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Abstrakt

Dôležitou súčasťou tejto práce sú snarky, kubické grafy bez hranového 3-farbenia. Bolo
vykonaných viacero prác, ktoré skúmali dekompozície a redukcie snarkov. K-redukciám
snarkov už rozumieme úplne pre ľubovoľné k [Nedela, Škoviera, Decompositions and
Reductions of Snarks, 1996]. Analýza k-dekompozícií je však kompletná len pre k ≤ 5.
Táto práca nadväzuje na skúmanie 6-dekompozícií v práci [Karabáš, Máčajová, Nedela,
6-decompositions of snarks, 2013].

K-dekompozícia snarku je rozdelenie snarku k-hranovým rezom a pridanie malého
počtu vrcholov a hrán k výsledným komponentom, tak aby nám vznikli snarky menšieho
alebo rovnakého stupňa.

Aby sme lepšie pochopili k-dekompozíciu, skúmali sme regulárne hranové 3-farbenie
kubických k-pólov, čo sú grafy so všetkými vrcholmi stupňa tri okrem k usporiadaných
vrcholov stupňa jeden. Farebná množina je množina k-tíc farieb 0, 1 a 2, ktoré sa inak
nazývajú aj hraničné farbenia. Pri ľubovoľnom regulárnom hranovom 3-farbení ku-
bického k-pólu je jeho hraničné farbenie n-tica farieb jeho hrán incidentných s vrcholmi
stupňa jeden. Farebná množina kubického k-pólu je množina všetkých jeho možných
hraničných farbení.

Hlavným cieľom tejto práce bolo identifikovať realizovateľné farebné množiny, defi-
nované ako tie, ktoré sú farebné množiny niektorého kubického k-pólu. Farebné množiny,
ktoré spĺňajú dve nevyhnutné podmienky, Paritnú Lemu a Kempe uzavretosť, budeme
označovať ako prípustné. Dve relácie ekvivalencie možno zjednotiť do sk-ekvivalencie:
jedna, v ktorej sú množiny farieb s rovnakým príspustným doplnkom ekvivalentné, a
druhá, ktorú môžeme získať permutáciou hrán.

Zjednocujúca sk-ekvivalencia rozdeľuje množiny farieb do 170 tried. Pre účely
k-dekompozície sme potrebovali nájsť len jednu množinu farieb z každej triedy. Sk-
ekvivalencia nám tiež umožňuje efektívnejšie realizovať takéto farebné množiny. Na
určenie realizovateľnosti farebných množín sme aplikovali sériu algoritmov, od rozširova-
nia farebnej množiny prázdneho grafu pridaním hrán až po kombinovanie existujúcich
farebných množín realizovateľných k-pólov. Táto práca úspešne identifikuje 115 z 170
tried farebných množín. Zostávajúcich 55 tried predstavuje približne 0,1% všetkých
prípustných farebných množín, čo naznačuje ich zriedkavosť a potenciálnu nerealizo-
vateľnosť.

Kľúčové slová: snark, kubický k-pól, regulárne hranové 3-farbenie, k-dekompozícia
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Abstract

An important part of this thesis are snarks, cubic graphs with no 3-edge-colouring.
There have been several works which investigated the decompositions and reductions
of snarks. The complete understanding of k-reductions of snarks, for any given k, was
already achieved [Nedela, Škoviera, Decompositions and Reductions of Snarks, 1996].
However, the analysis of k-decompositions is only complete for k ≤ 5. This work
builds upon the exploration of 6-decompositions in work [Karabáš, Máčajová, Nedela,
6-decompositions of snarks, 2013].

K-decomposition of a snark is dividing a snark with a k-edge-cut and adding a small
number of vertices and edges to resulting components to make them snarks of a smaller
or equal order.

To better understand k-decomposition, we were studying the proper 3-edge-colourability
of cubic k-poles, which are graphs with all vertices of degree three except for k ordered
vertices of degree one. A colouring set is a set of k-tuples of colours 0, 1, and 2, called
boundary colourings. Given any proper 3-edge-colouring of a cubic k-pole, its bound-
ary colouring is the tuple of colours of its edges incident to vertices of degree one. The
colouring set of a cubic k-pole is a set of all its possible boundary colourings.

The primary objective of this thesis was to identify realisable colouring sets, defined
as those that are colouring sets of some cubic k-pole. We will refer to colouring sets that
satisfy two necessary conditions, the Parity Lemma and Kempe Closeness, as plausible.
Two equivalence relations can be unified into sk-equivalence: one under which colouring
sets with the same plausible complement are equivalent, and the second, which can be
obtained by permutating edges.

The unifying sk-equivalence divides the colouring sets into 170 classes. For the
purposes of k-decomposition, we only needed to find one colouring set from each class.
Sk-equivalence also helps us realise such colouring sets more effectively. A range of
algorithms is applied to determine the realisability of the colouring sets, from the
expansion of a colouring set of an empty graph by adding edges to combining existing
colouring sets of realised k-poles. This study successfully identifies 115 out of 170
colouring set classes. The remaining 55 classes constitute roughly 0.1% of all plausible
colouring sets, suggesting their rarity and potential non-realisability.

