
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Course recommender for FMPH CU
students

Bachelor Thesis

2023
Patrícia Vnenčáková

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Course recommender for FMPH CU
students

Bachelor Thesis

Study Programme: Computer Science
Field of Study: Computer Science
Department: Department of Computer Science
Supervisor: Mgr. Askar Gafurov, PhD.

Bratislava, 2023
Patrícia Vnenčáková

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Patrícia Vnenčáková
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Course recommender for FMPH CU students
Systém na odporúčanie predmetov pre študentov FMFI UK

Anotácia: Odporúčacie systémy sú široko obsiahnuté v súčasnom digitálnom svete.
Otázka personalizácie obsahu a ponuky si vydobyla aj samostatné svetové
konferencie, ako napríklad ACM Conference on Recommender Systems.

Otázka personalizácie sa vyskytuje aj vo vzdelávacom procese. Moderný
systém vysokoškolského vzdelávania sa vyznačuje flexibilitou vďaka širokej
ponuke povinne-voliteľných a voliteľných predmetov.

Cieľ: Cieľom tejto práce je vytvoriť systém na odporúčanie predmetov pre študentov
FMFI UK. Systém bude používať anonymizované dáta z akademického
informačného systému AIS2. Okrem úspešnosti odporúčaní sa bude klásť dôraz
aj na bezpečnosť osobných údajov študentov.

Vedúci: Mgr. Askar Gafurov, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Dátum zadania: 25.10.2022

Dátum schválenia: 31.10.2022 doc. RNDr. Dana Pardubská, CSc.
garant študijného programu

študent vedúci práce

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Patrícia Vnenčáková
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Course recommender for FMPH CU students

Annotation: Recommender systems are widely present in the modern digital world. The
task of personalization of content has its own international conferences, such as
ACM Conference on Recommender Systems.

Personalization is also present in the education process. The modern system
of higher education is flexible thanks to a wide offer of facultative and semi-
facultative courses.

Aim: The goal of this thesis is to create a course recommender system for students
of FMPH CU. The system will use anonymized data from the academic
information system AIS2. Aside from the common success metrics, the thesis
should also focus on the security of the personal data of the students.

Supervisor: Mgr. Askar Gafurov, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 25.10.2022

Approved: 31.10.2022 doc. RNDr. Dana Pardubská, CSc.
Guarantor of Study Programme

Student Supervisor

Acknowledgments: The biggest thanks go to my supervisor Mgr. Askar Gafurov,
PhD., who came up with the idea for this bachelor thesis. I am grateful for his will-
ingness, time and all the knowledge he has taught me. He was always available to me
during the whole process and often sacrificed his free time for me. I would also like
to thank RNDr. Jaroslav Janáček, PhD. for providing the data from the information
system. Without these data, we could not accomplish the thesis. Last but not least, I
would like to thank my family, friends and classmates for supporting me all the time.

iv

Abstrakt

Moderný cielený marketing využíva širokú paletu metód pre určenie čo najvhodnejšej
ponuky produktov pre jednotlivých zákazníkov. Tieto metódy sa súhrne označujú ako
odporúčacie systémy. Cieľom danej práce je aplikácia týchto metód na odporúčanie
predmetov pre vysokoškolských študentov. Implementovali sme odporúčací systém za-
ložený na k-NN algoritme s tromi rozličnými metrikami podobnosti. Ďalej sme otesto-
vali náš systém na anonymizovaných dátach študentov FMFI UK za akademické roky
2009/10 až 2021/22. Výsledky ukázali, že najlepšou metódou podobnosti je Jaccar-
dov index. Podstatnou časťou práce bolo takzvané čistenie dát, ako napríklad zlúčenie
viacerých verzií predmetov, ktoré však predstavovali ten istý predmet.

Kľúčové slová: odporúčací systém, model, kolaboratívne filtrovanie, metóda podob-
nosti, evaluátor, metrika presnosti, dáta

v

Abstract

Modern targeted marketing uses a wide palette of methods to determine the best offer of
products to individual customers. Those methods are collectively called recommender
systems. The goal of this thesis is an application of such methods in order to recom-
mend courses to university students. In this thesis, we implemented a recommender
system based on the k-NN algorithm with three similarity methods. We evaluated our
recommender on anonymized data of students of FMPH CU from the academic years
2009/10 to 2021/22. The results showed that the best similarity method is the Jaccard
index. A considerable part of this thesis was data cleaning, such as the merging of
multiple versions of courses that nevertheless represented the same course.

Keywords: recommender system, model, collaborative filtering, similarity method,
evaluator, accuracy metric, data

vi

Contents

Introduction 1

1 Recommender systems 2
1.1 Basic concepts . 2
1.2 Determination of similarity . 3

1.2.1 Methods for determining similarity 3
1.2.2 k-Nearest Neighbours algorithm 5

1.3 Models . 6
1.3.1 Collaborative filtering models 6
1.3.2 Content-based filtering models 8
1.3.3 Hybrid models . 9

1.4 Evaluation of success . 9
1.4.1 Goals of an Evaluation . 9
1.4.2 Accuracy metrics . 11

2 Data 13
2.1 Database description . 13
2.2 Data preparation . 14

3 Implementation 17
3.1 Model selection . 17
3.2 Basic components of selected model . 18

4 Results 21
4.1 Impact of k . 22
4.2 Evaluation of the academic year 2021/22 25
4.3 Impact of subsampling . 28
4.4 Selecting the best similarity method . 31

Conclusion 36

Appendix A 39

vii

Appendix B 41

viii

List of Figures

1.1 Example of user-based collaborative filtering 7
1.2 Example of item-based collaborative filtering 7
1.3 Example of content-based filtering . 8
1.4 Precision and recall . 12

2.1 A plot showing how many students enrolled in at least one course each
academic year and how many courses had at least one enrolled student. 14

4.1 Plots showing the impact of the size of k on the implemented similarity
methods using the RMSE accuracy metric. 23

4.2 Plots showing the impact of the size of k on the implemented similarity
methods using the F1 score accuracy metric. 24

4.3 Plots showing the performance of implemented similarity methods in
predicting courses for the academic year 2021/22 using the RMSE ac-
curacy metric. 26

4.4 Plots showing the performance of implemented similarity methods in
predicting courses for the academic year 2021/22 using the F1 score
accuracy metric. 27

4.5 Plots showing the impact of data subsampling on the implemented sim-
ilarity methods using the RMSE accuracy metric. 29

4.6 Plots showing the impact of data subsampling on the implemented sim-
ilarity methods using the F1 score accuracy metric. 30

4.7 Plots showing the comparison of curves overall score from Figure 4.1
and Figure 4.2. 32

4.8 Plots showing the comparison of curves overall score from Figure 4.3
and Figure 4.4. 33

4.9 Plots showing the comparison of curves overall score from Figure 4.5
and Figure 4.6. 34

ix

List of Tables

1.1 m× n rating matrix with ratings from 1 to 5 3
1.2 Calculating the similarity between user 3 and other users using selected

methods (Cosine Similarity, Hamming Distance, Intersection and Jac-
card Index) . 5

2.1 Basic statistics about provided database 14
2.2 Example of non-identical courses . 15
2.3 Example of identical courses . 15
2.4 Example of doctoral courses . 15
2.5 Example of courses enrolled less than twice 16
2.6 Example of non-attended study programmes 16
2.7 Statistic after data-cleaning process . 16

3.1 Our rating matrix . 19
3.2 Example of rating matrix . 19
3.3 Example of prediction matrix . 20
3.4 Internal representation of the data . 20

4.1 Courses that have been actually enrolled, together with the predicted
probability of enrollment. 35

4.2 Courses that have not been enrolled, together with the predicted prob-
ability of enrollment. 35

4.3 Description of export table . 39
4.4 Description of studprog table . 39
4.5 Description of predmet table . 40
4.6 Description of poctyznamok2 table . 40
4.7 Description of znamky2 table . 40

x

Introduction

Recommender systems have emerged as powerful algorithms that provide personalised
suggestions to users across a wide range of platforms and applications. Found on
platforms such as YouTube, Netflix, Spotify, Amazon, Facebook and Twitter, these
systems play a key role in enhancing the user experience and maximising profits for
businesses. By capturing and leveraging users’ interests, companies strive to implement
accurate recommender systems that effectively match users with relevant items.

