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i

Abstrakt

Burrows-Wheelerová transformácia slúži na bezstratovú transformáciu vstupného textu
do podoby, ktorá je ďalej schopná kompresie. Reverzibilná technika kompresie zvaná
tunelovanie je následne aplikovaná na Burrows-Wheelerovú transformáciu, čo vedie k
skomprimovanej Burrows-Wheelerovej transformácii, ktorá je aj naďalej bezstratovo
zvratná. Optimálne Tunelovanie je NP -ťažký problém. V našej práci predkladáme
novú metódu riešiacu tento problém v polynomiálnom čase, a to použitím celočíselného
lineárneho programovania.

Kľúčové slová: Burrows-Wheelerová transformácia, blok, tunelovanie, celočíselné
lineárne programovanie
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Abstract

The Burrows-Wheeler transform’s purpose is to losslessly transform the input text data
into a form with supervenient compressible properties. A reversible compression tech-
nique called tunneling is then applied to the Burrows-Wheeler transform, leading to a
compressed Burrows-Wheeler transform that is still invertible. However, the tunneling
itself is an NP -hard problem. Therefore we propose a novel heuristic for solving this
problem in polynomial time, and that is using an Integer Linear Programming solver.

Keywords: Burrows-Wheeler transform, block, tunneling, integer linear program-
ming
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Introduction

One of the urgent problems in the field of Bioinformatics pertains to the efficient
management of enormously large text data, such as DNA, RNA, or protein sequences,
whose storage requires space of tens of Gigabytes. Operating with such data in the
original form would be too expensive both in space and time. A representation of
a string called Burrows-Wheeler transform is used for achieving effectiveness. It is a
well-known lossless data transformation, with several compelling properties, making
it essential to FM-indexing, a method useful for fast computation of complex text
operations. Furthermore, this text transformation has a high potential for compression.
Tunneling is a new method used for such a compression, providing a decompressible
data structure with all the properties of the Burrows-Wheeler transform preserved.
However, tunneling is generally an NP -hard problem.

The tunneling strategy is performed on so-called blocks, which are repetitions of
the same pattern in the text. The idea behind this compression method is that only
the pattern itself and occurrences of it in the text need to be remembered, leading to
the minimization of the storage requirements.

However, these blocks may overlay each other and thus cause the tunneled transfor-
mation to be irreversible, which we would like to prevent. The problem of the optimal
choice of blocks that would not overlay in an unwelcome way and would provide the
best compression lies in the NP class. Several heuristical methods running in poly-
nomial time were recently presented, yet all of them were restricted to "run-based"
blocks only. Such blocks do not overlap, making the tunneling easier to handle, but
the compression rate is not ideal. Therefore, we decided to consider all blocks and solve
the problem by reducing it to the well-known NP -complete problem - integer linear
programming.
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Chapter 1

Preliminaries

The purpose of this chapter is to describe the major parts of the Burrows-Wheeler
transform and the tunneling method.

Throughout this work, every logarithm is meant to be of base two. Also, let Σ

be a set of totally ordered elements (alphabet of letters) with relation ≺ describing
the order between two elements, such that the character $ ∈ Σ is the lowest ordered
character in Σ. Every string S over the alphabet Σ (concatenation of elements from
Σ) is in this thesis null-terminated, meaning the character $ occurs in S exactly once,
and that is at its end.

Let S be a string of length n ∈ N over alphabet Σ and i be an integer in the interval
[1, 2, ..., n]. We denote by

• S[i] the i-th character in S

• Si the suffix of S starting at position i, i.e. Si = S[i]S[i + 1]...S[n]

• S ≺lex S ′ if S is lexicographically smaller string than the string S ′ (analogously
for �lex and =lex).

• |S| := n the length of the string S, i.e. the number of elements in S

1.1 Suffix array

First, we describe several data structures such as the suffix array, which will later be
essential to building, as well as computing, other data structures and their peculiarities.

Definition 1.1.1 (Suffix array). Let S be a string of length n over alphabet Σ. The
permutation of integers in the range [1, n] SA is called suffix array if it satisfies the
condition SSA[1] ≺lex ... ≺lex SSA[n], that is for SA[i] = k if SSA[k] is lexicographically
the i-th suffix.

3
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The suffix array is a popular space-efficient data structure in the field of sequence
analysis and provides good time complexity for any pattern searching. The suffix array
for a string of length n can be built in O(n) time [11], and searching for a pattern of
length m can be done in O(m log n+ occ) time, where occ is the number of occurrences
of the pattern in the text. Moreover, if a suffix array is coupled with the information
about the longest common prefix of two adjacent suffixes, the pattern searching can
be done in O(m + log n + occ) time [9]. Although this is a highly convenient property
of the suffix array, for our purposes, the suffix array plays a crucial part in computing
other structures thanks to other features, as we will later see.

1.2 Burrows-Wheeler transform

Definition 1.2.1 (Burrows-Wheeler transform). Let SA be the suffix array of a string
S with length n. The Burrows-Wheeler transform (BWT) of S is a string L of length
n defined as L[i] := S[SA[i]− 1] for SA[i] > 1 and L[i] := $ if SA[i] = 1. Similarly, we
define the F-column of S as the string F , where F [i] := S[SA[i]] for 1 ≤ i ≤ n, which
can also be obtained by sorting the string L.

We call a run a length-maximal continuous substring in a BWT consisting of one
character only.

Simply said, the Burrows-Wheeler transform L is the last column of a matrix con-
sisting of lexicographically ordered cyclic permutations of string S as its rows. The
first column of such a matrix would then correspond to the string F . An example of
strings L and F , as well as the suffix array, can be found in Figure 1.1.

Since both strings L and F are defined over alphabet Σ and not over integers
{1, ..., n}, it is hard to say which position belongs to a character in L and which in
F . Therefore a method called LF-mapping was developed, which helps us to identify
and map each character in L to its corresponding position in F [2]. To present this
method, we first have to explain several notations used for the definition.

We use the notation selectS(c, i) to describe the position of the i-th occurrence of
character c in S, rankS(c, i) to denote the number of occurrences of character c in the
substring S[1]...S[i] and CS[c] to denote the number of characters ordered lower than
c, that is, CS[c] := |{i ∈ {1, ..., n} | S[i] ≺ c}|.

Definition 1.2.2 (LF-mapping). Let S be a string of length n over alphabet Σ and
let SA and L be its suffix array and its BWT, respectively. The LF-mapping LF is
a permutation of integers 1, ..., n such that LF [i] = CL[L[i]] + rankL(L[i], i) for any
i ∈ {1, ..., n}.

