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Abstrakt

V tejto bakalárskej práci sa zaoberáme našou vlastnou hypotézou o dvojitom pokrytí
grafu cyklami. Na začiatku uvádzame dôležité definície, ktoré používame v celej práci
spolu s pozorovaniami a známymi poznatkami o dvojitých pokrytiach grafu cyklami.
Potom uvádzame nové poznatky, ktoré sme objavili o hranových 2-rezoch, netriviálnych
hranových 3-rezoch a trojuholníkoch vo vzťahu k dvojitým pokrytiam grafu cykla-
mi. Tiež vyslovíme našu hypotézu a poskytneme dôkazy na niektorých nekonečných
triedach grafov, ako napríklad Issacsové snarky. Na záver popisujeme implementačné
detaily nášho softvéru, zahrňajúc, ako sme reprezentovali grafy, algoritmus, ktorý sme
používali na hľadanie dvojitých pokrytí grafu cyklami spolu s niektorými metódami,
pomocou ktorých sme našli dvojité pokrytia cyklami, ktoré sme použili v dôkazoch
našej hypotézy.

Kľúčové slová: Hypotéza o dvojitom pokrytí cyklami, CDC, indukovaný cyklus,
kubické grafy, snark
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Abstract

In this thesis, we pursue our own conjecture regarding cycle double covers. Firstly, we
provide important definitions we use throughout the thesis, as well as observations and
known facts about cycle double covers. Later, we state the new facts we discovered
about 2-edge cuts, nontrivial 3-edge cuts, and triangles with regard to cycle double
covers. We also state our conjecture and provide proofs of our conjecture for some
infinite graph families such as Issacs snarks. Lastly, we describe implementation details
of our software, including how we represented graphs, the algorithm we used for finding
cycle double covers in addition to some methods that helped us to find the cycle double
covers that we used in proofs of our conjecture.

Keywords: The Cycle Double Cover Conjecture, CDC, induced cycle, cubic graphs,
snark
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Introduction

In 1973, Hungarian-Australian mathematician George Szekeres [1] formulated the cycle
double cover conjecture that states that every bridgeless graph has a collection of cycles
containing every edge exactly twice. Our thesis focuses on our own conjecture, which is
a strengthened version of the original cycle double cover conjecture. The cycle double
cover conjecture is equivalent to the assertion for bridgeless cubic graphs [4]. Therefore,
we tried to observe connections between cycles passing through end vertices of edges
of cubic graphs in cycle double covers.

Our conjecture states that for every bridgeless cubic graph with the length of its
shortest circuit at least 5 and without 2-edge cuts and nontrivial 3-edge cuts, there is
a circuit double cover comprised of chordless circuits. In cubic graphs, we can merge
circuits into cycles without a vertex in both circuits. We suggest that in a circuit double
cover consisting of chordless circuits, we can combine these circuits into at most six
cycles. There might be an edge between the chordless circuits that comprise a cycle,
so we conjecture that for the considered graphs also exists a cycle double cover with
at most seven induced cycles.

The cycle double cover conjecture is already proven for some graph families, such
as bridgeless cubic graphs with chromatic index 3 [4]. By Vizing’s theorem [9], cubic
graphs have either chromatic index 3 or 4. Hence, the cycle double cover conjecture
remains open for the latter graphs. Our conjecture includes such graphs with the
exception of those with short circuits and small edge cuts. Our thesis aims to prove
our conjecture on some infinite graph families. We also intend to discover new facts
with regard to the cycle double covers that fulfill our conjecture with the help of
the software that we created to find cycle double covers of bridgeless cubic graphs.
Firstly, we provide important definitions, state the cycle double cover conjecture, and
present facts in regard to the conjecture. We provide the results we discovered in
addition to proofs of our conjecture on some infinite graph families. Lastly, we present
implementation details of our software and describe some methods that we used to
help us prove our conjecture.
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Chapter 1

Preliminaries

In the first part of this chapter, we state necessary definitions that we use throughout
the thesis. The second part provides a formulation of the cycle double cover conjecture,
relevant definitions, and known results for a deeper understanding of the problem.

1.1 Definitions

This section presents formal definitions in graph theory. More can be found in Graph
theory [2].

Definition 1.1.1 The degree of a vertex is the number of neighbors of the vertex.

Definition 1.1.2 A k-regular graph is a graph in which all vertices have the same
degree k. A 3-regular graph is called a cubic graph.

Definition 1.1.3 A circuit is a connected 2-regular graph.

Definition 1.1.4 A cycle is a graph in which all vertices have an even degree.

Equivalently we can define a cycle as a collection of edge-disjoint circuits, as shown in
the figure below. Note that a circuit is also a cycle.

C

(a) An example of a cycle

C C C123

(b) Decomposition of the cycle

Figure 1.1: The cycle C is a collection of three circuits, C1, C2, and C3.

3
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Definition 1.1.5 The length of a circuit is the number of its edges.

Definition 1.1.6 The girth of a graph is the minimum length of a circuit in the graph.

Definition 1.1.7 A graph G = (V,E) is a subgraph of G′ = (V ′, E ′) if V ⊆ V ′ and
E ⊆ E ′, written as G ⊆ G′. If G ⊆ G′, then G′ is a supergraph of G.

Definition 1.1.8 A chord of a circuit is an edge of a supergraph of the circuit that
is not part of the circuit but is incident with two vertices of the circuit. A chordless
circuit is also called an induced circuit.

Definition 1.1.9 Let G be a graph. A cycle in G is induced if it consists of induced
circuits, and G does not contain any edge such that both end vertices are contained in
the cycle, but the edge is not part of the cycle.

Definition 1.1.10 A k-edge cut of a connected graph G is a set of k edges S ⊆ E(G)

such that the graph G− S is a disconnected graph. A 1-edge cut is called a bridge.

Definition 1.1.11 A nontrivial k-edge cut is a k-edge cut of a connected graph such
that all edges of the k-edge cut are not incident to the same vertex.

Definition 1.1.12 Let G be a connected graph. An edge cut S of G is cycle-separating
if both components of the graph G− S contain a cycle.

Definition 1.1.13 A graph is cyclically k-edge-connected if every cycle-separating edge
cut of the graph has at least k edges.

