - formally (∃q′ ∈ K)(∀p ∈ K)(∀n ∈ N)(q0, anb) ⊢∗
A (ε, p) ⇒ p = q′

21

2. States that are reachable by only reading symbols a and have a transition on b

to q′ from second condition are either all accepting or all are not accepting -

(∀q, p ∈ K)((∃n,m ∈ N)(q0, anb) ⊢∗
A (q, b) ⊢A (q′, ε) ∧ (q0, a

mb) ⊢∗
A (p, b) ⊢A

(q′, ε)) ⇒ (q ∈ F ⇔ p ∈ F).

3. All accepting states that are reachable by only reading symbols a are states from the

previous condition - (∀q ∈ K)(∃n ∈ N an ∈ L ∧ (q0, a
n) ⊢∗

A (q, ε) ⇒ δ(q, b) = q′)

Proof. ⇒: Suppose criterion 1 does not hold and states q, p from Ka lead to different

states after reading b. Because L = LaLb, when the computation is in state q or p, any

word from Lb can be read, so the computation from this point on has to accept the

same words. If the computations after reaching p and q never reach the same state, i.e.,

they go to separate disconnected parts of b-part., we can delete one part and redirect

the computations from that part to the other part. But by this we decrease the number

of states which contradicts the minimality of A. Suppose that the computations reach

the same state. Let q′, p′ be the last states that are separate and δ(q′, b) = δ(p′, b). The

states q′ and p′ must be both be final or both not be final, so we can merge them into

one. By this we also reduce the number of states and contradict the minimality of A.

Now suppose the criterion 2 does not hold in states q and p. Let q be the accepting

one. Because it is accepting, ε ∈ Lb. The state p has transitions on b, so words from

La are read there and words from Lb start there. Because L = LaLb and ε ∈ Lb, the

computation must read and accept ε when in p, but p is not accepting, which is a

contradiction.

The last criterion is very similar to the previous one. If q is accepting it reads a

word from La and any word from Lb can continue. So q must have a transition on b.

⇐: We need to show that there are two automata Aa, Ab of unary languages, that A

is a construction of these according to the Definition 3.1. The construction is identical

as construction of A′a and A′b in the proof of Theorem 3.1.

In the proof of part ⇒ of the previous lemma, we only used the fact, that L = LaLb.

This give us the final criterion for simple bicyclic languages.

Theorem 3.2. Let L be an ab language. Then L is a simple bicyclic language if and

only if L = LaLb.

22 CHAPTER 3. SIMPLE BICYCLIC LANGUAGES

Proof. ⇒ was proven in Lemma 3.1. For ⇐, let A be the minimal DFA accepting L.

Then A satisfies criteria of Lemma 3.2.

3.1 Decomposability into ab languages

Now we explore the sufficient conditions for decomposition of simple bicyclic languages

into ab languages. We start with an example and then formulate and prove the condi-

tion.

Example 3.4. Let L = {a3kb2l | k, l ∈ N}. Its minimal DFA A is depicted in Figure

3.4. We can use the fact that L = LaLb for the following decomposition. We replace

the b-part with a single state cycle accepting any words and then we replace the a-part

with single state cycle. We get automata A1 accepting L1 = {a3k | k ∈ N}b∗ and A2

accepting L2 = a∗{b2k | k ∈ N}.

q0

q1

q2 p1 p0a

a

a b b

b

A

q0

q1

q2 p1a

a

a b
b

A1

q0 p1 p0

a

b
b

b

A2

Figure 3.4: Trivial decomposition of simple bicyclic languages

The decomposition in the example worked because the cycles have more than one

state. The requirements for sizes of UDFAs defining the language are more compli-

cated, based on the three ways that an automaton of simple bicyclic languages can be

constructed. In this example, Ab has two states which we were able to reduce to one

in A1. But if Lb would be b+, its automaton would also have two states, one in cycle

and one in tail. The first state would be replaced with the accepting states of Aa and

only one state would be in b-part and this decomposition would not work. Now we

formulate the requirements for the UDFAs constructing the language.

Lemma 3.3. Let L be a simple bicyclic language and let the minimal automata of La

and Lb have sizes (λ1, µ1) and (λ2, µ2) respectively. Then L ∈ Ddet if the following

conditions hold:

3.1. DECOMPOSABILITY INTO ab LANGUAGES 23

• If La is infinite:

– λ1 + µ1 > 1

– λ2 + µ2 > 2 or λ2 > 1

• If La is finite:

– µ1 > 2 or (µ1 > 1 and µ2 > 0)

– λ2 + µ2 > 1

Proof. Let A be the minimal DFA accepting L, Aa be the minimal DFA accepting La

and Ab be the minimal DFA accepting Lb. We shall denote Aa∗ and Ab∗ to be the

minimal DFAs accepting a∗ and b∗. They only have one state. We shall use these four

automata to construct two automata decomposing A as follows: Aa and Ab∗ define

simple bicyclic language L1 = L(A1) = Lab∗ and Aa∗ and Ab define simple bicyclic

language L2 = L(A2) = a∗Lb.

First we prove that the state complexity of A1 and A2 is smaller than the state

complexity of A. It holds that sc(A) = sc(Aa) + sc(Ab) + c, where c = −1 if La is

finite or µ2 > 0 and c = 0 otherwise. First we cover the case when La is infinite. Then,

Ka = sc(Aa) = λ1 + µ1 > 1 and it holds that sc(Aa∗) = 1 < sc(Aa). Therefore

sc(A2) = 1 + sc(Ab) + c < sc(Aa) + sc(Ab) + c = sc(A).

If λ2 > 1 and c = −1 then µ2 ≥ 1. It holds that sc(Ab∗) = 1 < 2+1−1 ≤ λ2+µ2+c =

sc(Ab) + c. If λ2 + µ2 > 2 and c = −1, then sc(Ab∗) = 1 < 3 − 1 ≤ sc(Ab) + c. For

c = 0, both inequalities hold as well. Therefore

sc(A1) = sc(Aa) + 1 < sc(Aa) + sc(Ab) + c = sc(A).

Now the case when La is finite. Then λ1 = 0, so 2 ≤ µ1 = sc(Aa) = |Ka| + 1. It

holds that λ2 + µ2 = sc(Ab) = |Kb|. For A2 we have sc(A2) = 1 + sc(Ab) + c′, where

c′ = −1 if µ2 > 0 and c′ = 0 if µ2 = 0. To get

sc(A2) = 1 + sc(Ab) + c′ < sc(Aa) + sc(Ab)− 1 = sc(A)

we need either c′ = −1, which happens if µ2 > 0 or sc(Aa) = µ1 > 2. Both requirements

are fulfilled. For A1 it holds that

sc(A1) = sc(Aa) + sc(Ab∗) + c = sc(Aa) < sc(Aa)− 1 + sc(Ab) = sc(A)

24 CHAPTER 3. SIMPLE BICYCLIC LANGUAGES

because sc(Ab) = λ2 + µ2 > 1.

We prove that L1 ∩ L2 = L by the following equivalences:

w ∈ L ⇔ w = uv ∧ u ∈ La ∧ v ∈ Lb ⇔

⇔ w = uv ∧ uv ∈ Lab∗ ∧ uv ∈ a∗Lb ∧ u ∈ a∗ ∧ v ∈ b∗ ⇔ w ∈ L1 ∩ L2

We have proven that L is decomposable into L1 and L2 so L ∈ Ddet.

The next two cases will look into how the decomposability of a unary language

relates to the decomposability of a simple bicyclic language it forms.

Example 3.5. Let L = {a6k+rb2 | k ∈ N, r ∈ {0, 2}}. La is {a6k+r | k ∈ N, r ∈ {0, 2}}

and by Theorem 1.4 it is decomposable into languages La
1 = {a3k+r | k ∈ N, r ∈ {0, 2}}

and La
2 = {a2k | k ∈ N}. We can construct simple bicyclic languages from them by

concatenating Lb to them. By this we get L1 = La
1L

b = {a =3k+r b2 | k ∈ N, r ∈ {0, 2}}

and L2 = La
2L

b = {a2kb2 | k ∈ N}. It is easy to see that L1 ∩ L2 = L. The minimal

automata of these languages are shown in Figure 3.5. From the pictures we see that

A1 and A2 are smaller than A, so L1 and L2 decompose L.

q0

q1 q2

q3

q4q5

p1

p2

a
a

a

a
a

a

b

b

b

A

q0 q1

p1

p2

a

a

b

b

A1

q0

q1

q2

p1

p2

a

a

a

b

b

b

A2

Figure 3.5: Decomposition via La

It looks like we only need La to be decomposable. Here we prove it.

Lemma 3.4. Let L be a simple bicyclic language. If La ∈ Ddet then L ∈ Ddet.