Recommender systems are complex and sophisticated, using advanced mathemati-
cal methods to analyse user behaviour and compute optimal recommendations. These
methods generally fall under the umbrella of machine learning algorithms, which enable
systems to learn patterns and make predictions based on user data.

The goal of this thesis is to implement a system to recommend faculty courses for
the students of FMPH CU. The users’ preferences are extracted from the university’s
internal database of students’ transcripts known as AIS2.

This thesis is structured as follows. In the first chapter, we will focus on summa-
rizing the existing knowledge about recommender systems, which will be necessary for
the reader to understand the rest of our thesis. The basic concepts from this area will
be listed and explained here. In the second chapter, we describe the provided database,
which we used in the implementation of our recommender system. In this chapter, we
will also explain the steps we took to clean the data from unnecessary records. The
third chapter will be used to describe the implementation of our recommender system.
We will also define the basic concepts from the first chapter in relation to our recom-
mender system. The fourth and also final chapter of this thesis covers our findings and
results. We compared several implemented similarity methods, and evaluated them us-
ing the implemented evaluator. From the compared methods we then selected the one
that showed the best results. In the last stages of this thesis, we let the recommender
system, which used the winning method, recommend us the courses for our personal
data and we compared the prediction with reality.

1

Chapter 1

Recommender systems

The main goal of this chapter is to familiarise the reader with the general concepts
related to recommender systems. Then we will explain the k-NN algorithm and the
basic models on which many of today’s recommender systems are built. Finally, we
will discuss the aspects of the model evaluation and describe several success metrics.
The main source of information for this chapter is the book Recommender Systems by
Charu C. Aggarwal [1].

1.1 Basic concepts

A recommender system is a type of software system that provides personalised rec-
ommendations of different items to users based on their past behaviour, preferences and
interests. The user is an entity to which the recommendation is provided and item is
a product being recommended. These systems are commonly used in e-commerce web-
sites, online streaming platforms, social media networks and other digital applications.
They can be based on different types of algorithms, such as collaborative filtering,
content-based filtering, or hybrid approaches, and they can use different data sources.
We will discuss these algorithms in more detail in section 1.3.

The key concept in this area is the rating. It is a method of expressing user
feedback (numerical or verbal) on a given item. Part of the job of a recommender system
is a loop of collecting and predicting users’ ratings. A unit of feedback, i.e. a single
rating of a single item j by a single user u is called entry. We can represent the
total collected entries from all users as a single rating matrix, where rows correspond
to individual users, columns correspond to individual items, and the cells correspond
to the rating of the given item by the given user. A sample example is illustrated
in Table 1.1.

In order to predict user ratings, a recommender system must have a set of items to
train on. Such a set is called the training set and it is a selected part of the rating

2

CHAPTER 1. RECOMMENDER SYSTEMS 3

Item1 Item2 · · · Itemn−1 Itemn

User1 1 - · · · 4 5
User2 - 4 · · · - 2
...

...
...

...
Userm−1 2 1 · · · - 2
Userm 3 - · · · 2 -

Table 1.1: m × n rating matrix with ratings from 1 to 5 (’-’ symbol stands for an
ungiven rating)

matrix. The part of the rating matrix that we have not chosen as the training set
is called the test set. On the test set, we evaluate the quality of the recommender
system. We will discuss the evaluation of the recommender system later in section 1.4.
From the machine learning’s point of view, the task of rating prediction can be viewed
as either regression or classification problem. A regression problem is a type of
problem where the goal is to predict a concrete numerical value. A classification
problem is a problem that attempts to predict to which category or class a given
observation belongs.

1.2 Determination of similarity

One of the most important tasks in recommender systems is to find similar items/users
and to determine how similar the items/users are. In this section, we will first describe
the methods used to determine the level of similarity and then the k-Nearest Neighbours
algorithm. These components are described in more detail in the book by Oliver
Kramer [6], which was also the source for writing this section.

1.2.1 Methods for determining similarity

In this subsection, we describe several methods for determining the similarity between
two data points, which are used in various fields such as machine learning, natural
language processing, and data mining. The goal of these methods is to measure the
degree of closeness between objects based on their common features or attributes. The
measure of similarity can then be used for a variety of purposes such as regression,
classification, or recommendation. We will cover some popular methods such as Cosine
similarity, Hamming Distance, Intersection from the set theory and Jaccard Index.

Cosine similarity - It is a popular method for measuring the similarity between
two vectors in high-dimensional space [9]. Cosine similarity measures the cosine of
the angle between two vectors and ranges from -1 to 1, where 1 means the two vec-

CHAPTER 1. RECOMMENDER SYSTEMS 4

tors are identical, 0 means they are orthogonal, and -1 means they are diametrically
opposed. Let a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) be two n-dimensional vectors.
Mathematically, the cosine similarity between vectors a and b is given by:

cos(a, b) =
a · b

∥a∥ · ∥b∥
=

a1b1 + ...+ anbn√
a21 + ...+ a2n

√
b21 + ...+ b2n

Hamming Distance - This method is used when comparing the difference between
two strings of the same size and is defined as an integer that indicates the number of
positions where the given two strings differ. In other words, the fewer positions in
which two strings differ, the more similar they are. For example, consider the strings
"000111" and "011001". The Hamming distance between them is 4 because there
are four positions where the symbols differ: at positions 2, 3, 4, and 5. The Hamming
distance can also be applied to vectors, which are ordered sets of numbers. In this case,
the Hamming distance measures the number of positions at which the corresponding
elements in two vectors are different. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two
n - dimensional vectors [7, 3]. Mathematically, the Hamming distance between vectors
a and b is given by:

d(a, b) = |{i ∈ {1, . . . , n} : ai ̸= bi}|

Intersection - This method is used to determine the similarity between two sets
and determines the number of common elements that are found in both sets. The more
elements two sets have in common, the more similar they are. It is a classical operation
from set theory, which is denoted as A ∩B. Mathematically, the intersection between
the sets A and B is defined as:

I(A,B) = A ∩B = {x | x ∈ A and x ∈ B}

We can apply this concept to compute the Intersection between the two vectors by
treating them as sets of elements.

Jaccard Index - This method, also called Jaccard similarity coefficient, is used
to compare the similarity of two data sets. It is defined as the ratio of the size of the
intersection of the given sets to the size of their union. The resulting value ranges from
0 to 1, where 0 indicates that the sets have no common elements and 1 indicates that
the sets are identical [2]. Mathematically, the Jaccard index between sets A and B is
given by:

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
We can apply this concept to compute the Jaccard index between the two vectors by
treating them as sets of elements.

A sample and comparison of the above-described methods are in Table 1.2.