Definition 1.1.14 An edge coloring of a graph G is a map c: E(G) → C with c(e1) ̸=
c(e2) for any adjacent edges e1, e2. The elements of set C are called available colors.

Definition 1.1.15 The chromatic index of a graph G is the smallest integer k such
that there exists an edge coloring of G c: E(G) → {1, 2, ..., k}. The chromatic index of
G is denoted by χ′(G).

Definition 1.1.16 A snark is a bridgeless cubic graph with chromatic index 4. A
nontrivial snark is a snark that is cyclically 4-edge-connected and has girth at least 5.
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Definition 1.1.17 The subdivision of an edge uv by a vertex w is the removal of the
edge uv from the graph and the addition of the vertex w along with the new edges uw

and wv.

u v u vw
Figure 1.2: The subdivision of the edge uv by the vertex w

Definition 1.1.18 The smoothing of a vertex w of degree 2 in regards to the edges
uw,wv is the removal of the vertex w along with the edges uw,wv and the addition of
the edge uv.

u vw u v
Figure 1.3: The smoothing of the vertex w in regard to the edges uw,wv

Definition 1.1.19 Assume that a vertex u with degree k ≥ 3 has adjacent vertices
v1, ..., vk. An inflation of the vertex u is the removal of the vertex u along with the edges
uv1, ..., uvk and the addition of vertices u1, ..., uk along with the edges u1u2, u2u3, ..., uku1

and u1v1, ..., ukvk.

u

v
v

v

v

v v

1

2

3

4

5
6

kv

v
v

v

v

v v

1

2

3

4

5
6

k

u1u2

u3

u4

u5 u6

uk

v

Figure 1.4: An inflation of a vertex u
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Definition 1.1.20 Let G1 and G2 be two bridgeless cubic graphs, with u ∈ V (G1) and
v ∈ V (G2) such that the adjacent vertices of u are u1,u2,u3, and those adjacent to v are
v1,v2,v3. A 3–cut-connection on u and v is a graph operation consisting of constructing
the new graph (G1 − u) ∪ (G2 − v) ∪ {v1u1, v2u2, v3u3}.

G G1 2

u

u

u

v

v

v

1

2

3

1

2

3u v

G G1 2

u

u

u

v

v

v

1

2

3

1

2

3

Figure 1.5: A 3-cut-connection on u and v

1.2 The Cycle Double Cover Conjecture

In this section, we provide a formulation of the cycle double cover conjecture and state
important definitions in regard to the conjecture as well as known facts.

Definition 1.2.1 A cycle (circuit) double cover of a graph is a collection of cycles
(circuits) that contains every edge of the graph exactly twice. We abbreviate the cycle
double cover to CDC. A k-CDC is a cycle double cover with at most k cycles.

As we stated all necessary definitions, we present the formulation of the cycle double
cover conjecture.

Conjecture 1.2.2 (The Cycle Double Cover Conjecture, Szekeres [1]) Every bridge-
less graph has a cycle double cover.

The conjecture can be easily reduced to bridgeless cubic graphs [4] as follows: Assume
that we have a bridgeless graph G. We want to transform G into a bridgeless cubic
graph and show that G has a CDC if the obtained bridgeless cubic graph has a CDC.
The graph G cannot have any vertex with degree 1 as it implies that G has a bridge. Let
us consider the vertices of degree 2. We can eliminate these vertices by the smoothing
of these vertices, as shown in the figure below.
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(a) Before the smoothing (b) After the smoothing

Figure 1.6: The smoothing of a vertex with degree 2 and the impact on a CDC

Observe that if the obtained graph has a CDC, we can easily reverse the smoothing
of a vertex by the subdivision of the affected edge by the considered vertex and get a
CDC of the original graph. If the graph contains only the vertices with degree 2, then
the graph is a cycle itself, and it can be covered twice by itself. As we want a cubic
graph, we can ignore the vertices with degree 3. Lastly, we need to process the vertices
of degree at least 4. Assume we have a vertex with degree k ≥ 4. We transform the
vertex into a k-gon by any inflation of the vertex, and, as a result, we get new vertices
with degree 3. Let us assume that we have a CDC of the obtained k-gon.

(a) Before an inflation (b) After the inflation

Figure 1.7: An example of the impact of an inflation of a vertex with degree 5 on a
CDC

As one easily notices, we can reverse the inflation of the vertex and get a CDC of
the original graph based on the CDC of the obtained graph. As a result, we can get a
cubic graph from any graph that is not a cycle itself, such that the original graph has
a CDC if the obtained cubic graph has a CDC. Therefore, from now on, we will only
consider cubic graphs.

Proposition 1.2.3 In cubic graphs, three cycles pass through each vertex in a CDC.

We will distinguish between the edges whose end vertices have the same sets of cycles
passing through them and the edges that have different sets of cycles passing through
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their end vertices. Note that since edges are covered by two cycles, these two cycles
contain both end vertices, so the third cycle, which does not cover an edge but contains
its end vertices, determines whether the cycles containing the end vertices of the edge
are the same. We will refer to this decisive cycle as the third cycle of the edge.

Definition 1.2.4 Let G be a bridgeless cubic graph with a CDC C. If the sets of cycles
passing through end vertices of an edge are different in C, we call such an edge a strong
edge in C. Otherwise, the edge is weak in C.

(a) A strong edge (b) A weak edge

Figure 1.8: The difference between a strong edge and a weak edge.

Definition 1.2.5 A CDC C in a graph G is semi-induced if each cycle in C is comprised
of induced circuits.

Assume that a bridgeless cubic graph has a semi-induced CDC. If we decomposed all
cycles of the CDC into circuits, then all edges would be strong in the obtained circuit
double cover.

Definition 1.2.6 A CDC C in a graph G is induced if each cycle in C is induced.

Note that if a cycle is induced, it implies that it consists of induced circuits such that
there is no edge between the circuits of the cycle. As a result, if a CDC is induced, then
it is also semi-induced, and all edges are strong in the CDC as well as in the circuit
double cover obtained by decomposition of the CDC into circuits. One easily observes
that a circuit double cover consisting of induced circuits is also an induced CDC as
there are no weak edges in such a circuit double cover.

We now provide a crucial connection between chords and weak edges in circuit double
covers.

Lemma 1.2.7 Let G be a bridgeless cubic graph with a circuit double cover C. An
edge uv ∈ E(G) is weak in C if and only if uv is a chord of a circuit in C.