The attentive reader might notice a specific feature, which this definition relies
upon. In both strings L and F the orders of precedence of equal characters are identical.
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i SA[i] LCS[i] S[0]...S[SA[i]− 1] SSA[i] L[i] F [i]

0 13 0 readysteadygo $ o $
1 8 0 readyste adygo$ e a
2 2 1 re adysteadygo$ e a
3 9 0 readystea dygo$ a d
4 3 2 rea dysteadygo$ a d
5 7 0 readyst eadygo$ t e
6 1 0 r eadysteadygo$ r e
7 11 0 readysteady go$ y g
8 12 0 readysteadyg o$ g o
9 0 0 readysteadygo$ $ r
10 5 0 ready steadygo$ y s
11 6 0 readys teadygo$ s t
12 10 0 readystead ygo$ d y
13 4 3 read ysteadygo$ d y

Figure 1.1: Suffix array SA, LCS-array LCS, Burrows-Wheeler transfrom L, F-column
F and prefixes preceding a suffix of string S = readysteadygo$.

This is due to the fact that L points to suffixes that are shifted one character leftwards
from those corresponding to F . Consider two positions i and j in L, such that i < j

and L[i] = L[j]. Since i < j, Si ≺lex Sj which results in L[i]Si ≺lex L[j]Sj, as
L[i] = L[j]. And that means that the corresponding position to L[i] in F is smaller
than the corresponding position to L[j] in F , which implies the uniformity of the orders
of precedence.

An important property of the Burrows-Wheeler transform is its invertibility, i.e.
having information about a BWT we are able to shape the original string S. LF-
mapping is crucial for the reconstruction of the original text from a BWT as it allows
us to walk through L in reverse text order, commonly known as "backward-step". We
start at the very end of the original text - the character $ or, more precisely, we start
at the position in L where this character occurs. Then we use LF-mapping to direct
us to the position at which this character is located in F . At this position in L, the
previous character of the original text can be found. In this manner, the reverse of the
initial string can be rebuilt in linear time, see Figure 1.4 for a better understanding.

This invertible permutation of characters of a string tends to show certain prop-
erties, making it highly compressible. Our next concern will be the keystone of such
properties called a block (or a prefix interval [4]).
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1.3 Block

The purpose of this section is to define a block in a BWT. As mentioned in the previous
section, this structure is crucial to BWT compression. Nevertheless, we first have to
define the longest common suffix array, which is essential to the computation of blocks
in a BWT.

Definition 1.3.1 (Longest Common Suffix Array). Let S be a string of length n and
SA be its suffix array. The array LCS of length n is called the longest common suffix
array (LCS-array) if it satisfies the following condition:

LCS[i] =


0 if i = 0

max{l ∈ {0, 1, ..., n} | S[SA[i]− l] ... S[SA[i]− 1] =

= S[SA[i− 1]− l] ... S[SA[i− 1]− 1]} else
,

.

To put it another way, the LCS-array describes the length of the longest identical
strings strictly preceding two adjacent suffixes in the suffix array, i.e. the length of the
longest common suffixes of prefixes foregoing two adjacent suffixes in the suffix array,
see also Figure 1.1. Having said that, let us finally define a block in BWT - the base
element of the BWT compression method called tunneling.

Definition 1.3.2 (Block). Let S be a string over alphabet Σ and L be its BWT. Block
B in the BWT L is a matrix consisting of consecutive substrings s0, s1, ..., sk of S as
its rows such that for l := |s0| the following conditions hold:

• ∀i ∈ {0, 1, ..., k} |si| = l

• s0 =lex s1 =lex ... =lex sk

• ∀i ∈ {0, 1, ..., l} s0[i] s1[i] ... sk[i] is part of a run in L.

We call hB := k the height of the block and wB := l the width of block B.

One can imagine a block B as a submatrix of the matrix of all suffixes of a string
S being lexicographically ordered, such that every column in B consists of exactly one
element. This is easily imagined, yet not quite right. We require blocks to have a
certain characteristic, and that is the ability to be tunneled, which we later explain. In
order to have this property, each column must be preserved in BWT of S. That is why
we will search for blocks using the longest common suffixes array and not the longest
common prefixes array [9]. The block can indeed be imagined as a submatrix with all
rows equivalent. The supermatrix would not correspond to the matrix of all suffixes of
S though, but to the matrix that agrees with the LCS-array of S. Nonetheless, these
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i SA[i] LCS[i] S[0]...S[SA[i]− 1] SSA[i] L[i] F [i]
...

...
...

...
...

...
...

5 7 0 readyst eadygoyho$ t e
6 1 0 r eadysteadygoyho$ r e
...

...
...

...
...

...
...

14 10 0 readystead ygoyho$ d y
15 13 0 readysteadygo yho$ o y
16 4 0 read ysteadygo$ d y

Figure 1.2: The difference between a block in LCS-array and a block in LCP-array
shown on a string S = readysteadygoyho$. In contrast with Figure 1.1, the sequences
eady are no more considered as a block according to definition 1.3.2.

blocks can also be found in the matrix of lexicographically ordered suffixes, therefore
we can define the starting position of the block, i.e. its top left corner, by the position
in the suffix array.

Figure 1.1 shows examples of three blocks, colored black in the fourth column.
These blocks can also be found in the next column, which refers to the matrix of sorted
suffixes. On the other hand, if the sequence yho was appended to the initial string,
the block 4− [5, 7) would not match the definition 1.3.2, yet it occurs in the matrix of
ordered suffixes, see Figure 1.2.

Henceforth, we will consider only wide height-maximal and left-maximal blocks in
terms of not being part of a higher or left-expandable block and having a width size
of at least 2. We will unambiguously describe each such block by its starting position
and by its width. Thus, we will address block B of width wB and height hB starting
at position i as wB − [i, i + hB).

Notably, we allow two blocks to intersect. As described later, this is a crucial part
of the block tunneling problem, thence we define several properties of such intersections
(collisions) of blocks.

Definition 1.3.3 (Colliding blocks). Let S be a string of length n over alphabet Σ.
Blocks B and B′ of S are colliding if there exists 1 ≤ i ≤ n such that S[i] ∈ B and
S[i] ∈ B′. Moreover, let BIN and BOUT be two colliding blocks in S, with the block
BIN being higher than the block BOUT . We call the collision of blocks BIN and BOUT

compensable if the following conditions are fulfilled:

• The rightmost and the leftmost columns of block BOUT do not intersect

• At least one row of BIN is not shared
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Figure 1.3: Visualization of all types of block collisions. Shared regions of blocks are
marked with blue diagonal stripes. A similar image was already published in [2].

• The intersection area forms a block of width wBIN
and height hBOUT

, where wBIN

is the width of block BIN and hBOUT
is the height of block BOUT .

If the blocks are the same and S[i] is in several places, we call the collision a self-
collision. If at least one of these conditions is not fulfilled, or if the collision is a
self-collision, we call the collision critical.