Keywords: snark, cubic k-pole, proper 3-edge-colouring, k-decomposition
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Introduction

Cubic graphs and especially snarks are an important part of graph theory. A snark is
a cubic graph that does not have a proper 3-edge-colouring.

Many graph theory problems can be reduced to a problem involving the 3-edge-
colourability of cubic graphs. For example, the Four colour theorem, which states
that the chromatic number of every loopless planar graph is at most 4 is equivalent
to a problem that every snark is non-planar, as was proven by Peter G. Tait in 1880
[1]. Another example indicating the importance of snarks is the Cycle double cover
conjecture which asks whether every bridgeless graph has a multiset of cycles covering
every edge exactly twice. Snarks are the hardest part of this problem, i.e. if the
conjecture holds true for snarks, it must be true for every graph [2].

A k-edge-cut of a connected graph is a set of edges, whose removal disconnects the
graph. Informally speaking, a k-decomposition of a snark involves dividing the snark
into two components using a k-edge-cut and adding a small number of vertices and
edges to complete the components into snarks of a smaller or same order.

One way to interpret the k-decomposition of a snark is to split the snark into two
cubic k-poles, X and Y . A cubic k-pole is a graph with k ordered vertices of degree 1,
whose incident edges are sometimes referred to as dangling edges, and the remaining
vertices of degree 3. Once we have the two cubic k-poles X and Y , we connect them
to new cubic k-poles, X2 and Y2, respectively. This is done by connecting the i-th
dangling edge of the first k-pole and the i-th dangling edge of the second k-pole,
effectively turning them into a single edge.

For small k, a k-decomposition of any snark can be performed by adding only a few
new vertices to the components. Specifically, for k = 2, 3, 4, and 5, adding 0, 1, 2, and
5 new vertices, respectively, is sufficient, as demonstrated by Goldberg for k = 4 [3]
and Cameron et al. for k = 5 [4]. However, the cases where k is greater than or equal
to 6 are still unresolved.

Boundary colourings are k-tuples of colours 0, 1, 2. Given any proper 3-edge-
colouring of a cubic k-pole, the k-tuple of colours of its dangling edges is its boundary
colouring. We will refer to any set of boundary colourings of the same length as a
colouring set. A colouring set of a cubic k-pole consists of all its boundary colourings.
A colouring set is realisable if and only if it is a colouring set of some cubic k-pole.

1



2 Introduction

Clearly, studying colouring sets will help us to determine whether and how a cubic
k-pole can be completed into a snark.

In this bachelor’s thesis, we mainly focused on figuring out which colouring sets of
cubic 6-poles are realisable. We used several ways to reduce the number of colouring
sets we needed to check.

A c-equivalence is an equivalence relation on boundary colourings, such that two
boundary colourings are c-equivalent, if and only if there is a colour mapping that trans-
forms the first boundary colouring into the second one (for example (0, 0, 1, 1, 2, 2) ≡
(1, 1, 2, 2, 0, 0)). Because we can always recolour the whole graph with this mapping,
we can see that for a given c-equivalence class, either all elements need to be in the
colouring set of a k-pole or none of them. This condition is therefore necessary for
a colouring set to be realisable. Possible colouring sets are then described solely by
which c-equivalence classes they contain. Other known necessary conditions for the
realisability of a colouring set are the Parity lemma and Kempe-closeness (colouring
sets satisfying all three necessary conditions are called plausible). Similarly, for a given
colouring set we can change the order of dangling edges to get a new colouring set. We
will call this change of order s-equivalence.

Since we are primarily interested in colouring sets’ complements to a snark we also
introduce a new equivalence (k-equivalence) which divides colouring sets into classes
based on what colouring sets they can connect with to create a snark. As we will
demonstrate later in Chapter 2, this equivalence can help us search for new realisations
of colouring sets more effectively.

By determining the representatives of s-equivalence, k-equivalence and unifying sk-
equivalence (as described in Chapter 3), we reduced the total number of colouring sets
we needed to realise to 170. We used several algorithms to realise them. Our first
algorithm expands a colouring set of an empty graph by adding one edge at a time
in various ways while tracking the corresponding colouring set. Other algorithms are
mainly focused on combining already realised colouring sets of k-poles (for k = 4, 5, 6, 7)
while filtering some k-poles and focusing on combinations that have a higher chance of
success.

This way we managed to find 115 out of 170 colouring set classes. Colouring sets
from the remaining 55 classes represent approximately 0.1% of all plausible colouring
sets (without taking sk-equivalence into account), so they are very rare and it is possible
some of them cannot be realised.



Chapter 1

Preliminaries

First, we introduce some concepts that are needed to understand the topic.

Definition 1. A graph is a pair (V, E), where V is a set of vertices and E is a multiset
of elements, known as edges, from {{v1, v2} | v1, v2 ∈ V }.

This definition is, therefore, similar to the commonly used definition of a graph, but
ours also allows loops (edges that connect a vertex to itself) and multiple edges between
the same pair of vertices. Additionally, in our graph model, a loop is considered to be
incident with itself. The degree of a vertex is twice the number of its loops plus the
number of other incident edges.