Proof: Assume that uv is weak in C. Since the edge uv is covered by two circuits, C1

and C2 in C, C1 and C2 contain the vertex u as well as the vertex v. As circuits passing
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through the vertices u and v must be the same, there must be a circuit C3 in C that
contains both u and v. But C3 does not cover the edge uv, so uv is a chord of the
circuit C3.

Assume that uv is a chord of a circuit C in C. As a consequence, C contains both
vertices u, v but does not cover the edge uv. The edge uv must be covered by two
circuits in C. These two circuits contain both vertices u, v. Therefore, circuits passing
through the vertex u are the same as circuits passing through the vertex v. Hence, the
edge uv is weak. □

Corollary 1.2.8 The number of strong edges in a circuit double cover of a cubic graph
is the number of edges that are not chords of any circuits in the circuit double cover.

One easily observes that a weak edge in a cycle double cover is either a chord of a
circuit obtained by decomposition of a cycle, or an edge between circuits of the same
cycle.

C

Figure 1.9: Potential weak edges are denoted by the red color

The following theorem belongs to the folklore with regard to cycle double covers.

Theorem 1.2.9 Let G be a bridgeless cubic graph with chromatic index 3. Then G

has a 3-CDC.

Proof: The cubic graph G has chromatic index 3, so the edges of G can be colored
with three colors such that adjacent edges have different colors. Since G is cubic, each
vertex of G is incident with three edges that have three different colors. If we take a
combination of two colors, the edges form a cycle since they form a 2-regular graph.
We get three cycles as there are three 2-combinations of these three colors. Every color
(thus every edge) is a part of two 2-combinations. Therefore, the cycles cover each
edge precisely two times.
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(a) A cubic graph with chromatic index 3 (b) The cubic graph with a 3-CDC

□

Observe that each edge of a graph is weak in a 3-CDC as these three cycles contain
each vertex of the graph.



Chapter 2

Results

In this chapter, we present the results we discovered regarding cycle double covers.

2.1 Results regarding 2-edge cuts

Theorem 2.1.1 Let G be a bridgeless cubic graph with a 2-edge cut and a circuit
double cover C. Then the 2-edge cut edges are strong in C.

Proof: Let S = {e1, e2} be a set of the edges of the 2-edge cut such that G−S has two
components, G1 and G2.

G G1 2

e1

e2

Figure 2.1: A graph G with the 2-edge cut {e1, e2}

Let G have a circuit double cover C. Then the edge e1 is contained in precisely two
circuits, C1 and C2. Without loss of generality, let the circuit C1 start in the subgraph
G1. The circuit C1 passes through the edge e1. Since S = {e1, e2} is a 2-edge cut
separating the subgraphs G1 and G2, every circuit passing from the subgraph G1 to
the subgraph G2 must return from the subgraph G2 back to the subgraph G1. The
only way back is through the edge e2. Hence, the circuit C1 passes through the edge
e2 as well.

11
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G G1 2

e1

e2

C1

Figure 2.2: The graph G with the circuit C1

Analogously the circuit C2, starting in the subgraph G2 and passing through the
edge e1, must also pass through the edge e2.

G G1 2

e1

e2

C2

C1

Figure 2.3: The graph G with the circuits C1 and C2

The edges e1 and e2 are now covered by these two circuits. Therefore, no other circuit
in C passes through them. As the subgraphs G1 and G2 are disjoint, the third circuits,
C3 and C4, passing through the end vertices of the edge e1, are different from one
another. Hence, the edge e1 is strong in C. Similarly, different circuits, C5 and C6, pass
through the end vertices of the edge e2. Therefore, the edge e2 is strong in C as well.
Note that the circuits passing through the end vertices of the edges e1 and e2 in the
same subgraph might be the same. □
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Theorem 2.1.2 Let G be a bridgeless cubic graph with a 2-edge cut set S = {e1, e2}.
Assume that G′ is obtained from G by the subdivision of the edges e1 and e2 by vertices
k1 and k2, respectively, and the addition of the edge k1k2. Then the edge k1k2 is weak
in any cycle double cover.

Proof: Assume that the 2-edge cut set S = {e1, e2} of the graph G connects two
components of the graph G − S, G1 and G2, and the edges e1 and e2 split by their
subdivisions into edges e′1, e

′′
1 and e′2, e

′′
2, respectively.

e'2G G1 2

k

k2
2e''

1e'1 1e''

Figure 2.4: The obtained graph G′

Assume that the graph G′ has a cycle double cover C. In C, each edge is covered by
exactly two cycles. As one readily observes, any cycle covering the edge k1k2 cannot
pass through both edges e′1, e′′1 or e′2, e′′2. Therefore, a circuit C that is part of a cycle in
C passes through the edges e′1, e

′′
1 and, subsequently, through the edges e′′2, e

′
2, but not

through the edge k1k2. As a result, the edge k1k2 is a chord of the circuit C. Hence,
the edge k1k2 is weak.

e'2G G1 2

k

k2
2e''

1e'1 1e''

C

Figure 2.5: The circuit C in the graph G′

□
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2.2 Results regarding nontrivial 3-edge cuts

Theorem 2.2.1 Assume that G1 and G2 are bridgeless cubic graphs, k1 ∈ V (G1) and
k2 ∈ V (G2). Let G be a graph obtained by a 3-cut-connection on k1 and k2.

(a) If G1 and G2 have a semi-induced 6-CDC, then so has G.

(b) If G1 and G2 have an induced 7-CDC, then so has G.

It is already proven that if G1 and G2 have a cycle double cover, then G has a cycle
double cover as well. Nevertheless, we provide a proof.

Proof: Assume that the graphs G1 and G2 have a cycle double cover. Firstly, we
prove that the obtained graph G also has a cycle double cover. Assume that cycles
C1, C2, C3 pass through the vertex k1 in the graph G1. Similarly, assume that cycles
C4, C5, C6 pass through the vertex k2 in the graph G2. Assume that the neighbors of
the vertex k1 are vertices v1, v2, v3, the neighbors of the vertex k2 are vertices v4, v5, v6,
and the 3-cut-connection was performed in such a way that the edges v1v4, v2v5, v3v6

were added.