Figure 1.3 shows three different types of block collisions. An example of these kinds
of collisions in the string S = readysteadygo$ is as follows: blocks 2−[1, 3) and 4−[5, 7)

form a compensable collision, whereas the block 4− [5, 7] is critically colliding with the
block 3 − [5, 7). Note that for a string aa...a$ any block of height and width greater
than one is self-colliding.

By definition, compensably colliding blocks always form a cross consisting of one
wider (outer) block and one shorter but higher (inner) block. With that said, it is
easy to spot the transitivity of particular compensable collisions. If blocks B1 and B2

and blocks B2 and B3 are compensably colliding with B2 be once as the inner block
and once as the outer block in these collisions, then the blocks B1 and B3 form a
compensable collision as well. In this manner, compensably colliding blocks form a
folding hierarchy, which will be useful for invertibility issues.

1.4 Tunneling

Definition 1.4.1 (Tunneling). Let S be a string over alphabet Σ, L and F be its
BWT and F-column, and B be one of its blocks. The process of tunneling block B is
defined as follows:

• cross out all positions except those in the first row or the last column in L

• cross out all positions except those in the first row or the first column in F

• remove positions that were doubly crossed out.

The newly created block is called a tunneled block.
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Figure 1.4: The process of tunneling. Above, block 4− [5, 7) of string readysteadygo$

is tunneled. The cross-outs are displayed by crosses and all doubly crossed positions
are removed. Any arrows colored gray are related to the LF-mapping.

The idea is that for each block, we only have to remember the starting and ending
positions of all rows, and the first row since all the other rows are the same. Every
other position in the block can be safely removed. By tunneling a block of width
greater than 2 we can shorten both arrays L and F by removing all positions of the
block (and therefore edges between them) except those in the leftmost and rightmost
columns and the uppermost row of the block, see Figure 1.4. Thus we can reduce the
memory requirements for storing the BWT of string S.

It is clear now why we exact blocks to have the property of having each column
preserved in the BWT. By tunneling a single column of a block, we merge all characters
and replace them with a single one, which would not be possible if they were squandered
in the BWT. Computing blocks using the LCS-array, we make sure that each column,
starting with the rightmost one, is preserved in the BWT, and only blocks that can
later be tunneled will be enumerated.

It is proven that a tunneled BWT is still invertible [2], i.e. the original string from
which the BWT was constructed can be rebuilt. This suggests that BWT could be
tunneled iteratively and thus would decrease storage requirements with each iteration.
However, although the invertibility of BWT is not destroyed by single tunneling, it can
be if several specific blocks are chosen to be tunneled. We will discuss this issue more
deeply in the next chapter.
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Chapter 2

Block choice problem

In this chapter, we focus on the block choice problem, its complexity, and previous
solutions. The main part, though, is devoted to the polynomial reduction of the Block
choice problem to the Integer Linear Programming problem.

The idea behind dividing collisions between blocks into two groups (compensable
and critical) is as follows. Since the Burrows-Wheeler transform of a string S is invert-
ible and by tunneling a single block we do not infract this property, we could iteratively
tunnel the BWT of the string S and therefore minimize memory requirements by a vast
amount. However, by tunneling two critically colliding blocks the invertibility is dis-
turbed.

When reconstructing the original text from its tunneled BWT, one has to unam-
biguously determine what the next letter will be. To walk through a tunneled block
correctly, all the beginnings and ends of the paths must be explicit, or in other words,
they must not be tunneled. In addition, all elements of a column to-be-tunneled must
have the same characteristics, that is, they must be equal and belong to the same set of
blocks. Otherwise, we would lose the information about the difference, after replacing
all of the elements with just one. These requirements then lead us to the definition of
different types of collisions and also imply the problem when critically colliding blocks
are tunneled at the same time. Thence, we define the following problem.

Definition 2.0.1 (Block choice problem). The Block Choice Problem is defined as
finding an optimal set of blocks M of a BWT L such that after iteratively tunneling
this set of blocks the invertibility of L will be preserved, i.e. no two blocks in M are
critically colliding, and the advantage of tunneling is maximized, i.e. no other set of
non-critically colliding blocks of L provides better compression rates.

Considering the example in Figure 1.1, the optimal choice of blocks is the set
{4 − [5, 7)}. All other left-maximal and width-maximal blocks are in critical collision
with this one and-or do not bring greater benefit to the compression when tunneled.

11
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2.1 Block choice complexity

The set of all blocks of a BWT can be enumerated in polynomial time [4]. Besides
the block enumeration, we want to compute the optimal choice of blocks for tunneling.
Within this section, we discuss the complexity of making such a choice.

It is easy to see that this problem is in the NP class. The computation of blocks
takes polynomial time, and the choice of blocks can be left to the nondeterminism
of the Nondeterministic Turing Machine. Note that when no collisions of blocks are
allowed, a polynomial-time algorithm for this problem exists. Despite this, the problem
is, in general, NP -hard. Uwe Bayer proved this by reducing the Rectilinear picture
Rectangle Cover problem (which is itself an NP -hard problem) to the Block choice
problem [5].

It is useful to think of blocks as rectangles covering the positions in BWT. Our
mission is to pick up rectangles that do not overlap in an inexpedient way and cover
as many positions as possible. This concept also gives us an idea. Each tunneled
block improves compression by the number of edges it removes but causes extra costs
for saving important information about the start and end positions of the tunnel.
Therefore, only blocks with gain higher than cost should be considered.

2.2 Related works

Tunnel planning is generally NP -hard, thus several works proposed polynomial algo-
rithms that solve this problem approximately.

In one such work [2], Uwe Baier proposed a greedy algorithm with time complexity
O(n log |RB|), where RB is a set of so-called "width-maximal run-blocks" and n is
the length of the Burrows-Wheeler transform. This algorithm is based on the idea that
given a set of width-maximal run-blocks blocks, we want to pick up the one with the
maximal compression rate. After picking such a block, the algorithm modifies the initial
set of blocks, and also prices of all blocks compensably colliding with the chosen block,
so that the correct information would be considered in the next round. After that, this
process is repeated until the set of blocks is empty. Nevertheless, the author himself
stated, that this algorithm sometimes does not find the best solution and he gave a
clear example of a situation when this greedy strategy is not optimal, although he also
stated that such situations do not occur often in practice, so they can be neglected.
This approach is a nice baseline, though too complicated and resource-expensive.

Another publication by Uwe Baier and Kadir Dede [5] presented a simple heuristic
that outperformed already existing solutions for the Tunnel-planning problem both in
resource requirements and compression rate. They used Baier’s cost model of width-
maximal run-blocks and adapted the cost model to a single block. Afterward, they
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estimated the pragmatic upper bound for the cost of a tunnel and the close lower bound
for the gain of tunneling a block. Given that they computed a minimal threshold by
the statistics of the normal BWT and chose only blocks whose score was greater or
equal to this fixed threshold. In a collision-free environment, this ensured that only
blocks that bring gain in the sense of data compression will be tunneled. Although the
authors themselves stated that this estimation is very practical in the sense of resource
requirements during encoding, they also mentioned it is not completely optimal in the
sense of compression.