Definition 2. A proper k-edge-colouring of a graph G = (V, E) is a map c : E →
{0, . . . , k − 1} where c(e) ̸= c(f) for all pairs of adjacent edges e, f.

Since our primary concern is proper 3-edge-colouring, we will simply refer to this as
colouring. The graph with loops is therefore not colourable.

A cubic k-pole is a graph with all vertices of degree three except k ordered vertices of
degree one. We will call edges incident with vertices of degree one dangling edges. We
may also call a graph a cubic pole if we do not want to specify the number of dangling
edges. A boundary colouring of degree k is an element from {0, 1, 2}k. If a cubic pole C

can be coloured so that its dangling edges are coloured with a boundary colouring B,
we will say that B is a boundary colouring of C. The set of some boundary colourings
of degree k is a colouring set of degree k. A colouring set of a cubic k-pole C is the
set of all its boundary colourings. A colouring set is realisable if and only if it is a
colouring set of some cubic k-pole C.

Lemma 1. (Parity Lemma). Let P be a cubic k-pole with a colouring and let k1, k2
and k3 be the numbers of occurrences of colours in a boundary colouring. Then

k1 ≡ k2 ≡ k3 ≡ k (mod 2).

Specifically, for k = 6, the number of occurrences of each colour is even.

3



4 CHAPTER 1. PRELIMINARIES

Figure 1.1: Example of a Kempe switch

Proof. Without loss of generality, we will prove the lemma only for colour 0. Let us
denote Vi as the vertices of degree i, ND as the set of non-dangling edges coloured 0,
and D as the set of dangling edges coloured 0. Our aim is to show that the parity of
|V1| and |D| is the same.

Since a cubic k-pole has all vertices of odd degree, it must have an even number
of vertices. This implies that the parity of |V3| and |V1| is the same. Edges from ND

connect two vertices from V3, while edges from D connect one vertex from V3 and one
vertex from V1.

As each vertex is connected to exactly one edge coloured 0, we have: |V3| = 2 ·
|ND| + |D|, which means |V3| and |D| have the same parity. This implies that the
parity of |V1| and |D| is also the same.

It is evident that all realisable colouring sets only contain boundary colourings that
satisfy Parity Lemma.

Let us define an index pairing as a set of index pairs {(i1, j1), (i2, j2), . . . , (im, jm)}
where each index from the set {0, 1, . . . , k−1} appears at most once. An index pairing
of colours {a, b} of a boundary colouring is an index pairing such that only indices
with colours a or b are used and they are each used exactly once. For instance, if a
boundary colouring is represented by (0, 0, 1, 2, 2, 1), it can have an index pairing of
colours {0, 1} such as {(0, 5), (1, 2)}.

A Kempe chain is a maximal path with edges of alternating colours {a, b}. In the
case of a cubic pole, we can see that a Kempe chain starts and ends with a dangling
edge. A Kempe switch is a transformation of the colouring of a cubic pole such that
edges from a Kempe chain (described above) coloured a are changed to colour b and
vice versa.

We can see that for any given cubic pole and its colouring, there is exactly one
index pairing of colours {a, b} that describes possible kempe switches. Each Kempe
switch swaps two colours of the boundary colouring according to one pair of indices.
This gives us another necessary property for a colouring set to be realisable.

Definition 3. A colouring set C is called Kempe closed if for every boundary colouring
B from C and every set of colours {a, b} there exists an index pairing of {a, b} of B
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called P such that for all index pairings that are a subset of P, by transforming the
boundary colouring with the corresponding Kempe switches we will obtain a boundary
colouring present in C.

If a boundary colouring B from a colouring set C satisfies the condition above,
we will say that B satisfies Kempe closeness. A colouring set is therefore considered
Kempe closed if all its boundary colourings satisfy Kempe closeness.

1.1 C-equivalence

Considering only 6-poles, the number of all boundary colourings is 36. The number of
colouring sets is, therefore, 236 . This number seems large, but we will show that most
of them are redundant. The equivalence described in this chapter has been used before
in a work by Karabáš, Máčajová and Nedela [5].

Definition 4. We consider two boundary colourings (x1, x2, ..., xk), (y1, y2, ..., yk) c-
equivalent if and only if (x1, x2, ..., xk) = (ϕ(y1), ϕ(y2), ..., ϕ(yk)) for some permutation
ϕ of colours {0, 1, 2}.

Lemma 2. Let us have two boundary colourings x = (x1, x2, ..., xk) and y = (y1, y2, ..., yk)

that are c-equivalent and a cubic pole G. The colouring set of G contains x if and only
if it contains y.

Proof. Let us have two c-equivalent boundary colourings x and y and ϕ such that the
above holds. If G contains x, then there exists a colouring, such that boundary edges
are coloured by x. Then we can replace all colours m by ϕ(m) and we get a new proper
colouring with boundary colouring y. Therefore G also contains y.