G G1 2

v

v

v

v

v

v

1

2

3

4

5

6

C

2C

1

k k1 2

C4

C3

C5

C6

Figure 2.6: The graphs G1 and G2 with the marked vertices k1 and k2

Firstly, remove the vertices k1 and k2 with their incident edges.
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G G1 2

v

v

v

v

v

v

1

2

3

4

5

6

Figure 2.7: The graphs G1 and G2 with the removed vertices k1 and k2

Then, we obtain the graph G by the addition of the edges e1 = (v1, v4), e2 = (v2, v5)

and e3 = (v3, v6).

G G1 2

v

v

v

v

v

v

1

2

3

4

5

6

e

e

e

1

2

3

Figure 2.8: The graph G obtained from the graphs G1, G2

We need to cover each of the edges e1, e2, e3 with two cycles in addition to the edges
that are not covered with two cycles since the cycles C1, ..., C6 no longer exist. We can
make use of the remaining parts of the cycle C1, especially the part from the vertex v1

to the vertex v2. Likewise, we can use the remaining parts of the cycle C5, especially the
part from the vertex v4 to the vertex v5. Note that in the graph G we added the edges
e1 = (v1, v4) and e2 = (v2, v5). Therefore, there exists a cycle C ′

1 such that it covers the
edges e1, e2 as well as the edges that were previously covered by the remaining parts of
the cycles C1 and C5. Analogously, there exists a cycle C ′

2 such that it covers the edges
e1, e3 in addition to the edges that were previously covered by the remaining parts of
the cycles C2, C4. Lastly, there also exists a cycle C ′

3 covering the edges e1, e3 along
with the edges previously covered by the remaining parts of the cycles C3, C6. Hence,
all edges of the graph G are covered by two cycles because the cycle double cover of
the parts that were not affected stays the same. We proved that the obtained graph G

has a cycle double cover.
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G G1 2

v

v

v

v

v

v

1

2

3

4

5

6

e

e

e

1

2

3

C'

2C' C'

1

3

Figure 2.9: The graph G with the cycle double cover

(a) Assume that the graphs G1 and G2 have a semi-induced 6-CDC. As we observed,
the obtained graph G has a CDC with the three cycles C ′

1, C
′
2, C

′
3 covering the edges

of the newly formed nontrivial 3-edge cut. As a result, the cycle double cover consists
of the three considered cycles C ′

1, C
′
2, C

′
3 and at most three unaffected cycles in both

subgraphs G′
1 and G′

2, corresponding to the graphs G1 and G2. Let the unaffected
cycles in G′

1 and G′
2 be C4, C5, C6 and C7, C8, C9, respectively. We want to prove that

there is a cycle double cover of G that is a semi-induced 6-CDC.

Firstly, we want to show that the CDC is semi-induced. As one readily observes, the
unaffected cycles in both subgraphs remain semi-induced. We want to prove that the
cycles C ′

1, C
′
2, C

′
3 are also semi-induced. Each of them consists of two of the newly added

edges e1, e2, e3 and the unaffected parts that formed semi-induced cycles, meaning that
there were no weak edges in the unaffected parts. If we take the edges e1, e2, e3, we
know that each of the cycles C ′

1, C
′
2, C

′
3 covers exactly two of the edges e1, e2, e3. The

edge e3 that is not covered with C ′
1 would be weak if C ′

1 contained the vertex v3 or
v6. Suppose that C ′

1 contains the vertex v3. It means that the original C1 contained
v3. Consequently, the edge k1v3 was weak. Thus, a contradiction to the semi-induced
6-CDC. The same argument holds for the cycles C ′

2 and C ′
3.

v

v

v

1

2

3

C1

k1

Figure 2.10: The cycle C1 with the weak edge k1v3
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We proved that the cycle double cover of G is semi-induced. Now we show that
it can contain at most six semi-induced cycles. As both graphs G1 and G2 had the
6-CDCs, the obtained cycle double cover consists of at most nine semi-induced cycles
C ′

1, C
′
2, C

′
3, C4, ..., C9. As the subgraphs G′

1 and G′
2 are disjoint, we can merge the cycles

that occur in only one of the subgraphs G′
1, G

′
2 into larger cycles since they are disjoint

as well. Note that C ′
1, C

′
2, C

′
3 occur in both subgraphs G′

1, G′
2.

In both subgraphs, G′
1 and G′

2, are at most three distinct semi-induced cycles
C4, C5, C6 and C7, C8, C9, respectively, and we need to get at most three larger semi-
induced cycles apart from C ′

1, C
′
2, C

′
3. If both subgraphs contain exactly three other

cycles, we can just randomly pair the cycles and merge them into three larger semi-
induced cycles. Observe that if there are in total less than six cycles to join, we can
keep some cycles unchanged and still get at most six cycles. Hence, we proved that the
obtained graph G has a semi-induced 6-CDC.

(b) Assume that the graphs G1 and G2 have an induced 7-CDC. We observed be-
fore that the obtained graph G has a cycle double cover as well. We want to show
that there is a cycle double cover that is an induced 7-CDC. Suppose the considered
CDC contains at most four unaffected induced cycles C4, ..., C7 and C8, ..., C11 in both
subgraphs, G′

1 and G′
2, respectively. It also contains the cycles C ′

1, C
′
2, C

′
3 that cover

the 3-edge cut.
One easily observes that the unaffected cycles remain induced. The cycles C ′

1, C
′
2, C

′
3

were derived from induced cycles, and they cover exactly two edges of the cut edges
e1, e2, e3. As a result, a weak edge could only be the uncovered cut edge. We observed
that if the uncovered cut edge were a weak edge, there would be a weak edge in the
original CDC. Thus, a contradiction to the induced 7-CDC.

We proved that the obtained CDC is an induced CDC. Now we show that it can
contain at most seven induced cycles. Since both subgraphs had the 7-CDCs, the
obtained CDC consists of at most eleven induced cycles C ′

1, C
′
2, C

′
3, C4, ..., C11. As the

subgraphs G′
1, G

′
2 are disjoint, we merge the cycles that occur in only one subgraph.