Proof. Let La
1 and La

2 be the languages decomposing La, A the minimal DFA accepting

L and Aa, Aa
1 and Aa

2 be the minimal DFAs of languages La, La
1 and La

2. Since La is

decomposable, it is not finite. Then it holds that sc(A) = sc(Aa) + sc(Ab) + c, where

3.1. DECOMPOSABILITY INTO ab LANGUAGES 25

c = 0 if µ2 = 0 and c = −1 otherwise. We shall use Aa
1 and Aa

2 with Lb to construct

simple bicyclic languages L1 = L(A1) = La
1L

b and L2 = L(A2) = La
2L

b. We claim that

L1 and L2 decompose L. Let us first resolve the state complexity of these automata.

sc(Aa
1) < sc(Aa) ⇒ sc(A1) = sc(Aa

1) + sc(Ab) + c < sc(Aa) + sc(Ab) + c = sc(A)

sc(Aa
2) < sc(Aa) ⇒ sc(A2) = sc(Aa

2) + sc(Ab) + c < sc(Aa) + sc(Ab) + c = sc(A)

Now what is left to prove is that L1∩L2 = L. We prove it by the following equivalences.

w ∈ L1 ∩ L2 ⇔ w ∈ L1 ∧ w ∈ L2 ⇔ w = uv ∧ u ∈ La
1 ∧ u ∈ La

2 ∧ v ∈ Lb ⇔

⇔ w = uv ∧ u ∈ La
1 ∩ La

2 ∧ v ∈ Lb ⇔ w = uv ∧ u ∈ La ∧ v ∈ Lb ⇔ w ∈ L

The language L is decomposable into L1 and L2, therefore L ∈ Ddet.

Let us now explore the case when Lb is decomposable.

Example 3.6. Let L = {a3kb3l+4 | k, l ∈ N}. Then Lb = {b3k+4 | k,∈ N} satisfies

condition (i) of Theorem 1.2 and is decomposable. The decomposing languages are

Lb
1 = {b3k+1 | k,∈ N} and Lb

2 = b∗−{b}. We can do the same thing as in previous case

and concatenate these languages to La. We get L1 = LaLb
1 = {a3kb3l+1 | k, l ∈ N} and

L2 = LaLb
2 = {a3kbl | k, l ∈ N, l ̸= 1}. Once again, L1 ∩L2 = L is easy to see and after

seeing their minimal automata in Figure 3.6, we get that L1 and L2 decompose L.

q0

q1

q2

p1 p2

p3

p4a

a

a

b b

b

b

b

A

q0

q1

q2

p1

p2

p3a

a

a

b

b

b

b

A1

q0

q1

q2

p1 p2

a

a

a

b b
b

A2

Figure 3.6: Decomposition via Lb

26 CHAPTER 3. SIMPLE BICYCLIC LANGUAGES

Example 3.7. Consider now a similar language to the language in Example 3.6, L′ =

{a3kb3l+3 | k, l ∈ N}. The automata are shown in Figure 3.7. A′b has one state shorter

tail than Ab. L′ is still decomposable, but now A′b
1 accepting L′b

1 = {b3k | k,∈ N}

does not have tail and is only one state smaller than A′b. This means if we want to

concatenate A′b
1 to A′a, we cannot remove the initial state of A′b

1 , which adds one state.

We see that A′ and A′
1 have equal number of states. This type of decomposition does

not work here.

p0 p1

p2

p3

b

b

b

b

A′b

p0

p1

p2

b

b

b

A′b
1

q0

q1

q2

p1

p2

p3a

a

a

b

b

b

b

A′

q0

q1

q2

p1

p2

p0a

a

a

b

b

b

b

A′
1

Figure 3.7: Case when decomposition of Lb does not help

The requirements are formulated in the following lemma.

Lemma 3.5. Let L be a simple bicyclic language. Let Lb ∈ Ddet and its minimal DFA

has size (λ2, µ2) such that µ2 ̸= 1 or Lb is decomposable into automata with cycles

smaller than λ2 or La is finite. Then L ∈ Ddet.

Proof. Let Ab be the minimal DFA accepting Lb, Ab
1 and Ab

2 be the minimal DFAs of

languages Lb
1 and Lb

2 decomposing Lb. Aa be the minimal DFA accepting La and A

the minimal DFA accepting L. We shall use Ab
1 and Ab

2 with La to construct simple

bicyclic languages L1 = L(A1) = LaLb
1 and L2 = L(A2) = LaLb

2. We claim that L1 and

L2 decompose L.

Let us first determine the state complexity of these automata. Let (λ21, µ21) and

(λ22, µ22) be the sizes of Ab
1 and Ab

2. It holds that sc(A) = sc(Aa) + sc(Ab) + c, where

c = −1 if La is finite or µ2 > 0 and c = 0 otherwise. If La is finite or µ2 = µ21 = µ22 = 0

then the constant c is the same in A1 and A2 and it is c = −1. For these and other

3.1. DECOMPOSABILITY INTO ab LANGUAGES 27

cases when c is the same, the following hold:

sc(Ab
1) < sc(Ab) ⇒ sc(A1) = sc(Aa) + sc(Ab

1) + c < sc(Aa) + sc(Ab) + c = sc(A)

sc(Ab
2) < sc(Ab) ⇒ sc(A2) = sc(Aa) + sc(Ab

2) + c < sc(Aa) + sc(Ab) + c = sc(A)

If Lb is decomposable into cycles smaller than λ2, i.e., λ21 < λ2 and λ22 < λ2, the

constant can be different. Without loss of generality it is different in A1. It must hold

that µ2 > 0 and µ21 = 0. Then this holds. sc(Ab
1) = λ21 + µ21 < λ2 + µ2 − 1 =

sc(Ab) − 1. In case µ2 > 1 and without loss of generality the constant is different in

A1, sc(Ab
1) < sc(Ab)− 1 holds as well. Then this inequality holds:

sc(Ab
1) < sc(Ab)− 1 ⇒ sc(A1) = sc(Aa) + sc(Ab

1) < sc(Aa) + sc(Ab)− 1 = sc(A)

Now what is left to prove is that L1∩L2 = L. We prove it by the following equivalences.

w ∈ L1 ∩ L2 ⇔ w ∈ L1 ∧ w ∈ L2 ⇔ w = uv ∧ u ∈ La ∧ v ∈ Lb
1 ∧ v ∈ Lb

2 ⇔

⇔ w = uv ∧ u ∈ La ∧ v ∈ Lb
1 ∩ Lb

2 ⇔ w = uv ∧ u ∈ La ∧ v ∈ Lb ⇔ w ∈ L

We have proven that L1 and L2 decompose L, so L ∈ Ddet.

We have discovered another case of decomposition, where a simple bicyclic language

is decomposable into languages with more b-cycles. We show that in the following

example.

Example 3.8. Let L = {a3k+rb6l | k, l ∈ N, r ∈ {0, 1}}. Lb is decomposable into

languages with 3 and 2 state cycles automata. Instead of concatenating each automaton

to Aa, we concatenate both on one, but each to different accepting state. And then

we switch them in the second automaton. We get languages L1 = {a3kb3l | k, l ∈

N} ∪ {a3k+1b2l | k, l ∈ N} and L2 = {a3kb2l | k, l ∈ N} ∪ {a3k+1b3l | k, l ∈ N}. The

automata are depicted in Figure 3.8.

As seen in the example, this kind of decomposition does not cover any new cases

since languages decomposable in this way are also decomposable via Lemma 3.5.1

The previous lemmas describe also the necessary conditions, which give us charac-

terisation of simple bicyclic languages upon decomposition into ab languages.
1This was a decomposition into automata with 2 b-cycles, but we have found a language that can

be be similarly decomposed into automata with 3 b-cycles. We expect that for every n ∈ N+, there is

a language decomposable into automata with n b-cycles, but we have not proven it formally.

28 CHAPTER 3. SIMPLE BICYCLIC LANGUAGES

q0

q1

q2 p1

p2 p3

p4

p5p0

a

a

a b

b

b

b

b

b

b

b

A

q0

q1

q2

p1 p0

r1

r2

r0a

a

a b

b
b

b

b

b

b

A1

q0

q1

q2

r1 r0

p1

p2

p0

a

a

a
b

b

b

b

b

b

b

A2

Figure 3.8: Decomposition into languages with more b-cycles

Theorem 3.3. Let L be a simple bicyclic language and let (λ1, µ1) and (λ2, µ2) be the

sizes of minimal DFA of La and Lb. Then L is decomposable into ab languages if and

only if at least one of the following holds:

1. La is infinite, λ1 + µ1 > 1 and (λ2 + µ2 > 2 or λ2 > 1)

2. La is finite, λ2 + µ2 > 1, µ1 > 1 and (µ1 > 2 or µ2 > 0)

3. La ∈ Ddet

4. Lb ∈ Ddet and its minimal DFA has size (λ2, µ2) such that µ2 ̸= 1 or Lb is

decomposable into automata with cycles smaller than λ2 or La is finite.

