Faculty of Mathematics, Physics and Informatics

USEFULNESS OF INFORMATION FOR NON-UNARY LANGUAGES

Bachelor Thesis

USEFULNESS OF INFORMATION FOR NON-UNARY LANGUAGES

Bachelor Thesis

Study Programme:	Computer Science
Field of Study:	Computer Science
Department:	Department of Computer Science
Supervisor:	prof. RNDr. Branislav Rovan, PhD.

Bratislava, 2023
Andrej Ravinger

Univerzita Komenského v Bratislave

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta:
Študijný program:
Študijný odbor:
Typ záverečnej práce: Jazyk záverečnej práce: Sekundárny jazyk:

Andrej Ravinger
informatika (Jednoodborové štúdium, bakalársky I. st., denná forma)
informatika
bakalárska
anglický
slovenský
$\begin{array}{ll}\text { Názov: } & \text { Usefulness of information for non-unary languages } \\ & \text { Užitočnost' informácie pre neunárne jazyky }\end{array}$
Anotácia: Práca bude pokračovaním skúmania pojmu užitočnosti informácie. Doterajšie výsledky boli často dosiahnuté pre jazyky nad unárnou abecedou. Ciel’om práce je skúmat' užitočnost' informácie pre triedy jazykov nad abecedami s viac symbolmi. Napríklad pre ohraničené jazyky.
Ciel': \quad Práca bude pokračovaním skúmania pojmu užitočnosti informácie. Doterajšie výsledky boli často dosiahnuté pre jazyky nad unárnou abecedou. Ciel'om práce je skúmat' užitočnost' informácie pre triedy jazykov nad abecedami s viac symbolmi. Napríklad pre ohraničené jazyky.

Vedúci: prof. RNDr. Branislav Rovan, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.
Spôsob sprístupnenia elektronickej verzie práce:
bez obmedzenia
Dátum zadania: 12.10.2022
Dátum schválenia: 13.10.2022
doc. RNDr. Dana Pardubská, CSc. garant študijného programu

Comenius University Bratislava

THESIS ASSIGNMENT

Name and Surname:
Study programme:
Field of Study:
Type of Thesis:
Language of Thesis:
Secondary language:

Andrej Ravinger
Computer Science (Single degree study, bachelor I. deg., full time form)
Computer Science
Bachelor's thesis
English
Slovak

Title: Usefulness of information for non-unary languages
Annotation: This thesis shall continue the research of the notion of usefulness of information. Many of the existing results were achieved for languages over unary alphabet. The main goal of this thesis is to study usefulness of information for families of languages over alphabets with more symbols. For example for bounded languages.
Aim: \quad This thesis shall continue the research of the notion of usefulness of information. Many of the existing results were achieved for languages over unary alphabet. The main goal of this thesis is to study usefulness of information for families of languages over alphabets with more symbols. For example for bounded languages.

Supervisor:	
Department:	
Head of department:	prof. RNDr. Branislav Rovan, PhD. FMFI.KI - Department of Computer Science prof. RNDr. Martin Škoviera, PhD.
Assigned:	12.10 .2022

Approved:	13.10 .2022		
			doc. RNDr. Dana Pardubská, CSc.
:---			
Guarantor of Study Programme			

Acknowledgment: I would like to thank my supervisor prof. RNDr. Branislav Rovan, PhD . for his guidance, advice, and language corrections in work.

Abstract

Abstrakt

Táto práca pokračuje vo výskume pojmu užitočnosti informácie. Prídavná informácia niekedy zjednoduší riešenie problému. Toto sa dá formalizovat' pomocou formálnych jazykov, deterministických konečných automatov a rozkladu jazyka. Deterministická rozložitel’nost' unárnych regulárnych jazykov bola už skúmaná [1] a my pokračujeme vo výskume deterministickej rozložitel’nosti regulárnych jazykov ohraničených $a^{*} b^{*}$ (jazykov, ktoré sú podmnožina $a^{*} b^{*}$). Skúmame dva typy rozložitel’nosti: do takých regulárnych jazykov, ktoré sú ohraničené $a^{*} b^{*}$ a do l’ubovol’ných regulárnych jazykov. Definujeme podtriedu jazykov ohraničených $a^{*} b^{*}$, ktoré charakterizujeme vzhl’adom na rozložitel’nost' do jazykov ohraničených $a^{*} b^{*}$. Uvádzame tiež niektoré postačujúce podmnienky na rozložitel'nost' pre ostatné jazyky ohraničené $a^{*} b^{*}$ a nejaké postačujúce podmienky pre rozložitel’nost́ do l’ubovol’ných jazykov.

Kl’účové slová: Užitočnost' informácie, Rozložitel'nost̛, Deterministické konečné automaty, Stavová zložitost', Ohraničené jazyky

Abstract

This thesis continues the research of the usefulness of information. Additional information can sometimes simplify a solution to a problem. This can be formalized using formal languages, deterministic finite automata and decomposition of a language. The deterministic decomposition of unary regular languages has already been studied [1] and we continue the research on decomposition of regular languages bounded by $a^{*} b^{*}$ (languages that are a subset of $a^{*} b^{*}$). We study two types of deterministic decomposition: into regular languages that are bounded by $a^{*} b^{*}$ and into arbitrary regular languages. We define a subfamily of languages bounded by $a^{*} b^{*}$ which we characterise upon decomposability into languages bounded by $a^{*} b^{*}$. We also present some sufficient conditions for decomposability for other languages bounded by $a^{*} b^{*}$ and some sufficient conditions for decomposability into arbitrary regular languages.

Keywords: Usefulness of information, Decomposability,
Deterministic finite automata, State complexity, Bounded languages

Contents

Introduction 1
1 Decomposability of unary regular languages 3
2 Languages bounded by $a^{*} b^{*}$ 11
3 Simple bicyclic languages 15
3.1 Decomposability into $a b$ languages 22
4 Other ab languages 35
4.1 Bicyclic languages 35
4.2 All $a b$ languages 44
5 General decomposition of $a b$ languages 47
Conclusion 53

Introduction

In this thesis we continue to study the aspect of the usefulness of additional information which has been studied for many years. We follow up on work made by Pighizzini, Rovan and Sádovský [1].

When solving a problem, we can receive additional information. We say that additional information is useful if it can help us solve a problem easier. We need to put bounds to the amount of additional information we receive. Having an information about the entire solution of a problem would not help solving the problem easier, because that would just transfer the task to the source of the information. To study this aspect of information, we need to clarify questions such as what is a problem, what does it mean to solve a problem and how to detect, when additional information helps us solve a problem easier.

In the theory of formal languages, we say that a problem is knowing, whether a word w belongs to a language L. The additional information, or advice is knowledge that w belongs to a different language $L_{a d v}$. What does it mean to solve the problem easier and what are the restrictions on advice depends on the family of languages and model we are working with.

With regular languages and deterministic finite automata we measure the complexity of solving the problem by number of states of the minimal deterministic finite automaton (DFA) accepting the language. The minimal deterministic automaton accepting a language is a DFA with the fewest states, i.e., there exists no automaton accepting that language with fewer states. The language L is defined by minimal DFA A and $L_{a d v}$ by $A_{a d v}$. The restriction on $A_{a d v}$ is that it has to have fewer states than A. With this advice we want to find a simpler DFA $A_{\text {new }}$ accepting $L_{\text {new }}$, such that if $w \in L_{\text {adv }}$ and $w \in L_{\text {new }}$ then $w \in L$. We also want this advice to work for every word belonging to L, i.e., if $w \in L$ then $w \in L_{\text {adv }}$ and $w \in L_{\text {new }}$. We can write this as
$L_{\text {adv }} \cap L_{\text {new }}=L$.
Let us illustrate this on a simple example. The language $L=\left\{a^{6 k} \mid k \in \mathbb{N}\right\}$ is a language of words of length divisible by 6 . The minimal DFA accepting this language has 6 states. However, if we know that the input word has even length, we only need to check that its length is divisible by 3. This gives us $L_{a d v}=\left\{a^{2 k} \mid k \in \mathbb{N}\right\}$, $L_{\text {new }}=\left\{a^{3 k} \mid k \in \mathbb{N}\right\}$. $A_{\text {adv }}$ only needs two states and $A_{\text {new }}$ three states. With this advice, we have solved the problem easier.

Since the condition on $L_{a d v}$ and $L_{\text {new }}$ is the same - having a simpler minimal DFA, there is no difference on which is the advice language and which is the new one. We can therefore denote these languages L_{1} and L_{2}. We say that these languages decompose L. Studying usefulness of information on regular languages basically means studying, whether a language is decomposable into simpler languages.

Besides deterministic finite automata, aspect of useful information has been studied using other models or different ways the advice is given. For example nondeterministic finite automata, deterministic pushdown automata (advice is still regular language), advice being received at some time during the computation or advice that had to be first translated by a transducer. More information on other studies can be found in Rovan's and Sádovský's article Framework [2].

In this thesis we continue the resarch by Pighizzini, Rovan and Sádovský about unary regular languages [1], and study a subfamily of non-unary regular languages.

Chapter 1

Decomposability of unary regular
 languages

In this chapter, we summarize the results in deterministic decomposability by Pighizzini, Rovan and Sádovský [1]. These results are necessary for our work. First, we formally define deterministic decomposability.

Notation 1.1. [1] We denote number of states of DFA A by $s c(A)$.

Definition 1.1. [1] Let A be a DFA. We say that two DFAs A_{1} and A_{2} form a decomposition of A if $L(A)=L\left(A_{1}\right) \cap L\left(A_{2}\right), s c\left(A_{1}\right)<s c(A)$ and $s c\left(A_{2}\right)<s c(A)$. In case such decomposition of A exists we say that A is decomposable.

Definition 1.2. [1] Let L be a regular language. We say that L is deterministically decomposable if the minimal DFA accepting L is decomposable.

Notation 1.2. [1] We denote the family of all deterministically decomposable regular languages by $\mathcal{D}_{\text {det }}$.

One can observe, that deterministic finite automata over a unary alphabet (UDFA), have similar shape. Since there is only one input symbol and the automaton is deterministic, the sequence of states in a computation may return to some previous state in the sequence (must, if the automaton accepts infinite language) and from there on it continues in this cycle. We call the part of the path before the cycle a tail. The following definitions explain this more precisely and Figure 1.1 shows graph of unary DFA.

Figure 1.1: [1] Unary DFA of size (λ, μ)

Definition 1.3. [1] The size of a UDFA A is the pair (λ, μ) where λ is the number of states in the cycle of A and μ is the number of states in the tail of A.

Notation 1.3. [1] When we say that we consider UDFA $A=(K,\{a\}, \delta, q[0], F)$ of size (λ, μ), then, if it is not stated otherwise, we implicitly mean that $K=\{q[i] \mid i \in \mathbb{N} ; 0 \leq$ $i<\lambda+\mu\}$ and for the transition function δ it holds that $(\forall i \in \mathbb{N}, 0 \leq i<\mu) \delta(q[i], a)=$ $q[i+1]$ and $\left(\forall j \in \mathbb{Z}_{\lambda}\right) \delta(q[\mu+j], a)=q[\mu+(j+1) \bmod \lambda]$.

Definition 1.4. [1] Let L be a unary infinite language and $\lambda \in \mathbb{N}$. We say that L is λ-cyclic if there exists a UDFA A of the size $(\lambda, 0)$ such that $L(A)=L . L$ is called properly λ-cyclic if it is λ-cyclic, but not λ^{\prime}-cyclic for any $\lambda^{\prime}<\lambda$. We say that L is ultimately λ-cyclic if for some $\mu \in \mathbb{N}$ there exists a UDFA A of the size (λ, μ) such that $L(A)=L . L$ is called properly ultimately λ-cyclic if it is ultimately λ-cyclic, but not ultimately λ^{\prime}-cyclic for any $\lambda^{\prime}<\lambda$.

Since we are doing decomposition, which uses minimal automata, it would be useful to know when an automaton is minimal. Here we present a characterisation of minimal UDFA.

Theorem 1.1 (Minimal UDFA characterization,[3],[4]). A UDFA $A=(K,\{a\}, \delta, p[0]$, $F)$ of size (λ, μ) is minimal if and only if both of the following conditions hold:
(i) for any proper divisor $d \in \mathbb{N}$ of λ (i.e., $\lambda=\alpha \cdot d$ for some $\alpha \in \mathbb{N}$ such that $\alpha>1$) there exists $h \in \mathbb{Z}_{\lambda}$, such that $p[\mu+h] \in F$ if and only if $p[\mu+((h+d) \bmod \lambda)] \notin F$, i.e., $a^{\mu+h} \in L$ if and only if $a^{\mu+h+d} \notin L$.
(ii) (If $\mu>0$ then) $p[\mu-1] \in F$ if and only if $p[\mu+\lambda-1] \notin F$, i.e., $a^{\mu-1} \in L$ if and only if $a^{\mu+\lambda-1} \notin L$.

The first condition states that the cycle cannot be made smaller. The second states when the last cycle of the tail cannot be 'rolled in', i.e., merged with the last state of the cycle.

As seen in Definition 1.4 Pighizzini, Rovan and Sádovský have divided unary regular languages into two sub-families, based on whether their minimal DFA has nonzero length tail or no tail - ultimately λ-cyclic languages with $\mu>0$ and λ-cyclic languages. They characterized each class upon deterministic decomposability. We present these results, but first we illustrate them on concrete examples.

Example 1.1. Let $L=\left\{a^{3 k+r} \mid k \in \mathbb{N}, r \in\{3,4\}\right\}$. Its minimal DFA is shown in Figure 1.2. We could 'roll in' the last state of the tail into the cycle and get automaton A_{1} accepting $L\left(A_{1}\right)=\left\{a^{3 k+r} \mid k \in \mathbb{N}, r \in\{1,3\}\right\}=L \cup\{a\}$. We can 'filter out' a with automaton $A_{2}, L\left(A_{2}\right)=\left\{a^{k} \mid k>1\right\} . A_{1}$ and A_{2} are depicted in Figure 1.2. It is clear that $L\left(A_{1}\right) \cap L\left(A_{2}\right)=L$ and since $s c\left(A_{1}\right)<s c(A)$ and $s c\left(A_{2}\right)<s c(A)$, we have successfully deterministically decomposed L.

Figure 1.2: Type 1 decomposition of ultimately λ-cyclic language

Ultimately λ-cyclic languages can also be decomposed in a different way, as shown in Example 1.2.

Example 1.2. Now consider language $L=\left\{a^{6 k+r} \mid k \in \mathbb{N}, r \in\{2,3\}\right\} \cup\{a, \varepsilon\}$. Its minimal DFA A is shown in Figure 1.3. If we tried to 'roll in' the last state of the tail, like in the previous example, we get $A_{2}, L\left(A_{2}\right)=\left\{a^{6 k+r} \mid k \in \mathbb{N}, r \in\{1,2,3\}\right\} \cup\{\varepsilon\}$. It holds that $L\left(A_{2}\right)=L \cup\left\{a^{6 k+7} \mid k \in \mathbb{N}\right\}$. Now we need to 'filter out' an infinite language using an automaton with fever states than A. This is possible with A_{2} accepting $L\left(A_{2}\right)=\left\{a^{3 k+r} \mid k \in \mathbb{N}, r \in\{0,2\}\right\} \cup\{a\} . A_{1}$ and A_{2} are depicted in Figure 1.3. Reader can verify that $L\left(A_{1}\right) \cap L\left(A_{2}\right)=L$. Since $s c\left(A_{1}\right)<s c(A)$ and $s c\left(A_{2}\right)<s c(A)$, we have deterministically decomposed L. We were able to do this thanks to the fact that the state $q[4]$ is not accepting in A. If it was, the words accepted there would have to be accepted in the state $q[4]$ in A_{2}. But $q[4]$ cannot be accepting in A_{2} to filter out extra words accepted by $L\left(A_{1}\right)$.

Figure 1.3: Type 2 decomposition of ultimately λ-cyclic language

Before we present the theorem, we mention that all properly ultimately 1-cyclic languages, which include all finite unary languages are not deterministically decomposable. This is trivial to prove.

Theorem 1.2. [1] Let L be a properly ultimately λ-cyclic language for some $\lambda \geq 2$ such that the minimal UDFA A accepting L has size (λ, μ) for some $\mu>0$. Then $L \in \mathcal{D}_{\text {det }}$ if and only if at least one of the following holds:
(i) $a^{\mu-1} \notin L$
(ii) there exists $\lambda^{\prime} \in \mathbb{N}$ such that $1<\lambda^{\prime}<\lambda$ and $\lambda^{\prime} \mid \lambda$ for which it holds that $L \subseteq$ $a^{*}-\left\{a^{\mu+k \lambda^{\prime}-1} \mid k \in \mathbb{N}^{+}\right\} .{ }^{1}$

From the proof of this theorem it follows that the two languages L_{1}, L_{2} that decompose L have minimal DFAs of sizes $\left(\lambda_{1}, \mu_{1}\right)$ and $\left(\lambda_{2}, \mu_{2}\right)$ respectively for which this holds: $\lambda_{1}=\lambda, \mu_{1}<\mu, \lambda_{2}<\lambda, \mu_{2}=\mu$. The cycle in the second automaton has size 1 ($\lambda_{2}=1$) if condition (i) holds and size λ^{\prime} if condition (ii) holds.

Now we present characterization of λ-cyclic languages. The example from Introduction $\left\{a^{3 k} \mid k \in \mathbb{N}\right\} \cap\left\{a^{2 k} \mid k \in \mathbb{N}\right\}=\left\{a^{6 k} \mid k \in \mathbb{N}\right\}$ is the simplest of these languages. Based on this example, we can form a simple theorem:

Theorem 1.3. [2] Let $n \in \mathbb{N}, L_{n}=\left\{a^{k n} \mid k \in \mathbb{N}\right\}$. The language L_{n} is decomposable if and only if n is not a power of a prime.

[^0]Sometimes we can decompose even if the minimal automaton has more than one accepting state.

Example 1.3. Let $L=\left\{a^{6 k+r} \mid k \in \mathbb{N}, r \in\{0,2\}\right\}$. For the remainder $r=0$ we know that we can decompose it into 2 and 3 -state automata with initial states of both being accepting. For $r=2$, initial state of two-state automaton accepts such words, because 2 is even. In the three state automaton, we need to mark state q_{2} as accepting. This gives us languages $L_{1}=\left\{a^{2 k} \mid k \in \mathbb{N}\right\}$ and $L_{2}=\left\{a^{3 k+r} \mid k \in \mathbb{N}, r \in\{0,2\}\right\} ;$ $L_{1} \cap L_{2}=L$. The minimal automata accepting these languages are shown in Figure 1.4.