In his thesis [4], Uwe Bayer presented several strategies for tunneling such as the
Hirsh strategy, the Greedy strategy ignoring negative side effects as well as the Greedy
strategy that considers negative side effects, and the tunneling strategy that uses de
Bruijn graph edge minimization. The first strategy is a pragmatic approach based on
the idea that only profitable blocks should be tunneled, similar to the first-mentioned
work. The other greedy strategies refer to the previously mentioned work, with a
little upgrade. The last tunneling strategy was optimized for the purpose of sequence
analysis. The main difference is that it tunnels non-overlapping blocks only, which
can be used to obtain a tunneled FM-index with a special text sampling scheme [1]
and to obtain a tunneled trie preserving useful combinatorial properties. This strategy
vastly differs from the one we present, yet, we decided to use the available code for
our purposes. We will also make use of the algorithm in the last chapter, where we
compare its result with ours.

All of these solutions were limited by focusing on width-maximal run-blocks alone.
These blocks are defined similarly as in 1.3.2 except the start and end column must
coincide with a run in BWT, not just be part of it. Any collision within these blocks is
then always compensable, which makes the tunneling easier to handle. Our implemen-
tation, on the contrary, considers every reasonable left-maximal and height-maximal
block and thus may find solutions that never even came into question in mentioned
works. Uwe Baier himself stated [2]

It also would be nice to get rid of the restriction of run-based blocks; ... .

so this restriction-riddance is definitely a step forward.

2.3 Reduction to ILP

The Integer Linear Programming (ILP) problem is one of the most famous NP-complete
problems, meaning it belongs to the NP class and any other problem in the NP class
can be algorithmically reduced to this one in polynomial time. After this, one is
left with an instance of the ILP problem and tries to find the optimal solution for it.
Although the ILP problem is inNP , which practically means there exists no polynomial
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algorithm that would solve this problem optimally, considering its fame, there exists
a great amount of approximal ILP solvers working in polynomial time. One of such
freely available solvers is Gurobi [8], which we decided to use.

Firstly, we have to clarify which information should be considered in the reduction
or, in other words, what is relevant to the final outcome. Obviously, all of the computed
non-self-colliding blocks should be involved in the ILP instance, as well as their prices.
One might also notice that the price of tunneling two compensably colliding blocks
is not equal to the sum of prices of separately tunneling these blocks, so we have to
make sure that the final cost of tunneling is correct. Lastly, no two critically colliding
blocks should be together in the result, thus there must be constraints in the instance
providing this.

Having all reasonable (not self-colliding and large enough) blocks and their prices
computed, our goal is to maximize the sum p0x0 + p1x1 + ...+ pkxk, where k ∈ N is the
number of the considered blocks and p0, p1, ..., pk are the prices of the corresponding
blocks. Binary variables x0, x1, ..., xk would indicate the presence of each block in
the final tunneling process, i.e. xi = 1 if the i-th block is in the block choice set and
xi = 0 otherwise.

To make sure that the price of the tunneling is computed correctly, we could use
the inclusion-exclusion principle as there could possibly be a very large hierarchy of
compensably colliding blocks. This is a straightforward attitude, yet not very simple
for the computation since one has to enumerate the prices of all regions created by
the overlaps. Therefore we will approach this issue differently, which will result in
computing prices of shared regions for each pair of compensably colliding blocks only.
Furthermore, this approach uses fewer variables and is more clear.

Having a folding hierarchy of compensably colliding blocks being tunneled, it is
easy to notice that by subtracting the price of a common region of two closest blocks
(blocks that form compensable collision such that no other block that is compensably
colliding with both of them covers all the shared positions) from the sum of prices of
all blocks, we get the right price. Consider the hierarchy in Figure 2.1 and function
p : w − (a, b] −→ R, which assigns a block its price. We want to compute the price of
regions covered by a pattern. Instead of computing the sum p(a) + p(c) + p(d)− p(a∩
c)−p(a∩d)−p(c∩d)+p(a∩c∩d) (as we would if the inclusion-exclusion principle was
applied) we could only calculate the sum p(a) + p(c) + p(d)− p(a∩ c)− p(c∩ d). Thus,
we reduce the number of calls of function p from

∑t
i=1

(
t
i

)
= 2t−1 to t+

(
t
2

)
= t(t+1)/2

in general (before we know the block choice set), where t ∈ N is the number of blocks
in a compensable collisions hierarchy. In that manner, we create additional variables
for all pairs of blocks that form a compensable collision.

Let {p0, q0}, {p1, q1}, ..., {pm, qm} be all the m ∈ N pairs of compensably colliding
blocks. For each such pair, we compute the difference between the sum of the blocks’
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Figure 2.1: Hierarchy of compensably colliding blocks. To-be-tunneled blocks are col-
ored black. Gray-colored blocks are not part of the block choice set.

prices, and the real price of tunneling both blocks. We will address these differences
as shp0, shp1, ..., shpm. With new binary variables y0, y1, ..., ym, we alter the main
sum into the sum p0x0 + p1x1 + ... + pkxk − shp0y0 − shp1y1 − ... − shpmym.
This is the final version of the principal function.

Now, in order to ensure the precision of this tunneling sum, we have to make sure
that for every i ∈ {0, 1, ...,m} yi is set correctly, that is yi = 1 if and only if both blocks
addressed by this shared region (pi and qi) are chosen to be tunneled, and no other
block between them (block that forms a compensable collision with both of them and
overlays the intersecting area) is chosen. Formally, we want the statement

xpi + xqi +
l∑

j=1

(1− xzij
) ≥ l + 2 ⇐⇒ yi ≥ 1 (2.1)

to be always true, where {zi1, zi2, ..., zil} is the set of blocks that are between blocks pi
and qi. That is possible by adding the following constraints to the ILP instance:

• ∀i ∈ {0, 1, ...,m} xpi + xqi +
∑l

j=1(1− xzij
)− (l + 2) < (l + 2) · yi

• ∀i ∈ {0, 1, ...,m} xpi + xqi +
∑l

j=1(1− xzij
) ≥ (l + 2) · yi

The first condition ensures the implication from right to left, and the other con-
straint holds the opposite direction. Imagine that blocks pi and qi are chosen to be
tunneled, and no other block between them is selected for the tunneling. The left side
of the first inequation would therefore equal zero, pushing the right side to be at least
one. That would result in the variable yi being set to one. Now consider variable yi to
be set to one in the solution. The right side of the second inequation would be equal to
l + 2. The left side of the second condition gains values in the range [0, l + 2], and the
highest value, which is, in this case, the only acceptable one, is obtained if and only
if the variables xpi , xqi are set to one, and the other variables xzi1

, xzi2
, ..., xzil

are set to
zero.
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Note that the condition holds even for l = 0, which would mean that there is no
block in between. In that case, we require yi be one if xpi and xqi are asserted to one,
and zero in the other case. And exactly that is handled by both of the conditions.