Note that a cut edge would be weak if we merged two cycles that both contain an end
vertex of the same cut edge.

e

Figure 2.11: An edge e would be weak if we merged the wrong cycles

We want to show that we can merge these cycles such that there is not a weak edge
and consequently get an induced 7-CDC. Assume that the original 7-CDCs (of G1 and
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G2) consisted of exactly seven cycles. As there can be at most three different third
cycles passing through the end vertices of the cut edges in the same subgraph, there
is a cycle in both subgraphs that does not contain any of the considered vertices, so
we can freely merge such cycles with any cycle in the other subgraph and get a bigger
induced cycle.

If the third cycles that pass through the vertices v1, v2, v3 and v4, v5, v6 are different
from one another, we can pair the cycles such that we get an induced 7-CDC consisting
of cycles C ′

1, ...C
′
7, as shown in the figure below. Notice that the cycle C ′

7 is the cycle
that does not contain any of the vertices v1, ..., v6.

G G1 2

v

v

v

v

v

v

1

2

3

4

5

6

e

e

e

1

2

3

C'4

C'5

C'7

C'6

Figure 2.12: One of the possible pairings of the cycles

Notice that if in G1 were a cycle that passes through exactly two of the vertices
v1, v2, v3 as the third cycle, there would be two cycles in G1 that do not contain any
of the vertices v1, v2, v3. In addition, if in G1 were a cycle that passes through all of
the vertices v1, v2, v3 as the third cycle, there would be three cycles in G1 with such
property. The same argument holds for G2.

Let us consider the case when the CDC consists of a cycle C4 that passes through
all vertices v1, v2, v3, and the third cycles C8, C9, C10 that pass through v4, v5, v6, re-
spectively, are different from one another.
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G G1 2

v

v

v

v

v

v

1

2

3

4

5

6

e

e

e

1

2

3

C4 C8

C10

C9

Figure 2.13: The cycles C4, C8, C9, C10

In this case, we can merge these cycles, as shown in the figure below. Notice that
if we considered an induced 6-CDC, we would not be able to merge the cycle C4 such
that there is not a weak edge, as there would not be any cycle in G2 that does not
contain any of the vertices v4, v5, v6. Thus, we would not be able to get an induced
6-CDC in general.

G G1 2

v

v

v

v

v

v

1

2

3

4

5

6

e

e

e

1

2

3

C'4 C'5

C'7

C'6

Figure 2.14: The resulting pairing of the cycles

Observe that providing the 7-CDCs of G1, G2 consisted of less than seven induced
cycles, we would not have to merge some cycles in order to get an induced 7-CDC.
Since the fact that a CDC possesses cycles containing more than one of the vertices
v1, ..., v6 as the third cycle implies the existence of more cycles that are independent of
the 3-edge cut, the obtained graph has an induced 7-CDC. □

The implication "If G has a semi-induced 6-CDC (an induced 7-CDC), then G1 and
G2 have a semi-induced 6-CDC (an induced 7-CDC)." does not hold true as we found
counterexamples with our software.
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2.3 Results regarding triangles

Lemma 2.3.1 Let G be a bridgeless cubic graph with a (semi-)induced cycle double
cover C. If G contains a triangle v1, v2, v3, then C contains a cycle comprising the
circuit v1v2v3v1.

Proof: Let G has a triangle v1, v2, v3. Suppose that C does not have a cycle comprising
the circuit v1v2v3v1. As one readily observes, the CDC C cannot contain a cycle covering
two edges of the triangle since it would result in a weak edge. Thus, a contradiction to
the (semi-)induced cycle double cover.

v1 v3

v2

Figure 2.15: The weak edge v1v3

As a consequence, C consists of cycles that cover at most one of the triangle’s edges.
Without loss of generality, let us consider the edge v1v2. It must be covered by two
cycles.

v1 v3

v2

Figure 2.16: Cycle double cover of the edge v1v2

Consequently, two of the outgoing edges from the triangle are covered by two cy-
cles. Therefore the edges v2v3 and v1v3 cannot be covered. Thus, a contradiction to
the (semi-)induced cycle double cover. □
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Lemma 2.3.2 Let G be a bridgeless cubic graph and u be a vertex of G. Let G′ be a
cubic graph obtained by an inflation of the vertex u.

(a) If G has a semi-induced 6-CDC, then G′ also has a semi-induced 6-CDC.

(b) If G has an induced 7-CDC, then G′ also has an induced 7-CDC.

Proof: (a) Assume that G has a semi-induced 6-CDC consisting of cycles C1, ..., C6.
Assume that u is a vertex of G and vertices v1, v2, v3 are incident to u. Let the cycles
C1, C2, C3 cover the edges outgoing from u.

u

v

v v

1

2 3

C1C2

C3

C4 C5

C6

Figure 2.17: A semi-induced 6-CDC of G

We obtain the graph G′ by an inflation of the vertex u. The inflation results in a
triangle u1, u2, u3. We need to cover all edges of the triangle, u1u2, u2u3, u3u1, as well
as the outgoing edges from the triangle, u1v1, u2v2, u3v3, using the original 6-CDC. We
can cover these edges, as shown in the figure below.

vv

v

u

u u

1

2

2 3

3

C1C2

C3

C4 C5

C6

C6

Figure 2.18: A semi-induced 6-CDC of G′

Observe that we extended C1, C2, C3 without getting a weak edge. We also added a
new chordless circuit u1u2u3u1 that we merged with the cycle C6 as they do not share
any vertex. Hence, G′ has a semi-induced 6-CDC.
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(b) Assume that G has an induced 7-CDC consisting of cycles C1, ..., C7. The
argument is the same as in (a), but instead of merging the circuit u1u2u3u1 with the
cycle C6, we merge the circuit with the cycle C7. Hence, G′ has an induced 7-CDC.

vv

v

u

u u

1

2

2 3

3

C1C2

C3

C4 C5

C6

C7

Figure 2.19: Induced 7-CDC of G′

□

Definition 2.3.3 The E-inflation of an edge uv is the removal of the edge uv and the
addition of vertices w1, ...w4 along with edges uw1, w1w2, w1w3, w2w3, w2w4, w3w4, w4v.

u v u vw

w

w
w

1

2

3

4

Figure 2.20: The E-inflation of an edge uv

Observe that if a graph is cubic and uv is an edge of the graph, then the graph
obtained by the E-inflation of the edge uv is cubic as well.

Lemma 2.3.4 Let G be a bridgeless cubic graph with an edge uv and let G′ be the
graph obtained by the E-inflation of the edge uv.