CHAPTER 1. RECOMMENDER SYSTEMS 5

Item-Id →
1 2 3 4 5 cos(i,3) d(i, 3) I(i, 3) J(i, 3)

User-Id (i) ↓

1 1 - 3 4 5 0.867 2 2 0.6
2 - 4 3 2 1 0.861 4 0 0.4
3 1 2 5 4 2 1 0 5 1
4 - 4 3 - 1 0.853 3 0 0

Table 1.2: Calculating the similarity between user 3 and other users using selected
methods (Cosine Similarity, Hamming Distance, Intersection and Jaccard Index)

1.2.2 k-Nearest Neighbours algorithm

The k-Nearest Neighbors (k-NN) algorithm is a type of machine learning algorithm
that can be used for both classification and regression problems. It is a non-parametric
algorithm, which means it does not make any assumptions about the underlying data
distribution. The k-NN algorithm learns from the data itself by finding the k closest
training examples in the feature space to a new data point and using those examples to
make a prediction. When using the k-NN algorithm, we need to choose some suitable
method to determine the distance between two data points. We have described some
of these methods above in subsection 1.2.1.

In k-NN classification, the output is a class membership. The k-NN algorithm
uses the majority class of the k nearest neighbours to predict the class label of a new
data point. In k-NN regression, the output is the property value for the object. The
algorithm computes the average (or median) of the k nearest neighbours’ values to
predict the value of a new data point. This is basically how the k-NN algorithm works.
It looks at the k closest data points to the new data point, compares them to each
other, and uses the majority vote to classify the new data point.

The fact that k-NN makes no assumptions about the distribution of the data is
also its main advantage, as this makes it applicable to a wide range of applications in
different domains, including recommender systems where the data may have complex
distributions. Its other advantage is that it behaves in a very intuitive way, which
makes it very easy to understand and also easy to implement. In addition, it does not
require any training time as it simply stores the trained data and makes predictions
based on it. However, k-NN also has its disadvantages. The biggest is that it can be
too expensive to compute for very large and extensive datasets, and it is very sensitive
to the choice of either a different size of k or a different method for determining the
distance between two data points.

CHAPTER 1. RECOMMENDER SYSTEMS 6

1.3 Models

In this section, we provide an overview of the different types of models and algorithms
used in recommender systems. The goal of this section is to help the reader understand
the different approaches that can be used to make recommendations and to provide a
clear explanation of the strengths and weaknesses of each approach. We cover two main
types of models: collaborative filtering and content-based filtering. We also discuss
hybrid models that combine elements of both collaborative filtering and content-based
filtering.

1.3.1 Collaborative filtering models

Collaborative filtering is one of the most popular and effective techniques used in recom-
mender systems, which predicts a user’s interests (filtering) by collecting and analysing
the preferences or behaviours of many other users (collaboration). The algorithms used
in such models are based on the fact that similar users have similar patterns of rating
behaviour and similar items receive similar ratings. In collaborative filtering, the first
step is to create a user-item rating matrix, and the algorithm then identifies similar
users or items based on the similarity of the users’ interaction patterns using different
methods for determining similarity. There are two major types of collaborative filtering
algorithms:

The first type is called user-based collaborative filtering. In this case, the ratings
provided by similar users to a target user U are used to make recommendations for U .
The predicted ratings of U are computed as the weighted average values of these “peer
group” ratings for each item. For example, consider a situation where user U1, user U2

and user U3 have similar ratings on selected items. So we assume that in the future
these three users will give similar ratings to the items as they do now. U1 has not yet
given a rating for item I, while U2 and U3 have given ratings for I. To predict U1’s
rating for item I, we use the average of U2’s and U3’s ratings (based on the fact that
users U1, U2 and U3 are similar). This example can be seen in Figure 1.1.

The second type is called item-based collaborative filtering. In order to make the
rating predictions for target item I by user U , the first step is to determine a set S of
items that are most similar to target item I. The ratings in the item set S, which are
specified by U , are used to predict whether the user U will like item I. For example,
consider the situation where we want to predict the rating of item I1 for user U . Items
I2, I3 and I4 are considered similar to item I1 and therefore form the aforementioned
set S. User U has only rated items I2 and I3 from the set S. So U ’s rating for item
I1 is calculated from I2 and I3 by averaging them. This example can be seen in Figure
1.2.

CHAPTER 1. RECOMMENDER SYSTEMS 7

Figure 1.1: Example of user-based collaborative filtering

Figure 1.2: Example of item-based collaborative filtering

One of the main advantages of collaborative filtering is that they do not require
explicit knowledge of item characteristics or user preferences. In addition, such models
behave very intuitively, are easy to understand, are not difficult to implement, and it
is straightforward to justify why we recommended the items we did. However, they
also have their disadvantages. On one hand, if the amount of gathered data is small, a
model struggles with making correct predictions (this is called the cold start problem in
the literature). On the other hand, a large dataset often requires a lot of computational

CHAPTER 1. RECOMMENDER SYSTEMS 8

power to produce a prediction.

1.3.2 Content-based filtering models

Other widely used recommender system models are content-based models. These mod-
els use a more detailed description of items, such as features, attributes and specifica-
tions, to recommend items to users. The main idea of these models is that items with
the same description will be attractive to users with the same tastes. The description
of items is called content. Content-based recommenders rely on a user’s past inter-
actions with items to determine their preferences, and then identify and recommend
other items that share similar features or attributes. For example, consider a situation
where user U has rated the film M1 highly and we have no information about the
ratings of other users. In this situation, we have no way of using collaborative filtering.
However, we do know the genre of M1, we also know that films M2 and M3 are of the
same genre and that movie M4 is of a different genre. When we recommend movies to
user U to watch next, we will recommend movies M2 and M3 to him because U has
rated a movie of the same genre highly, and therefore we assume that he would also
like M2 and M3. This example can be seen in Figure 1.3.

Figure 1.3: Example of content-based filtering

Content-based recommendation models have the advantage of being able to recom-
mend items to users without a comprehensive user-item rating matrix. The recom-
mendation is based solely on the description of the items rated by the user to whom
we are making the recommendation. This approach can help overcome the cold start
problem, as recommendations can be made even when there is limited interaction data
available. Additionally, it is easy to justify why certain items were recommended.

However, content-based models may not be as effective at making recommendations

CHAPTER 1. RECOMMENDER SYSTEMS 9

for completely new users without any interaction data. This is because the model used
to train the recommendation system requires the user’s past ratings to accurately
predict future preferences. Furthermore, a considerable amount of ratings must be
available for the target user to ensure reliable and accurate predictions although this
number may not be very large.

1.3.3 Hybrid models

Hybrid recommender system models combine multiple recommendation techniques.
One of the most common combinations is the combination of collaborative filtering with
content-based models. Hybrid models have several advantages over single techniques.
They can provide more accurate recommendations by using multiple recommendation
techniques and can handle a wider range of recommendation scenarios. Hybrid mod-
els can also overcome the limitations of individual techniques, for example, they can
overcome the cold start problem where there is little or no historical interaction data
available for new items or users. On the other hand, hybrid models can have some draw-
backs due to their higher complexity and computational cost, as well as their need for
more resources for training and implementation compared to single techniques. These
factors can increase the difficulty of implementing and maintaining hybrid models in
certain situations.

1.4 Evaluation of success

Evaluation of success is a critical step in the development and deployment of recom-
mender systems, as the quality of the system can have a significant impact on user
satisfaction and belief in the system. To ensure that users are satisfied with the recom-
mender system and use it frequently, it is essential to maximise accuracy and minimise
errors. The evaluation of recommender systems involves comparing the predicted rec-
ommendations to the actual user behavior. This is typically done by dividing the user
data into a training set and a test set. In this section, we will introduce and explain the
main goals of the evaluation and describe its possible outcomes. In addition, we will list
the metrics used to evaluate the accuracy of the system and provide the corresponding
mathematical formulas for these metrics.