The final task is to avoid tunneling two blocks that form a critical collision. Let
n ∈ N be the number of all critical collisions and {r0, s0}, {r1, s1}, ... , {rn, sn} be all
the pairs of blocks that are critically colliding. By adding the constraints

∀i ∈ {0, 1, ..., n} xri + xsi ≤ 1

we ensure that the final tunneled BWT is invertible.
The size of the ILP instance is clearly dependent on the number of blocks. For k

blocks, the main function can expand to the size O(k2). The number of constraints for
critical collisions is also quadratically bounded as there only exist O(k2) possible pairs
of blocks. Each of these constraints can be coded to the size O(log k), so altogether,
the constraints take no more than O(k2 log k) space. On the other hand, the size
of constraints addressing compensable collisions is O(k3). The number of constraints
remains O(k2) but the size of one constraint can rise to O(k). All in all, the size of the
ILP instance is polynomially bounded, cubically to be exact.

The instance created this way can be afterward solved by an ILP solver, and a set
of to-be-tunneled blocks is obtained. This set of blocks would correspond to the set of
variables assigned with the value one by the ILP solver. In the next chapter, we focus
on the practical implementation of this reduction and the follow-up tunneling, as well
as the final inversion of a tunneled BWT.



Chapter 3

Practical Implementation

In this chapter, we show the main parts of our algorithm and explain its correctness.
We also give notice of the time complexity and the positive and negative sides of this
specific computation.

The algorithm consists of four main sections. The previous chapter gave us an idea
about the implementation of the second section, which is devoted to the reduction
itself. However, in order to determine the blocks that should be tunneled, several
pieces of information need to be computed. This will be handled in the first part of our
algorithm. After the reduction, the tunneling process follows, which the third section
of the algorithm is in charge of. These three sub algorithms together deal with the
tunneled BWT construction itself, and their output fulfills one’s desires. Nonetheless,
for other needs, as well as for testing the correctness of the previous parts of the
algorithm, a program taking care of the inversion of a tunneled BWT is introduced in
the last, fourth section.

3.1 Basic parts computation

What information is relevant to the reduction? The answer to this question can be
found in the last chapter. We need to compute all non-self-colliding blocks and their
prices (in the sense of compression), as well as all pairs of colliding blocks and the types
of collisions. In addition, for compensable collisions, the price of the shared area needs
to be evaluated.

Everything essential for the second part of the algorithm can be evaluated using
the precomputed suffix array SA, BWT L, and LF-mapping LF . Several works deal
with the efficient and easily implemented ways of enumerating these arrays [11, 6, 4],
thus we will not take any concern with it.

17
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3.1.1 Block computation

Previously, we defined a block using the LCS array. This suggests we compute and use
the LCS array for the block evaluation in the practical world as well.

The light-headed computation of the LCS array would take O(n2) time, where n

is the size of the original string and, consequently, the size of the suffix array of that
string. For each pair of adjacent suffixes in the suffix array, we would compute the
length of the longest common suffix of the strings that precede them, which takes O(n)

time in general. Doing this for each of the n pairs, we end up with the quadratic time
in the worst case.

However, by observing a certain property of the LCS array, we may reduce the
computation time, and thus calculate the LCS array effectively. The key fact to observe
is as follows:

LCS[i] =

{
0 if L[i] 6= L[i− 1]

LCS[LF [i]] + 1 if L[i] = L[i− 1]
,

where LF is the LF-mapping and L is the BWT. This equation then holds for every
i > 1, whereas LCS[0] = 0. With this insight, the LCS array can be recursively
computed in linear time [4].

Using a stack-based approach, Algorithm 1 enumerates all left-maximal and height-
maximal blocks in a BWT. This computation is very similar to the computation of all
prefix intervals in Bayer’s thesis [4], though slightly different.

The computation of prefix intervals indeed results in enumerating left-maximal
blocks, but not height-maximal in each case. Consider the sequence 0, 5, 5, 5, 4, 4, 4
occurring in the LCS-array. Bayer’s program would mark two blocks, one with a width
of 5 and a height of 3 and the other with a width of 4 and a height of 3. This is not
quite right, as the second block can be extended in height and be of size 4 × 6. The
lines 10− 12 in Algorithm 1 ensure that truly height-maximal and left-maximal blocks
will figure in the result.

After the block evaluation, a filtration of too small and self-colliding blocks is nec-
essary. Too small blocks mark either by being lower than two or having a width of
size one at most. On the other hand, self-colliding blocks are those that cover certain
positions in the BWT more than once. This actually means that the starting positions
of two rows of the block are no further from each other in the original string than the
width of the block. Having all starting positions of the block rows presorted, it is easy
to see that this examination of a block takes O(h) time, where h is the height of the
block.
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Algorithm 1: Algorithm enumerating all left-maximal and height-maximal
blocks.
Data: LCS array LCS of size n

Result: All maximal blocks in form w − [a, b), where w is the width of the
block and [a, b) is the half-closed interval of the right-most column

1 begin
2 initialize an empty stack s

3 push {1, 0} on s

4 for i←− 1 to n do
5 {b, w} ← top of stack s

6 while w > LCS[i] do // end of block of width w

7 pop topmost element of s
8 report block w+1 −[b, i)
9

10 {b′, w′} ←− top of stack s

11 if LCS[i] > 1 and LCS[i] < w′ then
12 push {b, LCS[i]} on s

13

14 {b, w} ←− top of stack s

15 if w < LCS[i] then // possible start of a block of width w

16 push {i− 1, LCS[i]} on s

17

// make sure to report all possible block saved in the stack

18 while s is not empty do
19 {b, w} ←− top of stack s

20 report block w+1 −[b, n)
21 pop topmost element of s
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3.1.2 Collisions computation

Our next concern required for the ILP reduction is the detection of all the pairs of blocks
that overlap each other. For faster result achievement, we will merge the computation
of critical and compensable collisions into one double cycle.

We point out that two blocks are colliding if and only if one of the rows’ starting
positions of one block is covered by the other block as well. This note can help us
achieve the collision verdict more quickly, as we will not have to compare all possible
pairs of positions in the blocks. Furthermore, for the compensable collision decision-
making, we have to check the first condition alone. The second and third conditions
are irrelevant since we consider left-maximal and height-maximal blocks only. When
a collision between these blocks fulfills the first condition, the inner block must be
implicitly higher than the outer one. The same applies to the third condition.