Consider now the language $L^{\prime}=\left\{a^{6 k+r} \mid k \in \mathbb{N}, r \in\{0,1\}\right\}$, similar to L but with one of the remainders changed. If we were to decompose L^{\prime} to 2 and 3 -state automata, we would need to mark both states of the two-state automaton as accepting and two states of the three-state automaton as accepting. This would not work correctly. L^{\prime} is not deterministically decomposable.

A

A_{1}

A_{2}

Figure 1.4: Decomposition of λ-cyclic language

Using graph theory it can be specified when the decomposition such as in Example Example 1.3 can (cannot) be found. If we want to decompose a λ-cyclic language L to λ_{1} and λ_{2}-state automata A_{1} and A_{2}, we create a bipartite graph defined as follows:

Definition 1.5. [1] Let L be a properly λ-cyclic language for some $\lambda \in \mathbb{N}$ and let $\lambda_{1}, \lambda_{2} \in \mathbb{N}$. The bipartite graph induced by L, λ_{1} and λ_{2} is the bipartite graph $G_{L, \lambda_{1}, \lambda_{2}}=$ $\left(\mathbb{Z}_{\lambda_{1}}, \mathbb{Z}_{\lambda_{2}}, E\right)$ where the set of edges E is defined as follows:

$$
\begin{gathered}
E=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in \mathbb{Z}_{\lambda_{1}} ; r_{2} \in \mathbb{Z}_{\lambda_{2}} ;\right. \\
\left.(\exists m \in \mathbb{N}) m \equiv r_{1}\left(\bmod \lambda_{1}\right) \wedge m \equiv r_{2}\left(\bmod \lambda_{2}\right) \wedge a^{m} \in L\right\}
\end{gathered}
$$

For a vertex r let $d(r)$ denote its degree. Let $V_{1}^{\prime}=\left\{r \in \mathbb{Z}_{\lambda_{1}} \mid d(r)>0\right\}$ and $V_{2}^{\prime}=\{r \in$ $\left.\mathbb{Z}_{\lambda_{2}} \mid d(r)>0\right\}$ be the sets obtained by removing all isolated vertices from $G_{L, \lambda_{1}, \lambda_{2}}$.

We say that the graph $G_{L, \lambda_{1}, \lambda_{2}}$ decomposes L if for all $\left(r_{1}, r_{2}\right) \in V_{1}^{\prime} \times V_{2}^{\prime}$ it holds that if there is some natural m such that $m \equiv r_{1}\left(\bmod \lambda_{1}\right)$ and $m \equiv r_{2}\left(\bmod \lambda_{2}\right)$, then G contains the edge (r_{1}, r_{2}), i.e.,

$$
\left(r_{1}, r_{2}\right) \in E \vee\left((\nexists m \in \mathbb{N}) m \equiv r_{1}\left(\bmod \lambda_{1}\right) \wedge m \equiv r_{2}\left(\bmod \lambda_{2}\right)\right) .
$$

Intuitively, the partitions of the bipartite graph correspond to states of the decomposing automata. We set the edges between the states as in definition and set the states with an edge as accepting in A_{1} and A_{2}. This ensures that $L \subseteq L\left(A_{1}\right) \cap L\left(A_{2}\right)$. The condition in the last line of the definition ensures that the two automata do not accept more words, i.e., $L\left(A_{1}\right) \cap L\left(A_{2}\right) \subseteq L$.

Let us see the bipartite graphs of the languages from Example 1.3 on Figure 1.5

Figure 1.5: Bipartite graphs

The characterization of λ-cyclic languages upon deterministic decomposability is summarized in the following theorem.

Theorem 1.4. [1] Let L be a properly λ-cyclic language for some $\lambda \in \mathbb{N}$. $L \in \mathcal{D}_{\text {det }}$ if and only if there exist $\lambda_{1}, \lambda_{2} \in \mathbb{N}$ such that $\lambda_{1}, \lambda_{2}<\lambda, \operatorname{lcm}\left(\lambda_{1}, \lambda_{2}\right)=\lambda$ and the bipartite graph $G_{L, \lambda_{1}, \lambda_{2}}$ induced by L, λ_{1} and λ_{2} decomposes L.

In the proof of this theorem, A_{1} and A_{2} are constructed from $G_{L, \lambda_{1}, \lambda_{2}}$ in the way explained above.

For properly λ-cyclic languages the following also holds: If L is decomposable into automata of sizes $\left(\lambda_{1}, 0\right)$ and $\left(\lambda_{2}, 0\right)$ and we move the initial state to different state in the cycle, the new language is also decomposable into automata of sizes $\left(\lambda_{1}, 0\right)$ and $\left(\lambda_{2}, 0\right)$. That means, that only the relative position of the accepting states matter to decomposability. First, we illustrate it by example.

Example 1.4. Suppose we move the initial state of automaton A from Example 1.3 to the state $q[3]$. We call this automaton A^{\prime} and it holds that $L\left(A^{\prime}\right)=L^{\prime}=\left\{a^{6 k+r} \mid k \in\right.$
$\mathbb{N}, r \in\{3,5\}\}$. The automaton A^{\prime} is shown on Figure 1.6. The distance from the new initial state to the old one is $d=3 . L$ is decomposable into L_{1} and L_{2}, with the corresponding automata A_{1} and A_{2}. We can move the initial state of these automata to obtain new languages L_{1}^{\prime} and L_{2}^{\prime} decomposing L. In A^{\prime}, the computation reads d symbols to reach the former initial state (the initial state of A). We want this to hold in A_{1}^{\prime} and A_{2}^{\prime} as well. They can have cycles smaller than d, so we move them such that the distance is $d \bmod \lambda_{i}, i \in\{1,2\}$. In $A_{2}^{\prime}, d \bmod \lambda_{2}$ is $3 \bmod 2$ which is 1 , so it moves to the other state. In $A_{1}^{\prime}, d \bmod \lambda_{1}$ is $3 \bmod 3$ which is 0 , so we do not move. We get languages $L_{1}^{\prime}=\left\{a^{2 k+1} \mid k \in \mathbb{N}\right\}$ and $L_{2}^{\prime}=\left\{a^{3 k+r} \mid k \in \mathbb{N}, r \in\{0,2\}\right\}$. It holds that $L_{1}^{\prime} \cap L_{2}^{\prime}=L^{\prime}$ so we have decomposed L.

Figure 1.6: Moving of initial state in λ-cyclic language

Lemma 1.1. Let L be a properly λ-cyclic language with minimal DFA $A=(K,\{a\}, \delta$, $q[0], F)$ that is decomposable into λ_{1}-cyclic language L_{1} and λ_{2}-cyclic language L_{2}. Let L^{\prime} be λ-cyclic language with minimal DFA $A^{\prime}=(K,\{a\}, \delta, q, F)$ where $q \in K$ is any state. Then L^{\prime} is also decomposable into λ_{1}-cyclic and λ_{2}-cyclic languages. It also holds that the automata of these decomposing languages are similar to the automata for L_{1} and L_{2} but the initial states are different.

Proof. Let A_{1} and A_{2} be the automata accepting L_{1} and L_{2}. Let d be the distance from the initial state of A^{\prime} to the initial state of A in the graph representation of A. If $q[i]$ is the initial state, then $d=(\lambda-i) \bmod \lambda$. Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ be the numbers belonging to the final states in A, i.e., $p \in P \Leftrightarrow q[p] \in F$. These are also the lengths of the words shorter than λ, that are in L. For A_{1} and A_{2} we define similar sets of numbers and call them R and S. It holds that $R=\left\{p \bmod \lambda_{1} \mid p \in P\right\}$ and $S=\{p$ $\left.\bmod \lambda_{2} \mid p \in P\right\}$. This holds from the definition of edges in Definition 1.5 and the fact
that the vertices with edges in the bipartite graph are final states in the decomposing automata. If we relabel the states of A^{\prime} so that $q[0]$ is initial, then the set of indices of final states, which we call P^{\prime}, is $P^{\prime}=\{(p+d) \bmod \lambda \mid p \in P\}$.

We shall denote the languages decomposing L^{\prime} by L_{1}^{\prime} and L_{2}^{\prime}, accepted by A_{1}^{\prime} and A_{2}^{\prime}. A_{1}^{\prime} is like A_{1}, but the initial state is $q\left[\left(\lambda_{1}-d\right) \bmod \lambda_{1}\right]$. Similarly, initial state of A_{2}^{\prime} is $q\left[\left(\lambda_{2}-d\right) \bmod \lambda_{2}\right]$. Now we relabel the sets like in A^{\prime} and define sets $R^{\prime}=\{(r+d)$ $\left.\bmod \lambda_{1} \mid r \in R\right\}$ and $S^{\prime}=\left\{(s+d) \bmod \lambda_{2} \mid s \in S\right\}$.

Now we prove $L_{1}^{\prime} \cap L_{2}^{\prime}=L^{\prime}$:

$$
\begin{gathered}
a^{n} \in L_{1}^{\prime} \cap L_{2}^{\prime} \Leftrightarrow \\
\Leftrightarrow\left(q[0], a^{n}\right) \vdash_{A_{1}^{\prime}}^{*}\left(q\left[r^{\prime}\right], \varepsilon\right) \wedge\left(q[0], a^{n}\right) \vdash_{A_{2}^{\prime}}^{*}\left(q\left[s^{\prime}\right], \varepsilon\right) \wedge r^{\prime} \in R^{\prime} \wedge s^{\prime} \in S^{\prime} \Leftrightarrow \\
\Leftrightarrow n \equiv r^{\prime}\left(\bmod \lambda_{1}\right) \wedge n \equiv s^{\prime}\left(\bmod \lambda_{2}\right) \Leftrightarrow \\
\Leftrightarrow n \equiv r+d\left(\bmod \lambda_{1}\right) \wedge n \equiv s+d\left(\bmod \lambda_{2}\right) \Leftrightarrow \\
\Leftrightarrow\left(q[0], a^{n+\lambda-d}\right) \vdash_{A_{1}}^{*}(q[r], \varepsilon) \wedge\left(q[0], a^{n+\lambda-d}\right) \vdash_{A_{2}}^{*}(q[s], \varepsilon) \wedge r \in R \wedge s \in S \Leftrightarrow \\
\Leftrightarrow a^{n+\lambda-d} \in L_{1} \cap L_{2} \Leftrightarrow \\
\Leftrightarrow a^{n+\lambda-d} \in L \Leftrightarrow \\
\Leftrightarrow\left(q[0], a^{n+\lambda-d}\right) \vdash_{A}^{*}(q[p], \varepsilon) \wedge p \in P \Leftrightarrow \\
\Leftrightarrow n+\lambda-d \equiv p(\bmod \lambda) \Leftrightarrow \\
\Leftrightarrow n \equiv p+d(\bmod \lambda) \Leftrightarrow \\
\Leftrightarrow n \equiv p^{\prime}(\bmod \lambda) \wedge p^{\prime} \in P^{\prime} \Leftrightarrow \\
\Leftrightarrow\left(q[0], a^{n}\right) \vdash_{A^{\prime}}^{*}\left(q\left[p^{\prime}\right], \varepsilon\right) \wedge p^{\prime} \in P^{\prime} \Leftrightarrow \\
\Leftrightarrow a^{n} \in L^{\prime} .
\end{gathered}
$$

Chapter 2

Languages bounded by $a^{*} b^{*}$

In this chapter we shall discuss some properties of regular languages bounded by $a^{*} b^{*}$, which we shall be trying to decompose. We first define bounded languages.

Definition 2.1. A language is a bounded language if there exists $n \in \mathbb{N}$ and words w_{1}, \ldots, w_{n} such that $L \subseteq w_{1}^{*} \ldots w_{n}^{*}$.

For brevity, we use the following notation for regular languages bounded by $a^{*} b^{*}$.
Definition 2.2. Let a and b be symbols. We shall say that L is an ab language if it is a regular language bounded by $a^{*} b^{*}$.

It turns out to be useful to use such operation on an $a b$ language, where we 'cut' the words where the symbols a and b meet to get two unary languages over alphabets $\{a\}$ and $\{b\}$. Formally, this operation can be defined using homomorhpisms.

Notation 2.1. We denote by h_{a} and h_{b} the following homomorphisms: $h_{a}:\{a, b\}^{*} \rightarrow$ $\{a\}^{*}: h_{a}(a)=a, h_{a}(b)=\varepsilon, h_{b}:\{a, b\}^{*} \rightarrow\{b\}^{*}: h_{b}(a)=\varepsilon, h_{b}(b)=b$. Let L be an $a b$ language. We say that $L^{a}=h_{a}(L)$ and $L^{b}=h_{b}(L)$.

Example 2.1. Let us illustrate the previous notation by the following example: $L_{1}=$ $\left\{a^{2 k} b^{3 l+5} \mid k, l \in \mathbb{N}\right\}, L_{2}=\left\{a^{3 k+1} b^{4 l+2} \mid k, l \in \mathbb{N}\right\} \cup\left\{a^{3 k+2} b^{2 l} \mid k, l \in \mathbb{N}\right\}$ are $a b$ languages. $L_{1}^{a}=\left\{a^{2 k} \mid k \in \mathbb{N}\right\}, L_{1}^{b}=\left\{b^{3 k+5} \mid k \in \mathbb{N}\right\}, L_{2}^{a}=\left\{a^{3 k+r} \mid k \in \mathbb{N}, r \in\{1,2\}\right\}$, $L_{2}^{b}=\left\{b^{2 k} \mid k \in \mathbb{N}\right\}$.

Notation 2.2 (Notations for DFAs of $a b$ languages). Just like DFAs of unary languages, DFAs of $a b$ languages have distinct parts that we can name. We call parts of unary DFA

Figure 2.1: A DFA of an $a b$ language
a cycle and a tail and we can use these names with DFAs accepting an ab language as well. Any automaton of an $a b$ language has at most one cycle, where symbols a are being read. This cycle can be preceded by a tail. We shall call these parts of an automaton a-cycle and a-tail and together, they form the a-part of the automaton. From the a-part, there may be transitions on b that can eventually reach several cycles where symbols b are read. We shall call these cycles b-cycles. We shall call the part between the a-part and a b-cycle a b-path. Together, b-paths and b-cycles from the b part of the automaton. Finally, there is a 'dead' state where the computation finishes reading rejected words. This dead state is neither part of a-part nor b-part. Every automaton accepting an $a b$ language has a dead state, because it needs to reject words that have symbol a after b. Figure 2.1 shows a scheme of an automaton. For clarity, not all transitions leading to the dead state are shown in the scheme.

To make it clear to which part a state belongs, we define a-part to be the states such that there exists a transition on a from this state to state different from the dead state. The b-part will be states not in a-part and not a dead state.

Formally, Let K be the set of states of an automaton A. We denote states of a-part
K^{a}, states of b-part K^{b} and the dead state $q_{D} .{ }^{1}$ For K this holds:

$$
K=K^{a} \cup K^{b} \cup\left\{q_{D}\right\}, K^{a}=\left\{q \in K \mid \delta(q, a) \neq q_{D}\right\}, K^{b}=K-K^{a}-\left\{q_{D}\right\}
$$

Few more notations. A b-path is a series of transitions and states, starting with first transition that reads b and ending with a transition that leads to a state in a b-cycle or the dead state. We say that the length of a b-path is the number of transitions in b-path. Let q_{1} and q_{2} be states in the same cycle. Distance from q_{1} to q_{2} in a cycle is the number of transitions from q_{1} to q_{2} in the direction of computation. When naming automata of $a b$-languages, they will usually inherit subscripts and superscripts of the language they accept. For example, if A is an automaton accepting a language L, then A^{a} accepts L^{a} and A^{b} accepts L^{b}. Since we speak mostly about languages over the alphabet $\{a, b\}$, we use the symbol Σ for this alphabet in definitions of automata. If $f: A \rightarrow B$ is a function and $S \subseteq A$, then we use the notation $\left.f\right|_{S}$ for the restriction of f to S.

In this thesis we explore two types of decomposition of $a b$ languages. First a type decomposition such that the two decomposing languages are also $a b$ languages. Then a type of decomposition where the decomposing languages can be any regular languages.

When speaking about decomposition into $a b$ languages, we have decided to use alternative definition of deterministic finite automata without a dead state. That means the transition function is partial and the computation can block. Formally $\delta: K \times \Sigma \rightarrow K \cup\{\emptyset\}$. If computation is in state q and reads a and $\delta(q, a)=\emptyset$ that means the computation blocks and the word is not accepted. This makes every minimal automaton for an $a b$ language one state smaller and thus makes no difference in terms of decomposability into $a b$ languages. Omission of dead state makes definition, proofs, but mostly graphs in examples simpler. Figure 2.2 shows both variants of automata accepting language $\left\{a^{2} b^{n} \mid n \geq 1\right\}$. If a unary language is finite and a^{n} is the longest word in it, its DFA without dead states has size $(0, \mathrm{n}+1)$ and $q[n]$ does not have an out-going transition.

In Chapters 3 and 4 we shall introduce some subfamilies of $a b$ languages and explore decomposability into $a b$ languages of these subfamilies. In the last chapter, Chapter 5 we show results of general decomposability of $a b$ languages.

[^1]

Figure 2.2: Comparison of DFA with and without dead state

Chapter 3

Simple bicyclic languages

In this chapter we introduce a subfamily of $a b$ languages and characterize them upon decomposability into $a b$ languages.

Suppose we have two unary languages L_{a} and L_{b} with their DFA A_{a} and $A_{b}\left(L_{a}\right.$ is over alphabet $\{a\}$ and L_{b} is over alphabet $\left.\{b\}\right)$. We 'concatenate' the automata in such a way that the computation of A_{b} begins when the computation of A_{a} reaches an accepting state. By this we obtain an $a b$ language L which is a concatenation of the unary languages, i.e., $L=L_{a} L_{b}$. We call these languages simple bicyclic languages. How do we concatenate automata? We could add ε-transitions from accepting states of A_{a} to the initial state of A_{b}, but the resulting automaton would not be deterministic. In the following examples we illustrate three types of construction.

Example 3.1. L_{a} is infinite and L_{b} is ultimately λ-cyclic for some λ but not λ-cyclic, i.e., it has a tail. Let $L_{a}=\left\{a^{3 k} \mid k \in \mathbb{N}\right\} \cup\{a\}$ and $L_{b}=\left\{b^{2 k+3} \mid k \in \mathbb{N}\right\}$. Their minimal DFAs are shown in Figure 3.1. Here the initial state of A_{b} is the first state of tail and can be replaced by accepting states of A_{a}. The automaton A constructed is also shown in the figure.