Proof. The sufficiency of these conditions were proven in Lemmas 3.3, 3.4 and 3.5. Now

we prove that if L is decomposable into and ab language, at least one of the conditions

holds. Let A be the minimal DFA of L, L1, L2 be the languages decomposing L and

A1, A2 their minimal DFA.

Let L does not satisfy conditions 1 and 2. We shall show how A, A1 and A2 can

look like and show that L satisfies condition 3 or 4.

Part 1: La is infinite.

3.1. DECOMPOSABILITY INTO ab LANGUAGES 29

a) λ1 + µ1 ≤ 1

Since La is infinite, λ1 ≥ 1. Therefore λ1 = 1 and µ1 = 0, which means La = a∗. It

holds that sc(A) = sc(Ab) + c′ where c′ = 0 if µ2 > 0 and c′ = 1 if µ2 = 0.

Since L1 decomposes L, it holds that L ⊆ L1 and:

L ⊆ L1 ⇔ {a∗}Lb ⊆ La
1L

b
1 ⇔ ∀u ∈ a∗,∀v ∈ Lb : uv ∈ L1 ⇒ u ∈ La

1 ⇒ a∗ ⊆ La
1

Therefore La
1 = a∗. The same holds for L2 and La

2 = a∗. It holds that

L1 ∩ L2 = L ⇔ a∗Lb
1 ∩ a∗Lb

2 = a∗Lb ⇒ Lb
1 ∩ Lb

2 = Lb

We need to show that for Lb
1 and Lb

2 there exist automata with state complexity smaller

than Ab to show that Lb ∈ Ddet.

If both A1 and A2 accept a∗ in one state, then L1 and L2 are simple bicyclic

languages. It holds that sc(A1) = sc(Ab
1)+ c′1 < sc(Ab)+ c′ and sc(A2) = sc(Ab

2)+ c′2 <

sc(Ab) + c′.

Suppose that c′ = c′1 = c′2. Then sc(Ab
1) < sc(Ab) and sc(Ab

1) < sc(Ab), so Lb ∈

Ddet. We show by contradiction that condition 4 holds. Suppose that µ2 = 1 and Lb

is not decomposable into automata with cycles smaller than λ2. That means at least

one of Ab
1 and Ab

2 have cycle greater than or equal to λ2. Without loss of generality

let it be Ab
1. Because sc(Ab

1) < sc(Ab), Its tail must be smaller than µ2 = 1 - its tail

has size 0. However then c′1 = 1 ̸= c′, which is a contradiction to our assumption that

c′ = c′1 = c′2.

Suppose that c′ = c′1 = c′2 does not hold. Let c′ = 1, and without loss of generality

c′1 = 0. From sc(Ab
1) < sc(Ab) + 1 it could be that sc(Ab

1) = sc(Ab).2 However since

Ab
1 has nonzero tail length and A1 has no tail, Ab

1 must have shorter cycle length.

Let (λ21, µ21) be its size and (λ22, µ22) be the size of Ab
2. It holds that λ21 < λ2 and

λ22 < λ2. From Ab
1 and Ab

2, we construct new automata Ab
1
′ and Ab

2
′ of sizes (λ21, 0) and

(λ22, 0), such that L(Ab
1
′) ∩ L(Ab

2
′) = L. Let us denote Lb

1
′ and Lb

2
′ languages of these

automata. Since Ab is just a cycle of size λ2 it holds that ∀w : w ∈ Lb ⇔ bλ2w ∈ Lb.

We use this to construct new automata as follows: we cut the tails and set the initial

state to be the state where bλ2 is read. Formally, Let Ab
1 = (K, {a}, δ, q[0], F), then

2We conjecture that such decomposition cannot exist if Ab
1 is minimal. However trying to prove

that turned out to be much more complicated than the following proof.

30 CHAPTER 3. SIMPLE BICYCLIC LANGUAGES

Ab
1
′ = (K ′, {a}, δ′, q′0, F ′), where:

K ′ = {q[µ21], q[µ21 + 1], ..., q[µ21 + λ21 − 1]}, F ′ = F ∩K ′,

q′0 = q[µ21 + (λ2 − µ21) mod λ21], δ′ = δ|K′×{a}

Ab
2
′ is made from Ab

2 analogously. For these languages it holds that ∀w : w ∈ Lb
1
′ ⇔

bλ2w ∈ Lb
1 and ∀w : w ∈ Lb

2
′ ⇔ bλ2w ∈ Lb

2. Now we prove that Lb
1
′ ∩ Lb

2
′ = Lb:

w ∈ Lb
1
′ ∩ Lb

2
′ ⇔ bλ2w ∈ Lb

1 ∩ Lb
2 ⇔ bλ2w ∈ Lb ⇔ w ∈ Lb

Since we have decomposition of Lb into automata with cycles smaller than λ2, condition

4 holds.

Now suppose that c′ = c′1 = c′2 does not hold, c′ = 0 and without loss of generality

c′1 = 1. Then sc(Ab
1) < sc(Ab) and sc(Ab

2) < sc(Ab), so Lb ∈ Ddet. Let (λ21, 0) be the

size of Ab
1. If λ21 < λ2, then condition 4 holds. If λ21 = λ2, then sc(A1) = sc(Ab

1)+1 =

λ2 + 0 + 1 < λ2 + µ2 = sc(Ab) + 0 = sc(A). Therefore 1 < µ2 and condition 4 holds.

We have covered the cases when L1 and L2 are simple bicyclic. However, this is

not necessary. A1 and A2 can have more than one b-cycle as seen in Example 3.8.

Suppose the size of a-part of A1 is greater than one. Because La
1 = {a}∗, there must

exist a transition on b from all states in the a-part. Let n be the number of states

in the a-part of A1. We divide L1 into n languages based on the state of a-part in

which the transition on b is made or word is accepted. We shall denote them by left

subscript - 1L1, 2L1, ..., nL1. Formally, let {q1, q2, ...qn} be the states of a-part of A1

and (∀i = 1, ..., n) iL1 = {w = ambl ∈ L1 | (q0, ambl) ⊢∗
A1

(qi, b
l)}. Obviously, these

languages are simple bicyclic languages. We do the same division for L2. What are

we going to prove is that for any such subset language, for example 1L1, there exist a

subset language of L2, for example 1L2 such, that 1L
b
1 and 1L

b
2 decompose Lb.

For each iL
b
1, iL

b
2 we prove that Lb ⊆ iL

b
1 and Lb ⊆ iL

b
2. From La = a∗ we get

iL
a
j b

∗ ∩ L = iL
a
jL

b for all i, j where such language is defined. Then, from L1 ∩ L2 =

L ⇒ L ⊆ L1 we get

1L
a
1b

∗ ∩ L ⊆ 1L
a
1b

∗ ∩ L1 ⇒ 1L
a
1L

b ⊆ 1L
a
11L

b
1 ⇒ Lb ⊆ 1L

b
1.

Proof for other i, j is analogous. Without loss of generality, let us assume 1L
a
1∩1L

a
2 ̸= ∅.

Now we show that 1L
b
1∩1L

b
2 = Lb. To prove ⊆, let v ∈ 1L

b
1∩1L

b
2 and u ∈ 1L

a
1∩1L

a
2. That

3.1. DECOMPOSABILITY INTO ab LANGUAGES 31

means uv ∈ 1L1∩1L2 ⇒ uv ∈ L1∩L2 ⇒ uv ∈ L ⇒ v ∈ Lb. The other side, 1L
b
1∩1L

b
2 ⊇

Lb, follows from Lb ⊆ iL
b
j. Let us now construct simple bicyclic languages L′

1 = a∗1L
b
1

and L′
2 = a∗1L

b
2, accepted by minimal automata A′

1 and A′
2. From 1L

b
1 ∩ 1L

b
2 = Lb

we get L′
1 ∩ L′

2 = L and from its construction it holds that sc(A′
1) < sc(A1) < sc(A)

and sc(A′
2) < sc(A2) < sc(A). Therefore L′

1 and L′
2 decompose L and the validity of

condition 4 for such decomposition was proven earlier in this proof.

b) λ2 ≤ 1 and λ2 + µ2 ≤ 2

If λ2 = 1, either µ2 = 0 and Lb = b∗ or µ2 = 1 and Lb = b+. In all cases, the b-part

of A is one state, i.e., sc(A) = sc(Aa)+1. Since L1 decomposes L, it holds that L ⊆ L1

and:

L ⊆ L1 ⇒ Lab∗(Lab+) ⊆ L1 ⇒ ∀u ∈ La
1,∀v ∈ b∗(b+) : uv ∈ L1 ⇒ v ∈ Lb

1 ⇒ b∗(b+) ⊆ Lb
1

Therefore if Lb = b∗ then Lb
1 = b∗ and if Lb = b+ then Lb

1 = b∗ or b+. The same holds

for L2. Regardless of the case, nonempty words of Lb
1 and Lb

2 are accepted in one state

and it holds that sc(A1) = sc(Aa
1)+1 and sc(A2) = sc(Aa

2)+1. Therefore it holds that

sc(Aa
1) < sc(Aa) and sc(Aa

2) < sc(Aa).