Algorithm 2: Algorithm indicating the type of collision between two blocks.
By notation v +x, where v is a vector and x a number, we mean a new vector
v′ containing all elements of the vector v but increased by x.
Data: block A as a pair {wA, {aA, bA}} and block B as a pair {wB, {aB, bB}},

where the first elements are the widths of the blocks and the second
elements are the intervals of the first columns

Result: the type of collision of these blocks
1 begin
2 vA ←− {SA[aA], SA[aA + 1], ...., SA[bA − 1]}
3 vB ←− {SA[aB], SA[aB + 1], ...., SA[BA − 1]}

// check if the first column of the wider block is shared

4 if (wA < wB and element of vB is in A) or (wA ≥ wB and element of vA is in
B) then

5 report critical collision

// check if none of the first columns is shared

6 if (wA < wB and not element of vA in B) or (wA >= wB and not element of
vB in A) then

7 report no collision

// check if the last column of the wider block is shared

8 if (wA > wB and not element of vA + (wA − 1) in B) or (wA < wB and not

element of vB + (wB − 1) in A) then
9 report compensable collision

10 report critical collison

The Algorithm 2 shows the pseudo-code for the identification of the type of collision
between two blocks. The algorithm relies on other functions, which decide whether a
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position in a vector is covered by a block. These functions could be possibly improved in
time by employing the binary search, provided that the input structures are ordered.
Therefore, when indicating all collisions and comparing all possible pairs of blocks,
for each block, we would first sort the starting positions of the block rows and then
compare the block with others, using binary search in the mentioned function. The
time complexity of the collisions indication would then result in O(k2h log h), where k

is the number of all height-maximal and left-maximal non-self-colliding blocks and h

is the maximal height of blocks, i.e. h = max{hB | ∃a ∃w w − [a, a + hB) is a block}.
The presorting of the first positions is also useful for the filtration part, when casting
out the self-colliding blocks, therefore by engaging these functions, the time is spared.

Another improvement would be as follows. In the first chapter, we mentioned the
transitivity of certain compensable collisions, so in some cases, the collision indication
computation is not necessary. Looking at the compensable collisions as a graph, where
vertices correspond to the blocks and all determined compensable collisions are marked
as edges from the inner block to the outer one, an easy way of the collision indication
occurs. Having two blocks B1 and B2, we would first ask if there exists a path from
block B1 to block B2 in this graph. If the answer was positive, no further computation
would be needed and we would report a compensable collision. Looking for a path
between two vertices in a graph would use one of the well-known methods - Depth-first
search or Breadth-first search. However, this improvement would not generally result
in a better time, thus we decided to omit it.

3.1.3 Computation of prices

To establish the price of a block, i.e. how much its tunneled form benefits the overall
compression, we could use Bayer’s cost model [2]. This estimation of the benefit and
the tax of a block is based on the run-length-encoding method [10], which is widely
used within the state-of-art compressors. The gross benefit of a block is given by

gross benefit := n log

(
n

n− tc

)
− rc log

(
rc

rc− tc

)
+ tc

(
1 + log

(
n− tc

rc− tc

))
where n := |rlencode(L)| is the length of the run-length-encoded BWT L, rc is the
number of run-characters in rlencode(L) (all characters except for the run-heads, i.e.
n minus the number of runs) and tc is equal to the number of run-characters that are
removed during the block tunneling.

In addition, Bayer defines a tax in bits for the encoding of aux, which serves for
storing the starts and ends of tunnels. As we want to compute a precise price of each
block, the estimated tax for an average block is of no use to us. Moreover, using the
gross-benefit-based approach led to worse results than the following simple attitude.



22 CHAPTER 3. PRACTICAL IMPLEMENTATION

In section 2.1 we mentioned the relation between blocks and rectangles covering
positions in the BWT. When deciding over two blocks which one to tunnel, we should
pick the one covering a greater number of positions. So a block provides better com-
pression rates than the other, if by tunneling it, more information is "lost", i.e. higher
number of positions is removed. To put it more simply, block wA − [aA, bA) is more
convenient than block wB− [aB, bB) if (wA−1) ·(bA−aA−1) > (wB−1) ·(bB−aB−1).
These numbers would correspond to the numbers of positions each block removes from
the BWT when being tunneled since it is necessary to remember only the first row and
the side columns.

3.2 The reduction in practice

As we have already mentioned, for the ILP instance solving we operate with the Gurobi
solver. The input file for the Gurobi solver is required to contain three main sections:
the main sum with the goal, the constraints, and the boundaries of the variables.

The goal is clear - to maximize the compression score. The main sum can be easily
enumerated, and as for the boundaries, all variables we use are binary. What might
not be obvious is the Gurobi format of constraints, especially those related to the
intersection area variables.

Let {p0, q0}, {p1, q1}, ..., {pm, qm} be the block pairs that form a compensable
collision and y0, y1, ..., ym be the variables that indicate the closest pair of compensably
colliding blocks being tunneled. For each variable yi the following constraints would
be added.

Let xzi1
, xzi2

, ..., xzil
be the variables for such blocks, that for all j ∈ {1, 2, ..., l} xpi

and xzij
as well as xqi and xzij

form a compensable collision and min(wpi , wqi) < wzij
<

max(wpi , wqi), where wpi , wqi , wzij
are the widths of the blocks pi, qi, z

i
j, respectively.

The constraint

xpi + xqi − (
l∑

j=1

xzij
)− (l + 2) · yi ≤ 1

assures the correctness of the case when the variable yi is set to zero. Similarly, we
ensure that the variable yi is set to one in the right situations by adding the following
constraint

xpi + xqi − (
l∑

j=1

xzij
)− (l + 2) · yi ≥ −l.

In this manner, the required equivalence 2.1 for compensable collisions is secured
and the correct price will be evaluated.
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Figure 3.1: The process of tunneling in a Wheeler graph. The leftmost picture shows
part of the initial Wheeler graph. In the middle, a multi-graph is depicted after the
fusion of inner nodes. All redundant edges are colored gray. On the right, after the
removal of redundant paths, tunneled part of the Wheeler graph is shown.

3.3 The tunneling process

The output of the Gurobi solver contains, among other information, the values of all
binary variables that took part in the ILP instance. We will tunnel only those blocks,
whose corresponding variables were assessed to one. The order of precedence in which
these blocks should be tunneled plays no relevant role, thus we will show how to tunnel
a single block. Each other block can be tunneled similarly and, as a consequence, in
parallel.

The process of compression is held in two stages. Firstly, all to-be-tunneled positions
are marked. Given a Wheeler graph [7], this would mean fusing all inner nodes and
thus producing a multigraph. Secondly, all the double-marked positions (positions that
are not a start or an end of the tunnel) are removed. Regarding the Wheeler graph, this
would mean the removal of all redundant edges between the inner nodes, generating a
multi-edges-free graph, see also Figure 3.1.