Example 3.2. L_{a} is infinite and L_{b} is λ-cyclic for some λ, i.e., it has no tail. Let $L_{a}=\left\{a^{4 k+r} \mid k \in \mathbb{N}, r \in\{0,1\}\right\}$ and $L_{b}=\left\{b^{2 k} \mid k \in \mathbb{N}\right\}$. Their minimal DFAs and the automaton A constructed are shown in Figure 3.2. Here the initial state of A_{b} is part of the cycle. It cannot be replaced by accepting states of A_{a}, so we add a transition on b from them into $q[1]$ of A_{b}. Notice that $\varepsilon \in L_{b}$ so accepting states of A_{a} stay accepting in A.

Figure 3.1: Type 1 construction of simple bicyclic language

Figure 3.2: Type 2 construction of simple bicyclic language

Example 3.3. L_{a} is finite. Let $L_{a}=\left\{a, a^{3}\right\}$ and $L_{b}=\left\{b^{2 k} \mid k \in \mathbb{N}\right\}$. Their minimal DFAs and the automaton A constructed are shown in Figure 3.3. Since L_{a} is finite, A_{a} will have no accepting states in the cycle. The cycle would be a dead state, which we have decided not to use here. Here we can do another construction and replace the last accepting state of A_{a} by the initial state of A_{b}, regardless of whether A_{b} has tail or no.

We now present a formal definition of simple bicyclic languages.

Definition 3.1. Let $A_{a}=\left(K_{a},\{a\}, \delta_{a}, q[0]_{a}, F_{a}\right)$ be a UDFA of size $\left(\lambda_{1}, \mu_{1}\right)$ and $A_{b}=$ $\left(K_{b},\{b\}, \delta_{b}, q[0]_{b}, F_{b}\right)$ be a UDFA of size $\left(\lambda_{2}, \mu_{2}\right)$. Both UDFAs are without dead states. We shall call a language L a simple bicyclic language if it is accepted by DFA $A=$ $\left(K, \Sigma, \delta, q[0]_{a}, F\right)$ constructed from A_{a} and A_{b}, which is defined as:

Figure 3.3: Type 3 construction of simple bicyclic language
(i) if $\mu_{2}=0$ and $L\left(A_{a}\right)$ is infinite:

$$
K=K_{a} \cup K_{b}, \delta=\delta_{a} \cup \delta_{b} \cup \delta_{a b}
$$

Where $\delta_{a b}$ is

$$
\begin{aligned}
& \left(\forall q \in F_{a}\right) \delta_{a b}(q, b)=\delta_{b}\left(q[0]_{b}, b\right) \\
& F= \begin{cases}F_{b} & q[0]_{b} \notin F_{b} \\
F_{a} \cup F_{b} & q[0]_{b} \in F_{b}\end{cases}
\end{aligned}
$$

(ii) if $\mu_{2}>0$ and $L\left(A_{a}\right)$ is infinite:

$$
K=K_{a} \cup K_{b}-\left\{q[0]_{b}\right\}, \delta=\delta_{a} \cup \delta_{b}^{*}
$$

Where δ_{b}^{*} is

$$
\begin{aligned}
& \left(\forall q \in K_{b}-\left\{q[0]_{b}\right\}\right) \delta_{b}^{*}(q, b)=\delta_{b}(q, b),\left(\forall q \in F_{a}\right) \delta_{b}^{*}(q, b)=\delta_{b}\left(q[0]_{b}, b\right) \\
& F= \begin{cases}F_{b} & q[0]_{b} \notin F_{b} \\
F_{a} \cup F_{b}-\left\{q[0]_{b}\right\} & q[0]_{b} \in F_{b}\end{cases}
\end{aligned}
$$

(iii) $L\left(A_{a}\right)$ is finite, i.e., it has no cycle: Let $q[f]_{a}$ be the last state of A_{a}.

$$
K=\left\{q[0]_{a}, \ldots, q[f-1]_{a}\right\} \cup K_{b}, \delta=\delta_{a}^{*} \cup \delta_{b}
$$

Where δ_{a}^{*} is

$$
(\forall i \in \mathbb{N}, 0 \leq i \leq f-2) \delta_{a}^{*}\left(q[i]_{a}, a\right)=q[i+1]_{a}, \delta_{a}^{*}\left(q[f-1]_{a}, a\right)=q[0]_{b},
$$

$$
\begin{array}{r}
\left(\forall q \in F_{a}-\left\{q[f]_{a}\right\}\right) \delta_{a}^{*}(q, b)=\delta_{b}\left(q[0]_{b}, b\right) \\
F= \begin{cases}F_{b} & q[0]_{b} \notin F_{b} \\
F_{a}-\left\{q[f]_{a}\right\} \cup F_{b} & q[0]_{b} \in F_{b}\end{cases}
\end{array}
$$

Now we prove that a simple bicyclic language is exactly the concatenation of the two unary languages it was made from.

Lemma 3.1. Let L be a simple bicyclic language, i.e., $L=L(A)$ for some DFA A constructed from A_{a} and A_{b} by the previous Definition 3.1. Then L is an ab language and $L=L\left(A_{a}\right) L\left(A_{b}\right)$. It also holds that $L\left(A_{a}\right)=L^{a}$ and $L\left(A_{b}\right)=L^{b}$, i.e., $L=L^{a} L^{b}$.

Proof. We are going to prove that $L(A)=L\left(A_{a}\right) L\left(A_{b}\right)$.
$L(A) \subseteq L\left(A_{a}\right) L\left(A_{b}\right):$ Let $w \in L(A)$. Then $\left(q[0]_{a}, w\right) \vdash_{A}^{*}\left(q_{F}, \varepsilon\right)$ for some $q_{F} \in F$. Suppose that $L\left(A_{a}\right)$ is infinite. From the definition of A, we can see that to reach q_{F}, computation must first reach some $q_{a F} \in F_{a}$ and the computation to reach this $q_{a F}$ is the same in A_{a}. If $L\left(A_{a}\right)$ is finite, computation must either first reach some $q_{a F} \in F_{a}$ or $q[0]_{b}$. In the second case, the computation in A_{a} is $\left(q[0]_{a}, u\right) \vdash_{A_{a}}^{*}\left(q[f]_{a}, \varepsilon\right)$. Therefore $w=u v$ and $u \in L\left(A_{a}\right)$. What is left to proof is that $v \in L\left(A_{b}\right)$. If $v=\varepsilon$, then either $q_{F} \in K^{a}$, i.e., $q_{F}=q_{a F}$ or $q_{F}=q[0]_{b}$ can happen if $L\left(A_{a}\right)$ is finite. Then by definition of $F, q[0]_{b} \in F_{b}$. Therefore $v=\varepsilon \in L\left(A_{b}\right)$. Otherwise $v=b v^{\prime}$ and $\left(q_{a F}, v\right) \vdash_{A}\left(q, v^{\prime}\right) \vdash_{A}^{*}\left(q_{F}, \varepsilon\right)$, where $q=\delta_{b}\left(q[0]_{b}, b\right)$. This corresponds to computation $\left(q[0]_{b}, v\right) \vdash_{A_{b}}^{*}\left(q, v^{\prime}\right) \vdash_{A_{b}}^{*}\left(q_{F}, \varepsilon\right)$. Therefore $v \in L\left(A_{b}\right)$.
$L\left(A_{a}\right) L\left(A_{b}\right) \subseteq L(A):$ Let $w \in L\left(A_{a}\right) L\left(A_{b}\right)$. Then $w=u v, u \in L\left(A_{a}\right)$ and $v \in$ $L\left(A_{b}\right)$. Suppose $L\left(A_{a}\right)$ is infinite. From the definition we can see that $\left(q[0]_{a}, u\right) \vdash_{A_{a}}^{*}$ $\left(q_{a F}, \varepsilon\right) \Leftrightarrow\left(q[0]_{a}, u\right) \vdash_{A}^{*}\left(q_{a F}, \varepsilon\right)$ for any $q_{a F} \in F_{a}$. If $L\left(A_{a}\right)$ is finite the previous holds for $q_{a F} \in F-\left\{q[f]_{a}\right\}$. For the last final state, we have $\left(q[0]_{a}, u\right) \vdash_{A_{a}}^{*}\left(q[f]_{a}, \varepsilon\right) \Leftrightarrow$ $\left(q[0]_{a}, u\right) \vdash_{A}^{*}\left(q[0]_{b}, \varepsilon\right)$. If $v=\varepsilon$ then $q[0]_{b} \in F_{b}$ and by the definition $q_{a F} \in F$, so $w=u \in L(A)$. If $v \neq \varepsilon, v=b v^{\prime} \in L\left(A_{b}\right)$, so $\left(q[0]_{b}, v\right) \vdash_{A_{b}}\left(q, v^{\prime}\right) \vdash_{A_{b}}^{*}\left(q_{F}, \varepsilon\right)$ for some $q \in K^{b}$ and $q_{F} \in F_{b}$. If u is read in state $q[0]_{b}$ in A, the computation on v is identical. For the cases when u is read in state $q_{a F}$ in A, the computation on v is $\left(q_{a F}, v\right) \vdash_{A}\left(q, v^{\prime}\right) \vdash_{A}^{*}\left(q_{F}\right)$. Therefore $u v \in L(A)$.

Now we prove that that $L\left(A_{a}\right)=L^{a}$ and $L\left(A_{b}\right)=L^{b}$. It holds that $L\left(A_{a}\right)^{a}=L\left(A_{a}\right)$, $L\left(A_{a}\right)^{b}=\{\varepsilon\}$ and similar for $L\left(A_{b}\right)$. Then from the fact that $h\left(L_{1} L_{2}\right)=h\left(L_{1}\right) h\left(L_{2}\right)$
for any languages and homomorphism, we get

$$
L^{a}=L\left(A_{a}\right)^{a} L\left(A_{b}\right)^{a}=L\left(A_{a}\right) ; L^{b}=L\left(A_{a}\right)^{b} L\left(A_{b}\right)^{b}=L\left(A_{b}\right)
$$

Now that we have proven that L^{a} and L^{b} are the languages of automata creating simple bicyclic language L, we shall be using A^{a} and A^{b} for these automata. We want to decompose simple bicyclic languages, so it would be useful to know when their automata are minimal. The construction of automaton from two UDFAs preserves minimality.

Theorem 3.1. Let A^{a}, A^{b} and A be automata from Definition 3.1. If A^{a} and A^{b} are minimal DFAs, then A is also the minimal DFA.

Proof. Let L be the language accepted by $A, K=K^{a} \cup K^{b}$ its states. It holds that $s c(A)=s c\left(A^{a}\right)+s c\left(A^{b}\right)+c$, where $c=-1$ if L^{a} is finite or $\mu_{2}>0$ and $c=0$ otherwise (μ_{2} is the length of tail of A^{b}). Let $A^{\prime}=\left(K^{\prime}, \Sigma, q[0]^{\prime}, \delta^{\prime}, F^{\prime}\right)$ be any DFA accepting L without dead states.

First we cover the case when L^{a} is infinite. Then it holds that $s c\left(A^{a}\right)=K^{a}$. For any word from L^{a}, that A^{\prime} reads, the computation must stay in the a-part of A^{\prime}. Let $F^{\prime \prime}=\left\{q \in K^{\prime a} \mid \delta^{\prime}(q, b) \neq \emptyset\right\} \cup\left(F^{\prime} \cap K^{\prime a}\right)$. We construct automaton $A^{\prime a}=\left(K^{\prime a},\{a\},\left.\delta^{\prime}\right|_{K^{\prime a} \times\{a\}}, q[0]^{\prime}, F^{\prime \prime}\right)$. Then $L\left(A^{\prime a}\right)=L^{a}$. Because A^{a} is minimal DFA accepting $L^{a},\left|K^{\prime a}\right|=s c\left(A^{\prime a}\right) \geq s c\left(A^{a}\right)$.

After reading b from any state in $K^{\prime a}$, the computation of A^{\prime} is in b-part and can accept any word from L^{b} (except ε if it belongs there). That means if A^{\prime} had more disconnected parts of b-part, each of them must accept the same words, so we could replace them by only one and reduce the number of states. Therefore we can assume the whole b-part of A^{\prime} is connected and there is one state where every computation is after reading b. Let q be that state. From b-part and additional initial state, we can construct automaton $A^{\prime b}$ accepting L^{b} as $A^{\prime b}=\left(K^{\prime b} \cup\left\{q_{0}^{\prime}\right\},\{b\}, \delta^{\prime \prime}, q_{0}^{\prime}, F^{\prime \prime}\right)$, where $F^{\prime \prime}=\left(F^{\prime} \cap K^{\prime b}\right) \cup\left(\left\{q_{0}^{\prime}\right\}\right.$ if $\varepsilon \in L^{b}, \emptyset$ otherwise $)$ and $\delta^{\prime \prime}=\left.\delta^{\prime}\right|_{K^{\prime b} \times\{b\}}$ with additional transition $\delta^{\prime \prime}\left(q_{0}^{\prime}, b\right)=q$. We know that A^{b} is the minimal automaton accepting L^{b}, so $s c\left(A^{\prime b}\right) \geq s c\left(A^{b}\right)$. Suppose $\mu_{2}>0$. Then $s c\left(A^{b}\right)=K^{b}+1$ and $s c\left(A^{\prime b}\right)=K^{\prime b}+1$. The previous inequalities give us $s c\left(A^{\prime}\right)=s c\left(A^{\prime a}\right)+s c\left(A^{\prime b}\right)-1 \geq s c\left(A^{a}\right)+s c\left(A^{b}\right)-1=s c(A)$.

If $\mu_{2}=0$, then $s c\left(A^{b}\right)=K^{b}$. If $s c\left(A^{\prime b}\right)>\operatorname{sc}\left(A^{b}\right)$, then we have inequality $s c\left(A^{\prime}\right)=$ $s c\left(A^{\prime a}\right)+s c\left(A^{\prime b}\right)-1 \geq s c\left(A^{a}\right)+s c\left(A^{b}\right)=s c(A) . A^{\prime}$ would be smaller if $s c\left(A^{\prime b}\right)=s c\left(A^{b}\right)$, but we show by contradiction that this cannot happen. Automaton A^{b} does not have tail, but $A^{\prime b}$ does, so it must have smaller cycle than A^{b}. Let $\left(\lambda_{2}^{\prime}, \mu_{2}^{\prime}\right)$ be the size of $A^{\prime b}$. Suppose the words $w_{1}=b^{\mu_{2}^{\prime}-1}$ and $w_{2}=b^{\mu_{2}^{\prime}+\lambda_{2} \lambda_{2}^{\prime}-1}$. In A^{b}, they are read in the same state, because their difference is a multiple of λ_{2}. So $w_{1} \in L^{b} \Leftrightarrow w_{2} \in L^{b}$. In $A^{\prime b}$, the states they are read in must both be final or both be not final. The state where w_{1} is read in $A^{\prime b}$ is the last state of the tail, $q\left[\mu_{2}^{\prime}-1\right]^{\prime}$, and w_{2} is read in $q\left[\mu_{2}^{\prime}+\lambda_{2}^{\prime}-1\right]$. Theorem 1.1 states, that $A^{\prime b}$ is not minimal, but that contradicts minimality of A^{b} since they have the same number of states.

Now the case when L^{a} is finite. That means $K^{a}=s c\left(A^{a}\right)-1$ and $K^{b}=s c\left(A^{b}\right)$. The a-part of any automaton accepting L has an a-tail where all the words from L^{a} are accepted and if there is an a-cycle, its made of dead states. We assume A^{\prime} does not have a dead state and, similarly as in the previous case, only one connected b-part. Let q be the state where the longest word from L^{a} is read. This state is part of b-part, as there is not a transition on a from this state. Starting from q, the computation on A^{\prime} can start reading any word from L^{b}, including ε. We can construct an automaton $A^{\prime b}$ accepting L^{b} as $A^{\prime b}=\left(K^{\prime b},\{b\},\left.\delta^{\prime}\right|_{K^{\prime b} \times\{b\}}, q, F^{\prime} \cap K^{\prime b}\right)$. It holds that $s c\left(A^{\prime b}\right) \geq s c\left(A^{b}\right)$. We make automaton $A^{\prime a}$ accepting L^{a} as following. We replace q with $q[f]$. Let $q[f-1]$ be the last state of a-part, the state before q. Then $A^{\prime a}=\left(K^{\prime a} \cup\{q[f]\},\{a\},\left.\delta^{\prime}\right|_{K^{\prime a} \times\{a\}} \cup \delta^{\prime \prime}, q[0]^{\prime}, F^{\prime \prime}\right)$, where $\delta^{\prime \prime}$ is $\delta^{\prime \prime}(q[f-1], a)=q[f]$ and $F^{\prime \prime}=\left(F^{\prime} \cap K^{\prime a}\right) \cup\{q[f]\}$. It holds that $s c\left(A^{\prime a}\right) \geq s c\left(A^{a}\right)$. We get inequality $s c\left(A^{\prime}\right)=s c\left(A^{\prime a}\right)+s c\left(A^{\prime b}\right)-1 \geq s c\left(A^{a}\right)+s c\left(A^{b}\right)-1=s c(A)$.

We have shown that for any automaton A^{\prime} accepting $L, s c\left(A^{\prime}\right) \geq s c(A)$, so A must be minimal DFA.

We can recognize a simple bicyclic language if we know it was constructed from two UDFAs. But what if we are given an $a b$ language by its automaton? Here we present criteria for automata that accept a simple bicyclic language.

Lemma 3.2. Let $A=\left(K, \Sigma, \delta, q_{0}, F\right)$ be a minimal DFA of an ab language L. L is a simple bicyclic language if and only if:

1. After reading the first symbol b, all computations that do not halt are in the same state - formally $\left(\exists q^{\prime} \in K\right)(\forall p \in K)(\forall n \in \mathbb{N})\left(q_{0}, a^{n} b\right) \vdash_{A}^{*}(\varepsilon, p) \Rightarrow p=q^{\prime}$
2. States that are reachable by only reading symbols a and have a transition on b to q^{\prime} from second condition are either all accepting or all are not accepting $(\forall q, p \in K)\left((\exists n, m \in \mathbb{N})\left(q_{0}, a^{n} b\right) \vdash_{A}^{*}(q, b) \vdash_{A}\left(q^{\prime}, \varepsilon\right) \wedge\left(q_{0}, a^{m} b\right) \vdash_{A}^{*}(p, b) \vdash_{A}\right.$ $\left.\left(q^{\prime}, \varepsilon\right)\right) \Rightarrow(q \in F \Leftrightarrow p \in F)$.
3. All accepting states that are reachable by only reading symbols a are states from the previous condition $-(\forall q \in K)\left(\exists n \in \mathbb{N} a^{n} \in L \wedge\left(q_{0}, a^{n}\right) \vdash_{A}^{*}(q, \varepsilon) \Rightarrow \delta(q, b)=q^{\prime}\right)$

Proof. \Rightarrow : Suppose criterion 1 does not hold and states q, p from K^{a} lead to different states after reading b. Because $L=L^{a} L^{b}$, when the computation is in state q or p, any word from L^{b} can be read, so the computation from this point on has to accept the same words. If the computations after reaching p and q never reach the same state, i.e., they go to separate disconnected parts of b-part., we can delete one part and redirect the computations from that part to the other part. But by this we decrease the number of states which contradicts the minimality of A. Suppose that the computations reach the same state. Let q^{\prime}, p^{\prime} be the last states that are separate and $\delta\left(q^{\prime}, b\right)=\delta\left(p^{\prime}, b\right)$. The states q^{\prime} and p^{\prime} must be both be final or both not be final, so we can merge them into one. By this we also reduce the number of states and contradict the minimality of A.