Let us construct new languages from A1 and A2. Set all states in a-part, that do

not have transition on b not final, and set all states in a-part that do have transition

on b final. Then remove the state of the b-part. Let us denote these new automata

Aa
1
′ and Aa

2
′ and the languages they accept La

1
′ and La

2
′. For these automata it holds

that sc(Aa
1
′) = sc(Aa

1) < sc(Aa) and sc(Aa
2
′) = sc(Aa

2) < sc(Aa). We prove that

La
1
′ ∩ La

2
′ = La.

The inclusion ⊇: Let u ∈ La. Then there exists v such that uv ∈ L and uv ∈ L1∩L2.

We get u ∈ La
1 ∩ La

2. If there is a transition on b from state, where u is accepted in Aa
1

and Aa
2, then u ∈ La

1
′ ∩ La

2
′ and we have proven what we wanted. If the transition is

not there in both automata, that means v = ε ∈ Lb. But in A, all accepting states of

a-part are those, with transition on b. This means that there is nonempty v′ such that

uv′ ∈ L and uv′ ∈ L1 ∩ L2. Therefore u must be accepted in Aa and Ab in states with

transitions on b.

The inclusion ⊆: Since A1 has only one state in b-part, all transitions on b go to

that state. That means for all words from La
1
′, any word from Lb

1 can follow in A1.

Therefore this holds: ∀u ∈ La
1
′,∀v ∈ Lb

1: uv ∈ L1. Identical holds for L2. Therefore we

32 CHAPTER 3. SIMPLE BICYCLIC LANGUAGES

get:

u ∈ La
1
′ ∩La

2
′ ⇒ u ∈ La

1
′ ∧ u ∈ La

2
′ ⇒ ∀v ∈ Lb

1 ∩Lb
2 : uv ∈ L1 ∧ uv ∈ L1 ⇒ uv ∈ L1 ∩L2

⇒ uv ∈ L ⇒ u ∈ La.

If λ2 = 0 then µ2 ≤ 2. Either µ = 1 or µ = 2. In the first case, Lb = {ε}, but then

L = La and condition 3 holds. In the second case, Lb = {b} or Lb = {ε, b}. It also

holds that sc(A) = sc(Aa)+1, sc(Aa
1) < sc(Aa) and sc(Aa

2) < sc(Aa). We construct the

same new languages La
1
′ and La

2
′ as in the previous case. We prove that La

1
′∩La

2
′ = La.

Inclusion ⊇ is identical. For ⊆ we get:

u ∈ La
1
′ ∩ La

2
′ ⇒ u ∈ La

1
′ ∧ u ∈ La

2
′ ⇒ ub ∈ L1 ∧ ub ∈ L1 ⇒ ub ∈ L1 ∩ L2

⇒ ub ∈ L ⇒ u ∈ La.

We have shown that La is decomposable, so condition 3 holds.

Part 2: La is finite Since La is finite, it is not decomposable. We are going

to prove that condition 4 holds. We only need to prove that Lb is decomposable.

a) λ2 + µ2 ≤ 1

In this case, we are actually going to prove that L is not decomposable, which

means if L is decomposable and La is finite, then λ2 + µ2 > 1. Either λ2 = 0 and

µ2 = 1, which means Lb = {ε} or λ2 = 1 and µ2 = 0, which means Lb = b∗. In the

first case, L = La, but we know finite unary languages are not decomposable. In the

second case, we use what have we proven in part 1b) for Lb = b∗. We constructed new

languages La
1
′ and La

2
′ and showed that they decompose La. The same reasoning works

here, which is a contradiction because La is not decomposable.

b) µ1 ≤ 1

This means La = {ε}, so L = Lb. The condition 4 holds.

c) µ1 ≤ 2 and µ2 = 0

If µ2 = 2, then La = {a} and a-part of A has one state. It holds that sc(A) =

sc(Ab) + 1. For A1 and A2, this must hold: From initial state, there is a transition

on a to some state, where a is read. From this state, words from Lb are read. That

means the initial state cannot have transition on a to itself, but to a different state.

Let us call this state q. The a-part of both automata have at least one state - the

initial state. There can be a transition from q to some other state and more than

3.1. DECOMPOSABILITY INTO ab LANGUAGES 33

one b-cycle or b-path, but these cannot make it to L1 ∩ L2. We isolate the part of

both automata starting with state q and construct automata Ab
1
′ and Ab

2
′ accepting

languages Lb
1
′ and Lb

2
′. It is easy to see that Lb

1
′ ∩ Lb

2
′ = Lb. For their automata it

holds that sc(Ab
1
′) < sc(A1) < sc(A), so sc(Ab

1
′) < sc(Ab). Similarly, sc(Ab

2
′) < sc(Ab).

Therefore Lb
1
′ and Lb

2
′ decompose Lb and condition 4 holds.

Chapter 4

Other ab languages

In this chapter we introduce other bicyclic languages and explore their decomposability.

First we introduce bicyclic languages that are not necessary simple.

4.1 Bicyclic languages

Definition 4.1. An ab language L is a bicyclic language if it is accepted by a minimal

DFA whose b-part is connected.

Let’s explore such language by an example.

q0 q1

q2

q3

q4

a

a a

aa

b

b

b b

b

b

b

b

b

b

b

b

b

b

Figure 4.1: Bicyclic language

Example 4.1. Let L be a bicyclic language, whose automaton A is depicted in Figure

4.1. There are several b-paths going to the b-cycle on different states or joining and

going to the b-cycle as one path. If we removed all b-paths except one, we get something

like a simple bicyclic language. All b-paths begin from a state in a-part, so we can divide

35

36 CHAPTER 4. OTHER ab LANGUAGES

L into languages identified by states of a-part. We get four simple bicyclic languages1

and a unary language over {a} for state q[1], which is accepting, but does not have any

transitions on b. Now look at the languages identified by q[3] and q[4]. Their b-paths

are identical from the first state after reading b. In fact if we unite them, we almost get

a simple bicyclic language. The only problem is that q[4] is accepting and q[3] is not.

We solve this by making q[4] not accepting in the simple bicyclic language and adding

the words accepted there to the unary language. Therefore to get the least amount of

simple bicyclic languages, we divide L based on the state after reading b. L is now a

union of three simple bicyclic languages and a unary language over {a}. We can now

write L as

L = {a4k+r | k ∈ N, r ∈ {1, 4}} ∪ {a4k+rb4l+6 | k, l ∈ N, r ∈ {3, 4}}

∪{a4k+2 | k ∈ N}({b4l+5 | ∈ N} ∪ {b2}) ∪ {b4k+2 | k ∈ N} ∪ {b3}

Now we formalize and prove what we have discovered.

Definition 4.2. Let L be a language accepted by DFA A = (K,Σ, δ, q0, F). In this

automaton, we call a simple bicyclic language identifying state such state q in which A

is after reading the first symbol b. That means there exists n ∈ N such that (q0, anb) ⊢∗
A

(q, ε).

Lemma 4.1. Let L be a bicyclic language and A its minimal DFA. Let n be number of

simple bicyclic language identifying states, which we label q1, q2, ..., qn. Then there exist

n simple bicyclic languages L[q1], L[q2], ...L[qn] and a unary language L′ ⊆ a∗ such that

L = L[q1] ∪ L[q2] ∪ ... ∪ L[qn] ∪ L′.

Proof. Let qi be any simple bicyclic language identifying state. Let K[qi] ⊆ K be

states that can be reached in a computation of A that reaches qi. formally, K[qi] =

{p | ∃uv, (q0, uv) ⊢∗
A (p, v) ⊢∗

A (qi, ε)} ∪ {p | ∃uv, (q0, uv) ⊢∗
A (qi, v) ⊢∗

A (p, ε)}. Let

A[qi] = (K[qi],Σ, δ|K[qi]×Σ, q0, F [qi]) be automaton made from A by removing states

not in K[qi]. In A[qi], F [qi] is such subset of F ∩ K[qi], that satisfies Lemma 3.2.

According to that lemma, L(A[qi]) = L[qi] is a simple bicyclic language. Thus we have

n simple bicyclic languages identified by n simple bicyclic language identifying states.
1one of them, identified by q[0], is actually a unary language over {b}. Technically still a simple

bicyclic language, whose unary language over {a} is {ε}.

4.1. BICYCLIC LANGUAGES 37

L′ is just L ∩ a∗.