For the tunnel marking, we will use arrays DIN and DOUT of length n+ 1, where n
is the length of the BWT L. In the beginning, these arrays contain ones only. We mark
the tunnel of a block by setting all positions that are to-be-tunneled to zero. These
positions correspond to all the positions covered by the block, which take no part in the
leftmost, rightmost column, or the uppermost row. This is done for both arrays DIN

and DOUT . In addition, we set to zeros the positions of the leftmost column except
for the first position in the array DOUT and all the positions in the rightmost column
except for the first in DIN , see the first part of Algorithm 3.

To put it another way, these arrays denote the indegrees and outdegrees of the
nodes if we considered a Wheeler graph [4]. At first, all nodes have the indegree and
the outdegree equal to one. When marking a block for the tunneling, we merge the
inner columns into one node. As a consequence, the indegrees of all nodes except for
the ones in the leftmost column and the outdegrees of all nodes except for the ones in
the rightmost column are equal to the height of the block. After this fusion, we get a
multigraph ready for the final compression, where all redundant paths with a common
start and end node are removed.
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Algorithm 3: Computation of tunneled BWT L′. First, the to-be-tunneled
position are marked in the bit-vectors, then thay are removed from DIN , DOUT

and BWT L.
Data: BWT L of size n, set of to be tunneled blocks I and LF-mapping LF

Result: tunneled BWT L′ and corresponding arrays DIN and DOUT

1 begin
2 create vectors DIN and DOUT of size n + 1 filled with ones

// mark all positions for tunneling in the bit-vectors DIN and

DOUT

3 foreach {w, {a, b}} ∈ I do
4 x←− a

5 h←− b− a

6 for i←− 0 to w − 1 do
7 for j ←− 1 to h do
8 DOUT [x+ j]←− 0

9 x←− LF [x]

10 for j ←− 1 to h do
11 DIN [x+ j]← 0

12

// remove all the positions that are marked in both bit-vectors

13 initialize empty string L′

14 p, q ←− 0

15 for i←− 1 to n do
16 if DIN = 1 then
17 L′ ←− L′ + L[i]

18 DOUT [p]←− DOUT [i]

19 p←− p+ 1

20 if DOUT = 1 then
21 DIN [q]←− DIN [i]

22 q ←− q + 1

23 DOUT [p], DIN [q]←− 1

24 resize DOUT to size p+ 1 and DIN to size q + 1
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This process can be done simultaneously for any set of blocks that does not involve
a critical collision. After marking the tunnels in the bit-vectors DIN and DOUT , the
tunneled BWT can be constructed as follows.

In order to compress the BWT L and obtain a tunneled BWT L̃, we have to reduce
arrays DIN and DOUT of the affected nodes and store only essential positions in L̃.
In other words, the outdegrees of all nodes except for the last one, and the indegrees
of all nodes except for the first one must be reduced to one. This can be reached
by the top-to-bottom traversal of both arrays whereby trimming DIN , DOUT , and L

appropriately, as presented in Bayer’s thesis [4].

Note that the positions of zero marking in DOUT and the entries to be removed
from DIN are identical. The same holds for the positions marked zero in DIN and the
entries to be removed from DOUT and L as well. Therefore, by scanning these bit-
arrays from top to bottom after emplacing the markings, the desired tunneled BWT
can be obtained by deciding whether to keep an entry depending on the zero markings
in both arrays, see the second part of Algorithm 3.

3.4 The reversion

In this section, we introduce the strategy for the reconstruction of the original text
from a tunneled BWT.

The reverse of the primary string of length n can be rebuilt in O(n) time using
the backward-step function. This function navigates us through the tunneled BWT,
visiting the previous character of the initial string or, in other words, one step backward.

The process of the reverse walk in a tunneled BWT is similar to the one in an
unmodified BWT, except we have to remember the offsets to the uppermost row when
entering the tunnel so that when leaving, we jump to the correct position in the BWT.
In cases when no collisions are allowed, only one additional number would be necessary
to remember - the current offset. However, when considering overlapping blocks, we
may enter another tunnel before leaving the first and thus have to store a possibly
large number of offset values. As a consequence, when leaving a tunnel, we have
to choose from all saved offsets. This would be a problem if critically colliding blocks
were tunneled, whereas handling compensable collisions is effortless. By definition, two
compensably colliding blocks form a cross, and thus the starts and ends of the tunnels
form a well-parenthesized expression, i.e. when a tunnel end is encountered, it would
belong to the tunnel that was entered last and never left. Therefore, a stack-based
approach is a sufficient and easily implemented choice.

Using the backward-step function as described in Algorithm 4, the reverse of the
original string can be built as follows. Let n be the length of the original string S, L
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i L[i] DOUT DIN F [i]

0 o 1 1 $
1 e 1 1 a
2 e 1 1 a
3 a 1 1 d
4 a 1 1 d
5 t 1 1 e
6 r 1 1 e
7 y 1 1 g
8 g 1 1 o
9 $ 1 1 r
10 y 1 1 s
11 s 1 1 t
12 d 1 1 y
13 d 1 1 y
14 1 1

L[i] DOUT DIN F [i]

o 1 1 $
e 1 1 a

a 1 1 d

t 1 1 e
r 0
y 1 1 g
g 1 1 o
$ 1 1 r
y 1 1 s
s 1 1 t
d 1 1 y

0 y

1 1

Figure 3.2: Inverse walk in the tunneled BWT L. Above, BWT L, and arrays F ,
DIN and DOUT are captured before and after tunneling block 4− [5, 7). Starting from
position 9, using the LF-mapping, the inverse walk leads to building the original string.
When encountering the end of the tunnel (zeros in the DIN array), an offset is saved
and then used when the beginning of the tunnel (zeros in array DOUT is reached.)
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be its tunneled BWT, s an empty set, and i the position in L where the character $

occurs. Then, by repeating the commands

1. output L[i]

2. {i, s} ←− backward-step(i, s)

n-times, we produce S in the reversed order.
Figure 3.2 shows the initial BWT L, arraysDIN andDOUT for string readysteadygo$,

and the final tunneled version of each. The arrows between the bit arrays indicate the
reverse walk through the tunneled BWT, implicitly showing how Algorithm 4 works.