Now suppose the criterion 2 does not hold in states q and p. Let q be the accepting one. Because it is accepting, $\varepsilon \in L^{b}$. The state p has transitions on b, so words from L^{a} are read there and words from L^{b} start there. Because $L=L^{a} L^{b}$ and $\varepsilon \in L^{b}$, the computation must read and accept ε when in p, but p is not accepting, which is a contradiction.

The last criterion is very similar to the previous one. If q is accepting it reads a word from L^{a} and any word from L^{b} can continue. So q must have a transition on b.
\Leftarrow : We need to show that there are two automata A^{a}, A^{b} of unary languages, that A is a construction of these according to the Definition 3.1. The construction is identical as construction of $A^{\prime a}$ and $A^{\prime b}$ in the proof of Theorem 3.1.

In the proof of part \Rightarrow of the previous lemma, we only used the fact, that $L=L^{a} L^{b}$. This give us the final criterion for simple bicyclic languages.

Theorem 3.2. Let L be an ab language. Then L is a simple bicyclic language if and only if $L=L^{a} L^{b}$.

Proof. \Rightarrow was proven in Lemma 3.1. For \Leftarrow, let A be the minimal DFA accepting L. Then A satisfies criteria of Lemma 3.2.

3.1 Decomposability into $a b$ languages

Now we explore the sufficient conditions for decomposition of simple bicyclic languages into $a b$ languages. We start with an example and then formulate and prove the condition.

Example 3.4. Let $L=\left\{a^{3 k} b^{2 l} \mid k, l \in \mathbb{N}\right\}$. Its minimal DFA A is depicted in Figure 3.4. We can use the fact that $L=L^{a} L^{b}$ for the following decomposition. We replace the b-part with a single state cycle accepting any words and then we replace the a-part with single state cycle. We get automata A_{1} accepting $L_{1}=\left\{a^{3 k} \mid k \in \mathbb{N}\right\} b^{*}$ and A_{2} accepting $L_{2}=a^{*}\left\{b^{2 k} \mid k \in \mathbb{N}\right\}$.

A

A_{1}

A_{2}

Figure 3.4: Trivial decomposition of simple bicyclic languages

The decomposition in the example worked because the cycles have more than one state. The requirements for sizes of UDFAs defining the language are more complicated, based on the three ways that an automaton of simple bicyclic languages can be constructed. In this example, A^{b} has two states which we were able to reduce to one in A_{1}. But if L^{b} would be b^{+}, its automaton would also have two states, one in cycle and one in tail. The first state would be replaced with the accepting states of A^{a} and only one state would be in b-part and this decomposition would not work. Now we formulate the requirements for the UDFAs constructing the language.

Lemma 3.3. Let L be a simple bicyclic language and let the minimal automata of L^{a} and L^{b} have sizes $\left(\lambda_{1}, \mu_{1}\right)$ and $\left(\lambda_{2}, \mu_{2}\right)$ respectively. Then $L \in \mathcal{D}_{\text {det }}$ if the following conditions hold:

- If L^{a} is infinite:

$$
\begin{aligned}
& -\lambda_{1}+\mu_{1}>1 \\
& -\lambda_{2}+\mu_{2}>2 \text { or } \lambda_{2}>1
\end{aligned}
$$

- If L^{a} is finite:

$$
\begin{aligned}
& -\mu_{1}>2 \text { or }\left(\mu_{1}>1 \text { and } \mu_{2}>0\right) \\
& -\lambda_{2}+\mu_{2}>1
\end{aligned}
$$

Proof. Let A be the minimal DFA accepting L, A^{a} be the minimal DFA accepting L^{a} and A^{b} be the minimal DFA accepting L^{b}. We shall denote $A_{a *}$ and $A_{b *}$ to be the minimal DFAs accepting a^{*} and b^{*}. They only have one state. We shall use these four automata to construct two automata decomposing A as follows: A^{a} and $A_{b *}$ define simple bicyclic language $L_{1}=L\left(A_{1}\right)=L^{a} b^{*}$ and $A_{a *}$ and A^{b} define simple bicyclic language $L_{2}=L\left(A_{2}\right)=a^{*} L^{b}$.

First we prove that the state complexity of A_{1} and A_{2} is smaller than the state complexity of A. It holds that $s c(A)=s c\left(A^{a}\right)+s c\left(A^{b}\right)+c$, where $c=-1$ if L^{a} is finite or $\mu_{2}>0$ and $c=0$ otherwise. First we cover the case when L^{a} is infinite. Then, $K^{a}=s c\left(A^{a}\right)=\lambda_{1}+\mu_{1}>1$ and it holds that $s c\left(A_{a *}\right)=1<s c\left(A^{a}\right)$. Therefore

$$
s c\left(A_{2}\right)=1+s c\left(A^{b}\right)+c<s c\left(A^{a}\right)+s c\left(A^{b}\right)+c=s c(A) .
$$

If $\lambda_{2}>1$ and $c=-1$ then $\mu_{2} \geq 1$. It holds that $s c\left(A_{b *}\right)=1<2+1-1 \leq \lambda_{2}+\mu_{2}+c=$ $s c\left(A^{b}\right)+c$. If $\lambda_{2}+\mu_{2}>2$ and $c=-1$, then $s c\left(A_{b *}\right)=1<3-1 \leq s c\left(A^{b}\right)+c$. For $c=0$, both inequalities hold as well. Therefore

$$
s c\left(A_{1}\right)=s c\left(A^{a}\right)+1<s c\left(A^{a}\right)+s c\left(A^{b}\right)+c=s c(A)
$$

Now the case when L^{a} is finite. Then $\lambda_{1}=0$, so $2 \leq \mu_{1}=\operatorname{sc}\left(A^{a}\right)=\left|K^{a}\right|+1$. It holds that $\lambda_{2}+\mu_{2}=s c\left(A^{b}\right)=\left|K^{b}\right|$. For A_{2} we have $s c\left(A_{2}\right)=1+s c\left(A^{b}\right)+c^{\prime}$, where $c^{\prime}=-1$ if $\mu_{2}>0$ and $c^{\prime}=0$ if $\mu_{2}=0$. To get

$$
s c\left(A_{2}\right)=1+s c\left(A^{b}\right)+c^{\prime}<s c\left(A^{a}\right)+s c\left(A^{b}\right)-1=s c(A)
$$

we need either $c^{\prime}=-1$, which happens if $\mu_{2}>0$ or $s c\left(A^{a}\right)=\mu_{1}>2$. Both requirements are fulfilled. For A_{1} it holds that

$$
s c\left(A_{1}\right)=s c\left(A^{a}\right)+s c\left(A_{b^{*}}\right)+c=s c\left(A^{a}\right)<s c\left(A^{a}\right)-1+s c\left(A^{b}\right)=s c(A)
$$

because $\operatorname{sc}\left(A^{b}\right)=\lambda_{2}+\mu_{2}>1$.
We prove that $L_{1} \cap L_{2}=L$ by the following equivalences:

$$
\begin{gathered}
w \in L \Leftrightarrow w=u v \wedge u \in L^{a} \wedge v \in L^{b} \Leftrightarrow \\
\Leftrightarrow w=u v \wedge u v \in L^{a} b^{*} \wedge u v \in a^{*} L^{b} \wedge u \in a^{*} \wedge v \in b^{*} \Leftrightarrow w \in L_{1} \cap L_{2}
\end{gathered}
$$

We have proven that L is decomposable into L_{1} and L_{2} so $L \in \mathcal{D}_{\text {det }}$.
The next two cases will look into how the decomposability of a unary language relates to the decomposability of a simple bicyclic language it forms.

Example 3.5. Let $L=\left\{a^{6 k+r} b^{2} \mid k \in \mathbb{N}, r \in\{0,2\}\right\} . L^{a}$ is $\left\{a^{6 k+r} \mid k \in \mathbb{N}, r \in\{0,2\}\right\}$ and by Theorem 1.4 it is decomposable into languages $L_{1}^{a}=\left\{a^{3 k+r} \mid k \in \mathbb{N}, r \in\{0,2\}\right\}$ and $L_{2}^{a}=\left\{a^{2 k} \mid k \in \mathbb{N}\right\}$. We can construct simple bicyclic languages from them by concatenating L^{b} to them. By this we get $L_{1}=L_{1}^{a} L^{b}=\left\{a={ }^{3 k+r} b^{2} \mid k \in \mathbb{N}, r \in\{0,2\}\right\}$ and $L_{2}=L_{2}^{a} L^{b}=\left\{a^{2 k} b^{2} \mid k \in \mathbb{N}\right\}$. It is easy to see that $L_{1} \cap L_{2}=L$. The minimal automata of these languages are shown in Figure 3.5. From the pictures we see that A_{1} and A_{2} are smaller than A, so L_{1} and L_{2} decompose L.

Figure 3.5: Decomposition via L^{a}

It looks like we only need L^{a} to be decomposable. Here we prove it.
Lemma 3.4. Let L be a simple bicyclic language. If $L^{a} \in \mathcal{D}_{\text {det }}$ then $L \in \mathcal{D}_{\text {det }}$.
Proof. Let L_{1}^{a} and L_{2}^{a} be the languages decomposing L^{a}, A the minimal DFA accepting L and A^{a}, A_{1}^{a} and A_{2}^{a} be the minimal DFAs of languages L^{a}, L_{1}^{a} and L_{2}^{a}. Since L^{a} is decomposable, it is not finite. Then it holds that $s c(A)=s c\left(A^{a}\right)+s c\left(A^{b}\right)+c$, where
$c=0$ if $\mu_{2}=0$ and $c=-1$ otherwise. We shall use A_{1}^{a} and A_{2}^{a} with L^{b} to construct simple bicyclic languages $L_{1}=L\left(A_{1}\right)=L_{1}^{a} L^{b}$ and $L_{2}=L\left(A_{2}\right)=L_{2}^{a} L^{b}$. We claim that L_{1} and L_{2} decompose L. Let us first resolve the state complexity of these automata.

$$
\begin{aligned}
& s c\left(A_{1}^{a}\right)<s c\left(A^{a}\right) \Rightarrow s c\left(A_{1}\right)=s c\left(A_{1}^{a}\right)+s c\left(A^{b}\right)+c<s c\left(A^{a}\right)+s c\left(A^{b}\right)+c=s c(A) \\
& s c\left(A_{2}^{a}\right)<s c\left(A^{a}\right) \Rightarrow s c\left(A_{2}\right)=s c\left(A_{2}^{a}\right)+s c\left(A^{b}\right)+c<s c\left(A^{a}\right)+s c\left(A^{b}\right)+c=s c(A)
\end{aligned}
$$

Now what is left to prove is that $L_{1} \cap L_{2}=L$. We prove it by the following equivalences.

$$
\begin{aligned}
& w \in L_{1} \cap L_{2} \Leftrightarrow w \in L_{1} \wedge w \in L_{2} \Leftrightarrow w=u v \wedge u \in L_{1}^{a} \wedge u \in L_{2}^{a} \wedge v \in L^{b} \Leftrightarrow \\
& \Leftrightarrow w=u v \wedge u \in L_{1}^{a} \cap L_{2}^{a} \wedge v \in L^{b} \Leftrightarrow w=u v \wedge u \in L^{a} \wedge v \in L^{b} \Leftrightarrow w \in L
\end{aligned}
$$

The language L is decomposable into L_{1} and L_{2}, therefore $L \in \mathcal{D}_{\text {det }}$.

Let us now explore the case when L^{b} is decomposable.

Example 3.6. Let $L=\left\{a^{3 k} b^{3 l+4} \mid k, l \in \mathbb{N}\right\}$. Then $L^{b}=\left\{b^{3 k+4} \mid k, \in \mathbb{N}\right\}$ satisfies condition (i) of Theorem 1.2 and is decomposable. The decomposing languages are $L_{1}^{b}=\left\{b^{3 k+1} \mid k, \in \mathbb{N}\right\}$ and $L_{2}^{b}=b^{*}-\{b\}$. We can do the same thing as in previous case and concatenate these languages to L^{a}. We get $L_{1}=L^{a} L_{1}^{b}=\left\{a^{3 k} b^{3 l+1} \mid k, l \in \mathbb{N}\right\}$ and $L_{2}=L^{a} L_{2}^{b}=\left\{a^{3 k} b^{l} \mid k, l \in \mathbb{N}, l \neq 1\right\}$. Once again, $L_{1} \cap L_{2}=L$ is easy to see and after seeing their minimal automata in Figure 3.6, we get that L_{1} and L_{2} decompose L.

A

A_{1}

A_{2}

Figure 3.6: Decomposition via L^{b}

Example 3.7. Consider now a similar language to the language in Example 3.6, $L^{\prime}=$ $\left\{a^{3 k} b^{3 l+3} \mid k, l \in \mathbb{N}\right\}$. The automata are shown in Figure 3.7. $A^{\prime b}$ has one state shorter tail than $A^{b} . L^{\prime}$ is still decomposable, but now $A_{1}^{\prime b}$ accepting $L_{1}^{\prime b}=\left\{b^{3 k} \mid k, \in \mathbb{N}\right\}$ does not have tail and is only one state smaller than $A^{\prime b}$. This means if we want to concatenate $A_{1}^{\prime b}$ to $A^{\prime a}$, we cannot remove the initial state of $A_{1}^{\prime b}$, which adds one state. We see that A^{\prime} and A_{1}^{\prime} have equal number of states. This type of decomposition does not work here.

Figure 3.7: Case when decomposition of L^{b} does not help

The requirements are formulated in the following lemma.
Lemma 3.5. Let L be a simple bicyclic language. Let $L^{b} \in \mathcal{D}_{\text {det }}$ and its minimal DFA has size $\left(\lambda_{2}, \mu_{2}\right)$ such that $\mu_{2} \neq 1$ or L^{b} is decomposable into automata with cycles smaller than λ_{2} or L^{a} is finite. Then $L \in \mathcal{D}_{\text {det }}$.

Proof. Let A^{b} be the minimal DFA accepting L^{b}, A_{1}^{b} and A_{2}^{b} be the minimal DFAs of languages L_{1}^{b} and L_{2}^{b} decomposing L^{b}. A^{a} be the minimal DFA accepting L^{a} and A the minimal DFA accepting L. We shall use A_{1}^{b} and A_{2}^{b} with L^{a} to construct simple bicyclic languages $L_{1}=L\left(A_{1}\right)=L^{a} L_{1}^{b}$ and $L_{2}=L\left(A_{2}\right)=L^{a} L_{2}^{b}$. We claim that L_{1} and L_{2} decompose L.

Let us first determine the state complexity of these automata. Let (λ_{21}, μ_{21}) and $\left(\lambda_{22}, \mu_{22}\right)$ be the sizes of A_{1}^{b} and A_{2}^{b}. It holds that $s c(A)=s c\left(A^{a}\right)+s c\left(A^{b}\right)+c$, where $c=-1$ if L^{a} is finite or $\mu_{2}>0$ and $c=0$ otherwise. If L^{a} is finite or $\mu_{2}=\mu_{21}=\mu_{22}=0$ then the constant c is the same in A_{1} and A_{2} and it is $c=-1$. For these and other
cases when c is the same, the following hold:

$$
\begin{aligned}
& s c\left(A_{1}^{b}\right)<s c\left(A^{b}\right) \Rightarrow s c\left(A_{1}\right)=s c\left(A^{a}\right)+s c\left(A_{1}^{b}\right)+c<s c\left(A^{a}\right)+s c\left(A^{b}\right)+c=s c(A) \\
& s c\left(A_{2}^{b}\right)<s c\left(A^{b}\right) \Rightarrow s c\left(A_{2}\right)=s c\left(A^{a}\right)+s c\left(A_{2}^{b}\right)+c<s c\left(A^{a}\right)+s c\left(A^{b}\right)+c=s c(A)
\end{aligned}
$$

If L^{b} is decomposable into cycles smaller than λ_{2}, i.e., $\lambda_{21}<\lambda_{2}$ and $\lambda_{22}<\lambda_{2}$, the constant can be different. Without loss of generality it is different in A_{1}. It must hold that $\mu_{2}>0$ and $\mu_{21}=0$. Then this holds. $s c\left(A_{1}^{b}\right)=\lambda_{21}+\mu_{21}<\lambda_{2}+\mu_{2}-1=$ $s c\left(A^{b}\right)-1$. In case $\mu_{2}>1$ and without loss of generality the constant is different in $A_{1}, s c\left(A_{1}^{b}\right)<s c\left(A^{b}\right)-1$ holds as well. Then this inequality holds:

$$
s c\left(A_{1}^{b}\right)<s c\left(A^{b}\right)-1 \Rightarrow s c\left(A_{1}\right)=s c\left(A^{a}\right)+s c\left(A_{1}^{b}\right)<s c\left(A^{a}\right)+s c\left(A^{b}\right)-1=s c(A)
$$

Now what is left to prove is that $L_{1} \cap L_{2}=L$. We prove it by the following equivalences.

$$
\begin{aligned}
& w \in L_{1} \cap L_{2} \Leftrightarrow w \in L_{1} \wedge w \in L_{2} \Leftrightarrow w=u v \wedge u \in L^{a} \wedge v \in L_{1}^{b} \wedge v \in L_{2}^{b} \Leftrightarrow \\
& \Leftrightarrow w=u v \wedge u \in L^{a} \wedge v \in L_{1}^{b} \cap L_{2}^{b} \Leftrightarrow w=u v \wedge u \in L^{a} \wedge v \in L^{b} \Leftrightarrow w \in L
\end{aligned}
$$

We have proven that L_{1} and L_{2} decompose L, so $L \in \mathcal{D}_{\text {det }}$.
We have discovered another case of decomposition, where a simple bicyclic language is decomposable into languages with more b-cycles. We show that in the following example.