1.4.1 Goals of an Evaluation

When developing a recommender system, it is important to prioritise certain qualities
to ensure that the system is effective. The main goal of implementing the system is to
achieve these qualities, and the evaluation process is critical in continuously improving

CHAPTER 1. RECOMMENDER SYSTEMS 10

them. As mentioned above, the main goal of recommender systems is to recommend
items as accurately as possible. Therefore, improving accuracy is one of the primary
goals of the evaluation process of recommender systems. A high level of accuracy is
essential for the success of a recommender system, as inaccurate or irrelevant recom-
mendations can lead to user dissatisfaction and reduced engagement with the system.

Another important quality that recommender systems should consider is coverage.
The aim of coverage is to ensure that the system recommends a diverse and represen-
tative set of items, rather than just a few popular ones. It should not exclude anything
or anyone from the recommendation process. A high level of coverage is important
because it allows users to discover new things they may not have known about, and it
can improve overall user satisfaction with the system.

Novelty and serendipity are also important aspects that should be considered
when developing and evaluating a recommender system. Novelty refers to the degree
to which the recommended items are new to the user. Recommending only popular
or already-known items might lead to boredom or frustration, while recommending
new items can enhance user experience and engagement with the system. On the
other hand, serendipity refers to the level of surprise in successful recommendations.
Serendipitous recommendations can introduce users to exciting items that they may
not have discovered otherwise, leading to a positive user experience and increased
satisfaction with the system.

Closely related to novelty and serendipity is the diversity of recommender sytem.
Diversity refers to the degree to which the recommended items cover a broad range
of categories, genres, and attributes, rather than being limited to a few popular or
similar items. A lack of diversity in recommendations can lead to user dissatisfaction
and limited engagement with the system. For example, if a user frequently watches
action movies, a recommender system that only recommends action movies may limit
their exposure to other genres they may also enjoy, such as sci-fi or drama. The more
diverse the items we recommend to the user, the better the chance that the user will
choose one of the recommended items.

Last but not least, trust and confidence are important goals in the evaluation of
recommender systems, as they play a crucial role in the acceptance of recommendations
by users. If users do not trust the recommendations, they are unlikely to use or
follow them. Similarly, if users do not trust the system, they may be unwilling to
provide personal information or engage with the system at all. To evaluate trust
and confidence in a recommender system, we can use various methods such as user
questionnaires or monitoring user engagement data. If we find that users do not trust
the recommender system over time, it is important to modify and improve it to restore
trust and confidence in the system.

CHAPTER 1. RECOMMENDER SYSTEMS 11

1.4.2 Accuracy metrics

When evaluating recommender systems, accuracy metrics are used to measure how
well and how accurately the system recommended the items that users have actually
rated or interacted with. The evaluation is performed on a test set. For each real user-
item entry specified in the test set, the prediction of that entry is computed using the
specific recommender system we want to evaluate. Then, using the chosen metric, the
difference between the real user-item entry value and the prediction value is computed.
In this section, we will explore some commonly used accuracy metrics for evaluating
recommender systems.

Root Mean Squared Error (RMSE) - This metric is commonly used to assess the
accuracy of a recommender system. It measures the difference between the predicted
rating and the actual rating entered by the user. The RMSE ranges from 0 to infinity,
depending on the range of data analysed. For example, if the ratings range from 0 to
100, the RMSE can range from 0 to 100. In general, the lower the RMSE, the more
accurate the predictions made by the recommender. The RMSE is calculated by taking
the square root of the average of the squared differences between the predicted and
actual ratings. Let’s denote E as a set of entries in the test set used for evaluation,
(u, j) as a user-item index pair, corresponding to a position in the rating matrix, ruj
as a value of the actual rating of entry (u, j) ∈ E, r′uj as a predicted rating of the entry
(u, j) ∈ E and euj = r′uj − ruj as an entry-specific error [1]. The RMSE can then be
expressed mathematically as:

RMSE =

√
1

|E|
∑

(u,j)∈E

e2uj

F1 score - The F1 score is an accuracy metric commonly used in binary classifica-
tion tasks that combines precision and recall into a single value. Precision measures
the proportion of true positive predictions out of all positive predictions made by the
recommender system. In simple terms, it measures how accurate the system is at
making positive predictions. Mathematically we can express precision as:

precision =
true positives

(true positives + false positives)

Recall measures the proportion of true positive predictions made by the recommender
system out of all actual positive cases in the dataset. In other words, it quantifies the
system’s ability to correctly identify all relevant elements in the data. Mathematically
we can express recall as:

recall =
true positives

(true positives + false negatives)

CHAPTER 1. RECOMMENDER SYSTEMS 12

The equations use the terms true positives, false negatives and false positives. True
positives represent the number of data points that are truly positive and have been
correctly identified as positive by the system. On the other hand, false negatives refer
to positive data points that were incorrectly classified as negative, while false positives
refer to negative data points that were incorrectly classified as positive. Precision and
recall are shown in Figure 1.4 for better understanding.

Figure 1.4: Precision and recall
Source: Wikipedia [8]

In the context of recommender systems, the F1 score can be used when the problem
is formulated as a binary classification task, such as predicting whether a user will like
or dislike a particular item. The F1 score ranges from 0 to 1, where 1 is the best
possible value, indicating perfect precision and recall, and 0 is the worst possible value,
indicating that the model has not made any correct predictions. A higher F1 score
indicates better performance of the recommender system [5]. Mathematically we can
express the F1 score as:

F1 =
2 · precision · recall
(precision + recall)

Chapter 2

Data

In this chapter, our main goal is to introduce the data we used to make predictions. We
will start with a description of the database. Following this, we provide basic statistics
about the data. Finally, we describe the steps we took to eliminate redundant records.

2.1 Database description

In our work, we used anonymized student data available from the university’s AIS
system. In order to be able to work with this data, we first had to receive training
on data protection according to the General Data Protection Regulation (GDPR) [4].
The data include information about Bachelor’s and Master’s students. Our database
does not include PhD students. All provided data we used is from the academic year
2009/10 to the academic year 2021/22.

Specifically, for each student, we know his study programme, which courses he
enrolled in each semester and if he passed the course, i.e. obtained at least the grade E.
No other metadata about the students were provided (i.e. no name, age, sex, grade,
etc.). For each course, we were provided with its full official name, official course code,
a shortcut of the official course code and the department that ensures the teaching of
this course. Additionally, for courses with at least 10 students enrolled in a particular
academic year, we were provided with the exact total grade counts. We were also
provided with information about the study programmes of our faculty such as the
official name of the programme and its official shortcut. The exact description of
the provided data are available in the supplementary section Appendix A: Database
description. Table 2.1 shows the basic statistics of the provided dataset. Figure 2.1
shows a plot which indicates how many students were enrolled in at least one course
per academic year from 2009/10 to 2021/22. As you can see, the number of students
is decreasing while the number of different courses is increasing.

13

CHAPTER 2. DATA 14

total number of enrollment records 281255
total number of enrolled students 6161
number of different programmes 148

number of different courses 4688

Table 2.1: Basic statistics about provided database

Figure 2.1: A plot showing how many students (excluding doctoral) enrolled in at
least one course each academic year (blue line with round dots) and how many courses
had at least one enrolled student (red line with square dots). The horizontal axis
represents a particular academic year. The left vertical axis represents the number of
enrolled students in a particular academic year, and the right vertical axis represents
the number of courses that have at least one enrolled student that year.

2.2 Data preparation

Given the size of the provided database, it is expected to have duplicates and irrelevant
records. As we strive to ensure that our recommender system provides highly accurate
recommendations, it is necessary to take multiple steps to eliminate redundant data
from the database. In this section, we outline the data-cleaning process.