(a) If G has a semi-induced 6-CDC, then G′ also has a semi-induced 6-CDC.

(b) If G has an induced 7-CDC, then G′ also has an induced 7-CDC.

Proof: (a) Assume that G has a semi-induced 6-CDC consisting of cycles C1, ..., C6.
Assume that an edge uv is covered by the cycles C1, C2, and the third cycles passing
through the vertices u and v are C3 and C4, respectively.
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u v

C1

C2
C3 C4

Figure 2.21: The cycle double cover of the edge uv

We obtain the graph G′ by the E-inflation of the edge uv. We can cover the new
edges with C1, ...C6, as shown in the figure below. As a consequence, the obtained
graph G′ has a semi-induced 6-CDC.

u w

w

w
w

1

2

3

4u v

C1

C2
C3 C6 C4C5

Figure 2.22: The cycle double cover of the new edges

(b) Assume that G has an induced 7-CDC consisting of cycles C1, ..., C7. The same
argument holds as in (a), as there is not a weak edge, so the obtained graph G′ has an
induced 7-CDC. □
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Chapter 3

Our Conjecture

In this chapter, we state our own conjecture about bridgeless cubic graphs that are
cyclically 4-edge-connected with girth at least 5 and prove our conjecture on some in-
finite graph families.

We used our software to test bridgeless cubic graphs with various properties for semi-
induced and induced cycle double covers, and subsequently, we conjecture:

Conjecture 3.0.1 Every bridgeless cyclically 4-edge-connected cubic graph with girth
at least 5:

(a) has a semi-induced 6-CDC.

(b) has an induced 7-CDC.

We verified the conjecture with our software on all bridgeless cyclically 4-edge-connected
cubic graphs with girth at least 5 up to 24 vertices and on all nontrivial snarks up to
28 vertices.

We will use the following proposition in some proofs of our conjecture. It allows us
to prove both parts of our conjecture at once.

Proposition 3.0.2 If a graph has an induced 6-CDC, then it has a semi-induced 6-
CDC and an induced 7-CDC.

We will prove our conjecture on some infinite families of snarks, which are derivated
by the junction of multipoles that we define below in addition to related terms.

Definition 3.0.3 A dangling edge is an edge with only one end vertex.

Definition 3.0.4 An isolated edge is an edge without end vertices.

The dangling and isolated edges are collectively called semiedges.

25
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Definition 3.0.5 A multipole M = (V, E, E) is a graph comprising a finite set of
vertices V , a set of edges E, and a set of semiedges E.

In the following sections, we present the infinite families of graphs that we tried to prove
our conjecture on. Some methods that we used to find the presented cycle double covers
are described in the chapter Implementation.

3.1 Isaacs snarks

Isaacs snarks, also known as the flower snarks, form an infinite family of snarks discov-
ered by an American game theorist Rufus Isaacs in 1975 [5].

Definition 3.1.1 The (3, 3)-pole Y is a multipole consisting of 4 vertices, 3 edges, and
6 dangling edges, as shown in the figure below:

a

c d

Figure 3.1: The (3, 3)-pole Y

We denote the vertices incident to the dangling edges of the ith copy of the (3, 3)-
pole Y as ai, ci, di. The Isaacs snark Jn (for an odd integer n ≥ 3) can be derived by
the cyclic connection of n copies of the (3, 3)-pole Y via:

• The addition of the edges aiai+1 for all 1 ≤ i < n, along with the edge a1an.

• The addition of the edges cidi+1 for all 1 ≤ i < n, along with the edge c1dn.

• The addition of the edges dici+1 for all 1 ≤ i < n, along with the edge d1cn.
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Figure 3.2: J5

Theorem 3.1.2 The graph Jn for an odd integer n ≥ 3 has:

(a) a semi-induced 6-CDC.

(b) an induced 7-CDC.

Proof: (a) We split the proof into three parts. Firstly, we prove the theorem for n = 3.
Then we prove the theorem for n = 5 + 4k for a non-negative integer k. Lastly, we
prove the theorem for n = 7 + 4k for a non-negative integer k. An induced 6-CDC of
J3 consisting of cycles C1, ..., C6 is depicted in the figure below.

C1

C6

C2C3

C4

C5

Figure 3.3: An induced 6-CDC of J3

Let us consider J5+4k. We construct J5+4k from J5 by the addition of 4k copies of
the (3, 3)-pole Y . Assume we have already inserted (k − 1) groups of four (3, 3)-poles
Y into J5, and we want to insert the kth group. We insert the kth group for a positive
integer k accordingly:



28 CHAPTER 3. OUR CONJECTURE

• The removal of the edges a1a2+4(k−1), c1d2+4(k−1) and d1c2+4(k−1) if k ≥ 2.
(we remove these edges from the obtained graph)

• The removal of the edges a1a2, c1d2 and d1c2 if k = 1.
(we remove these edges from J5)

• The removal of the dangling edges.
(we remove these edges from the group of four copies of the (3, 3)-pole Y )

• The addition of the edges a1a2+4k, c1d2+4k and d1c2+4k.

• The addition of the edges a2+4(k−1)a5+4k, c2+4(k−1)d5+4k and d2+4(k−1)c5+4k.

In the figures below, we depict an induced 6-CDC of J5 consisting of cycles C1, ..., C6

that are, in fact, circuits, and the induced 6-CDC that we will use to extend the cycles
C1, ..., C6 when adding the kth group of four copies of the (3, 3)-pole Y . Note that the
cycles C1, ..., C6 are still circuits after the extension.
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C5

C1

C2

C 4

C6
C3

a1

a2

c1

d2

d1

c2

Figure 3.4: J5 with an induced 6-CDC

C1 C2

C3
C4

C5

C6

a2+4k

a5+4k

d5+4k

c2+4k

c5+4k

d2+4k

Figure 3.5: The induced 6-CDC of the group of four copies of the (3, 3)-pole Y
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In the figure below, we depict the obtained induced 6-CDC of J9. Note that the
vertices of the original J5 are denoted by the black color.

a1

a2

c1

d2

c2

a6

d6

c6

a9

d9

c9
d1

C1

C6

C5

C4

C2

C3

Figure 3.6: The obtained induced 6-CDC of J9

Observe that the cycles extend correctly because the cycles passing through the
edges that we remove correspond to the cycles passing through the edges that we
add. As the cycles are, in fact, induced circuits, we proved that J5+4k has an induced
6-CDC. Hence, we proved the theorem for J5+4k for a non-negative integer k (See
Proposition 3.0.2).