Due to this condition, for a cubic pole G to be realisable, its colouring set must
include either all or none of the boundary colourings for each c-equivalence class. We
will refer to such colouring sets as those that satisfy c-equivalence. Hence, we only
need to be concerned with one (canonical) boundary colouring for each c-equivalence
class. For cubic 6-poles, this reduces the number of boundary colourings we need to
consider from 36 to just 31 (we are only considering boundary colourings, that satisfy
the Parity lemma) and the number of colouring sets we need to consider to 231. The list
of representatives of given c-equivalence classes indexed the same way as in our source
code is given in the table 1.1 (representatives for boundary colourings of different
degrees can also be found in the source code). We will also call c-equivalence classes
colour types.

Therefore we only need 31 bits to represent each colouring set. Each bit is set to
1 if our colouring set contains all boundary colourings of a given colour type and 0
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Table 1.1: Representatives of c-equivalence classes
Index Boundary Colouring Index Boundary Colouring

0 (0,0,0,0,1,1) 15 (0,0,1,1,2,2)
1 (0,0,0,1,0,1) 16 (0,0,1,2,1,2)
2 (0,0,0,1,1,0) 17 (0,0,1,2,2,1)
3 (0,0,1,0,0,1) 18 (0,1,0,1,2,2)
4 (0,0,1,0,1,0) 19 (0,1,0,2,1,2)
5 (0,0,1,1,0,0) 20 (0,1,0,2,2,1)
6 (0,1,0,0,0,1) 21 (0,1,1,0,2,2)
7 (0,1,0,0,1,0) 22 (0,1,1,2,0,2)
8 (0,1,0,1,0,0) 23 (0,1,1,2,2,0)
9 (0,1,1,0,0,0) 24 (0,1,2,0,1,2)
10 (1,0,0,0,0,1) 25 (0,1,2,0,2,1)
11 (1,0,0,0,1,0) 26 (0,1,2,1,0,2)
12 (1,0,0,1,0,0) 27 (0,1,2,1,2,0)
13 (1,0,1,0,0,0) 28 (0,1,2,2,0,1)
14 (1,1,0,0,0,0) 29 (0,1,2,2,1,0)

30 (0,0,0,0,0,0)

otherwise. We will call such a sequence of bits a colouring bit array or CBA for short.
A degree of CBA is the degree of a colouring set it represents.

A plausible colouring set is a set that meets three conditions: it satisfies c-equivalence,
is Kempe closed, and satisfies the Parity Lemma.

Lemma 3. [5] Colouring set of every cubic k-pole is plausible.

1.2 K-decomposition

Consider a cubic k-pole X and its two dangling edges - (v1, w1) and (v2, w2). Here, v1
and v2 are vertices of degree one. The vertices w1 and w2 may represent the same or
different vertices. We can form a new cubic (k − 2)-pole X ′ by eliminating both edges
and the vertices v1 and v2, and introducing a single edge (w1, w2) in their place. We
will say that X ′ was created from X through a junction of edges (v1, w1) and (v2, w2).
Additionally, if a cubic k-pole Y has an edge (v1, v2) connecting two vertices of degrees
one and Y ′ is the graph after the removal of those vertices and an edge, we will say
that Y ′ was created from Y through a junction of edge (v1, v2).

Definition 5. Let Z be a cubic (m+n)-pole with two components X and Y, such that
X is a cubic m-pole and Y is a cubic n-pole. Let (e1, . . . , ek) and (f1, . . . , fk) be some
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dangling edges of X and Y respectively. Then Z’ is a k-junction of X and Y (denoted
as Z ′ = X ∗k Y ) created by performing a junction of edges (ei, fi) for all 1 ≤ i ≤ k.

Definition 6. Let G be a snark and a k-junction of two 3-edge-colourable cubic k-poles
X and Y. If there exist cubic k-poles X’ and Y’ such that G1 = X ′ ∗k X, G2 = Y ′ ∗k Y
and G1, G2 are snarks with orders at most the order of G, then {G1, G2} is a k-
decomposition of G. If G1, G2 have orders less then the order of G, we will call such
k-decomposition proper.

We may also not specify k and say that Z is a junction of X and Y (Z = X ∗ Y ).

Definition 7. A set of k edges whose removal disconnects the graph is called k-edge-
cut. If each component contains at least one cycle, we also call such a set of k edges
cyclic k-edge-cut.

Definition 8. Cyclic edge connectivity of a graph is the smallest k, such that the graph
has a cyclic k-edge-cut.

For a given k, it is interesting to study how many new vertices (i. e. order of
X ′ and Y ′ in Definition 6) need to be added to each component to perform the k-
decomposition. For k = 2, 3, 4, 5, the problem has already been solved and the number
of new vertices needed is 0, 1, 2 and 5 respectively [3] [4]. Jaeger and Swart [6]
conjectured that no cyclically 7-connected snark exists. That means it is worth studying
k-decomposition for k ≤ 6. If for a k-pole X, there exists another k-pole Y , that has
a smaller number of vertices and its colouring set is a subset of a colouring set of Y ,
we call Y reducible, otherwise, we call it irreducible. Irreducible k-pole are interesting
because they are strictly better for completing k-poles to snarks than reducible k-poles.
Karabáš, Máčajová and Nedela found 14 such 6-poles that can be used to perform a
6-decomposition of all snarks of order 30 or less [5]. They also showed that either this
set is enough to perform all 6-decompositions on snarks of arbitrary size or we need
6-poles of size at least 20 to decompose some snarks.