The problem that we consider to be the most important is the merging of courses
that are considered to be identical. An effective way of merging identical courses
is to examine their official codes. The official course code format provided by our
university is as follows: department/shortcut/year where department is the de-
partment that ensures the teaching of a given course, shortcut is an official shortcut

CHAPTER 2. DATA 15

of given course and year represents the year of changing the version of the course.
The university stores all versions of the courses in the database and therefore merging
is necessary. It is possible for two courses to have the same official shortcut, but they
are not identical. Therefore, it is not possible to merge courses only according to the
same official shortcut. In Table 2.2 we present a concrete example from the database1.

course code shortcut official name
FMFI.KDMFI/1-UIN-350/15 1-UIN-350 Programming in C#
FMFI.KZVI/1-UIN-350/00 1-UIN-350 Programming in C++

Table 2.2: Example of non-identical courses

We merged the courses according to the following criterion: courses that have the
same official shortcut and at the same time are identical in their official name are
considered identical. In Table 2.3 we present a concrete example from the database1.

course code shortcut official name
FMFI.KMANM/1-FYZ-120/17 1-FYZ-120 Mathematics (1)
FMFI.KMANM/1-FYZ-120/15 1-FYZ-120 Mathematics (1)
FMFI.KMANM/1-FYZ-120/00 1-FYZ-120 Mathematics (1)

Table 2.3: Example of identical courses

Courses that meet the above-described criterion are merged into one, and the one is
that course, which is the most up-to-date, which means that it has the highest number
in the part year .

The next step in the data-cleaning process was to remove redundant records
from the database. First of all, we removed doctoral courses because there are no
records of doctoral students in the enrollment database. Doctoral courses can be easily
detected by their official shortcut because their shortcut starts with the substring ’3-’.
In Table 2.4 we present a concrete example from the database1.

course code shortcut official name
FMFI.KI/3-INF-803/15 3-INF-803 Pedagogical practice
FMFI.KI/3-INF-601/15 3-INF-601 Workplace seminar
FMFI.KI/3-INF-403/15 3-INF-403 Scientific activity III
FMFI.KI/3-INF-120/15 3-INF-120 Literature study

Table 2.4: Example of doctoral courses

Next, we removed courses enrolled less than twice in the entire period from the
academic year 2009/10 to 2021/22. These courses are considered uninteresting and will

CHAPTER 2. DATA 16

no longer be recommended to students. In Table 2.5 we present a concrete example
from the database1.

course code shortcut official name
RKCMBF.CD.BA/K-KT61-114/20 K-KT61-114 Religious history - modern times

FiF.KAA/A-buAN-430/20 A-buAN-430 History of comics in the USA
FM.KIS/370B/19 370B Chinese for business I

Table 2.5: Example of courses enrolled less than twice

The last step in the data-cleaning process was to remove non-attended study pro-
grammes. The database contains all offered study programmes and therefore also
includes programmes for which no one has applied for the whole period from the aca-
demic year 2009/10 to 2021/22. In Table 2.6 we present a concrete example from the
database2.

skratkasp sp
pUFY additional pedagogical study of physics
pUXX basic module of additional pedagogical studies
MA,EF mathematics, specialisation: economic and financial mathematics

Table 2.6: Example of non-attended study programmes

After cleaning the data, the total number of courses and study programmes has
changed significantly. Table 2.7 shows the statistics we got after the data-cleaning
process.

number of courses before merging identical 4688
number of courses after merging identical 4349

number of doctoral courses 1032
number of courses enrolled less than twice 1641

total number of redundant courses 1649
total number of courses after removing redundant 2700

number of study programmes before removing non-attended 148
number of study programmes after removing non-attended 68

Table 2.7: Statistic after data-cleaning process

1The columns are extracted from the table predmet with appropriate English translation.
2The columns are extracted from the table studprog with appropriate English translation.

Chapter 3

Implementation

In this chapter, we describe the proposed recommenders and the technical details of
their implementation and evaluation. We explain which model we have chosen when
implementing the systems. Introduce basic concepts for our model such as who are the
users, what are the recommended items and the rating matrix. We also present the
similarity metrics we implemented and the accuracy metric we used to evaluate the
systems. For development, we utilized Python as the primary programming language
due to its flexibility and ease of use. In managing the database, we used SQLite for its
lightweight and efficient storage capabilities.

3.1 Model selection

In the context of our course recommender system based on a binary rating matrix1

of student enrollments, the utilization of content-based is not feasible. This limitation
arises from the lack of detailed descriptions of the courses in our dataset. The absence
of detailed information about the courses hinders our ability to identify relevant at-
tributes or keywords that can effectively capture the preferences and interests of the
students. Furthermore, hybrid models, which combine multiple recommendation tech-
niques, including content-based filtering, are also impractical in this scenario. Without
sufficient course descriptions, the content-based component of the hybrid models would
lack the necessary data to contribute meaningfully to the recommendation process.

Considering the limitations of content-based and hybrid models in our course rec-
ommender system, we have chosen user-based recommender systems as the preferred
approach. This decision is driven by the need for a more meaningful recommenda-
tion strategy that takes into account the focus on student enrollments. In our binary
rating matrix of student enrollments, where the presence or absence of enrollments
serves as an indicator of user preferences, user-based collaborative filtering proves to

1Described in more detail in section 3.2.

17

CHAPTER 3. IMPLEMENTATION 18

be well-suited.
Unlike item-based collaborative filtering, which relies solely on course similarities,

user-based collaborative filtering offers the advantage of leveraging relatable students
for making predictions. By considering the enrollment patterns of similar students,
we can generate recommendations that align with individual preferences. This user-
based approach also enhances transparency and understanding, as we can provide
explanations for recommendations based on the behaviors and preferences of similar
students.

User-based collaborative filtering has the potential to enhance the educational expe-
rience by providing recommendations that embrace novelty, serendipity and diversity.
Students have diverse interests and can benefit from exploring a wide range of fields
or courses. Through user-based collaborative filtering, we can identify similar students
who have enrolled in different sets of courses. This approach allows us to recommend
courses that not only match their existing preferences, but also expose them to a variety
of options, promoting novelty and serendipity. This approach leverages the enrollment
patterns of these like-minded students, allowing us to generate personalised recom-
mendations that are both meaningful and diverse. By adopting this methodology, we
ensure that students have access to a wide range of courses, enabling them to discover
new areas of interest and embark on a more engaging and personalised educational
journey.

3.2 Basic components of selected model

In this section, we introduce the basic concepts from section 1.1, we also list the
methods we used to determine the similarity between users and also the metrics we
used to implement the evaluator.

In the context of our recommender system, the recommended items are courses that
students can enroll in. The users are the students, but one student is considered to be
a different user in each academic year of his/her studies. We use binary ratings that
represent the student’s enrollment in the course (1 = student enrolled in the course,
0 = student did not enroll in the course). In our rating matrix, the columns represent
the courses IDs, and the rows represent the students. As mentioned above, each student
occupies multiple rows in this matrix corresponding to the number of years they have
studied at the faculty. As shown in Figure 2.1, the matrix consists of 18525 rows.
Additionally, Table 2.7 indicates that the matrix consists of 2814 columns. The matrix
is filled in the following way: if user i has enrolled in course j in a given year, then the
entry (i, j) = 1, otherwise (i, j) = 0. Our rating matrix, therefore, looks like the rating
matrix shown in Table 3.1 (the entries are indicative only).