Analogously, we prove the theorem for J7+4k that we construct from J7 by the ad-
dition of 4k copies of the (3, 3)-pole Y , similarly to the previous case. In the figures
below, we depict an induced 6-CDC of J7 and the induced 6-CDC that we use to extend
the induced 6-CDC of J7. Notice that the cycles are, in fact, induced circuits, even
after the extension.
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Figure 3.7: J7 with an induced 6-CDC
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Figure 3.8: The induced 6-CDC of the group of four copies of the (3, 3)-pole Y

□
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3.2 Generalized Blanuša snarks

Generalized Blanuša snarks form an infinite family of snarks, which was introduced by
John J. Watkins in 1989 [3].

Definition 3.2.1 The (2, 2)-pole B is a multipole consisting of 8 vertices, 10 edges
and 4 dangling edges, as shown in the figure below:

a

b

c

d

Figure 3.9: The (2, 2)-pole B

The Blanuša snark B1 is the Petersen graph [8].

e1

e2

e2

e1
a1 c1

b1 d1

Figure 3.10: The Petersen graph

Let us denote the vertices incident to the dangling edges of the ith copy of the (2, 2)-
pole B as ai+1, bi+1, ci+1, di+1. The Blanuša snark Bn (for a positive integer n ≥ 2) is
derived from B1 as follows:

• The removal of the edges a1d1, b1c1.
(we remove these edges from B1)

• The removal of the dangling edges.
(we remove these edges from (2, 2)-poles B)

• The addition of the edges cibi+1 for all 1 ≤ i < n, along with the edge cnb1.

• The addition of the edges diai+1 for all 1 ≤ i < n, along with the edge dna1.
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Figure 3.11: B3

Theorem 3.2.2 The graph Bn for a positive integer n has:

(a) a semi-induced 6-CDC.

(b) an induced 7-CDC.

We split the proof into three parts. Firstly, we prove the theorem for n = 1. Then we
prove the theorem for n = 2 + 2k for a non-negative integer k. Lastly, we prove the
theorem for n = 3+ 2k for a non-negative integer k. In the figure below, we depict an
induced 6-CDC of B1 consisting of cycles C1, ..., C6 that are, in fact, circuits, and by
Proposition 3.0.2, we proved the theorem for B1.

C1 C2

C3

C4 C5 C6

e1

e2

e2

e1

Figure 3.12: An induced 6-CDC of B1

Now we prove the theorem for n = 2+2k for a non-negative integer k. We construct
B2+2k from B2 by the addition of 2k copies of (2, 2)-poles B. Assume we have already
inserted (k − 1) groups of two (2, 2)-poles B into B2, and we want to insert the kth

group. We insert it as follows:

• The removal of the edges c1b2, d1a2 if k = 1.
(we remove these edges from B2)

• The removal of the edges c2kb2, d2ka2 if k ≥ 2.
(we remove these edges from the obtained graph)

• The removal of the dangling edges.
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• The addition of the edges c1b3, d1a3 if k = 1.

• The addition of the edges c2kb2k+1, d2ka2k+1 if k ≥ 2.

• The addition of the edges c2k+2b2, d2k+2a2.

In the figures below, we depict an induced 6-CDC of B2, consisting of cycles C1, ..., C6,
and the induced 6-CDC that we will use to extend the cycles when adding the kth

group of two copies of the (2, 2)-pole B.

C1

C2

C3

C4 C5 C6 C5C6

e2

e1

e1

e2 c1

d1

a1 

b1

a2 c2

d2b2
Figure 3.13: An induced 6-CDC of B2

C5C6 C5 C6

a2k +1

b2k + 1

c2k + 2

d2k + 2

Figure 3.14: The induced 6-CDC of the group of two copies of the (2, 2)-pole B

In the figure below, we depict the obtained induced 6-CDC of B4. Note that the
vertices of the original B2 are denoted by the black color.
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a1

b1
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Figure 3.15: The obtained induced 6-CDC of B4

Note that the cycles extend correctly as the cycles passing through the edges that
we remove correspond to the cycles passing through the edges that we add. The 6-CDC
remains induced because the third cycles passing through the end vertices of the edges
that we remove correspond to the third cycles passing through the end vertices of the
edges that we add. We proved that B2+2k has an induced 6-CDC, and as a consequence,
we proved the theorem for B2+2k for a non-negative integer k (See Proposition 3.0.2).

Analogously, we prove the theorem for B3+2k that we likewise construct from B3 via
the addition of 2k copies of the (2, 2)-pole B. In the figures below, we depict an induced
6-CDC of B3 and the induced 6-CDC that we use to extend the induced 6-CDC of B3.

C1 C2

C3

C4 C5 C6 C5 C6 C5 C6

e2

e1

e1

e2 a1

b1

c1

d1

c2a2

b2 d2

a3

b3 d3

c3

Figure 3.16: An induced 6-CDC of B3

C5 C6 C5 C6

a2k + 2

b2k + 2

c 2k + 3

d2k + 3

Figure 3.17: The induced 6-CDC of the group of two copies of the (2, 2)-pole B

The 6-CDC stays induced for the same reason as in the previous case. □
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3.3 Loupekine snarks

Loupekine snarks form an infinite family of snarks named after F. Loupekine [7].

Definition 3.3.1 The (3, 3)-pole L is a multipole consisting of 8 vertices, 8 edges and
6 dangling edges, as shown in the figure below:

a b

c d

e

Figure 3.18: The (3, 3)-pole L

Let us denote the vertices incident to the dangling edges of the ith copy of the (3, 3)-
pole L as ai, bi, ci, di, ei. The Loupekine snark Ln (for a positive odd integer n ≥ 3) is
derived by the cyclic connection of n copies of the (3, 3)-pole L by:

• The addition of the edges biai+1 for all 1 ≤ i < n, along with the edge a1bn.

• The addition of the edges dici+1 for all 1 ≤ i < n, along with the edge c1dn.

• The addition of the edges eiei+1 for all 1 ≤ i < n, along with the edge e1en.