Example 3.8. Let $L=\left\{a^{3 k+r} b^{6 l} \mid k, l \in \mathbb{N}, r \in\{0,1\}\right\} . L^{b}$ is decomposable into languages with 3 and 2 state cycles automata. Instead of concatenating each automaton to A^{a}, we concatenate both on one, but each to different accepting state. And then we switch them in the second automaton. We get languages $L_{1}=\left\{a^{3 k} b^{3 l} \mid k, l \in\right.$ $\mathbb{N}\} \cup\left\{a^{3 k+1} b^{2 l} \mid k, l \in \mathbb{N}\right\}$ and $L_{2}=\left\{a^{3 k} b^{2 l} \mid k, l \in \mathbb{N}\right\} \cup\left\{a^{3 k+1} b^{3 l} \mid k, l \in \mathbb{N}\right\}$. The automata are depicted in Figure 3.8.

As seen in the example, this kind of decomposition does not cover any new cases since languages decomposable in this way are also decomposable via Lemma 3.5. ${ }^{1}$

The previous lemmas describe also the necessary conditions, which give us characterisation of simple bicyclic languages upon decomposition into $a b$ languages.

[^2]

A

A_{1}

A_{2}

Figure 3.8: Decomposition into languages with more b-cycles

Theorem 3.3. Let L be a simple bicyclic language and let $\left(\lambda_{1}, \mu_{1}\right)$ and $\left(\lambda_{2}, \mu_{2}\right)$ be the sizes of minimal DFA of L^{a} and L^{b}. Then L is decomposable into ab languages if and only if at least one of the following holds:

1. L^{a} is infinite, $\lambda_{1}+\mu_{1}>1$ and $\left(\lambda_{2}+\mu_{2}>2\right.$ or $\left.\lambda_{2}>1\right)$
2. L^{a} is finite, $\lambda_{2}+\mu_{2}>1, \mu_{1}>1$ and $\left(\mu_{1}>2\right.$ or $\left.\mu_{2}>0\right)$
3. $L^{a} \in \mathcal{D}_{\text {det }}$
4. $L^{b} \in \mathcal{D}_{\text {det }}$ and its minimal DFA has size $\left(\lambda_{2}, \mu_{2}\right)$ such that $\mu_{2} \neq 1$ or L^{b} is decomposable into automata with cycles smaller than λ_{2} or L^{a} is finite.

Proof. The sufficiency of these conditions were proven in Lemmas 3.3, 3.4 and 3.5. Now we prove that if L is decomposable into and $a b$ language, at least one of the conditions holds. Let A be the minimal DFA of L, L_{1}, L_{2} be the languages decomposing L and A_{1}, A_{2} their minimal DFA.

Let L does not satisfy conditions 1 and 2 . We shall show how A, A_{1} and A_{2} can look like and show that L satisfies condition 3 or 4 .

Part 1: L^{a} is infinite.

a) $\lambda_{1}+\mu_{1} \leq 1$

Since L^{a} is infinite, $\lambda_{1} \geq 1$. Therefore $\lambda_{1}=1$ and $\mu_{1}=0$, which means $L^{a}=a^{*}$. It holds that $s c(A)=s c\left(A^{b}\right)+c^{\prime}$ where $c^{\prime}=0$ if $\mu_{2}>0$ and $c^{\prime}=1$ if $\mu_{2}=0$.
Since L_{1} decomposes L, it holds that $L \subseteq L_{1}$ and:

$$
L \subseteq L_{1} \Leftrightarrow\left\{a^{*}\right\} L^{b} \subseteq L_{1}^{a} L_{1}^{b} \Leftrightarrow \forall u \in a^{*}, \forall v \in L^{b}: u v \in L_{1} \Rightarrow u \in L_{1}^{a} \Rightarrow a^{*} \subseteq L_{1}^{a}
$$

Therefore $L_{1}^{a}=a^{*}$. The same holds for L_{2} and $L_{2}^{a}=a^{*}$. It holds that

$$
L_{1} \cap L_{2}=L \Leftrightarrow a^{*} L_{1}^{b} \cap a^{*} L_{2}^{b}=a^{*} L^{b} \Rightarrow L_{1}^{b} \cap L_{2}^{b}=L^{b}
$$

We need to show that for L_{1}^{b} and L_{2}^{b} there exist automata with state complexity smaller than A^{b} to show that $L^{b} \in \mathcal{D}_{\text {det }}$.

If both A_{1} and A_{2} accept a^{*} in one state, then L_{1} and L_{2} are simple bicyclic languages. It holds that $s c\left(A_{1}\right)=s c\left(A_{1}^{b}\right)+c_{1}^{\prime}<s c\left(A^{b}\right)+c^{\prime}$ and $s c\left(A_{2}\right)=s c\left(A_{2}^{b}\right)+c_{2}^{\prime}<$ $s c\left(A^{b}\right)+c^{\prime}$.

Suppose that $c^{\prime}=c_{1}^{\prime}=c_{2}^{\prime}$. Then $s c\left(A_{1}^{b}\right)<s c\left(A^{b}\right)$ and $s c\left(A_{1}^{b}\right)<s c\left(A^{b}\right)$, so $L^{b} \in$ $\mathcal{D}_{\text {det }}$. We show by contradiction that condition 4 holds. Suppose that $\mu_{2}=1$ and L^{b} is not decomposable into automata with cycles smaller than λ_{2}. That means at least one of A_{1}^{b} and A_{2}^{b} have cycle greater than or equal to λ_{2}. Without loss of generality let it be A_{1}^{b}. Because $s c\left(A_{1}^{b}\right)<s c\left(A^{b}\right)$, Its tail must be smaller than $\mu_{2}=1$ - its tail has size 0 . However then $c_{1}^{\prime}=1 \neq c^{\prime}$, which is a contradiction to our assumption that $c^{\prime}=c_{1}^{\prime}=c_{2}^{\prime}$.

Suppose that $c^{\prime}=c_{1}^{\prime}=c_{2}^{\prime}$ does not hold. Let $c^{\prime}=1$, and without loss of generality $c_{1}^{\prime}=0$. From $s c\left(A_{1}^{b}\right)<s c\left(A^{b}\right)+1$ it could be that $s c\left(A_{1}^{b}\right)=s c\left(A^{b}\right) .{ }^{2}$ However since A_{1}^{b} has nonzero tail length and A_{1} has no tail, A_{1}^{b} must have shorter cycle length. Let $\left(\lambda_{21}, \mu_{21}\right)$ be its size and $\left(\lambda_{22}, \mu_{22}\right)$ be the size of A_{2}^{b}. It holds that $\lambda_{21}<\lambda_{2}$ and $\lambda_{22}<\lambda_{2}$. From A_{1}^{b} and A_{2}^{b}, we construct new automata $A_{1}^{b \prime}$ and $A_{2}^{b \prime}$ of sizes $\left(\lambda_{21}, 0\right)$ and $\left(\lambda_{22}, 0\right)$, such that $L\left(A_{1}^{b \prime}\right) \cap L\left(A_{2}^{b \prime}\right)=L$. Let us denote $L_{1}^{b \prime}$ and $L_{2}^{b \prime}$ languages of these automata. Since A^{b} is just a cycle of size λ_{2} it holds that $\forall w: w \in L^{b} \Leftrightarrow b^{\lambda_{2}} w \in L^{b}$. We use this to construct new automata as follows: we cut the tails and set the initial state to be the state where $b^{\lambda_{2}}$ is read. Formally, Let $A_{1}^{b}=(K,\{a\}, \delta, q[0], F)$, then

[^3]$A_{1}^{b \prime}=\left(K^{\prime},\{a\}, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$, where:
\[

$$
\begin{gathered}
K^{\prime}=\left\{q\left[\mu_{21}\right], q\left[\mu_{21}+1\right], \ldots, q\left[\mu_{21}+\lambda_{21}-1\right]\right\}, \quad F^{\prime}=F \cap K^{\prime}, \\
q_{0}^{\prime}=q\left[\mu_{21}+\left(\lambda_{2}-\mu_{21}\right) \quad \bmod \lambda_{21}\right], \delta^{\prime}=\left.\delta\right|_{K^{\prime} \times\{a\}}
\end{gathered}
$$
\]

$A_{2}^{b \prime}$ is made from A_{2}^{b} analogously. For these languages it holds that $\forall w: w \in L_{1}^{b \prime} \Leftrightarrow$ $b^{\lambda_{2}} w \in L_{1}^{b}$ and $\forall w: w \in L_{2}^{b \prime} \Leftrightarrow b^{\lambda_{2}} w \in L_{2}^{b}$. Now we prove that $L_{1}^{b \prime} \cap L_{2}^{b \prime}=L^{b}:$

$$
w \in L_{1}^{b^{\prime}} \cap L_{2}^{b^{\prime}} \Leftrightarrow b^{\lambda_{2}} w \in L_{1}^{b} \cap L_{2}^{b} \Leftrightarrow b^{\lambda_{2}} w \in L^{b} \Leftrightarrow w \in L^{b}
$$

Since we have decomposition of L^{b} into automata with cycles smaller than λ_{2}, condition 4 holds.

Now suppose that $c^{\prime}=c_{1}^{\prime}=c_{2}^{\prime}$ does not hold, $c^{\prime}=0$ and without loss of generality $c_{1}^{\prime}=1$. Then $s c\left(A_{1}^{b}\right)<s c\left(A^{b}\right)$ and $s c\left(A_{2}^{b}\right)<s c\left(A^{b}\right)$, so $L^{b} \in \mathcal{D}_{\text {det }}$. Let $\left(\lambda_{21}, 0\right)$ be the size of A_{1}^{b}. If $\lambda_{21}<\lambda_{2}$, then condition 4 holds. If $\lambda_{21}=\lambda_{2}$, then $s c\left(A_{1}\right)=s c\left(A_{1}^{b}\right)+1=$ $\lambda_{2}+0+1<\lambda_{2}+\mu_{2}=s c\left(A^{b}\right)+0=s c(A)$. Therefore $1<\mu_{2}$ and condition 4 holds.

We have covered the cases when L_{1} and L_{2} are simple bicyclic. However, this is not necessary. A_{1} and A_{2} can have more than one b-cycle as seen in Example 3.8. Suppose the size of a-part of A_{1} is greater than one. Because $L_{1}^{a}=\{a\}^{*}$, there must exist a transition on b from all states in the a-part. Let n be the number of states in the a-part of A_{1}. We divide L_{1} into n languages based on the state of a-part in which the transition on b is made or word is accepted. We shall denote them by left subscript - ${ }_{1} L_{1},{ }_{2} L_{1}, \ldots,{ }_{n} L_{1}$. Formally, let $\left\{q_{1}, q_{2}, \ldots q_{n}\right\}$ be the states of a-part of A_{1} and $(\forall i=1, \ldots, n){ }_{i} L_{1}=\left\{w=a^{m} b^{l} \in L_{1} \mid\left(q_{0}, a^{m} b^{l}\right) \vdash_{A_{1}}^{*}\left(q_{i}, b^{l}\right)\right\}$. Obviously, these languages are simple bicyclic languages. We do the same division for L_{2}. What are we going to prove is that for any such subset language, for example ${ }_{1} L_{1}$, there exist a subset language of L_{2}, for example ${ }_{1} L_{2}$ such, that ${ }_{1} L_{1}^{b}$ and ${ }_{1} L_{2}^{b}$ decompose L^{b}.

For each ${ }_{i} L_{1}^{b},{ }_{i} L_{2}^{b}$ we prove that $L^{b} \subseteq{ }_{i} L_{1}^{b}$ and $L^{b} \subseteq{ }_{i} L_{2}^{b}$. From $L^{a}=a^{*}$ we get ${ }_{i} L_{j}^{a} b^{*} \cap L={ }_{i} L_{j}^{a} L^{b}$ for all i, j where such language is defined. Then, from $L_{1} \cap L_{2}=$ $L \Rightarrow L \subseteq L_{1}$ we get

$$
{ }_{1} L_{1}^{a} b^{*} \cap L \subseteq{ }_{1} L_{1}^{a} b^{*} \cap L_{1} \Rightarrow{ }_{1} L_{1}^{a} L^{b} \subseteq{ }_{1} L_{11}^{a} L_{1}^{b} \Rightarrow L^{b} \subseteq{ }_{1} L_{1}^{b} .
$$

Proof for other i, j is analogous. Without loss of generality, let us assume ${ }_{1} L_{1}^{a} \cap_{1} L_{2}^{a} \neq \emptyset$. Now we show that ${ }_{1} L_{1}^{b} \cap_{1} L_{2}^{b}=L^{b}$. To prove \subseteq, let $v \in{ }_{1} L_{1}^{b} \cap_{1} L_{2}^{b}$ and $u \in{ }_{1} L_{1}^{a} \cap{ }_{1} L_{2}^{a}$. That
means $u v \in{ }_{1} L_{1} \cap{ }_{1} L_{2} \Rightarrow u v \in L_{1} \cap L_{2} \Rightarrow u v \in L \Rightarrow v \in L^{b}$. The other side, ${ }_{1} L_{1}^{b} \cap_{1} L_{2}^{b} \supseteq$ L^{b}, follows from $L^{b} \subseteq{ }_{i} L_{j}^{b}$. Let us now construct simple bicyclic languages $L_{1}^{\prime}=a^{*}{ }_{1} L_{1}^{b}$ and $L_{2}^{\prime}=a^{*}{ }_{1} L_{2}^{b}$, accepted by minimal automata A_{1}^{\prime} and A_{2}^{\prime}. From ${ }_{1} L_{1}^{b} \cap_{1} L_{2}^{b}=L^{b}$ we get $L_{1}^{\prime} \cap L_{2}^{\prime}=L$ and from its construction it holds that $\operatorname{sc}\left(A_{1}^{\prime}\right)<\operatorname{sc}\left(A_{1}\right)<\operatorname{sc}(A)$ and $s c\left(A_{2}^{\prime}\right)<s c\left(A_{2}\right)<s c(A)$. Therefore L_{1}^{\prime} and L_{2}^{\prime} decompose L and the validity of condition 4 for such decomposition was proven earlier in this proof.
b) $\lambda_{2} \leq 1$ and $\lambda_{2}+\mu_{2} \leq 2$

If $\lambda_{2}=1$, either $\mu_{2}=0$ and $L^{b}=b^{*}$ or $\mu_{2}=1$ and $L^{b}=b^{+}$. In all cases, the b-part of A is one state, i.e., $s c(A)=s c\left(A^{a}\right)+1$. Since L_{1} decomposes L, it holds that $L \subseteq L_{1}$ and:
$L \subseteq L_{1} \Rightarrow L^{a} b^{*}\left(L^{a} b^{+}\right) \subseteq L_{1} \Rightarrow \forall u \in L_{1}^{a}, \forall v \in b^{*}\left(b^{+}\right): u v \in L_{1} \Rightarrow v \in L_{1}^{b} \Rightarrow b^{*}\left(b^{+}\right) \subseteq L_{1}^{b}$

Therefore if $L^{b}=b^{*}$ then $L_{1}^{b}=b^{*}$ and if $L^{b}=b^{+}$then $L_{1}^{b}=b^{*}$ or b^{+}. The same holds for L_{2}. Regardless of the case, nonempty words of L_{1}^{b} and L_{2}^{b} are accepted in one state and it holds that $s c\left(A_{1}\right)=s c\left(A_{1}^{a}\right)+1$ and $s c\left(A_{2}\right)=s c\left(A_{2}^{a}\right)+1$. Therefore it holds that $s c\left(A_{1}^{a}\right)<s c\left(A^{a}\right)$ and $s c\left(A_{2}^{a}\right)<s c\left(A^{a}\right)$.

Let us construct new languages from A_{1} and A_{2}. Set all states in a-part, that do not have transition on b not final, and set all states in a-part that do have transition on b final. Then remove the state of the b-part. Let us denote these new automata $A_{1}^{a \prime}$ and $A_{2}^{a \prime}$ and the languages they accept $L_{1}^{a \prime}$ and $L_{2}^{a \prime}$. For these automata it holds that $s c\left(A_{1}^{a \prime}\right)=s c\left(A_{1}^{a}\right)<s c\left(A^{a}\right)$ and $s c\left(A_{2}^{a \prime}\right)=s c\left(A_{2}^{a}\right)<s c\left(A^{a}\right)$. We prove that $L_{1}^{a \prime} \cap L_{2}^{a \prime}=L^{a}$.

The inclusion \supseteq : Let $u \in L^{a}$. Then there exists v such that $u v \in L$ and $u v \in L_{1} \cap L_{2}$. We get $u \in L_{1}^{a} \cap L_{2}^{a}$. If there is a transition on b from state, where u is accepted in A_{1}^{a} and A_{2}^{a}, then $u \in L_{1}^{a \prime} \cap L_{2}^{a \prime}$ and we have proven what we wanted. If the transition is not there in both automata, that means $v=\varepsilon \in L^{b}$. But in A, all accepting states of a-part are those, with transition on b. This means that there is nonempty v^{\prime} such that $u v^{\prime} \in L$ and $u v^{\prime} \in L_{1} \cap L_{2}$. Therefore u must be accepted in A^{a} and A^{b} in states with transitions on b.