Algorithm 4: Backward-step function for computing the reversed original
string from a tunneled BWT. Similar algorithm was published in [4].
Data: Succinct representation of a tunneled BWT as computed in algorithm 3

DIN , DOUT and L′, index i of na edge in DOUT and stack s with tunnel
offsets

Result: Index i of the next edge in DOUT and stack s with updated tunnel
offsets

1 Function backward-step(i, s):
2 i←− CL′ [L′[i]] + rankL′(L′[i], i) // follow i-th edge

3 nr ←− rankDIN
(1, i) // determine node rank

4

// check if a tunnel starts and save offset to the uppermost

entry edge

5 if DIN [i] = 0 or DIN [i + 1] = 0 then
6 o←− i− selectDIN

(1, nr)

7 push o on s

8

9 i←− selectDOUT
(1, nr) // swith to outgoing edges of node nr

10

// check for the end of a tunnel and jump to the right edge

using saved offset

11 if DOUT [i + 1] = 0 then
12 o←− top of s
13 i←− i + o

14 pop topmost element of s

15 return {i, s}
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Chapter 4

Experimental results

This chapter’s purpose is to show the differences in results of our and other algorithms
launched on the same input data.

The comparison is realized against Uwe’s program implemented as the tunneling
strategy based on de Bruijn graph edge minimization [3]. For the most accurate results,
we used as much as possible from this program, altering only the functions handling
the tunneling strategy and the reversion. The final tunneled FM-index’s structures
are identical, differing in the contained data alone. Therefore, their size difference is a
competent comparison technique.

Since this compression method is supposed to extend bioinformatical tools, all of
the input data are of biological origin.

First, we would like to depict the main difference between the two algorithms on
the string S := easypeasybpeasyb$. The optimal choice of blocks would consist of
one block covering the substrings easy, and the second block covering the sequences
peasyb. The ILP reduction strategy would output tunneled BWT of size 10 (which
is the optimal size), whereas the de Bruijn graph edge minimization strategy’s result
would be of size 12. This is due to the non-consideration of compensable collisions in
the second method, which leads to significantly faster result achievement, but lower
compression intensity. The very opposite applies to our algorithm.

Table 4.1 shows the results of both algorithms launched on different inputs. The
first (black-colored) input file contains erythrocyte membrane protein sequence from
Plasmodium sp. gorilla clade G2. After that, we launched both programs on the
zinc finger protein 213 gene sequence originated in Homo sapiens, showing the main
characteristics of the difference. Thirdly, the partial genome of Bacteriophage served
as the input. The fourth input file consisted of four repetitions of the last 5000 bases
of the 21. human chromosome. The purpose of this input file was to show the results
of each algorithm when launched on highly repetitive data, encouraging it to compress
the data to a great extent. Lastly, we randomly generated a file containing a large

29
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Figure 4.1: Comparison of the ILP reduction (ILPR) strategy and the de Bruijn graph
edge minimization (dBGEM) strategy launched on the same input data. The sizes are
given in bytes, and the time is given in seconds (or otherwise, if stated explicitly). The
size ratio is generated as the tunneled size divided by the initial size.

Input file Initial size Tunneled size Size ratio Time Strategy

example.txt 18
10 0.56 0.1 ILPR
12 0.67 0.1 dBGEM

protein.fasta 5109
5019 0.98 0.36 ILPR
5076 0.99 0.06 dBGEM

zinc_fingers.fa 10345
9050 0.87 1111 ILPR
10029 0.97 0.1 dBGEM

bacteriophage.fasta 34041
29796 0.88 7.5 hours ILPR
33343 0.98 0.1 dBGEM

chrom21_rep.fasta 20001
4431 0.22 15 hours ILPR
5022 0.25 0.06 dBGEM

repetitive.txt 3019
622 0.21 880 ILPR
1881 0.62 0.06 dBGEM

hierarchy of compensable collisions. As the table shows, the results of ILPR algorithm
are considerably superior to the dBGEM approach within this input. As regards the
real data though, the compression rates are not so different.

As we have already pointed out, de Bruijn graph edge minimization does not con-
sider overlapping blocks. Therefore, when launched on several repetitions of the same
text (such as the chromosome file in table 4.1), the compression will be limited, and
generally would not drop below the length of the repeated sequence alone, whereas this
is not the case with our tunneling strategy, as shown in the table. For that reason, in
the field of bioinformatics, where data alone are often highly repetitive, and sometimes
several alignments need to be stored, our method represents a better option.



Conclusion

As shown in the last chapter, our algorithm provides better compression rates than
Bayer’s. However, it requires a vast amount of time compared to the de Bruijn graph
edge minimization strategy. This inconvenient time consumption could be improved in
several ways.

The part that takes the most time is the one handling collisions of blocks. This
part’s complexity depends on the number of blocks, thus, a simple approach suggests
itself. When enumerating the blocks, we could consider only those with even width
or those with width dividable by k ∈ N. This update would, in some cases, lead to
faster result-obtaining, but generally not in better time complexity and perhaps worse
compression rate even.

In section 3.1.2 we mentioned another possible upgrade. When reaching a decision
about a collision of two blocks, information about other collisions might be of use.
This holds for situations when the two blocks compensably overlap another block, one
from the inside and the other from the outside. This upgrade would, however, cost a
lot of memory since one would have to remember all the possibly-useful information.
Therefore, the time would not decrease in all cases, only those that contain large
hierarchies of compensable collisions. In other cases would this requirement cost us
additional time, thus we would not recommend it unless the input data are of the
desired appearance. Nonetheless, if decided to be included, the graph would also find its
use in the second most time-consuming part of the algorithm - constraint computation
for the compensable collisions in the reduction part. In fact, regarding this part, the
graph brings a major advantage to the time complexity, reducing it from O(comp) to
O(g), where comp is the number of all pairs of blocks that form a compensable collision,
and g is the size (the number of vertices) of the largest component of the mentioned
graph.

Our presented approach brings new light to the BWT-based compression. A signif-
icant improvement is based on the non-restriction of run-based blocks, enhancing the
intensity of compression. However, this improvement considerably affected the time.
Perhaps with the mentioned ideas and some more, this affection can be minimized,
giving us motivation for further research on the topic.
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Appendix A: Content of the electronic
attachment

In the electronic attachment attached to the work can be found the source code as well
as the input files mentioned in the last chapter. The source code can also be found at
https://github.com/SladeckovaKlara/BWT-Tunneling-ILP.git.

The attachment contains two folders. The testdata folder covers all input files used
in the last chapter. The seqana folder contains the program handling the construction
of a tunneled FM-index and the program for inversion of a tunneled FM-index.

For full functionality, several additional downloads are necessary, see also files
README.md. After the installation, check if all paths are set correctly. For in-
stance, if the path in Make.helper to sdsl-lite is accurate, also if the prefix paths in files
in lib/pkgconfig/ are set according to the environment. Moreover, if the Gurobi file is
not installed directly in the BWT-Tunneling-ILP directory, please change the system
call in tfm_index.hpp in line 457.

After the installation, simply call make to compile all programs. For usage infor-
mation, execute the programs without parameters.
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