1.3 S-equivalence

Definition 9. We consider colouring sets X and Y s-equivalent if and only if for some
permutation ϕ of {1, 2, ..., k}:

X = {(x1, x2, ..., xk) | ∃y ∈ Y : y = (xϕ(1), xϕ(2), ..., xϕ(k))}

In other words, X and Y are s-equivalent if and only if one can be obtained from
another by permutating all tuples the same way.

Lemma 4. Let X and Y be s-equivalent sets. X is realisable if and only if Y is realisable.
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Proof. Let us denote the permutation such that the equation in Definition 9 holds as
ϕ. If X is realisable, a cubic k-pole G exists with a given colouring set. Its boundary
edges are ordered and if we change their order with ϕ we get a new cubic k-pole H. Its
colouring set is clearly Y.

This lemma implies that either all or none of the colouring sets from each s-
equivalence class are realisable. From each s-equivalence class of plausible colouring
sets, we will choose one representative.

Clearly, it suffices to realise one CBA from each s-equivalence class.



Chapter 2

K-equivalence

This chapter is only partly my work, I was provided lemmas with proofs by my su-
pervisor, and I only made some of them stronger or found simpler proofs for some of
them. The way most terms are defined was also mostly done by me to make it the
most suitable for this thesis.

Definition 10. A k-junction of colouring sets M and N is defined as:

M ∗k N = {(m1, . . . ,mi1−1,mi1+1, . . . ,mi2−1,mi2+1,

. . . ,mik−1,mik+1, . . . ,mr, n1, . . . , ni1−1, ni1+1,

. . . , nik−1, nik+1, . . . , nt) | (m1, . . . ,mr) ∈ M,

(n1, . . . , nt) ∈ N,∀x ∈ {1, . . . , k} : mix = nix}

where i1, . . . , ik are some indices.

This definition represents what happens to colouring sets if we do a k-junction of
two cubic poles.

Definition 11. Given a plausible colouring set C of degree k, the complements of C
are defined as the set of plausible colouring sets X of degree k, such that C ∩X = ∅.

In other words, they are plausible colouring sets disjoint with C. If this holds true for
colouring sets C1 and C2 of cubic k-poles X1 and X2, we can see that a junction of X1

and X2 is a snark.

Lemma 5. For every plausible colouring set C, there exists a greatest element in the
set of complements of C, with respect to the inclusion relation.

Proof. We will denote the set of complements of C as D. Let us look at any two
plausible sets D1 and D2 from D. Because D1, D2 are disjoint with C, D1 ∪ D2 is
also disjoint with C. Also because D1 and D2 satisfy c-equivalence and parity lemma,
D1 ∪ D2 does also. If a boundary colouring B in D1 satisfies Kempe closeness with

9
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some index pairing P , we can see that B will still satisfy Kempe closeness with index
pairing P for any superset of D1. That means all boundary colourings from D1 in
D1 ∪D2 satisfy Kempe closeness. The same can be said for D2 so D1 ∪D2 is Kempe
closed. This means D1 ∪ D2 is a plausible set disjoint with C so it is also in D. We
proved that for any D1 and D2 from D, D1 ∪D2 is also in D, which together with the
fact that there are only finitely many boundary colourings implies there is the greatest
element in D.

We will call this greatest element the reduced complement of C.

Definition 12. We consider plausible colouring sets X and Y k-equivalent if and only
if their reduced complement is the same.

Essentially, k-equivalence is dividing colouring sets into equivalence classes based
on what colouring sets they are disjoint with. By doing a transitive closure of a union
of s-equivalence and k-equivalence, we get sk-equivalence.

The motivation behind defining k-equivalence is clear. We need to solve the 6-
decomposition for only one representative from each k-equivalence class (i.e. by finding
the best way to connect a cubic k-pole to a snark, all cubic k-poles in the same k-
equivalence class have the same solution).

We will call the k-equivalence (or sk-equivalence) class realisable if at least one of
its colouring sets is realisable.

Lemma 6. Let us have a colouring set X that is a k-junction of two colouring sets A
and B. Let us replace A with k-equivalent colouring set A’. Newly created colouring set
X’ that is a k-junction of A’ and B is then k-equivalent to X.

Proof. We will prove this by contrapositive. In other words, we will prove that X is not
k-equivalent to X ′ implies that A is not k-equivalent to A′. Since X is not k-equivalent
to X ′ there exists a colouring set C, such that X ∩C = ∅ and X ′∩C ̸= ∅ or vice versa.
Now B ∗ C is a colouring set that is disjoint with A but it is not disjoint with A′ (or
vice versa). Therefore A and A′ are not k-equivalent.

Lemma 7. Let us have two cubic poles X and X’ such that X = A∗kB and X ′ = A′∗kB.
Cubic poles A and B do not need to have the same degree or degree k. Both k-junctions
are using the same set of edges from B. If A is k-equivalent to A’ then X is k-equivalent
to X’.