L ⊇ L[q1] ∪ L[q2] ∪ ... ∪ L[qn] ∪ L′ is proven by the construction of these languages.

L ⊆ L[q1] ∪ L[q2] ∪ ... ∪ L[qn] ∪ L′: Let w ∈ L be any word. If w = ak for some k,

then w ∈ L′. Otherwise, w = akbl for some k, l and ∃qi ∈ K, (q0, akbl) ⊢∗
A (q, bl−1).

Therefore qi is a simple bicyclic language identifying state and w ∈ L[qi].

Now let us explore the decomposability of bicyclic languages into ab languages.

Example 4.2. Let L = {a3kb3l | k, l ∈ N} ∪ {a3k+1b3l+1 | k, l ∈ N}. Its minimal

DFA, A is shown in Figure 4.2 Let’s try the decomposition form Lemma 3.3. L1 will

be Lab∗ and L2 will be a∗Lb. The two b-paths are merged into one in A2, which is a

problem. For example, both automata accept a3b1, which is not in L. This simple kind

of decomposition does not work here.

q0

q1

q2 p0

p1

p2

a

a

a
b

b

b

b

b

A

q0

q1

q2 p0a

a

a b

b

b

A1

q0 p0

p1

p2

a
b

b

b

b

A2

Figure 4.2: Attempt 1 to decompose bicyclic language

Example 4.3. Let us try the type of decomposition where La is decomposable, by

Lemma 3.4. Let L = L[0] ∪ L[1], where L[0] = {a12k+rb2l | k, l ∈ N, r ∈ {1, 8}}

and L[1] = {a12k+rb2l+1 | k, l ∈ N, r ∈ {4, 5}}. its minimal DFA, A, is shown in

Figure 4.3. La = {a12k+r | k ∈ N, r ∈ {1, 4, 5, 8}} is decomposable into languages

La
1 = {a4k+r | k ∈ N, r ∈ {0, 1}} and La

2 = {a3k+r | k ∈ N, r ∈ {1, 2}}. In state q[0] in

38 CHAPTER 4. OTHER ab LANGUAGES

Aa
1, those words are accepted, that are accepted in states q[4] and q[8] in Aa - words

from both L[0]a and L[1]a. Therefore we need to add a transition on b from this state

to a b-part, that accepts both b2l and b2l+1. The same holds for state q[1] in Aa
1, which

accepts words accepted in states q[1] and q[5] in Aa. That means for L to be a subset of

L1, L1 must be La
1b

∗. However, identical situation happens for L2. States q[1] and q[2]

in Aa
2 both accept words from both L[0]a and L[1]a. For L ⊆ L2, it must be L2 = La

2b
∗.

But now we have L ⊊ L1 ∩ L2 and this is not a decomposition.

q0

q1

q2 q3
q4

q5

q6

q7

q8
q9q10

q11

p0 p1
a

a
a a

a

a

a

a

aa

a

a

b

b

b

b

b

b

A

q0

q1

q2

q3

p0

a a

aa

b

b

b

A1

q0

q1

q2

p0

a

a

a

b

b

b

A2

Figure 4.3: Attempt 2 to decompose bicyclic language

The first two types of decomposition of simple bicyclic languages do not work for

all bicyclic languages. What about the third type? For language L, we shall pick some

simple bicyclic language L[q] instead of Lb and we shall try to decompose L based on

the decomposition of L[q]b.

Example 4.4. Let L = {a4k+1b6l+r | k, l ∈ N, r ∈ {1, 6}}∪{a4k+2 | k ∈ N}({b6k+r | k ∈

N, r ∈ {2, 3}} ∪ {ε, a}) ∪ {a4k+3b6l+r | k, l ∈ N, r ∈ {3, 4}}. The language L[p1]
b is the

language from Example 1.2 (with different alphabet), which is decomposable. It is

4.1. BICYCLIC LANGUAGES 39

decomposable into languages, which we label L[p1]1 and L[p1]2. We need to add the

b-paths of other simple bicyclic languages making L to automata decomposing L[p1],

such that the intersection of corresponding simple bicyclic languages of L1 and L2 will

give the original simple bicyclic language. This will give us languages L1 and L2. We

can do it the following way. In A[p1]1, the b-cycle is almost the same except the extra

accepting state. We can add b-paths to it as in A, but we need to filter the extra words.

For L[p1], we can filter the words thanks to the fact that state p4 is not accepting in A.

This helps us for L[p3] and L[p6] as well. In A[p1]2, the size of the b-cycle is 3, so we

attach the b-paths as follows: The distance from state p6, where b-path of L[p6] ends,

to p2, where b-path of L[p1] ends, is 2 in A. That will be the distance in A2 as well,

For L[p3], the distance is 5, so in A2 it will be 5 mod 3 = 2. Reader can verify that

L1[p3]∩L2[p3] = L[p3] and L1[p6]∩L2[p3] = L[p6]. Therefore L1 and L2 decompose L.

q0

q1

q2

q3

p1 p2

p3 p4

p5

p6p7

a a

aa
b b

b

b

b
b

b

b
b

b

A

q0

q1

q2

q3

p1

p2 p3

p4

p5p6

a a

aa
b

b

b

b
b

b

b
b

b

A1

q0

q1

q2

q3

p1 p2

p3

p4

a a

aa
b b

b

b

b

b

b

A2

Figure 4.4: Attempt 3 to decompose bicyclic language

We showed how can the decomposition work in case L[q]b decomposes via Theorem

1.2, requirement (ii). But it works for other types of decomposition of unary languages

as well. If (i) of Theorem 1.2 holds, one cycle is unchanged and the other is just one

accepting state. Addition of b-path is simple here. If Theorem 1.4 holds, we add the

40 CHAPTER 4. OTHER ab LANGUAGES

b-paths according to Lemma 1.1. Now we prove the decomposition formally.

Lemma 4.2. Let L be a bicyclic language, A its minimal DFA and L0 a simple bicyclic

language identified by some simple bicyclic language identifying state of A. Let Lb
0 ∈

Ddet and its minimal DFA has size (λ2, µ2). If either µ2 ̸= 1 or Lb
0 is decomposable

into automata with cycles smaller than λ2 or La
0 = La and is finite, then L ∈ Ddet.

Proof. Let Ab
0 be the minimal DFA accepting Lb

0, Ab
01 and Ab

02 be the minimal DFAs of

languages Lb
01 and Lb

02 decomposing Lb
0 and Aa

0 be the minimal DFA accepting La
0. Let

A01 be the automaton constructed from Aa
0 and Ab

01 accepting simple bicyclic language

L01 = La
0L

b
01. Similarly, A02 accepts L02 = La

0L
b
02. According to Lemma 3.5, L01 and L02

decompose L0. We shall split proof to three cases based on the way Lb
0 decomposes.

In each case we add states and transitions to A01 and A02 to construct automata

A1 and A2 accepting bicyclic languages L1 and L2. We show that sc(A1) < sc(A),

sc(A2) < sc(A), La = La
1 = La

2 and that for every simple bicyclic language identifying

state qi the following holds:

• There exist simple bicyclic language identifying state q′i in A1 and q′′i in A2 such

that L1[q
′
i] and L2[q

′′
i] decompose L[qi]. We shall therefore call these languages

L[qi]1 and L[qi]2.

• L[qi]
a = L[qi]

a
1 = L[qi]

a
2

After this is proven, the following equivalences show that L1 and L2 decompose L.

If w ∈ a∗ then from La = La
1 = La

2 it holds that w ∈ L ⇔ w ∈ L1∩L2. If w ∈ a∗b+,

then:

w ∈ L ⇔ (∃i)w ∈ L[qi] ⇔ (∃i) w ∈ L[qi]1∩L[qi]2
∗⇔ (∃i) w ∈ L[qi]1∧(∃i) w ∈ L[qi]2 ⇔

⇔ w ∈ L1 ∧ w ∈ L2 ⇔ w ∈ L1 ∩ L2

∗⇐ follows from this:

w ∈ L1 ∧ w ∈ L2 ⇒ (∃i) w ∈ L[qi]1 ∧ (∃j) w ∈ L[qj]2 ⇒

⇒ (∃k, l) w = akbl ∧ (∃i) ak ∈ L[qi]
a, bl ∈ L[qi]

b
1 ∧ (∃j) ak ∈ L[qj]

a, bl ∈ L[qj]
b
2 ⇒

⇒ L[qi]
a = L[qj]

a ⇒ bl ∈ L[qi]
b
2 ⇒ w ∈ L[qi]1 ∩ L[qi]2

4.1. BICYCLIC LANGUAGES 41

First, in each case, we need to have La = La
1 = La

2. That means setting some states

accepting or even adding, if La
0 is finite, but La has longer words. Then we add b-paths

for each qi. Each path will start in the same state in A1 and A2 as in A. That ensures

that L[qi]a = L[qi]
a
1 = L[qi]

a
2. We also need to mention the case of decomposition if La

0 is

finite. Because of the different structure of automata of such simple bicyclic languages,

such decomposition is possible that would not be possible when La
0 would be infinite

such as Example 3.7. In finite case, the automata have transition on a to initial state

of Ab
0, which is not removed like in the infinite case. However, If there is a longer word

in La, the transition on a has to go elsewhere in A1 and A2. Therefore we need to add

requirement that La = La
0 to solve this.