The inclusion \subseteq : Since A_{1} has only one state in b-part, all transitions on b go to that state. That means for all words from $L_{1}^{a \prime}$, any word from L_{1}^{b} can follow in A_{1}. Therefore this holds: $\forall u \in L_{1}^{a \prime}, \forall v \in L_{1}^{b}: u v \in L_{1}$. Identical holds for L_{2}. Therefore we
get:
$u \in L_{1}^{a \prime} \cap L_{2}^{a \prime} \Rightarrow u \in L_{1}^{a \prime} \wedge u \in L_{2}^{a \prime} \Rightarrow \forall v \in L_{1}^{b} \cap L_{2}^{b}: u v \in L_{1} \wedge u v \in L_{1} \Rightarrow u v \in L_{1} \cap L_{2}$

$$
\Rightarrow u v \in L \Rightarrow u \in L^{a}
$$

If $\lambda_{2}=0$ then $\mu_{2} \leq 2$. Either $\mu=1$ or $\mu=2$. In the first case, $L^{b}=\{\varepsilon\}$, but then $L=L^{a}$ and condition 3 holds. In the second case, $L^{b}=\{b\}$ or $L^{b}=\{\varepsilon, b\}$. It also holds that $s c(A)=s c\left(A^{a}\right)+1, s c\left(A_{1}^{a}\right)<s c\left(A^{a}\right)$ and $s c\left(A_{2}^{a}\right)<s c\left(A^{a}\right)$. We construct the same new languages $L_{1}^{a \prime}$ and $L_{2}^{a \prime}$ as in the previous case. We prove that $L_{1}^{a \prime} \cap L_{2}^{a \prime}=L^{a}$. Inclusion \supseteq is identical. For \subseteq we get:

$$
\begin{gathered}
u \in L_{1}^{a \prime} \cap L_{2}^{a \prime} \Rightarrow u \in L_{1}^{a \prime} \wedge u \in L_{2}^{a \prime} \Rightarrow u b \in L_{1} \wedge u b \in L_{1} \Rightarrow u b \in L_{1} \cap L_{2} \\
\Rightarrow u b \in L \Rightarrow u \in L^{a} .
\end{gathered}
$$

We have shown that L^{a} is decomposable, so condition 3 holds.
Part 2: L^{a} is finite since L^{a} is finite, it is not decomposable. We are going to prove that condition 4 holds. We only need to prove that L^{b} is decomposable.
a) $\lambda_{2}+\mu_{2} \leq 1$

In this case, we are actually going to prove that L is not decomposable, which means if L is decomposable and L^{a} is finite, then $\lambda_{2}+\mu_{2}>1$. Either $\lambda_{2}=0$ and $\mu_{2}=1$, which means $L^{b}=\{\varepsilon\}$ or $\lambda_{2}=1$ and $\mu_{2}=0$, which means $L^{b}=b^{*}$. In the first case, $L=L^{a}$, but we know finite unary languages are not decomposable. In the second case, we use what have we proven in part 1 b) for $L^{b}=b^{*}$. We constructed new languages $L_{1}^{a \prime}$ and $L_{2}^{a \prime}$ and showed that they decompose L^{a}. The same reasoning works here, which is a contradiction because L^{a} is not decomposable.
b) $\mu_{1} \leq 1$

This means $L^{a}=\{\varepsilon\}$, so $L=L^{b}$. The condition 4 holds.
c) $\mu_{1} \leq 2$ and $\mu_{2}=0$

If $\mu_{2}=2$, then $L^{a}=\{a\}$ and a-part of A has one state. It holds that $s c(A)=$ $s c\left(A^{b}\right)+1$. For A_{1} and A_{2}, this must hold: From initial state, there is a transition on a to some state, where a is read. From this state, words from L^{b} are read. That means the initial state cannot have transition on a to itself, but to a different state. Let us call this state q. The a-part of both automata have at least one state - the initial state. There can be a transition from q to some other state and more than
one b-cycle or b-path, but these cannot make it to $L_{1} \cap L_{2}$. We isolate the part of both automata starting with state q and construct automata $A_{1}^{b \prime}$ and $A_{2}^{b \prime}$ accepting languages $L_{1}^{b \prime}$ and $L_{2}^{b \prime}$. It is easy to see that $L_{1}^{b \prime} \cap L_{2}^{b \prime}=L^{b}$. For their automata it holds that $s c\left(A_{1}^{b \prime}\right)<s c\left(A_{1}\right)<s c(A)$, so $s c\left(A_{1}^{b \prime}\right)<s c\left(A^{b}\right)$. Similarly, $s c\left(A_{2}^{b \prime}\right)<s c\left(A^{b}\right)$. Therefore $L_{1}^{b \prime}$ and $L_{2}^{b \prime}$ decompose L^{b} and condition 4 holds.

Chapter 4

Other $a b$ languages

In this chapter we introduce other bicyclic languages and explore their decomposability. First we introduce bicyclic languages that are not necessary simple.

4.1 Bicyclic languages

Definition 4.1. An $a b$ language L is a bicyclic language if it is accepted by a minimal DFA whose b-part is connected.

Let's explore such language by an example.

Figure 4.1: Bicyclic language

Example 4.1. Let L be a bicyclic language, whose automaton A is depicted in Figure 4.1. There are several b-paths going to the b-cycle on different states or joining and going to the b-cycle as one path. If we removed all b-paths except one, we get something like a simple bicyclic language. All b-paths begin from a state in a-part, so we can divide
L into languages identified by states of a-part. We get four simple bicyclic languages ${ }^{1}$ and a unary language over $\{a\}$ for state $q[1]$, which is accepting, but does not have any transitions on b. Now look at the languages identified by $q[3]$ and $q[4]$. Their b-paths are identical from the first state after reading b. In fact if we unite them, we almost get a simple bicyclic language. The only problem is that $q[4]$ is accepting and $q[3]$ is not. We solve this by making $q[4]$ not accepting in the simple bicyclic language and adding the words accepted there to the unary language. Therefore to get the least amount of simple bicyclic languages, we divide L based on the state after reading b. L is now a union of three simple bicyclic languages and a unary language over $\{a\}$. We can now write L as

$$
\begin{gathered}
L=\left\{a^{4 k+r} \mid k \in \mathbb{N}, r \in\{1,4\}\right\} \cup\left\{a^{4 k+r} b^{4 l+6} \mid k, l \in \mathbb{N}, r \in\{3,4\}\right\} \\
\cup\left\{a^{4 k+2} \mid k \in \mathbb{N}\right\}\left(\left\{b^{4 l+5} \mid \in \mathbb{N}\right\} \cup\left\{b^{2}\right\}\right) \cup\left\{b^{4 k+2} \mid k \in \mathbb{N}\right\} \cup\left\{b^{3}\right\}
\end{gathered}
$$

Now we formalize and prove what we have discovered.
Definition 4.2. Let L be a language accepted by DFA $A=\left(K, \Sigma, \delta, q_{0}, F\right)$. In this automaton, we call a simple bicyclic language identifying state such state q in which A is after reading the first symbol b. That means there exists $n \in \mathbb{N}$ such that $\left(q_{0}, a^{n} b\right) \vdash_{A}^{*}$ (q, ε).

Lemma 4.1. Let L be a bicyclic language and A its minimal DFA. Let n be number of simple bicyclic language identifying states, which we label $q_{1}, q_{2}, \ldots, q_{n}$. Then there exist n simple bicyclic languages $L\left[q_{1}\right], L\left[q_{2}\right], \ldots L\left[q_{n}\right]$ and a unary language $L^{\prime} \subseteq a^{*}$ such that $L=L\left[q_{1}\right] \cup L\left[q_{2}\right] \cup \ldots \cup L\left[q_{n}\right] \cup L^{\prime}$.

Proof. Let q_{i} be any simple bicyclic language identifying state. Let $K\left[q_{i}\right] \subseteq K$ be states that can be reached in a computation of A that reaches q_{i}. formally, $K\left[q_{i}\right]=$ $\left\{p \mid \exists u v,\left(q_{0}, u v\right) \vdash_{A}^{*}(p, v) \vdash_{A}^{*}\left(q_{i}, \varepsilon\right)\right\} \cup\left\{p \mid \exists u v,\left(q_{0}, u v\right) \vdash_{A}^{*}\left(q_{i}, v\right) \vdash_{A}^{*}(p, \varepsilon)\right\}$. Let $A\left[q_{i}\right]=\left(K\left[q_{i}\right], \Sigma,\left.\delta\right|_{K\left[q_{i}\right] \times \Sigma}, q_{0}, F\left[q_{i}\right]\right)$ be automaton made from A by removing states not in $K\left[q_{i}\right]$. In $A\left[q_{i}\right], F\left[q_{i}\right]$ is such subset of $F \cap K\left[q_{i}\right]$, that satisfies Lemma 3.2. According to that lemma, $L\left(A\left[q_{i}\right]\right)=L\left[q_{i}\right]$ is a simple bicyclic language. Thus we have n simple bicyclic languages identified by n simple bicyclic language identifying states.

[^4]L^{\prime} is just $L \cap a^{*}$.
$L \supseteq L\left[q_{1}\right] \cup L\left[q_{2}\right] \cup \ldots \cup L\left[q_{n}\right] \cup L^{\prime}$ is proven by the construction of these languages.
$L \subseteq L\left[q_{1}\right] \cup L\left[q_{2}\right] \cup \ldots \cup L\left[q_{n}\right] \cup L^{\prime}:$ Let $w \in L$ be any word. If $w=a^{k}$ for some k, then $w \in L^{\prime}$. Otherwise, $w=a^{k} b^{l}$ for some k, l and $\exists q_{i} \in K,\left(q_{0}, a^{k} b^{l}\right) \vdash_{A}^{*}\left(q, b^{l-1}\right)$. Therefore q_{i} is a simple bicyclic language identifying state and $w \in L\left[q_{i}\right]$.

Now let us explore the decomposability of bicyclic languages into $a b$ languages.

Example 4.2. Let $L=\left\{a^{3 k} b^{3 l} \mid k, l \in \mathbb{N}\right\} \cup\left\{a^{3 k+1} b^{3 l+1} \mid k, l \in \mathbb{N}\right\}$. Its minimal DFA, A is shown in Figure 4.2 Let's try the decomposition form Lemma 3.3. L_{1} will be $L^{a} b^{*}$ and L_{2} will be $a^{*} L^{b}$. The two b-paths are merged into one in A_{2}, which is a problem. For example, both automata accept $a^{3} b^{1}$, which is not in L. This simple kind of decomposition does not work here.

A

A_{1}

A_{2}

Figure 4.2: Attempt 1 to decompose bicyclic language

Example 4.3. Let us try the type of decomposition where L^{a} is decomposable, by
Lemma 3.4. Let $L=L[0] \cup L[1]$, where $L[0]=\left\{a^{12 k+r} b^{2 l} \mid k, l \in \mathbb{N}, r \in\{1,8\}\right\}$ and $L[1]=\left\{a^{12 k+r} b^{2 l+1} \mid k, l \in \mathbb{N}, r \in\{4,5\}\right\}$. its minimal DFA, A, is shown in Figure 4.3. $L^{a}=\left\{a^{12 k+r} \mid k \in \mathbb{N}, r \in\{1,4,5,8\}\right\}$ is decomposable into languages $L_{1}^{a}=\left\{a^{4 k+r} \mid k \in \mathbb{N}, r \in\{0,1\}\right\}$ and $L_{2}^{a}=\left\{a^{3 k+r} \mid k \in \mathbb{N}, r \in\{1,2\}\right\}$. In state $q[0]$ in
A_{1}^{a}, those words are accepted, that are accepted in states $q[4]$ and $q[8]$ in A^{a} - words from both $L[0]^{a}$ and $L[1]^{a}$. Therefore we need to add a transition on b from this state to a b-part, that accepts both $b^{2 l}$ and $b^{2 l+1}$. The same holds for state $q[1]$ in A_{1}^{a}, which accepts words accepted in states $q[1]$ and $q[5]$ in A^{a}. That means for L to be a subset of L_{1}, L_{1} must be $L_{1}^{a} b^{*}$. However, identical situation happens for L_{2}. States $q[1]$ and $q[2]$ in A_{2}^{a} both accept words from both $L[0]^{a}$ and $L[1]^{a}$. For $L \subseteq L_{2}$, it must be $L_{2}=L_{2}^{a} b^{*}$. But now we have $L \subsetneq L_{1} \cap L_{2}$ and this is not a decomposition.

Figure 4.3: Attempt 2 to decompose bicyclic language

The first two types of decomposition of simple bicyclic languages do not work for all bicyclic languages. What about the third type? For language L, we shall pick some simple bicyclic language $L[q]$ instead of L^{b} and we shall try to decompose L based on the decomposition of $L[q]^{b}$.

Example 4.4. Let $L=\left\{a^{4 k+1} b^{6 l+r} \mid k, l \in \mathbb{N}, r \in\{1,6\}\right\} \cup\left\{a^{4 k+2} \mid k \in \mathbb{N}\right\}\left(\left\{b^{6 k+r} \mid k \in\right.\right.$ $\mathbb{N}, r \in\{2,3\}\} \cup\{\varepsilon, a\}) \cup\left\{a^{4 k+3} b^{6 l+r} \mid k, l \in \mathbb{N}, r \in\{3,4\}\right\}$. The language $L\left[p_{1}\right]^{b}$ is the language from Example 1.2 (with different alphabet), which is decomposable. It is
decomposable into languages, which we label $L\left[p_{1}\right]_{1}$ and $L\left[p_{1}\right]_{2}$. We need to add the b-paths of other simple bicyclic languages making L to automata decomposing $L\left[p_{1}\right]$, such that the intersection of corresponding simple bicyclic languages of L_{1} and L_{2} will give the original simple bicyclic language. This will give us languages L_{1} and L_{2}. We can do it the following way. In $A\left[p_{1}\right]_{1}$, the b-cycle is almost the same except the extra accepting state. We can add b-paths to it as in A, but we need to filter the extra words. For $L\left[p_{1}\right]$, we can filter the words thanks to the fact that state p_{4} is not accepting in A. This helps us for $L\left[p_{3}\right]$ and $L\left[p_{6}\right]$ as well. In $A\left[p_{1}\right]_{2}$, the size of the b-cycle is 3 , so we attach the b-paths as follows: The distance from state p_{6}, where b-path of $L\left[p_{6}\right]$ ends, to p_{2}, where b-path of $L\left[p_{1}\right]$ ends, is 2 in A. That will be the distance in A_{2} as well, For $L\left[p_{3}\right]$, the distance is 5 , so in A_{2} it will be $5 \bmod 3=2$. Reader can verify that $L_{1}\left[p_{3}\right] \cap L_{2}\left[p_{3}\right]=L\left[p_{3}\right]$ and $L_{1}\left[p_{6}\right] \cap L_{2}\left[p_{3}\right]=L\left[p_{6}\right]$. Therefore L_{1} and L_{2} decompose L.

Figure 4.4: Attempt 3 to decompose bicyclic language

We showed how can the decomposition work in case $L[q]^{b}$ decomposes via Theorem 1.2 , requirement (ii). But it works for other types of decomposition of unary languages as well. If (i) of Theorem 1.2 holds, one cycle is unchanged and the other is just one accepting state. Addition of b-path is simple here. If Theorem 1.4 holds, we add the
b-paths according to Lemma 1.1. Now we prove the decomposition formally.

Lemma 4.2. Let L be a bicyclic language, A its minimal DFA and L_{0} a simple bicyclic language identified by some simple bicyclic language identifying state of A. Let $L_{0}^{b} \in$ $\mathcal{D}_{\text {det }}$ and its minimal DFA has size $\left(\lambda_{2}, \mu_{2}\right)$. If either $\mu_{2} \neq 1$ or L_{0}^{b} is decomposable into automata with cycles smaller than λ_{2} or $L_{0}^{a}=L^{a}$ and is finite, then $L \in \mathcal{D}_{\text {det }}$.

Proof. Let A_{0}^{b} be the minimal DFA accepting L_{0}^{b}, A_{01}^{b} and A_{02}^{b} be the minimal DFAs of languages L_{01}^{b} and L_{02}^{b} decomposing L_{0}^{b} and A_{0}^{a} be the minimal DFA accepting L_{0}^{a}. Let A_{01} be the automaton constructed from A_{0}^{a} and A_{01}^{b} accepting simple bicyclic language $L_{01}=L_{0}^{a} L_{01}^{b}$. Similarly, A_{02} accepts $L_{02}=L_{0}^{a} L_{02}^{b}$. According to Lemma 3.5, L_{01} and L_{02} decompose L_{0}. We shall split proof to three cases based on the way L_{0}^{b} decomposes. In each case we add states and transitions to A_{01} and A_{02} to construct automata A_{1} and A_{2} accepting bicyclic languages L_{1} and L_{2}. We show that $s c\left(A_{1}\right)<s c(A)$, $s c\left(A_{2}\right)<s c(A), L^{a}=L_{1}^{a}=L_{2}^{a}$ and that for every simple bicyclic language identifying state q_{i} the following holds:

- There exist simple bicyclic language identifying state q_{i}^{\prime} in A_{1} and $q_{i}^{\prime \prime}$ in A_{2} such that $L_{1}\left[q_{i}^{\prime}\right]$ and $L_{2}\left[q_{i}^{\prime \prime}\right]$ decompose $L\left[q_{i}\right]$. We shall therefore call these languages $L\left[q_{i}\right]_{1}$ and $L\left[q_{i}\right]_{2}$.
- $L\left[q_{i}\right]^{a}=L\left[q_{i}\right]_{1}^{a}=L\left[q_{i}\right]_{2}^{a}$

After this is proven, the following equivalences show that L_{1} and L_{2} decompose L.
If $w \in a^{*}$ then from $L^{a}=L_{1}^{a}=L_{2}^{a}$ it holds that $w \in L \Leftrightarrow w \in L_{1} \cap L_{2}$. If $w \in a^{*} b^{+}$, then:
$w \in L \Leftrightarrow(\exists i) w \in L\left[q_{i}\right] \Leftrightarrow(\exists i) w \in L\left[q_{i}\right]_{1} \cap L\left[q_{i}\right]_{2} \stackrel{*}{\Leftrightarrow}(\exists i) w \in L\left[q_{i}\right]_{1} \wedge(\exists i) w \in L\left[q_{i}\right]_{2} \Leftrightarrow$

$$
\Leftrightarrow w \in L_{1} \wedge w \in L_{2} \Leftrightarrow w \in L_{1} \cap L_{2}
$$

$\stackrel{*}{\Leftarrow}$ follows from this:

$$
\begin{gathered}
w \in L_{1} \wedge w \in L_{2} \Rightarrow(\exists i) w \in L\left[q_{i}\right]_{1} \wedge(\exists j) w \in L\left[q_{j}\right]_{2} \Rightarrow \\
\Rightarrow(\exists k, l) w=a^{k} b^{l} \wedge(\exists i) a^{k} \in L\left[q_{i}\right]^{a}, b^{l} \in L\left[q_{i}\right]_{1}^{b} \wedge(\exists j) a^{k} \in L\left[q_{j}\right]^{a}, b^{l} \in L\left[q_{j}\right]_{2}^{b} \Rightarrow \\
\Rightarrow L\left[q_{i}\right]^{a}=L\left[q_{j}\right]^{a} \Rightarrow b^{l} \in L\left[q_{i}\right]_{2}^{b} \Rightarrow w \in L\left[q_{i}\right]_{1} \cap L\left[q_{i}\right]_{2}
\end{gathered}
$$

First, in each case, we need to have $L^{a}=L_{1}^{a}=L_{2}^{a}$. That means setting some states accepting or even adding, if L_{0}^{a} is finite, but L^{a} has longer words. Then we add b-paths for each q_{i}. Each path will start in the same state in A_{1} and A_{2} as in A. That ensures that $L\left[q_{i}\right]^{a}=L\left[q_{i}\right]_{1}^{a}=L\left[q_{i}\right]_{2}^{a}$. We also need to mention the case of decomposition if L_{0}^{a} is finite. Because of the different structure of automata of such simple bicyclic languages, such decomposition is possible that would not be possible when L_{0}^{a} would be infinite such as Example 3.7. In finite case, the automata have transition on a to initial state of A_{0}^{b}, which is not removed like in the infinite case. However, If there is a longer word in L^{a}, the transition on a has to go elsewhere in A_{1} and A_{2}. Therefore we need to add requirement that $L^{a}=L_{0}^{a}$ to solve this.