CHAPTER 3. IMPLEMENTATION 19

Course ID →
1 2 3 4 · · · 2812 2813 2814

User ID ↓

1 1 0 0 1 · · · 1 0 1
2 0 1 1 0 · · · 0 0 0
3 1 0 1 0 · · · 0 0 1
...

...
...

...
...

...
...

18523 1 1 1 1 · · · 0 0 0
18524 0 0 1 1 · · · 0 0 1
18525 1 0 1 1 · · · 1 1 0

Table 3.1: Our rating matrix

The rating matrix is used to search for similar users. To forecast courses for the
next academic year, we require another matrix with the same dimensions as our rating
matrix. Let’s call this new matrix a prediction matrix. In prediction matrix, the
users and items are the same as in the rating matrix. However, the prediction matrix
provides information about the courses in which a particular user has enrolled for the
upcoming academic year. For example, consider a situation where a student has studied
at a faculty for three years from academic year 2019/20 to 2021/22. As a first-year
student he was given a User ID 1200 and he enrolled in courses 1 and 2. As a second-
year student he was given a User ID 1201 and he enrolled in courses 3 and 4. And
as a third-year student he was given a User ID 1202 and he enrolled in courses 5 and
6. Table 3.2 shows the part of the rating matrix and Table 3.3 shows the part of the
prediction matrix that corresponds to this example.

Course ID →
1 2 3 4 5 6 · · · 2814

User ID ↓

1200 0 0 0 0 0 0 · · · 0
1201 1 1 0 0 0 0 · · · 0
1202 1 1 1 1 0 0 · · · 0

Table 3.2: Example of rating matrix

Since both of these matrices are extensive, for easier data manipulation we decided
to represent these matrices internally in a different way by combining both matrices
into one matrix. The matrix we have constructed consists of five columns. The User
ID is positioned as the first column, which corresponds to the rows in both the rating
and prediction matrices. The second column contains an array of the courses that the
student has enrolled in so far. In the third column we observe an array capturing the
courses taken in a given academic year. The fourth column denotes the academic year

CHAPTER 3. IMPLEMENTATION 20

Course ID →
1 2 3 4 5 6 · · · 2814

User ID ↓

1200 1 1 0 0 0 0 · · · 0
1201 0 0 1 1 0 0 · · · 0
1202 0 0 0 0 1 1 · · · 0

Table 3.3: Example of prediction matrix

of enrolment, while the last column denotes the student’s study programme. Table 3.4
shows the internal representation of the data, i.e. the union of the rating and prediction
matrices from Table 3.2 and Table 3.3.

User ID so far this year academic year study programme
1200 [] [1, 2] 2019/20 INF
1201 [1, 2] [3, 4] 2020/21 INF
1202 [1, 2, 3, 4] [5, 6] 2021/22 INF

Table 3.4: Internal representation of the data

We further divided the modified data into test set and training set according to the
fourth column, i.e. according to academic years. For example, the test set contains
records from the 2020/21 and 2021/22 academic years, and the training set contains
records from all other years.

To detect similar users, we implemented the k-NN algorithm (see section 1.2.2) with
three similarity methods, namely: Intersection, Hamming distance and Jaccard
index (see section 1.2.1). To evaluate these methods, we implemented an evaluator
that uses the RMSE and F1 score (see section 1.4.2). In our implementation, the
F1 score requires transforming the prediction into a 0-1 vector by selecting a threshold.
We set this threshold to 30%, which means that courses that have a probability of
being enrolled at least 30% are assigned 1, other courses are assigned 0. In chapter 4,
we conduct a comparative analysis of the implemented methods using the evaluator,
evaluating their performance and effectiveness in relation to each other.

Chapter 4

Results

In this chapter, we present the results obtained in our thesis. We extensively exam-
ined and analyzed the behaviour of the implemented similarity methods across various
experimental conditions. Specifically, we investigated the impact of different values
of k in the k-NN algorithm, variations in the composition of training and test sets,
and the effects of subsampling the data. For the evaluation, we used our implemented
evaluator.

In each set of experiments we will state our expectations and compare them with
the results we have obtained. During the experiments, we focused on groups of students
divided by field of study: mathematicians, physicists, computer scientists and teachers.
We further divided these fields into bachelor’s and master’s students. Most of the plots
in this chapter will contain a legend, in which the following shortenings will be used:

• MAT-b - represents the results of the evaluator for bachelor mathematicians

• CS-b - represents the results of the evaluator for bachelor computer scientists

• PHY-b - represents the results of the evaluator for bachelor physicists

• TEA-b - represents the results of the evaluator for bachelor teachers

• MAT-m - represents the results of the evaluator for master mathematicians

• CS-m - represents the results of the evaluator for master computer scientists

• PHY-m - represents the results of the evaluator for master physicists

• TEA-m - represents the results of the evaluator for master teachers

• overall score - represents the overall score of the evaluator

21

CHAPTER 4. RESULTS 22

4.1 Impact of k

In this experimental analysis, we expect to observe a trend where increasing the value
of k in the k-NN algorithm leads to a reduction in the RMSE and an increase in the
F1 score calculated by the evaluator. By sampling a larger number of similar users,
there is an increased likelihood of providing more accurate course recommendations to
the student. This set of experiments was performed on a training set containing data
from academic years 2015/16 to 2019/20 and a test set containing data from academic
years 2020/21 to 2021/22. The results of these experiments are shown in Figure 4.1
and Figure 4.2.

The results indicate that our hypothesis is confirmed in most cases. The plots in
Figure 4.1 show a significant decrease in RMSE and plots in Figure 4.2 a significant
increase in the F1 score almost for each field already at k = 10. In most cases for
k > 10, the error decreases and the score increases only slightly.

It is interesting to observe the curves TEA-b and TEA-m, which strongly disprove
our hypothesis. This can be explained by the fact that there are not many students
who specialise in teaching at our faculty. In the data for our recommender system,
the total number of users is 18525, of which there are 639 bachelor teachers and only
345 master teachers. These numbers are insignificant compared to the total number
of users, and therefore the RMSE for these fields will increase and the F1 score will
decrease with higher k.

If we notice the CS-b curves, the error is steadily decreasing and the score is steadily
increasing for this field. Unlike students specialising in teaching, our faculty has signif-
icantly more computer science students. Of all the users, there are 4952 bachelors in
computer science fields and therefore for these fields the RMSE will decrease and the
F1 score will increase with higher k.

It is also clear from the results that in most cases the master’s fields perform worse
than the overall score. This can be explained by the fact that students at the master’s
level have more freedom to choose their courses and therefore it is harder to hit an
accurate prediction.

Since the most pronounced decrease in RMSE and the most pronounced increase in
F1 score is at k from the interval [10, 20], we have chosen the average of the numbers
from this interval as the best choice of k for our recommender systems, i.e. k = 15.
We will therefore use this value of k in further experiments.

CHAPTER 4. RESULTS 23

Figure 4.1: Plots showing the impact of the size of k on the implemented similarity
methods using the RMSE accuracy metric. The horizontal axes represent the size of
k. The vertical axes represent the calculated RMSE value.

CHAPTER 4. RESULTS 24

Figure 4.2: Plots showing the impact of the size of k on the implemented similarity
methods using the F1 score accuracy metric. The horizontal axes represent the size of
k. The vertical axes represent the calculated F1 score.

CHAPTER 4. RESULTS 25

4.2 Evaluation of the academic year 2021/22

In this series of experiments, we evaluate the performance of our recommender systems
in predicting courses for the most recent academic year in our database, which is
2021/22. These experiments involve training the systems with different sets of training
data. By systematically increasing the training data, we aim to observe the impact on
the performance of the recommender systems and analyze how their predictive abilities
improve with more historical data. Our expectation is that as we increase the amount
of training data, the RMSE will decrease, while the F1 score will increase.