Now we split to the three cases on type of decomposition of Lb
0:

µ2 > 0 and requirement (i) from Theorem 1.2 holds.

Ab
01 has size (λ2, µ12), where µ12 < µ2 and b-cycle is unchanged. Ab

02 has size (1, µ2)

where all states except the last before cycle are accepting.

Adding b-paths to A01:

• If b-path leads to a state on a b-cycle in A, we add it as it is in A.

• If it joins another b-path, that we have already added to A01:

– If in A it leads to a state on tail of Ab
0 that does not exist in Ab

01, because it

was shortened. Then, this b-path will lead to a state in b-cycle, that replaces

deleted state.

– otherwise it goes to the same state.

Adding b-paths to A02:

• If b-path leads to a state on a b-cycle in A, we add it to the one state in cycle.

• If it joins another b-path, that we have already added to A02, it goes to the same

state.

Now we prove that L[qi]1 and L[qi]2 decompose L[qi]. Corresponding bicyclic language

identifying state q′i in A1 is the same unless it was part of the tail of Ab
0 that was

shortened. There is the state in b-cycle that replaces it. State q′′i in A2 is different, if

it was part of the b-cycle, replaced by the one state of the cycle.

42 CHAPTER 4. OTHER ab LANGUAGES

• Path starting in qi leads to b-cycle. In A1, the b-cycle is unchanged, so L[qi] =

L[qi]1. In A2, the cycle is replaced by one accepting state and L[qi]2 = L[qi]
′ ∪

L[qi]
a{bn | n ≥ the length of b-path}, where L[qi]

′ ⊆ L[qi] are the words accepted

on the b-path.

L[qi]1 ∩ L[qi]2 = L[qi] ∩ (L[qi]
′ ∪ L[qi]

a{bn}) = L[qi]
′ ∪ (L[qi]− L[qi]

′) = L[qi]

• Path starting in qi leads to a state on tail of Ab
0. In A1 it accepts extra words in

the same state where Lb
01 accepts extra word. It is the last state on the b-path,

so L[qi]1 = L[qi] ∪ L[qi]
a{bn | n + 1 is the length of the b-path}. In A2 those

extra words are not accepted, so L[qi]2 = L[qi]
a{bn | n + 1 is not the length of

the b-path} ⊆ L[qi].

L[qi]1 ∩ L[qi]2 = L[qi]

Number of states: From the construction, it is evident, that sc(A1) = sc(A)−(µ2−µ12)

and sc(A2) = sc(A)− λ2 + 1.

µ2 > 0 and requirement (ii) from Theorem 1.2 holds.

Ab
01 has size (λ2, µ12), where µ12 < µ2 and b-cycle has one extra accepting state. Ab

02

has size (λ′
2, µ2) where all states except the last in cycle are accepting. Let us call the

states of the b-cycle in A02 and A2 q[0]...q[λ′
2 − 1] (q[λ′

2 − 1] is not accepting). The

states of b-cycle in A and A1 will be q[0]...q[λ2 − 1]. The extra accepting state in A1 is

q[λ2 − 1].

Adding b-paths to A01:

The same as in previous case.

Adding b-paths to A02:

• If b-path joins another b-path, that we have already added to A02, it goes to the

same state.

• If it leads to a state on a b-cycle in A, it will go to the state in b-cycle as follows.

Let q[pi] be the state on the b-cycle the b-path leads to and di distance from q[pi]

to q[λ2 − 1]. In A2, the path will go to state q[λ′
2 − 1− (di mod λ′

2)].

Now we prove that L[qi]1 and L[qi]2 decompose L[qi]. Corresponding bicyclic language

identifying states q′i and q′′i are similar as in the previous case. Path starting in qi leads

4.1. BICYCLIC LANGUAGES 43

to b-cycle to state q[pi]. Let µ[qi] be the length of the b-path with qi. In A1 it accepts

extra words in the accepting state q[λ2 − 1], so

L[qi]1 = L[qi] ∪ L[q1]
a{bn | n = µ[qi] + kλ2 + di, k ∈ N}.

In A2, the not accepting state q[λ′
2− 1] is at distance di mod λ′

2 from where the paths

ends, so

L[qi]2 = L[qi]
′ ∪ L[qi]

a{bn | n ̸= µ[qi] + kλ′
2 + (di mod λ′

2), n ≥ µ[qi], k ∈ N},

where L[qi]
′ ⊆ L[qi] are the words accepted on the b-path. Because of requirement (ii)

from Theorem 1.2, states {q[kλ′
2 − 1] | k ∈ N+} in b-cycle A and A1 are not accepting.

Therefore for L[qi] it holds that

L[qi] ∩ {a∗}{bn | n = µ[qi] + kλ′
2 + (di mod λ′

2), k ∈ N} = ∅.

Let us denote L[q1]
a{bn | n = µ[qi] + kλ2 + di, k ∈ N} as L[qi](λ2) and

L[qi]
a{bn | n ̸= µ[qi] + kλ′

2 + (di mod λ′
2), n ≥ µ[qi], k ∈ N} as L[qi](̸= λ′

2).

L[qi]1 ∩ L[qi]2 = (L[qi] ∪ L[qi](λ2)) ∩ (L[qi]
′ ∪ L[qi](̸= λ′

2)) =

(L[qi] ∩ L[qi]
′) ∪ (L[qi] ∩ L[qi](̸= λ′

2)) ∪ (L[qi](λ2) ∩ L[qi]
′) ∪ (L[qi](λ2) ∩ L[qi](̸= λ′

2)) =

L[qi]
′ ∪ (L[qi]− L[qi]

′) ∪ ∅ ∪ ∅ = L[qi]

Number of states: From the construction, it is evident, that sc(A1) = sc(A)−|µ2−µ12|

and sc(A2) = sc(A)− λ2 + λ′
2.

µ2 = 0 and Lb
0 is decomposable via Theorem 1.4

Ab
01 has size (λ21, 0) and Ab

02 has size (λ22, 0). Let µ[qi] be a length of a b-path with qi.

Then it holds that L[qi] = L[qi]
′ ∪ L[qi]

a{bµ[qi]}L[qi]′′, where L[qi]
′ are words accepted

on the b-path and L[qi]
′′ is a properly λ2-cyclic language. According to Lemma 1.1

L[qi]
′′ is decomposable to λ21-cyclic and λ22-cyclic languages, which we shall call L[qi]′′1

and L[qi]
′′
2. Adding b-paths to A01 and A02:

• If a b-path leads to a state on a cycle in A, that state is initial state for some

λ2-cyclic language L[qi]
′′. In A01, which has cycle size λ21, there is a state, which

is initial state of L[qi]′′1. We add the b-path to this state. The same for A02.

44 CHAPTER 4. OTHER ab LANGUAGES

• If a b-path joins another b-path, that we have already added, we add it to the

same state.

Now we prove that L[qi]1 and L[qi]2 decompose L[qi]. For L[qi]1 it holds that L[qi]1 =

L[qi]
′ ∪ L[qi]

a{bµ[qi]}L[qi]′′1. Similarly L[qi]2 = L[qi]
′ ∪ L[qi]

a{bµ[qi]}L[qi]′′2.

L[qi]1 ∩ L[qi]2 = (L[qi]
′ ∪ L[qi]

a{bµ[qi]}L[qi]′′1) ∩ (L[qi]
′ ∪ L[qi]

a{bµ[qi]}L[qi]′′2) =

= L[qi]
′ ∪ (L[qi]

a{bµ[qi]}L[qi]′′1 ∩ L[qi]
′) ∪ (L[qi]

′ ∩ L[qi]
a{bµ[qi]}L[qi]′′1)∪

∪(L[qi]a{bµ[qi]}L[qi]′′1∩L[qi]a{bµ[qi]}L[qi]′′2) = L[qi]
′∪∅∪∅∪L[qi]a{bµ[qi]}(L[qi]′′1∩L[qi]′′2) =

= L[qi]
′ ∪ L[qi]

a{bµ[qi]}L[qi]′′ = L[qi].

Number of states: From the construction, it is evident, that sc(A1) = sc(A)− λ2 + λ21

and sc(A2) = sc(A)− λ2 + λ22.

4.2 All ab languages

For ab with more disconnected parts of b-part, we have only those results that follow

from results of bicyclic languages. First thing to notice, that each disconnected part

of b-part, i.e., each b-cycle or b-path that does not lead to a cycle identifies a bicyclic

language. The following proposition is without proof is easy to see.