Lemma 7 says the same thing as Lemma 6, but for colouring sets. Cubic poles from
Lemma 7 have corresponding colouring sets for which Lemma 6 holds, so the Lemma
7 must hold also.

As we will see in Chapter 4, Lemma 7 is very important for realising sk-equivalence
classes, because we can work with one representative from each sk-equivalence class
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instead of all plausible colouring sets. This greatly reduces the amount of work that
needs to be done.
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Chapter 3

Determining sk-equivalence classes

Our goal is to create a list of plausible CBAs and representatives of s-equivalence, k-
equivalence and sk-equivalence in the form of CBAs. We mainly care about colouring
sets of degree 6, but lists of CBAs for lower degrees can also be useful.

Because the number of all CBAs of colouring sets of degree 6 is 231 (for lower degrees
it is even lower), we can start by generating all of them. The number of CBAs of degree
7 and higher is too big (291, because we have 91 colour types), so we cannot search
through them all effectively.

For each CBA C, we need to determine if it is Kempe closed. This can be done by
verifying if each boundary colouring has an index pairing such that the set of boundary
colourings obtainable from this index pairing is a subset of C. If this condition holds
true for all boundary colourings from C, we can conclude that C is Kempe closed and
thus plausible.

It is clear that for a given permutation ϕ of length k and CBA C of degree k, we
can easily obtain s-equivalent CBA C ′ that represents the cubic pole with an order of
dangling edges permutated by ϕ (if C has a colour type M , C ′ will have a colour type
ϕ(M)). We can simply try all permutations of length k to see the whole s-equivalence
class of any CBA. Our representative for each s-equivalence class will simply be the
lexicographically smallest of those CBAs. We will denote the representative of CBA
C under s-equivalence as s(C). By trying all permutations of length k we can obtain
s(C) for any C.

We can therefore generate a list of s-equivalence representatives from the list of
plausible CBAs by just calculating s(C) for all C and storing each representative the
first time we see it.

Similarly, as above, we will denote k(C) and sk(C) as representative of C under
k-equivalence and sk-equivalence respectively. We will also denote redComp(C) as the
reduced complement of C.

Now, let C be some CBA. From the way Lemma 5 was proved, we can see that

13
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any plausible CBA disjoint from C is actually a subset of the reduced complement we
are trying to find. Therefore, one of the ways we can find the reduced complement is
to start with an empty set E and check for every plausible CBA if it is disjoint from
C. If it is, we can add all its elements to E. The final iteration of E is the reduced
complement we are trying to find. We can check the whole list of plausible CBAs
and for each CBA C calculate its reduced complement D and if it is the first time
we are seeing it, we can set k(C) = C and put C into the list of representatives of
k-equivalence classes.

To calculate sk-equivalence representatives, instead of redComp(C), we have to
calculate s(redComp(C)). This is because if two CBAs X and Y are sk-equivalent,
we can permutate one of them by ϕ similarly as above to make them k-equivalent, in
which case their reduced complement is the same. That means, without using ϕ, their
reduced complements are s-equivalent, so s(redComp(X)) and s(redComp(Y )) are the
same.

This is one of the algorithms we use, but as we can see, it does not work for colouring
sets of degree 7 or higher, because we do not have a list of plausible colouring sets of
degree 7. For colouring sets of higher degrees, we will use an algorithm that creates a
complement of a given colouring set and afterwards checks if all boundary colourings
satisfy Kempe closeness. If some of them do not, it throws them out and repeats the
process, otherwise, it is finished (similarly as above, we need to also apply function s()

if we want to get a sk-equivalence representative instead). Therefore, we do not have a
list of representatives for higher degrees, but we can still calculate redComp(C), s(C),
k(C) and sk(C).

Besides ordinary unit tests, we also tested if those two algorithms produce the
same result. We also tested Kempe closeness by taking some pairs of plausible sets
and checking if their union is again plausible. Why this has to be true for correctly
implemented Kempe closeness can be seen in the proof of Lemma 5.

For colouring sets of degree 6, the number of all plausible CBAs is 39962893. S-
equivalence has 63049 classes and sk-equivalence has 170 classes (we did not explicitly
calculate representatives of k-equivalence since we have no use for it).



Chapter 4

Realisations of sk-equivalence classes

We used several algorithms for realising sk-equivalence classes.

4.1 Expanding colouring sets

This algorithm was already done by my supervisor before I started working on this
thesis. I only modified some parts of it, for example, to convert found CBAs to their
sk-equivalence representative or to log data.

We will start with a queue containing a CBA representing an empty graph. Then
we repeatedly modify a graph with one of these operations to obtain a new one:

1. Add a disconnected edge. (thereby creating a new (k + 2)-pole from a k-pole)

2. Performing a junction of two dangling edges. (thereby creating a (k − 2)-pole
from a k-pole)

3. Add two new edges to a dangling edge. (thereby creating a (k + 1)-pole from a
k-pole)

While processing a CBA, we put all the different ways it can be modified at the
end of the queue (clearly it suffices to do operations on CBAs, we do not need the
whole graph). We can keep track of which CBAs we already found and only put the
new ones in the queue. It can be seen, that this system of operations can produce any
cubic pole (and can be easily proven by induction), so it will eventually generate every
realisable CBA of degree 6. The problem is, it generates CBAs of arbitrarily large
degrees and won’t terminate. If we limit the degrees of CBAs we work with to 6 or
lower, the algorithm finishes after a finite amount of time. This algorithm finds 40 out
of 170 sk-equivalence classes. For k ≤ 5 it already realises all sk-equivalence classes.