Now we split to the three cases on type of decomposition of L_{0}^{b} :
$\mu_{2}>0$ and requirement (i) from Theorem 1.2 holds.
A_{01}^{b} has size $\left(\lambda_{2}, \mu_{12}\right)$, where $\mu_{12}<\mu_{2}$ and b-cycle is unchanged. A_{02}^{b} has size $\left(1, \mu_{2}\right)$ where all states except the last before cycle are accepting.
Adding b-paths to A_{01} :

- If b-path leads to a state on a b-cycle in A, we add it as it is in A.
- If it joins another b-path, that we have already added to A_{01} :
- If in A it leads to a state on tail of A_{0}^{b} that does not exist in A_{01}^{b}, because it was shortened. Then, this b-path will lead to a state in b-cycle, that replaces deleted state.
- otherwise it goes to the same state.

Adding b-paths to A_{02} :

- If b-path leads to a state on a b-cycle in A, we add it to the one state in cycle.
- If it joins another b-path, that we have already added to A_{02}, it goes to the same state.

Now we prove that $L\left[q_{i}\right]_{1}$ and $L\left[q_{i}\right]_{2}$ decompose $L\left[q_{i}\right]$. Corresponding bicyclic language identifying state q_{i}^{\prime} in A_{1} is the same unless it was part of the tail of A_{0}^{b} that was shortened. There is the state in b-cycle that replaces it. State $q_{i}^{\prime \prime}$ in A_{2} is different, if it was part of the b-cycle, replaced by the one state of the cycle.

- Path starting in q_{i} leads to b-cycle. In A_{1}, the b-cycle is unchanged, so $L\left[q_{i}\right]=$ $L\left[q_{i}\right]_{1}$. In A_{2}, the cycle is replaced by one accepting state and $L\left[q_{i}\right]_{2}=L\left[q_{i}\right]^{\prime} \cup$ $L\left[q_{i}\right]^{a}\left\{b^{n} \mid n \geq\right.$ the length of b-path $\}$, where $L\left[q_{i}\right]^{\prime} \subseteq L\left[q_{i}\right]$ are the words accepted on the b-path.

$$
L\left[q_{i}\right]_{1} \cap L\left[q_{i}\right]_{2}=L\left[q_{i}\right] \cap\left(L\left[q_{i}\right]^{\prime} \cup L\left[q_{i}\right]^{a}\left\{b^{n}\right\}\right)=L\left[q_{i}\right]^{\prime} \cup\left(L\left[q_{i}\right]-L\left[q_{i}\right]^{\prime}\right)=L\left[q_{i}\right]
$$

- Path starting in q_{i} leads to a state on tail of A_{0}^{b}. In A_{1} it accepts extra words in the same state where L_{01}^{b} accepts extra word. It is the last state on the b-path, so $L\left[q_{i}\right]_{1}=L\left[q_{i}\right] \cup L\left[q_{i}\right]^{a}\left\{b^{n} \mid n+1\right.$ is the length of the b-path $\}$. In A_{2} those extra words are not accepted, so $L\left[q_{i}\right]_{2}=L\left[q_{i}\right]^{a}\left\{b^{n} \mid n+1\right.$ is not the length of the b-path $\} \subseteq L\left[q_{i}\right]$.

$$
L\left[q_{i}\right]_{1} \cap L\left[q_{i}\right]_{2}=L\left[q_{i}\right]
$$

Number of states: From the construction, it is evident, that $s c\left(A_{1}\right)=s c(A)-\left(\mu_{2}-\mu_{12}\right)$ and $s c\left(A_{2}\right)=s c(A)-\lambda_{2}+1$.

$\mu_{2}>0$ and requirement (ii) from Theorem 1.2 holds.

A_{01}^{b} has size $\left(\lambda_{2}, \mu_{12}\right)$, where $\mu_{12}<\mu_{2}$ and b-cycle has one extra accepting state. A_{02}^{b} has size $\left(\lambda_{2}^{\prime}, \mu_{2}\right)$ where all states except the last in cycle are accepting. Let us call the states of the b-cycle in A_{02} and $A_{2} q[0] \ldots q\left[\lambda_{2}^{\prime}-1\right]\left(q\left[\lambda_{2}^{\prime}-1\right]\right.$ is not accepting $)$. The states of b-cycle in A and A_{1} will be $q[0] \ldots q\left[\lambda_{2}-1\right]$. The extra accepting state in A_{1} is $q\left[\lambda_{2}-1\right]$.

Adding b-paths to A_{01} :
The same as in previous case.
Adding b-paths to A_{02} :

- If b-path joins another b-path, that we have already added to A_{02}, it goes to the same state.
- If it leads to a state on a b-cycle in A, it will go to the state in b-cycle as follows. Let $q\left[p_{i}\right]$ be the state on the b-cycle the b-path leads to and d_{i} distance from $q\left[p_{i}\right]$ to $q\left[\lambda_{2}-1\right]$. In A_{2}, the path will go to state $q\left[\lambda_{2}^{\prime}-1-\left(d_{i} \bmod \lambda_{2}^{\prime}\right)\right]$.

Now we prove that $L\left[q_{i}\right]_{1}$ and $L\left[q_{i}\right]_{2}$ decompose $L\left[q_{i}\right]$. Corresponding bicyclic language identifying states q_{i}^{\prime} and $q_{i}^{\prime \prime}$ are similar as in the previous case. Path starting in q_{i} leads
to b-cycle to state $q\left[p_{i}\right]$. Let $\mu\left[q_{i}\right]$ be the length of the b-path with q_{i}. In A_{1} it accepts extra words in the accepting state $q\left[\lambda_{2}-1\right]$, so

$$
L\left[q_{i}\right]_{1}=L\left[q_{i}\right] \cup L\left[q_{1}\right]^{a}\left\{b^{n} \mid n=\mu\left[q_{i}\right]+k \lambda_{2}+d_{i}, k \in \mathbb{N}\right\} .
$$

In A_{2}, the not accepting state $q\left[\lambda_{2}^{\prime}-1\right]$ is at distance $d_{i} \bmod \lambda_{2}^{\prime}$ from where the paths ends, so

$$
L\left[q_{i}\right]_{2}=L\left[q_{i}\right]^{\prime} \cup L\left[q_{i}\right]^{a}\left\{b^{n} \mid n \neq \mu\left[q_{i}\right]+k \lambda_{2}^{\prime}+\left(d_{i} \quad \bmod \lambda_{2}^{\prime}\right), n \geq \mu\left[q_{i}\right], k \in \mathbb{N}\right\}
$$

where $L\left[q_{i}\right]^{\prime} \subseteq L\left[q_{i}\right]$ are the words accepted on the b-path. Because of requirement (ii) from Theorem 1.2, states $\left\{q\left[k \lambda_{2}^{\prime}-1\right] \mid k \in \mathbb{N}^{+}\right\}$in b-cycle A and A_{1} are not accepting. Therefore for $L\left[q_{i}\right]$ it holds that

$$
L\left[q_{i}\right] \cap\left\{a^{*}\right\}\left\{b^{n} \mid n=\mu\left[q_{i}\right]+k \lambda_{2}^{\prime}+\left(d_{i} \quad \bmod \lambda_{2}^{\prime}\right), k \in \mathbb{N}\right\}=\emptyset .
$$

Let us denote $L\left[q_{1}\right]^{a}\left\{b^{n} \mid n=\mu\left[q_{i}\right]+k \lambda_{2}+d_{i}, k \in \mathbb{N}\right\}$ as $L\left[q_{i}\right]\left(\lambda_{2}\right)$ and $L\left[q_{i}\right]^{a}\left\{b^{n} \mid n \neq \mu\left[q_{i}\right]+k \lambda_{2}^{\prime}+\left(d_{i} \bmod \lambda_{2}^{\prime}\right), n \geq \mu\left[q_{i}\right], k \in \mathbb{N}\right\}$ as $L\left[q_{i}\right]\left(\neq \lambda_{2}^{\prime}\right)$.

$$
\begin{gathered}
L\left[q_{i}\right]_{1} \cap L\left[q_{i}\right]_{2}=\left(L\left[q_{i}\right] \cup L\left[q_{i}\right]\left(\lambda_{2}\right)\right) \cap\left(L\left[q_{i}\right]^{\prime} \cup L\left[q_{i}\right]\left(\neq \lambda_{2}^{\prime}\right)\right)= \\
\left(L\left[q_{i}\right] \cap L\left[q_{i}\right]^{\prime}\right) \cup\left(L\left[q_{i}\right] \cap L\left[q_{i}\right]\left(\neq \lambda_{2}^{\prime}\right)\right) \cup\left(L\left[q_{i}\right]\left(\lambda_{2}\right) \cap L\left[q_{i}\right]^{\prime}\right) \cup\left(L\left[q_{i}\right]\left(\lambda_{2}\right) \cap L\left[q_{i}\right]\left(\neq \lambda_{2}^{\prime}\right)\right)= \\
L\left[q_{i}\right]^{\prime} \cup\left(L\left[q_{i}\right]-L\left[q_{i}\right]^{\prime}\right) \cup \emptyset \cup \emptyset=L\left[q_{i}\right]
\end{gathered}
$$

Number of states: From the construction, it is evident, that $s c\left(A_{1}\right)=s c(A)-\left|\mu_{2}-\mu_{12}\right|$ and $s c\left(A_{2}\right)=s c(A)-\lambda_{2}+\lambda_{2}^{\prime}$.
$\mu_{2}=0$ and L_{0}^{b} is decomposable via Theorem 1.4
A_{01}^{b} has size $\left(\lambda_{21}, 0\right)$ and A_{02}^{b} has size $\left(\lambda_{22}, 0\right)$. Let $\mu\left[q_{i}\right]$ be a length of a b-path with q_{i}. Then it holds that $L\left[q_{i}\right]=L\left[q_{i}\right]^{\prime} \cup L\left[q_{i}\right]^{a}\left\{b^{\mu\left[q_{i}\right]}\right\} L\left[q_{i}\right]^{\prime \prime}$, where $L\left[q_{i}\right]^{\prime}$ are words accepted on the b-path and $L\left[q_{i}\right]^{\prime \prime}$ is a properly λ_{2}-cyclic language. According to Lemma 1.1 $L\left[q_{i}\right]^{\prime \prime}$ is decomposable to λ_{21}-cyclic and λ_{22}-cyclic languages, which we shall call $L\left[q_{i}\right]_{1}^{\prime \prime}$ and $L\left[q_{i}\right]_{2}^{\prime \prime}$. Adding b-paths to A_{01} and A_{02} :

- If a b-path leads to a state on a cycle in A, that state is initial state for some λ_{2}-cyclic language $L\left[q_{i}\right]^{\prime \prime}$. In A_{01}, which has cycle size λ_{21}, there is a state, which is initial state of $L\left[q_{i}\right]_{1}^{\prime \prime}$. We add the b-path to this state. The same for A_{02}.
- If a b-path joins another b-path, that we have already added, we add it to the same state.

Now we prove that $L\left[q_{i}\right]_{1}$ and $L\left[q_{i}\right]_{2}$ decompose $L\left[q_{i}\right]$. For $L\left[q_{i}\right]_{1}$ it holds that $L\left[q_{i}\right]_{1}=$ $L\left[q_{i}\right]^{\prime} \cup L\left[q_{i}\right]^{a}\left\{b^{\mu\left[q_{i}\right]}\right\} L\left[q_{i}\right]_{1}^{\prime \prime}$. Similarly $L\left[q_{i}\right]_{2}=L\left[q_{i}\right]^{\prime} \cup L\left[q_{i}\right]^{a}\left\{b^{\mu\left[q_{i}\right]}\right\} L\left[q_{i}\right]_{2}^{\prime \prime}$.

$$
\begin{gathered}
L\left[q_{i}\right]_{1} \cap L\left[q_{i}\right]_{2}=\left(L\left[q_{i}\right]^{\prime} \cup L\left[q_{i}\right]^{a}\left\{b^{\mu\left[q_{i}\right]}\right\} L\left[q_{i}\right]_{1}^{\prime \prime}\right) \cap\left(L\left[q_{i}\right]^{\prime} \cup L\left[q_{i}\right]^{a}\left\{b^{\mu\left[q_{i}\right]}\right\} L\left[q_{i}\right]_{2}^{\prime \prime}\right)= \\
=L\left[q_{i}\right]^{\prime} \cup\left(L\left[q_{i}\right]^{a}\left\{b^{\mu\left[q_{i}\right]}\right\} L\left[q_{i}\right]_{1}^{\prime \prime} \cap L\left[q_{i}\right]^{\prime}\right) \cup\left(L\left[q_{i}\right]^{\prime} \cap L\left[q_{i}\right]^{a}\left\{b^{\mu\left[q_{i}\right]}\right\} L\left[q_{i}\right]_{1}^{\prime \prime}\right) \cup \\
\cup\left(L\left[q_{i}\right]^{a}\left\{b^{\mu\left[q_{i}\right]}\right\} L\left[q_{i}\right]_{1}^{\prime \prime} \cap L\left[q_{i}\right]^{a}\left\{b^{\mu\left[q_{i}\right]}\right\} L\left[q_{i}\right]_{2}^{\prime \prime}\right)=L\left[q_{i}\right]^{\prime} \cup \emptyset \cup \emptyset \cup L\left[q_{i}\right]^{a}\left\{b^{\mu\left[q_{i}\right]}\right\}\left(L\left[q_{i}\right]_{1}^{\prime \prime} \cap L\left[q_{i}\right]_{2}^{\prime \prime}\right)= \\
=L\left[q_{i}\right]^{\prime} \cup L\left[q_{i}\right]^{a}\left\{b^{\mu\left[q_{i}\right]}\right\} L\left[q_{i}\right]^{\prime \prime}=L\left[q_{i}\right] .
\end{gathered}
$$

Number of states: From the construction, it is evident, that $s c\left(A_{1}\right)=s c(A)-\lambda_{2}+\lambda_{21}$ and $s c\left(A_{2}\right)=s c(A)-\lambda_{2}+\lambda_{22}$.

4.2 All $a b$ languages

For $a b$ with more disconnected parts of b-part, we have only those results that follow from results of bicyclic languages. First thing to notice, that each disconnected part of b-part, i.e., each b-cycle or b-path that does not lead to a cycle identifies a bicyclic language. The following proposition is without proof is easy to see.

Proposition 4.1. Let L be an ab language and $n \in \mathbb{N}$ the number of disconnected parts of b-part of its minimal DFA. Then there exists n bicyclic languages such, that L is their union.

Corollary 4.1. Let L be an ab language and A its minimal DFA. Let n be the number of simple bicyclic language identifying states, which we label $q_{1}, q_{2}, \ldots q_{n}$. Then there exist n simple bicyclic languages $L\left[q_{1}\right], L\left[q_{2}\right], \ldots L\left[q_{n}\right]$ and a unary language $L^{\prime} \subseteq a^{*}$ such that $L=L\left[q_{1}\right] \cup L\left[q_{2}\right] \cup \ldots \cup L\left[q_{n}\right] \cup L^{\prime}$.

In terms of decomposition, the so far discovered properties of bicyclic languages hold for any $a b$ languages. We then have the following requirement for decomposability into $a b$ languages.

Theorem 4.1. Let L be an ab language, A its minimal DFA and L_{0} a simple bicyclic language identified by some simple bicyclic language identifying state of A. Let $L_{0}^{b} \in$
$\mathcal{D}_{\text {det }}$ and its minimal DFA has size $\left(\lambda_{2}, \mu_{2}\right)$. If either $\mu_{2} \neq 1$ or L_{0}^{b} is decomposable into automata with cycles smaller than λ_{2} or $L_{0}^{a}=L^{a}$ and is finite, then $L \in \mathcal{D}_{\text {det }}$.

Proof. The proof is almost identical to the proof of Lemma 4.2, except there may be other disconnected parts of b-part in A, which we add to A_{1} and A_{2}.

Chapter 5

General decomposition of $a b$ languages

In this chapter we discuss decomposition of $a b$ languages into not necessary $a b$ languages. Here we use the version of DFA with a total transition function and the dead state.

Example 5.1. Consider any $a b$ language, for example $L=\left\{a^{3 k+4} b^{2 l} \mid k, l \in \mathbb{N}\right\} \cup$ $\left\{a^{3 k} b^{l+1} \mid k, l \in \mathbb{N}\right\} \cup\{\varepsilon\}$, whose minimal DFA with total transition function is depicted in Figure 5.1. Let us delete the dead state and define the missing transitions into the existing states. By this we construct a new language, L_{1}, which is not an ab language. If we can use different, simpler, $a b$ language L_{2} to 'filter' the good words from L_{1}, we successfully decompose L. We construct the L_{1} as follows: Transitions on a from states in b-part, that previously led to the dead state, will lead to the initial state. Transitions on b from states in a-part, that previously led to the dead state, will lead to the same state as transitions on a. DFA accepting L_{1} constructed by this method is shown in Figure 5.1. Apart from words that are not in $a^{*} b^{*}, L_{1}$ contains additional words in $a^{*} b^{*}$ and not in L, if the computation starts reading b sooner in the a-part. To filter these, L_{2} needs to preserve the structure of a-part. The b-part then can be simplified. DFA accepting L_{2} is shown in Figure 5.1. The condition that was needed for this decomposition is that b-part has at least two states and that there is no state other than the dead state that has both transitions into the dead state.

From this example we can form a condition for decomposition.
Proposition 5.1. Let L be an ab language such, that b-part of its minimal DFA has at least two states and there exists no state other than the dead state from which all transitions lead to the dead state. Then $L \in \mathcal{D}_{\text {det }}$.