Proposition 4.1. Let L be an ab language and n ∈ N the number of disconnected parts

of b-part of its minimal DFA. Then there exists n bicyclic languages such, that L is

their union.

Corollary 4.1. Let L be an ab language and A its minimal DFA. Let n be the number

of simple bicyclic language identifying states, which we label q1, q2, ...qn. Then there

exist n simple bicyclic languages L[q1], L[q2], ...L[qn] and a unary language L′ ⊆ a∗

such that L = L[q1] ∪ L[q2] ∪ ... ∪ L[qn] ∪ L′.

In terms of decomposition, the so far discovered properties of bicyclic languages hold

for any ab languages. We then have the following requirement for decomposability into

ab languages.

Theorem 4.1. Let L be an ab language, A its minimal DFA and L0 a simple bicyclic

language identified by some simple bicyclic language identifying state of A. Let Lb
0 ∈

4.2. ALL ab LANGUAGES 45

Ddet and its minimal DFA has size (λ2, µ2). If either µ2 ̸= 1 or Lb
0 is decomposable

into automata with cycles smaller than λ2 or La
0 = La and is finite, then L ∈ Ddet.

Proof. The proof is almost identical to the proof of Lemma 4.2, except there may be

other disconnected parts of b-part in A, which we add to A1 and A2.

Chapter 5

General decomposition of ab languages

In this chapter we discuss decomposition of ab languages into not necessary ab lan-

guages. Here we use the version of DFA with a total transition function and the dead

state.

Example 5.1. Consider any ab language, for example L = {a3k+4b2l | k, l ∈ N} ∪

{a3kbl+1 | k, l ∈ N}∪{ε}, whose minimal DFA with total transition function is depicted

in Figure 5.1. Let us delete the dead state and define the missing transitions into the

existing states. By this we construct a new language, L1, which is not an ab language.

If we can use different, simpler, ab language L2 to ’filter’ the good words from L1,

we successfully decompose L. We construct the L1 as follows: Transitions on a from

states in b-part, that previously led to the dead state, will lead to the initial state.

Transitions on b from states in a-part, that previously led to the dead state, will lead

to the same state as transitions on a. DFA accepting L1 constructed by this method

is shown in Figure 5.1. Apart from words that are not in a∗b∗, L1 contains additional

words in a∗b∗ and not in L, if the computation starts reading b sooner in the a-part.

To filter these, L2 needs to preserve the structure of a-part. The b-part then can be

simplified. DFA accepting L2 is shown in Figure 5.1. The condition that was needed

for this decomposition is that b-part has at least two states and that there is no state

other than the dead state that has both transitions into the dead state.

From this example we can form a condition for decomposition.

Proposition 5.1. Let L be an ab language such, that b-part of its minimal DFA has

at least two states and there exists no state other than the dead state from which all

transitions lead to the dead state. Then L ∈ Ddet.

47

48 CHAPTER 5. GENERAL DECOMPOSITION OF ab LANGUAGES

q0 q1 q2

q3

q4 q5 q6

q7

qD
a a

a

a

a
b

b

b

b

b

aa

a

b

a, b

A

q0 q1 q2

q3

q4 q5 q6

q7

a a, b

a, b

a

a b

b

b

b

b

a

a

a

A1

q0 q1 q2

q3

q4

q5 qD
a a

a

a

a b

b

b

b

a

b

a, b

A2

Figure 5.1: Type 1 general decomposition

49

Proof. Let A = (K,Σ, δ, q0, F) be the minimal DFA accepting L and qD be its dead

state. Let A1 be a DFA accepting L1 defined as follows: A1 = (K − {qD},Σ, δ1, q0, F),

where

∀q, p ∈ K, p ̸= qD : δ(q, a) = p ⇔ δ1(q, a) = p; δ(q, b) = p ⇔ δ1(q, b) = p;

δ(q, a) = qD ⇒ δ1(q, a) = q0; δ(q, b) = qD ∧ δ(q, a) = p ⇒ δ1(q, b) = p.

Let A2 be a DFA accepting L2 defined as follows:

A2 = (Ka ∪ {qb, qD},Σ, δ2, q0, (F ∩Ka) ∪ {qb}), where

∀q, p ∈ Ka∀r ∈ Kb : δ(q, a) = p ⇔ δ2(a, b) = p; δ(q, b) = p ⇔ δ2(q, b) = p

δ2(qb, b) = qb; δ(q, b) = r ⇒ δ2(q, b) = qb; δ(q, a) = r ⇒ δ2(q, a) = r

The rest of transitions in δ2 that are not defined above lead to qD. We claim

that L1 and L2 decompose L. The state complexity is: sc(A1) = sc(A) − 1 and

sc(A2) = sc(A)+1−|Kb|. Since |Kb| ≥ 2, sc(A2) < sc(A). Now we prove L1∩L2 = L.

L ⊆ L1 ∩ L2: Let w ∈ L. Then there exists qF ∈ F such that (q0, w) ⊢∗
A (qF , ε).

The same computation is valid in A1, so (q0, w) ⊢∗
A1

(qF , ε) ⇒ w ∈ L1. For L2, let us

split the computation in state where the last a is read. Let w = uv, u = an, v = bm, for

some n,m. Then there exists state q, such that (q0, uv) ⊢∗
A (q, v) ⊢∗

A (qF , ε). If q /∈ Ka,

the last state is replaced by qb in A2 and (q0, uv) ⊢∗
A2

(qb, ε). Otherwise the first part of

the computation is the same in A2, so (q0, uv) ⊢∗
A2

(q, v). If v = ε, then q = qF ∈ Ka

so w ∈ L2. Otherwise there exists a state p ∈ Kb, (q, bm) ⊢A (p, bm−1) ⊢∗
A (qF , ε).

Then, if p ∈ Kb, δ2(q, b) = qb, so (q, bm) ⊢∗
A2

(qb, ε) ⇒ w ∈ L2. If, however, p ∈ Ka,

then δ(p, a) = qD, so the next state in the computation is in Kb. Let it be r, i.e.,

(p, bm−1) ⊢A (r, bm−2) ⊢∗
A (qF , ε). It holds that δ2(p, b) = qb, so (r, bm−2) ⊢∗

A2
(qF , ε) and

w ∈ L2.

L1∩L2 ⊆ L: Let w ∈ L1∩L2. Since L2 is an ab language, w = uv, u = an, v = bm for

some n,m. Then there exist states q1, qF1, q2, qF2, p2, such that (q0, uv) ⊢∗
A1

(q1, v) ⊢∗
A1

(qF1, ε) and (q0, uv) ⊢∗
A2

(q2, v) ⊢A2 (p2, b
m−1) ⊢∗

A2
(qF2, ε). From the definition of A1 we

can see that it reads words consisting of only a the same way as A, so (q0, uv) ⊢∗
A (q1, v).

If q1 ∈ Ka, then q2 = q1 and the first part of the computation of A2 is identical to those

of A1 and A2. If v = ε, then q1 = q2 = qF1 = qF2 and w ∈ L. Otherwise, if p2 = qb,

then qF2 = qb and (q2, b
m) ⊢A2 (qb, b

m−1) ⊢∗
A2

(qb, ε). The transition δ2(q2, b) = qb is

50 CHAPTER 5. GENERAL DECOMPOSITION OF ab LANGUAGES

defined only in such states of Ka, where there exists a transition on b to a state in

Kb in A. Then there exists such transition in A1 as well and in A1, the computation

follows: (q1, v) ⊢∗
A1

(qF , ε). The same computation is in A: (q1, v) ⊢∗
A (qF , ε), so w ∈ L.

If p2 ̸= qb, then it must hold that δ2(p2, b) = qb. With the same reasoning as above,

it holds that (q1, v) ⊢A (p2, b
m−1) ⊢∗

A (qF , ε), so w ∈ L.

If q1 ∈ Kb in A, then q2 = qb. The computation in A1, (q1, v) ⊢∗
A1

(qF1, ε), is the

same in A, (q1, v) ⊢∗
A (qF1, ε), and w ∈ L.

There exists another case of decomposition, which decomposes some of the lan-

guages not decomposable by the previous proposition. Recall how the automata for

the simple bicyclic languages were constructed in Definition 4.1. If Lb has a tail or La

is finite, then we are able to merge the final states of Aa with the initial state of Ab.

But this was not the case when La is infinite and Lb has no tail. What would happen

if we did it in this case as well? It would result in two intertwined cycles, which would

allow the computation to return to the a-cycle after reading symbols b in the b-cycle.

If we could filter only those words, where this does not happen, we obtain the language

L. To filter we do not need any other language than a∗b∗.

Example 5.2. We show this decomposition on the language L = {a3kb3l | k, l ∈ N}.