To conduct these experiments, we will use test data from the academic year 2021/22.
We will start by training the systems on data from the academic year 2009/10. Then,
we will gradually expand the training data range year by year. For instance, the next
step would involve training the systems on data from 2009/10 to 2010/11, followed
by 2009/10 to 2011/12, and so on. We will use k = 15, as we found in the previous
experiment in section 4.1. The results of these experiments are shown in Figure 4.3
and Figure 4.4.

The results confirm that our expectations are met: providing the model with more
training data closer to the academic year 2021/22 leads to more accurate predictions for
that year. As in section 4.1, the TEA-b and TEA-m curves showed the worst results.
Also, in most cases, the master’s fields are significantly weaker than the overall scores.

The plots indicate a noticeable pattern: a rise in RMSE and a decline in F1 score
following the academic year 2016/17. This observation can be explained by the fac-
ulty’s recent accreditation, which makes the previous data less relevant in predicting
outcomes. But if we focus only on the curves showing the overall score, our hypothesis
is confirmed in every case.

CHAPTER 4. RESULTS 26

Figure 4.3: Plots showing the performance of implemented similarity methods in pre-
dicting courses for the academic year 2021/22 using the RMSE accuracy metric. The
horizontal axes represent the size of the training data from 2009/10 to x. The vertical
axes represent the calculated RMSE.

CHAPTER 4. RESULTS 27

Figure 4.4: Plots showing the performance of implemented similarity methods in pre-
dicting courses for the academic year 2021/22 using the F1 score accuracy metric. The
horizontal axes represent the size of the training data from 2009/10 to x. The vertical
axes represent the calculated F1 score.

CHAPTER 4. RESULTS 28

4.3 Impact of subsampling

In this set of experiments, we aim to determine the impact of data subsampling on
the RMSE and F1 score in the implemented similarity methods. We perform these
experiments using training data from the academic years 2015/16 to 2019/20. To
evaluate the performance, we set the test data from the academic years 2020/21 and
2021/22. In these experiments, we set the value of k to 15 (see section 4.1), which is a
parameter used in the k-NN algorithm. However, to introduce variability and analyse
the impact of subsampling, we randomly select a subset from the available data. We
expect that as we increase the amount of subsampled data, the RMSE will decrease.
At the same time, we expect the F1 score to increase. The results of these experiments
are shown in Figure 4.5 and Figure 4.6.

It is clear to see from the results of this experiment that our expectations were
fulfilled and therefore the larger percentage of data we sample, the more accurate the
results are. As in experiment 4.1 and experiment 4.2, the results for curves TEA-b and
TEA-m were the worst. We assume that it is still for the same reason, namely that
there are relatively few students specializing in teaching at our faculty and therefore
it is hard to make an accurate prediction. Also, in most cases, the curves for master’s
fields show a much weaker score than the overall score. We expect this to be due to the
same factor as in previous experiments, namely that students in master’s fields have
more freedom to choose their courses and therefore can differ significantly from one
another. However, when we examine the curves showing the overall score in all the
shown plots, they behave exactly as we expected.

CHAPTER 4. RESULTS 29

Figure 4.5: Plots showing the impact of data subsampling on the implemented sim-
ilarity methods using the RMSE accuracy metric. The horizontal axes represent the
percentage of subsampled data. The vertical axes represent the calculated RMSE.

CHAPTER 4. RESULTS 30

Figure 4.6: Plots showing the impact of data subsampling on the implemented simi-
larity methods using the F1 score accuracy metric. The horizontal axes represent the
percentage of subsampled data. The vertical axes represent the calculated F1 score.

CHAPTER 4. RESULTS 31

4.4 Selecting the best similarity method

In this section, our primary goal is to identify the optimal implemented similarity
method for our course recommender. To achieve this goal, we perform a general anal-
ysis of the overall score curves obtained from experiment 4.1, experiment 4.2, and
experiment 4.3. In order to determine the most accurate similarity method, we com-
bine the curves obtained from the individual experiments. By merging these curves, we
create comprehensive plots that allow us to compare and evaluate the performance of
each similarity method. Our selection process for the final similarity method involves
considering the results of all the experiments. We prioritise the method that performs
the best in the majority of experiments, indicating its overall accuracy.

In Figure 4.7 you can see the overall score curves from Figure 4.1 and Figure 4.21.
In Figure 4.8 you can see the overall score curves from Figure 4.3 and Figure 4.42.
In Figure 4.9 you can see the overall score curves from Figure 4.5 and Figure 4.63.
The Jaccard Index similarity method consistently produces the best results in terms of
both accuracy metrics. This method outperforms the other similarity methods in all
three experiments. The Intersection method turns out to be the second best method.
On the other hand, the Hamming Distance method gives the worst results among the
implemented similarity methods. It is also interesting to note that in each pair of plots,
the curves are axially symmetric along the x-axis.

Based on the results, it is clear that the Jaccard Index is the best similarity
method among the other evaluated methods. Following this finding, we use the Jaccard
Index to make predictions for our personal data. We will make a prediction for second-
year course enrolments (the academic year 2021/22), using first-year course enrolments
(the academic year 2020/21) for comparison with other users. As training data, we
use data from the academic years 2015/16 to 2019/20 and the value of k = 15. The
sample of courses that were actually enrolled together with the probability of enrolment
predicted by the recommender is shown in Table 4.1. From this table, it can be observed
that most of the courses that we have actually enrolled in have been predicted with
a high probability of enrollment. Table 4.2 shows the courses that were predicted by
the recommender, but we did not enrolled them. However, these courses were each
predicted with low probability.

1experiment in section 4.1
2experiment in section 4.2
3experiment in section 4.3

CHAPTER 4. RESULTS 32

Figure 4.7: Plots showing the comparison of curves overall score from Figure 4.1 and
Figure 4.2. The horizontal axes represent the size of k. The vertical axes represent the
calculated RMSE and F1 score values.

CHAPTER 4. RESULTS 33

Figure 4.8: Plots showing the comparison of curves overall score from Figure 4.3 and
Figure 4.4. The horizontal axes represent the size of the training data from 2009/10 to
x. The vertical axes represent the calculated RMSE and F1 score values.

CHAPTER 4. RESULTS 34

Figure 4.9: Plots showing the comparison of curves overall score from Figure 4.5 and
Figure 4.6. The horizontal axes represent the percentage of subsampled data. The
vertical axes represent the calculated RMSE and F1 score values.

CHAPTER 4. RESULTS 35

enrolled course prediction
Algorithms and data structures 1.0

Database practice 0.533
Formal languages and automata (1) 1.0

Linux - principles and resources 0.333
Software development principles 0.933

Programming (3) 0.933
Year project (1) 1.0

Physical Education and Sport (3) 0.666
Introduction to database systems 1.0

Operating systems 0.933
Computer Networks (1) 0.866

Year project (2) 0.933
Social aspects of computer science 0.933
Physical Education and Sport (4) 0.466

Creating efficient algorithms 0.933
Introduction to mathematical logic 1.0

Table 4.1: Courses that have been actually enrolled, together with the predicted prob-
ability of enrollment.

unenrolled course prediction
Web applications (2) 0.066

Mathematical Analysis (3) 0.066
Cryptology (1) 0.066

Algebra (3) 0.133
Formal languages and automata (2) 0.333
Fundamentals of reverse engineering 0.066

Digital production technologies 0.066
Mathematics (2) - Mathematical analysis 0.066

Mobile application development 0.066
Introduction to information security 0.333

Quantum information processing 0.066
Programming (2) 0.066

Table 4.2: Courses that have not been enrolled, together with the predicted probability
of enrollment.