A

A_{1}

A_{2}

Figure 5.1: Type 1 general decomposition

Proof. Let $A=\left(K, \Sigma, \delta, q_{0}, F\right)$ be the minimal DFA accepting L and q_{D} be its dead state. Let A_{1} be a DFA accepting L_{1} defined as follows: $A_{1}=\left(K-\left\{q_{D}\right\}, \Sigma, \delta_{1}, q_{0}, F\right)$, where

$$
\begin{gathered}
\forall q, p \in K, p \neq q_{D}: \delta(q, a)=p \Leftrightarrow \delta_{1}(q, a)=p ; \delta(q, b)=p \Leftrightarrow \delta_{1}(q, b)=p \\
\delta(q, a)=q_{D} \Rightarrow \delta_{1}(q, a)=q_{0} ; \delta(q, b)=q_{D} \wedge \delta(q, a)=p \Rightarrow \delta_{1}(q, b)=p .
\end{gathered}
$$

Let A_{2} be a DFA accepting L_{2} defined as follows:
$A_{2}=\left(K^{a} \cup\left\{q_{b}, q_{D}\right\}, \Sigma, \delta_{2}, q_{0},\left(F \cap K^{a}\right) \cup\left\{q_{b}\right\}\right)$, where

$$
\begin{gathered}
\forall q, p \in K^{a} \forall r \in K^{b}: \delta(q, a)=p \Leftrightarrow \delta_{2}(a, b)=p ; \delta(q, b)=p \Leftrightarrow \delta_{2}(q, b)=p \\
\delta_{2}\left(q_{b}, b\right)=q_{b} ; \delta(q, b)=r \Rightarrow \delta_{2}(q, b)=q_{b} ; \delta(q, a)=r \Rightarrow \delta_{2}(q, a)=r
\end{gathered}
$$

The rest of transitions in δ_{2} that are not defined above lead to q_{D}. We claim that L_{1} and L_{2} decompose L. The state complexity is: $\operatorname{sc}\left(A_{1}\right)=\operatorname{sc}(A)-1$ and $s c\left(A_{2}\right)=s c(A)+1-\left|K^{b}\right|$. Since $\left|K^{b}\right| \geq 2, s c\left(A_{2}\right)<s c(A)$. Now we prove $L_{1} \cap L_{2}=L$.
$L \subseteq L_{1} \cap L_{2}$: Let $w \in L$. Then there exists $q_{F} \in F$ such that $\left(q_{0}, w\right) \vdash_{A}^{*}\left(q_{F}, \varepsilon\right)$. The same computation is valid in A_{1}, so $\left(q_{0}, w\right) \vdash_{A_{1}}^{*}\left(q_{F}, \varepsilon\right) \Rightarrow w \in L_{1}$. For L_{2}, let us split the computation in state where the last a is read. Let $w=u v, u=a^{n}, v=b^{m}$, for some n, m. Then there exists state q, such that $\left(q_{0}, u v\right) \vdash_{A}^{*}(q, v) \vdash_{A}^{*}\left(q_{F}, \varepsilon\right)$. If $q \notin K^{a}$, the last state is replaced by q_{b} in A_{2} and $\left(q_{0}, u v\right) \vdash_{A_{2}}^{*}\left(q_{b}, \varepsilon\right)$. Otherwise the first part of the computation is the same in A_{2}, so $\left(q_{0}, u v\right) \vdash_{A_{2}}^{*}(q, v)$. If $v=\varepsilon$, then $q=q_{F} \in K^{a}$ so $w \in L_{2}$. Otherwise there exists a state $p \in K^{b},\left(q, b^{m}\right) \vdash_{A}\left(p, b^{m-1}\right) \vdash_{A}^{*}\left(q_{F}, \varepsilon\right)$. Then, if $p \in K^{b}, \delta_{2}(q, b)=q_{b}$, so $\left(q, b^{m}\right) \vdash_{A_{2}}^{*}\left(q_{b}, \varepsilon\right) \Rightarrow w \in L_{2}$. If, however, $p \in K^{a}$, then $\delta(p, a)=q_{D}$, so the next state in the computation is in K^{b}. Let it be r, i.e., $\left(p, b^{m-1}\right) \vdash_{A}\left(r, b^{m-2}\right) \vdash_{A}^{*}\left(q_{F}, \varepsilon\right)$. It holds that $\delta_{2}(p, b)=q_{b}$, so $\left(r, b^{m-2}\right) \vdash_{A_{2}}^{*}\left(q_{F}, \varepsilon\right)$ and $w \in L_{2}$.
$L_{1} \cap L_{2} \subseteq L$: Let $w \in L_{1} \cap L_{2}$. Since L_{2} is an ab language, $w=u v, u=a^{n}, v=b^{m}$ for some n, m. Then there exist states $q_{1}, q_{F 1}, q_{2}, q_{F 2}, p_{2}$, such that $\left(q_{0}, u v\right) \vdash_{A_{1}}^{*}\left(q_{1}, v\right) \vdash_{A_{1}}^{*}$ $\left(q_{F 1}, \varepsilon\right)$ and $\left(q_{0}, u v\right) \vdash_{A_{2}}^{*}\left(q_{2}, v\right) \vdash_{A_{2}}\left(p_{2}, b^{m-1}\right) \vdash_{A_{2}}^{*}\left(q_{F 2}, \varepsilon\right)$. From the definition of A_{1} we can see that it reads words consisting of only a the same way as A, so $\left(q_{0}, u v\right) \vdash_{A}^{*}\left(q_{1}, v\right)$. If $q_{1} \in K^{a}$, then $q_{2}=q_{1}$ and the first part of the computation of A_{2} is identical to those of A_{1} and A_{2}. If $v=\varepsilon$, then $q_{1}=q_{2}=q_{F 1}=q_{F 2}$ and $w \in L$. Otherwise, if $p_{2}=q_{b}$, then $q_{F 2}=q_{b}$ and $\left(q_{2}, b^{m}\right) \vdash_{A_{2}}\left(q_{b}, b^{m-1}\right) \vdash_{A_{2}}^{*}\left(q_{b}, \varepsilon\right)$. The transition $\delta_{2}\left(q_{2}, b\right)=q_{b}$ is
defined only in such states of K^{a}, where there exists a transition on b to a state in K^{b} in A. Then there exists such transition in A_{1} as well and in A_{1}, the computation follows: $\left(q_{1}, v\right) \vdash_{A_{1}}^{*}\left(q_{F}, \varepsilon\right)$. The same computation is in $A:\left(q_{1}, v\right) \vdash_{A}^{*}\left(q_{F}, \varepsilon\right)$, so $w \in L$.

If $p_{2} \neq q_{b}$, then it must hold that $\delta_{2}\left(p_{2}, b\right)=q_{b}$. With the same reasoning as above, it holds that $\left(q_{1}, v\right) \vdash_{A}\left(p_{2}, b^{m-1}\right) \vdash_{A}^{*}\left(q_{F}, \varepsilon\right)$, so $w \in L$.

If $q_{1} \in K^{b}$ in A, then $q_{2}=q_{b}$. The computation in $A_{1},\left(q_{1}, v\right) \vdash_{A_{1}}^{*}\left(q_{F 1}, \varepsilon\right)$, is the same in $A,\left(q_{1}, v\right) \vdash_{A}^{*}\left(q_{F 1}, \varepsilon\right)$, and $w \in L$.

There exists another case of decomposition, which decomposes some of the languages not decomposable by the previous proposition. Recall how the automata for the simple bicyclic languages were constructed in Definition 4.1. If L^{b} has a tail or L^{a} is finite, then we are able to merge the final states of A^{a} with the initial state of A^{b}. But this was not the case when L^{a} is infinite and L^{b} has no tail. What would happen if we did it in this case as well? It would result in two intertwined cycles, which would allow the computation to return to the a-cycle after reading symbols b in the b-cycle. If we could filter only those words, where this does not happen, we obtain the language L. To filter we do not need any other language than $a^{*} b^{*}$.

Example 5.2. We show this decomposition on the language $L=\left\{a^{3 k} b^{3 l} \mid k, l \in \mathbb{N}\right\}$. Its minimal DFA is shown in Figure 5.2. The automata for decomposing languages are also shown. We have omitted the dead state from the graphs of A and A_{1}, as it is not necessary in this decomposition case and graphs are simpler. In this case we obtain $L_{1}=L^{*}$, but this is usually not the case.

A

A_{1}

A_{2}

Figure 5.2: Type 2 general decomposition

This decomposition does not need a simple bicyclic language, as long as there is a b-cycle that has no tail. Now we formally prove this condition for decomposition.

Proposition 5.2. Let L be an ab language other that $a^{*} b^{*}$. If there exists a simple bicyclic language $L_{0} \subseteq L$ such that:

1. L_{0}^{b} is λ_{2}-cyclic for some λ_{2}, i.e., minimal DFA for L_{0}^{b} has size $\left(\lambda_{2}, 0\right)$.
2. There exists a state in a-part such, that transition on b from this state leads to the b-cycle of L_{0}^{b}.

Then $L \in \mathcal{D}_{\text {det }}$

Proof. Let $A=\left(K, \Sigma, \delta, q_{0}, F\right)$ be the minimal DFA accepting L and $q_{a}, q[0], \ldots q\left[\lambda_{2}-\right.$ $1] \in K$ be the states such that: $q_{a} \in K^{a}, q[0] \ldots q\left[\lambda_{2}-1\right]$ are the states of the b-cycle corresponding to L_{0}^{b} and $\delta\left(q_{a}, b\right)=q[1]\left(\delta\left(q_{a}, b\right)=q[0]\right.$ in case $\left.\lambda_{2}=1\right)$.

Let A_{1} be a DFA accepting L_{1} defined as follows: $\left(K-\{q[0]\}, \Sigma, \delta^{\prime}, q_{0}, F-\{q[0]\}\right)$, where $\delta^{\prime}\left(q\left[\lambda_{2}-1\right], b\right)=q_{a}$ and the rest of δ^{\prime} is the same as $\delta\left(\delta^{\prime}\left(q_{a}, b\right)=q_{a}\right.$ in case $\lambda_{2}=1$). The second decomposing language, L_{2}, is $a^{*} b^{*}$. Its minimal DFA has 3 states. Because of the second requirement and the fact that $L \neq a^{*} b^{*}, A$ has more than 3 states. To prove that L_{1} and L_{2} decompose L, we only need to prove $L_{1} \cap L_{2}=L$.
$L \subseteq L_{1} \cap L_{2}: L \subseteq L_{2}$ is obvious. Let $w \in L$. Then there exists $q_{F} \in F$ such that $\left(q_{0}, w\right) \vdash_{A}^{*}\left(q_{F}, \varepsilon\right)$. If the computation does not use any of the states $q[0] \ldots q\left[\lambda_{2}-1\right]$, then the computation is identical in $A_{1}:\left(q_{0}, w\right) \vdash_{A_{1}}^{*}\left(q_{F}, \varepsilon\right)$, so $w \in L_{1}$. Otherwise, $w=a^{n} b^{m}$ for some n and $m \geq 1$ and there is $q \in K^{a}$ such that $\left(q_{0}, a^{n} b^{m}\right) \vdash_{A}^{*}\left(q, b^{m}\right) \vdash_{A}^{*}\left(q_{F}, \varepsilon\right)$. The first part of the computation is identical in A_{1}. In the other part, replace $q[0]$ with q_{a} and the computation exists in $A_{1}:\left(q_{0}, a^{n} b^{m}\right) \vdash_{A_{1}}^{*}\left(q, b^{m}\right) \vdash_{A_{1}}^{*}\left(q_{F}, \varepsilon\right)$. Therefore $w \in L_{1}$.
$L_{1} \cap L_{2} \subseteq L$: Let $w \in L_{1} \cap L_{2}$. Since $w \in L_{2}, w=a^{n} b^{m}$ for some n, m. That means once the transition $\delta^{\prime}\left(q_{a}, b\right)=q[1]$ is used, the computation does not leave the states $q[1] \ldots q\left[\lambda_{2}-1\right]$ and q_{a}. There exists $q_{F} \in F$ such that $\left(q_{0}, w\right) \vdash_{A_{1}}^{*}\left(q_{F}, \varepsilon\right)$. If the computation does not use any of the states $q[1] \ldots q\left[\lambda_{2}-1\right]$, nor transition on b from q_{a} (in case $\lambda_{2}=1$), then the computation is identical in $A:\left(q_{0}, w\right) \vdash_{A}^{*}\left(q_{F}, \varepsilon\right)$, so $w \in L$. Otherwise $m \geq 1$ and there is $q \in K^{a}$ such that $\left(q_{0}, a^{n} b^{m}\right) \vdash_{A_{1}}^{*}\left(q, b^{m}\right) \vdash_{A_{1}}^{*}\left(q_{F}, \varepsilon\right)$. The first part of the computation is identical in A. In the other part, replace q_{a} with $q[0]$ and the computation exists in $A:\left(q_{0}, a^{n} b^{m}\right) \vdash_{A}^{*}\left(q, b^{m}\right) \vdash_{A}^{*}\left(q_{F}, \varepsilon\right)$. Therefore $w \in L_{1}$.

Conclusion

In this thesis, we studied usefulness of information for regular languages bounded by $a^{*} b^{*}$. We continued the research of usefulness of additional information for regular languages as a decomposability of deterministic finite automata. The previous research has been done for unary regular languages and we expanded on this work with regular languages bounded by $a^{*} b^{*}$. We call these languages $a b$ languages. To study the deterministic decomposability of $a b$ languages, it was necessary to explore how the minimal DFA of $a b$ languages can look like. We also defined an important operation for $a b$ languages, that cuts the words of a language L to obtain two unary languages L^{a} and L^{b}.

We studied two types of decomposability of $a b$ languages. A general decomposability, into arbitrary regular languages, and a decomposability into $a b$ languages. for the second type we use alternative definition of DFA with partial transition function, where the computation can block.

For the decomposability into $a b$ languages, we defined a subfamily of $a b$ languages called simple bicyclic languages. They are accepted by automata constructed by 'concatenating' two UDFAs, one over $\{a\}$ and the other over $\{b\}$. These languages have many useful properties. A simple bicyclic language L is a concatenation of the two unary languages defining it, and these unary languages are also the images of L under homomorphisms defining L^{a} and L^{b}, i.e., $L=L^{a} L^{b}$. We showed that any ab language for which it holds that $L=L^{a} L^{b}$ is a simple bicyclic language. Another useful property of decomposition is that the construction an automaton of simple bicyclic language from two minimal UDFAs preserves the minimality of the automaton.

We studied decomposability of simple bicyclic languages into $a b$ languages and found three distinct ways a simple bicyclic language can be decomposed. The first uses the property that $L=L^{a} L^{b}$, where we can replace one of the unary languages
by the simplest unary language - in one decomposing language we replace L^{a} by a^{*} and in the other language we replace L^{b} by b^{*}. The second type of decomposition uses the decomposition of L^{a}. Here we concatenate the automaton of L^{b} to the two automata accepting languages decomposing L^{a}. The third decomposition is similar to the previous but uses the decomposability of L^{b}. We proved sufficient conditions for these three types of decomposition and proved that they are also necessary conditions for decomposition into $a b$ languages. Thus we characterised simple bicyclic languages upon decomposability into $a b$ languages.

For other $a b$ languages we showed that they are a union of several simple bicyclic languages and a unary language over $\{a\}$. We showed, that if we pick one of these simple bicyclic languages, L_{0}, and decompose it via decomposition of L_{0}^{b}, the original $a b$ language can be decomposed as well. Apart from few cases, we can add b-paths and b-cycles to the automata accepting languages decomposing L_{0} to construct a decomposition of the whole $a b$-language. We tried the same idea with decomposition of L_{0}^{a}, but it does not work for all $a b$ languages. However, there exist $a b$ languages not simple bicyclic, where decomposing via the decomposition of one of the unary languages over $\{a\}$ works. To describe when it works and when it does not remains an open problem, which we can continue to study. The decomposition by replacing L^{a} by a^{*} and L^{b} by b^{*} does not work for $a b$ languages that are not simple bicyclic. Besides the aforementioned decomposition via L_{0}^{a}, we could study whether there are other types of decomposition of $a b$ languages into $a b$ languages that we have not yet discovered. For example whether there exist $a b$ languages with automata with multiple b-cycles, whose decomposition reduces the number of b-cycles in the decomposing automata. After finding all types of decomposition we could characterise all $a b$ languages upon decomposability into $a b$ languages.

We also studied general decomposability of $a b$ languages and found two types of decomposition. The first type utilizes the necessity of dead state in classical definition of DFA where the transition function is total. In one of the decomposing automata, we remove the dead state and define the missing transitions into existing states. The second type of decomposition intertwines an a-cycle and a b-cycle in one of the automata. The second automaton of both types filters correct words from the language accepted by the first one. These two types of decomposition do not work on all $a b$
languages, we could therefore search for other types of decomposition. After finding all of them we could characterise regular languages bounded by $a^{*} b^{*}$ upon deterministic decomposability.

Bibliography

[1] Giovanni Pighizzini, Branislav Rovan, and Šimon Sádovský. "Usefulness of information and decomposability of unary regular languages." In: Information and Computation (2022), p. 104868.
[2] Branislav Rovan and Šimon Sádovský. "On usefulness of information: framework and NFA case." In: Adventures Between Lower Bounds and Higher Altitudes. Springer, 2018, pp. 85-99.
[3] Cyril Nicaud. "Average State Complexity of Operations on Unary Automata." In: Mathematical Foundations of Computer Science 1999. Ed. by Mirosław Kutyłowski, Leszek Pacholski, and Tomasz Wierzbicki. Vol. 1672. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 231240. ISBN: 978-3-540-48340-3. DOI: 10.1007/3-540-48340-3_21.
[4] Giovanni Pighizzini and Jeffrey Shallit. "Unary language operations, state complexity and Jacobsthal's function." In: International Journal of Foundations of Computer Science 13.1 (2002), pp. 145-159. DOI: 10.1142/S012905410200100X.

[^0]: ${ }^{1}$ As usual, we shall write w^{*} instead of $\{w\}^{*}$ for all singleton sets $\{w\}$

[^1]: ${ }^{1}$ There can actually be more than one dead state in an automaton, but we shall be mostly dealing with minimal automata, where there is only one.

[^2]: ${ }^{1}$ This was a decomposition into automata with $2 b$-cycles, but we have found a language that can be be similarly decomposed into automata with $3 b$-cycles. We expect that for every $n \in \mathbb{N}^{+}$, there is a language decomposable into automata with $n b$-cycles, but we have not proven it formally.

[^3]: ${ }^{2}$ We conjecture that such decomposition cannot exist if A_{1}^{b} is minimal. However trying to prove that turned out to be much more complicated than the following proof.

[^4]: ${ }^{1}$ one of them, identified by $q[0]$, is actually a unary language over $\{b\}$. Technically still a simple bicyclic language, whose unary language over $\{\mathrm{a}\}$ is $\{\varepsilon\}$.