Its minimal DFA is shown in Figure 5.2. The automata for decomposing languages are

also shown. We have omitted the dead state from the graphs of A and A1, as it is not

necessary in this decomposition case and graphs are simpler. In this case we obtain

L1 = L∗, but this is usually not the case.

q0

q1

q2

p1

p2

p0a

a

a

b

b

b

b

A

q0

q1

q2 p1

p2a

a

a

b

b

b

A1

q0 q1

a

b

b

A2

Figure 5.2: Type 2 general decomposition

This decomposition does not need a simple bicyclic language, as long as there is a

b-cycle that has no tail. Now we formally prove this condition for decomposition.

Proposition 5.2. Let L be an ab language other that a∗b∗. If there exists a simple

bicyclic language L0 ⊆ L such that:

51

1. Lb
0 is λ2-cyclic for some λ2, i.e., minimal DFA for Lb

0 has size (λ2, 0).

2. There exists a state in a-part such, that transition on b from this state leads to

the b-cycle of Lb
0.

Then L ∈ Ddet

Proof. Let A = (K,Σ, δ, q0, F) be the minimal DFA accepting L and qa, q[0], ...q[λ2 −

1] ∈ K be the states such that: qa ∈ Ka, q[0]...q[λ2 − 1] are the states of the b-cycle

corresponding to Lb
0 and δ(qa, b) = q[1] (δ(qa, b) = q[0] in case λ2 = 1).

Let A1 be a DFA accepting L1 defined as follows: (K −{q[0]},Σ, δ′, q0, F −{q[0]}),

where δ′(q[λ2 − 1], b) = qa and the rest of δ′ is the same as δ (δ′(qa, b) = qa in case

λ2 = 1). The second decomposing language, L2, is a∗b∗. Its minimal DFA has 3 states.

Because of the second requirement and the fact that L ̸= a∗b∗, A has more than 3

states. To prove that L1 and L2 decompose L, we only need to prove L1 ∩ L2 = L.

L ⊆ L1 ∩ L2: L ⊆ L2 is obvious. Let w ∈ L. Then there exists qF ∈ F such that

(q0, w) ⊢∗
A (qF , ε). If the computation does not use any of the states q[0]...q[λ2−1], then

the computation is identical in A1: (q0, w) ⊢∗
A1

(qF , ε), so w ∈ L1. Otherwise, w = anbm

for some n and m ≥ 1 and there is q ∈ Ka such that (q0, a
nbm) ⊢∗

A (q, bm) ⊢∗
A (qF , ε).

The first part of the computation is identical in A1. In the other part, replace q[0]

with qa and the computation exists in A1: (q0, anbm) ⊢∗
A1

(q, bm) ⊢∗
A1

(qF , ε). Therefore

w ∈ L1.

L1 ∩ L2 ⊆ L: Let w ∈ L1 ∩ L2. Since w ∈ L2, w = anbm for some n,m. That

means once the transition δ′(qa, b) = q[1] is used, the computation does not leave the

states q[1]...q[λ2 − 1] and qa. There exists qF ∈ F such that (q0, w) ⊢∗
A1

(qF , ε). If the

computation does not use any of the states q[1]...q[λ2 − 1], nor transition on b from qa

(in case λ2 = 1), then the computation is identical in A: (q0, w) ⊢∗
A (qF , ε), so w ∈ L.

Otherwise m ≥ 1 and there is q ∈ Ka such that (q0, anbm) ⊢∗
A1

(q, bm) ⊢∗
A1

(qF , ε). The

first part of the computation is identical in A. In the other part, replace qa with q[0] and

the computation exists in A: (q0, a
nbm) ⊢∗

A (q, bm) ⊢∗
A (qF , ε). Therefore w ∈ L1.

Conclusion

In this thesis, we studied usefulness of information for regular languages bounded

by a∗b∗. We continued the research of usefulness of additional information for regular

languages as a decomposability of deterministic finite automata. The previous research

has been done for unary regular languages and we expanded on this work with regular

languages bounded by a∗b∗. We call these languages ab languages. To study the

deterministic decomposability of ab languages, it was necessary to explore how the

minimal DFA of ab languages can look like. We also defined an important operation

for ab languages, that cuts the words of a language L to obtain two unary languages

La and Lb.

We studied two types of decomposability of ab languages. A general decompos-

ability, into arbitrary regular languages, and a decomposability into ab languages. for

the second type we use alternative definition of DFA with partial transition function,

where the computation can block.

For the decomposability into ab languages, we defined a subfamily of ab languages

called simple bicyclic languages. They are accepted by automata constructed by ‘con-

catenating’ two UDFAs, one over {a} and the other over {b}. These languages have

many useful properties. A simple bicyclic language L is a concatenation of the two

unary languages defining it, and these unary languages are also the images of L under

homomorphisms defining La and Lb, i.e., L = LaLb. We showed that any ab language

for which it holds that L = LaLb is a simple bicyclic language. Another useful prop-

erty of decomposition is that the construction an automaton of simple bicyclic language

from two minimal UDFAs preserves the minimality of the automaton.

We studied decomposability of simple bicyclic languages into ab languages and

found three distinct ways a simple bicyclic language can be decomposed. The first

uses the property that L = LaLb, where we can replace one of the unary languages

53

54 Conclusion

by the simplest unary language - in one decomposing language we replace La by a∗

and in the other language we replace Lb by b∗. The second type of decomposition

uses the decomposition of La. Here we concatenate the automaton of Lb to the two

automata accepting languages decomposing La. The third decomposition is similar to

the previous but uses the decomposability of Lb. We proved sufficient conditions for

these three types of decomposition and proved that they are also necessary conditions

for decomposition into ab languages. Thus we characterised simple bicyclic languages

upon decomposability into ab languages.

For other ab languages we showed that they are a union of several simple bicyclic

languages and a unary language over {a}. We showed, that if we pick one of these

simple bicyclic languages, L0, and decompose it via decomposition of Lb
0, the original

ab language can be decomposed as well. Apart from few cases, we can add b-paths and

b-cycles to the automata accepting languages decomposing L0 to construct a decom-

position of the whole ab-language. We tried the same idea with decomposition of La
0,

but it does not work for all ab languages. However, there exist ab languages not simple

bicyclic, where decomposing via the decomposition of one of the unary languages over

{a} works. To describe when it works and when it does not remains an open problem,

which we can continue to study. The decomposition by replacing La by a∗ and Lb by b∗

does not work for ab languages that are not simple bicyclic. Besides the aforementioned

decomposition via La
0, we could study whether there are other types of decomposition

of ab languages into ab languages that we have not yet discovered. For example whether

there exist ab languages with automata with multiple b-cycles, whose decomposition

reduces the number of b-cycles in the decomposing automata. After finding all types

of decomposition we could characterise all ab languages upon decomposability into ab

languages.

We also studied general decomposability of ab languages and found two types of

decomposition. The first type utilizes the necessity of dead state in classical definition

of DFA where the transition function is total. In one of the decomposing automata,

we remove the dead state and define the missing transitions into existing states. The

second type of decomposition intertwines an a-cycle and a b-cycle in one of the au-

tomata. The second automaton of both types filters correct words from the language

accepted by the first one. These two types of decomposition do not work on all ab

Conclusion 55

languages, we could therefore search for other types of decomposition. After finding all

of them we could characterise regular languages bounded by a∗b∗ upon deterministic

decomposability.

Bibliography

[1] Giovanni Pighizzini, Branislav Rovan, and Šimon Sádovský. “Usefulness of in-

formation and decomposability of unary regular languages.” In: Information and

Computation (2022), p. 104868.

[2] Branislav Rovan and Šimon Sádovský. “On usefulness of information: framework

and NFA case.” In: Adventures Between Lower Bounds and Higher Altitudes.

Springer, 2018, pp. 85–99.

[3] Cyril Nicaud. “Average State Complexity of Operations on Unary Automata.”

In: Mathematical Foundations of Computer Science 1999. Ed. by Mirosław Ku-

tyłowski, Leszek Pacholski, and Tomasz Wierzbicki. Vol. 1672. Lecture Notes in

Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 231–

240. isbn: 978-3-540-48340-3. doi: 10.1007/3-540-48340-3_21.

[4] Giovanni Pighizzini and Jeffrey Shallit. “Unary language operations, state com-

plexity and Jacobsthal’s function.” In: International Journal of Foundations of

Computer Science 13.1 (2002), pp. 145–159. doi: 10.1142/S012905410200100X.

57

https://doi.org/10.1007/3-540-48340-3_21
https://doi.org/10.1142/S012905410200100X

	Introduction
	Decomposability of unary regular languages
	Languages bounded by a* b*
	Simple bicyclic languages
	Decomposability into ab languages

	Other ab languages
	Bicyclic languages
	All ab languages

	General decomposition of ab languages
	Conclusion