Conclusion

In this bachelor’s thesis, we focused on developing a course recommender system specif-
ically designed for the students of Faculty of Mathematics, Physics and Informatics.
The available data lacked detailed information about the courses themselves, so we
were limited to only having access to individual students’ course enrollments. Despite
this limitation, we wanted to extract as much value as possible from the provided data.
As a result, we implemented a collaborative filtering model using user-based techniques.

To implement our model, we used the k-NN algorithm, using three different simi-
larity methods to compare users, namely: the Jaccard Index, the Hamming Distance
and the Intersection. To evaluate the effectiveness of these methods, we developed an
evaluator that uses two accuracy metrics: the RMSE (Root Mean Square Error) to
quantify the error, and the F1 score to evaluate the overall accuracy.

The results of the evaluator were then analysed and compared. In our thesis, the
best similarity method for the provided data was found to be the Jaccard Index.
In the final stages of our thesis, we tested the recommender system using this simi-
larity method on our personal data and let the courses be recommended to us. We
then compared the prediction with reality, where it turned out that the recommender
implemented in this way recommended the courses we actually enrolled in with high
probabilities and, on the other hand, recommended the courses we did not enroll in
with low probabilities.

Since our implemented model did not use a more detailed description of the recom-
mended items, i.e. courses, one of the main improvements that could be made in future
work is to add a description of the courses. If in the future we could get information
about the content of the courses from the study lists and plans, we would be able to
identify similar courses based on this description, which would open up the possibility
to implement content-based or hybrid models as well. We would also be able to focus
on recommending elective and obligatory-optional courses, potentially moving away
from recommending obligatory courses.

Another possible improvement would be to obtain data from a Student Question-
naire, where courses could be recommended based on verbal reviews from students,
along with the help of overall course ratings.

36

Conclusion 37

We would be pleased if in the future such a modified recommender system would
also start to be used in reality. A web interface could be implemented for students
who need help with recommending courses for future years of their studies. One of the
realizable plans could also be the implementation of such a recommender system into
the Votr student system. When enrolling in courses on this portal, the student could
use the recommendation service.

We strongly believe that some of these plans will be implemented in the future and
that they will be useful for the students of the Faculty of Mathematics, Physics and
Informatics who need help with selecting the right courses.

Bibliography

[1] Charu C. Aggarwal. Recommender Systems. Springer, 2016.

[2] Luciano da F. Costa. Further generalizations of the jaccard index. CoRR,
abs/2110.09619, 2021.

[3] European Mathematical Society. Hamming distance. In Encyclopedia of Mathe-
matics.

[4] European Parliament and Council of the European Union. Regulation (EU)
2016/679 of the European Parliament and of the Council.

[5] Félix Hernández del Olmo and Elena Gaudioso. Evaluation of recommender sys-
tems: A new approach. Expert Syst. Appl., 35:790–804, 10 2008.

[6] Oliver Kramer. Dimensionality Reduction with Unsupervised Nearest Neighbors.
Springer, 2013.

[7] Yue Ruan, Xiling Xue, Heng Liu, Jianing Tan, and Xi Li. Quantum algorithm
for k-nearest neighbors classification based on the metric of hamming distance.
International Journal of Theoretical Physics, 56:3496–3507, 08 2017.

[8] Wikipedia. Precision and recall — Wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=Precision%20and%20recall&

oldid=1149017180, 2023. [Online; accessed 04-May-2023].

[9] Dexin Yang, Chunjing Lin, and Bo Yang. A novel secure cosine similarity computa-
tion scheme with malicious adversaries. International Journal of Network Security
and Its Applications, 5:171–178, 03 2013.

38

http://en.wikipedia.org/w/index.php?title=Precision%20and%20recall&oldid=1149017180
http://en.wikipedia.org/w/index.php?title=Precision%20and%20recall&oldid=1149017180

Appendix A: Database description

The data has been provided to us in the following five tables: export, poctyznamok2,
predmet, studprog and znamky2. Below is a description of these tables and their
columns.

Export - this table contains the student’s course enrolment records. Table 4.3 is a
description of export table.

column description
id unique identifier of the (anonymous) student
idpred course identifier (key for the predmet table)
akrok academic year of the enrollment
semester value indicating the semester (Z for winter semester

and L for summer semester)
pass an indication of how the student passed the course

(1 if the student received a grade of A, B, C, D or
E. 0 if the student received a grade of Fx)

skratkasp official shortcut of the student’s study programme
(key for the studprog table)

Table 4.3: Description of export table

Studprog - this table is a list of all study programmes provided by the faculty.
Table 4.4 is a description of studprog table.

column description
skratkasp official shortcut of the study programme
sp official full name of the study programme

Table 4.4: Description of studprog table

Predmet - this table is a list of all courses provided by the faculty. Table 4.5 is a
description of predmet table.

39

BIBLIOGRAPHY 40

column description
idpred unique identifier of the course
kodpred official course code
stredisko the department which provides teaching of this

course
skratkapred shortcut of the official course code
nazovpred the full official name of the course

Table 4.5: Description of predmet table

Poctyznamok2 - this table describes the number of a specific grade for each grade
(A/B/C/D/E/Fx) and each course where at least ten students were enrolled in a given
academic year. Table 4.5 is a description of poctyznamok2 table.

column description
idpred unique identifier of the course
akrok academic year of the enrollment
kodhod specific grade (A/B/C/D/E/Fx)
pocet number of students who received a specific grade

(kodhod) in a given academic year (akrok)

Table 4.6: Description of poctyznamok2 table

Znamky2 - this table describes the number of students who graduated with each
grade in a given academic year where at least 10 students were enrolled. Table 4.7 is
a description of studprog table.

column description
idpred unique identifier of the course
akrok academic year of the enrollment
a,b,c,d,e,fx number of students who graduated with a grade A,

B, C, D, E or Fx in a given course (idpred) in a given
academic year (akrok)

bez number of students who did not receive any of the
grades described above

n total number of students on a given course (idpred)
in a given academic year (akrok)

Table 4.7: Description of znamky2 table

Appendix B: Electronic appendix

In the electronic appendix attached to the thesis (file main.py), we provide the source
code of the implemented recommender systems, using the mentioned similarity methods
and also the evaluator. This file also contains the function main(), in which the
situation from section 4.4 is simulated when we let the recommender predict the courses.

The source code is also published at https://github.com/patriciavnencakova/
RecommenderSystem.

Before running the program itself, we recommend installing the Miniconda4, which
contains the Python packages that we have used during our work. You can install
the Miniconda by running the command conda install. Our program expects a
database at the input, which form is described in supplementary section Appendix
A: Database description. However, the attachment does not include the database we
worked with during the implementation because it contains confidential information
about the enrollment of other students at our faculty. We thus consider these data to
be sensitive.

4See more on page https://docs.conda.io/en/latest/miniconda.html

41

https://github.com/patriciavnencakova/RecommenderSystem
https://github.com/patriciavnencakova/RecommenderSystem
https://docs.conda.io/en/latest/miniconda.html

	Introduction
	Recommender systems
	Basic concepts
	Determination of similarity
	Methods for determining similarity
	k-Nearest Neighbours algorithm

	Models
	Collaborative filtering models
	Content-based filtering models
	Hybrid models

	Evaluation of success
	Goals of an Evaluation
	Accuracy metrics

	Data
	Database description
	Data preparation

	Implementation
	Model selection
	Basic components of selected model

	Results
	Impact of k
	Evaluation of the academic year 2021/22
	Impact of subsampling
	Selecting the best similarity method

	Conclusion
	Appendix A
	Appendix B