Interestingly, fully realising these classes tells us, that we do not need to run this
program again, in case we find new CBA representatives of sk-equivalence classes for

15
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X Y

Figure 4.1: Combination of two colouring sets

k = 6. For this algorithm to realise a new class, we would either need a colouring set
of degree 4 and add an edge to it or have a colouring set of degree 5 and add two edges
to one of its dangling edges. Clearly, this algorithm covered all these cases when he
found realisations for colouring sets of degrees 4 and 5.

4.2 Combining two colouring sets

We will be doing a more generalised junction between two already realised CBAs to
find a new one.

For each dangling edge, we can do one of the following:
1. Do the junction with the dangling edge of the opposing cubic pole while adding an
edge and a vertex.
2. Do the junction with the dangling edge of the opposing cubic pole.
3. Do nothing and let it be a dangling edge of a combined cubic pole.

A Combination is therefore similar to a junction, except instead of doing a junction
between a pair of edges, we may also add a vertex and an edge. In figure 4.1 we can
see a combination of colouring sets X and Y.

Clearly, we can combine two CBAs to obtain a new CBA without knowing which
graphs they correspond to. Therefore, instead of combining graphs we will be combin-
ing CBAs in such a way that the resulting CBA corresponds to the graph we would
get if we combined the initial graphs.

The simplest way to do a combination is to colour the first and second graph’s
dangling edges with all possible boundary colourings of corresponding CBAs and check
if the combination is valid (i. e. if the operation of the first type connects the edges of
the different colour and if the operation of the second type connects the edges of the
same colour). If it is, we can add the resulting boundary colouring to the colouring
set. This way we will get a new CBA.

Lemma 7 implies that instead of combining X and Y to obtain Z, we can combine
k(X) and k(Y ) to obtain Z ′ such that Z and Z ′ are k-equivalent (and also sk-equivalent,
as sk-equivalence is a superset of k-equivalence). There clearly is a permutation ϕ such
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that permutating the ”edges” of k(X) with ϕ gives us sk(X). The thing we need to
realise is that permutating the ”edges” of CBAs k(X) and k(Y ) we want to combine the
same way does not change the outcome of the combination. That means, permutating
both k(X) and k(Y ) with ϕ does not change the outcome, but changes the situation to
a combination of sk(X) and k(Y ). Instead of using k(Y ), we tried permutating sk(Y )

in all ways possible. The final version, and the way it is implemented in our code, is
therefore taking two representatives from sk-equivalence, permutating edges of one of
them and checking all possible ways they can be combined. Then we just transform
the new CBA X we found into sk(X).

This way, we are only using sk-equivalence representatives to find new ones.
The question is, which CBAs are best suited for combination? We can see that

the CBA of degree 2 can always be reduced to just a single edge (Parity Lemma), so
combining it with CBA X gives us just X. Therefore we will be connecting only CBAs
of degrees 4, 5, 6, 7 (using CBAs of degrees 8 or higher is a lot harder as they have a
greater number of colour types).

The way we are choosing which CBAs to combine is this: At the start of each
iteration of our algorithm, we have an array of CBAs of degree 6 or 7 (this array can
only contain sk-representatives). In the beginning, this array has all representatives of
degree 6 we already found and 0 CBAs of degree 7. During the i-th iteration, we will
try to combine the i-th CBA from the array with all previous CBAs from the array
and with every sk-representative of degree 4 or 5. All found CBAs are pushed to the
back of the array. If we do this for all CBAs, we are done.

The number of CBAs of degree 7 is much greater than the number of CBAs of lower
degrees and we cannot check through it all, so we had to limit it to only CBAs with at
most 20 colour types (out of 91, which CBAs of degree 7 can have). The motivation
behind this is that combining two CBAs with a high number of ”ones” (colour types)
usually gives us a CBA with a high number of ones. From observations, CBAs with
a high number of ones tend to be in bigger sk-equivalence classes, which means they
are much easier to find. The chance to find something new is therefore bigger if we use
CBAs with a small number of ones. Additionally, the computing time of calculating a
combination is roughly proportional to each CBA’s number of ones, so we can compute
a combination for these CBAs faster.

There is also another way to filter CBAs of degree 7. Some cubic 7-poles are a
union of a cubic 2-pole and a cubic 5-pole or a cubic 3-pole and a cubic 4-pole. These
cannot help with realising new colouring sets (we can check that combining such cubic
7-poles with something is like doing two different combinations in sequence, one for
each of its components). There is a small amount of CBAs that represent such cubic
7-poles, so we can check all of them, calculate sk-equivalent representative for them
and not use those representatives in our algorithm.
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Figure 4.2: Various ways to connect 3 or 4 CBAs together

4.3 Combining several colouring sets

Another way to combine CBAs is to combine more than 2 of them in such a way,
that the resulting graph cannot be made by a sequence of combinations from the
last algorithm. In Figure 4.2 we can see all the ways 3 or 4 CBAs can be combined
together, without loss of generality (we are using a regular junction). Each vertex of
this ”supergraph” represents a cubic pole and each edge incident to the vertex represents
dangling edges of that cubic pole.

We can be verified by a simple brute force, that these are all possible supergraphs of
orders 3 and 4, other supergraphs would have neighbouring vertices whose connection
would already be covered by an earlier algorithm or could be split into two parts such
that the edges between them are a junction we already tried (in which case it would
make sense to just try doing one part of the supergraph).

For the supergraph of degree 3, we tried various symmetric cases (for example 3
copies of the same CBA). For other supergraphs, the number of possible combinations
is too large, so we also created an algorithm that just takes random CBAs, permutates
the edges randomly and calculates the resulting CBA. We also tried supergraphs with
k ≥ 5 for a while, but the computing time increases exponentially with the number of
vertices, so we stuck to doing as much junctions as we can described by Figure 4.2.
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4.4 Comparison with previous work

We compared our findings with work done by Karabáš, Máčajová and Nedela [5]. In
their work, they described a partially ordered set of sk-equivalence classes. They define
that A ≤ B if and only if we can find s-equivalent A′ to A, such that A′ ⊆ B. We
verified that there are 38 minimal CBAs (as stated in their work), ignoring empty
CBA. In Table 4.1, we can see that we managed to realise the first 9 of them (they
achieved the same result).
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Their notation Our notation Sk-equivalence
representative

Found

1112539137 42991619 1107394561 Yes
219 126 55306 Yes

995328 1006657536 1711325184 Yes
1782 3576 55412 Yes

983094 1006633368 1711282186 Yes
983277 1006633446 1711282292 Yes

1186463953 123207795 1682147339 Yes
259394321 465311250 2024244548 Yes

1186467169 123214627 1682147445 Yes
15275 30542 54770 No

986027 1006638926 1711281650 No
1003880 1006674724 1711320160 No
1003955 1006674778 1711323848 No
1005470 1006677724 1711323830 No

107940770 1033377608 1762625594 No
108429655 1536688826 2097762112 No
108429708 1536688836 2097763344 No
108431226 1536692028 62729532 No
108441953 1536713506 2097758918 No
108442042 1536713564 62731884 No
108454116 1536737760 2097777690 No
108456866 1536743240 62780744 No
259391628 465305796 2024221184 No
259394506 465311340 465311340 No
259407114 465336844 465336844 No
259415138 465353000 465353000 No

1112539354 42991741 1107384331 No
1112542108 42997461 1107384437 No
1112554410 43022157 1107383795 No
1113522412 1049625061 2084702921 No
1113525162 1049630541 2084702903 No
1113543090 1049666393 2084751763 No
1113545460 1049671153 49724729 No
1113545730 1049671689 2084750357 No
1186479009 123238211 1682146803 No
1186490916 123262337 1682122545 No
112984273 257425522 1758073664 No
127372309 2054690962 2102003504 No

Table 4.1: 38 minimal CBAs



Conclusion

In this thesis, we were trying to find out which colouring sets are realisable with the
purpose of better understanding k-decomposition of snarks. We showed the connection
between cubic poles, colouring sets and k-decomposition. We used Kempe closeness
and Parity lemma to define the necessary condition for realisability. We also used
c-equivalence and s-equivalence and introduced a new k-equivalence. The unifying sk-
equivalence helped us divide colouring sets into classes of colouring sets which are for
our purposes equivalent. For k ≤ 6 we managed to create a list of representatives of s-
equivalence and sk-equivalence. The most notable was the sk-equivalence for colouring
sets of degree 6, for which we enumerated all 170 representatives.

We aimed to realise these representatives by doing various approaches. Our first
algorithm iteratively expands an empty colouring set by adding an extra edge to find
new colouring sets. Our other algorithms combine already realised cubic poles in
various ways. Using sk-equivalence we managed to search for new colouring sets more
effectively. Overall we realised 115 out of 170 sk-equivalence classes. Classes we found
represent roughly 99.9% of all plausible colouring sets.

We also compared and verified some findings about colouring sets from previous
work done by Karabáš, Máčajová, and Nedela. By identifying the 170 sk-equivalence
classes, we reduced the problem of k-decomposition, to only solving it for one colouring
set from each class. If further research proves the remaining 55 classes are unrealisable,
the problem is further reduced to 115 classes. We also constructed a partially ordered
set out of all 170 classes, which may help with identifying irreducible colouring sets,
which are strictly better for performing a k-decomposition than reducible colouring
sets.

All our algorithms for realising colouring sets could be modified to cover a wider
range of scenarios. The first algorithm could check cubic k-poles for higher k, which
would require significantly more computing power. Similarly, in the second algorithm,
we could restrict the number of ones cubic 7-poles can have to a higher number. Su-
pergraphs of orders 3 and 4 were also not fully examined and could be checked for all
combinations of cubic poles. Future studies might also explore specific supergraphs of
even higher orders that, for some reason, could offer better chances of success.
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