Figure 3.19: L3



3.3. LOUPEKINE SNARKS 37

Theorem 3.3.2 The graph Ln for a positive odd integer n ≥ 3 has a semi-induced
6-CDC.

Proof: We construct L3+2k from L3 by the addition of 2k copies of the (3, 3)-pole L.
Assume we have already inserted (k − 1) groups of two (3, 3)-poles L into L3, and we
want to insert the kth group. We insert it as follows:

• The removal of the edges a1b2, c1d2, e1e2 if k = 1.
(we remove these edges from J3)

• The removal of the edges a1b2(k−1)+2, c1d2(k−1)+2, e1e2(k−1)+2 if k ≥ 2.
(we remove these edges from the obtained graph)

• The removal of the dangling edges.
(we remove these edges from the group of two copies of the (3, 3)-pole L)

• The addition of the edges b2(k−1)+2a2k+1, d2(k−1)+2c2k+1, e2(k−1)+2e2k+1.

• The addition of the edges a1b2k+2, c1d2k+2, e1e2k+2.

In the figures below, we depict a semi-induced 6-CDC of L3 consisting of cycles
C1, ..., C6, and the semi-induced 6-CDC that we will use to extend the cycles when
adding the kth group of two copies of the (3, 3)-pole L.
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Figure 3.20: A semi-induced 6-CDC of L3
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Figure 3.21: The semi-induced 6-CDC of the group of two copies of the (3, 3)-pole L
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In the figure below, we depict the obtained semi-induced 6-CDC of L5. Note that
the vertices of the original L3 are denoted by the black color.
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c1

e1

e4
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b4
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c3

a3
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b2
d2

Figure 3.22: The obtained semi-induced 6-CDC of L5

Note that the cycles extend correctly as the cycles passing through the edges that
we remove correspond to the cycles passing through the edges that we add. The cycles
remain semi-induced because the 6-CDC of the group of two (3, 3)-poles L is semi-
induced. Hence, we proved that Loupekine snarks have a semi-induced 6-CDC. □
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Theorem 3.3.3 The graph Ln for n = 3 + 4k for a non-negative integer k has an
induced 7-CDC.

We construct L3+4k from L3 by the addition of 4k copies of the (3, 3)-pole L. Assume
we have already inserted (k − 1) groups of four (3, 3)-poles L into L3, and we want to
insert the kth group. We insert it followingly:

• The removal of the edges b1a2, d1c2, e1e2 if k = 1.
(we remove these edges from J3)

• The removal of the edges a2b4(k−1), c2d4(k−1), e2e4(k−1) if k ≥ 2.
(we remove these edges from the obtained graph)

• The removal of the dangling edges.
(we remove these edges from the group of four copies of (3, 3)-pole L)

• The addition of the edges b1a3+4k, d1c3+4k, e1e3+4k if k = 1.

• The addition of the edges b4(k−1)a3+4k, d4(k−1)c3+4k, e4(k−1)e3+4k if k ≥ 2.

• The addition of the edges a2b4k, c2d4k, e2e4k.

In the figures below, we depict an induced 7-CDC of L3 as well as the induced
7-CDC that we use to extend the cycles when adding the kth group of four copies of
the (3, 3)-pole L. Note that the obtained 7-CDC is induced because the third cycles
of the end vertices of the added edges remain different. In L7, the third cycles passing
through the end vertices of:

• the edge b1a7 are C1, C2.

• the edge d1c7 are C3, C5.

• the edge e1e7 are C2, C3.

• the edge a2b4 are C3, C4.

• the edge c2d4 are C4, C5.

• the edge e2e4 are C1, C2.

In L7+4k, the third cycles passing through the end vertices of:

• the edges a2b4k, c2d4k, e2e4k are the same as the ones passing through the end
vertices of the edges a2b4, c2d4, e2e4, respectively (in L7).

• the edges a3+4kb4(k−1), c3+4kd4(k−1), e3+4ke4(k−1) are the same as the ones passing
through the end vertices of the edges a3+4kb4k, c3+4kd4k, e3+4ke4k, respectively (in
the kth added group of four (3, 3)-poles L).
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Figure 3.23: An induced 7-CDC of L3
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Figure 3.24: The induced 7-CDC of the group of four copies of (3, 3)-pole L
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In the figure below, we depict the obtained induced 7-CDC of L7. The vertices of
the original L3 are denoted by the black color as usual.
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Figure 3.25: The obtained induced 7-CDC of L7

The cycles extend correctly since the cycles passing through the edges that we re-
move correspond to the cycles passing through the edges that we add. The 7-CDC
of the obtained graphs remains induced as there are no weak edges acquired when
extending the cycles. □

We were not able to prove our theorem for J5+4k for a non-negative integer k. Therefore,
we conjecture:

Conjecture 3.3.4 The graph J5+4k for a non-negative integer k has an induced 7-
CDC.



Chapter 4

Implementation

This chapter is dedicated to the implementation of our software we used for verification
of our conjecture. We describe how we generated graphs, how we represented a graph
in our software, the algorithm we used to find cycle double covers, as well as details
about the way we found the CDCs that we used in proofs of our conjecture.

4.1 Generation of graphs

To generate connected cubic graphs, we used the software called Genreg [6]. We gen-
erated all cubic graphs up to 16 vertices as well as all cubic graphs with girth at least
5 up to 24 vertices. The format of the generated graphs is shown below.

6

3 4 5

2 3 4

1 3 5

0 1 2

0 1 5

0 2 4

2 3 4

2 3 4

0 1 5

0 1 5

0 1 5

2 3 4

Figure 4.1: The cubic graphs on 6 vertices.

The number in the first row represents the number of vertices of all graphs. Other

43



44 CHAPTER 4. IMPLEMENTATION

rows represent an adjacency list. Graphs are separated by an empty line.

4.2 Graph representation

We implemented our software in Java. For the representation of graphs we used these
classes:

• Vertex - it contains the number of the vertex and a list of instances of the class
Vertex representing the adjacent vertices.

• Edge - it contains two instances of the class Vertex representing the end vertices.

• Circuit - it contains a set of instances of the class Edge as well as a set of
instances of the class Vertex that form the circuit. The class provides a method
to determine whether the circuit is induced.

• Graph - it contains a list of instances of the class Vertex, representing the vertices
of the graph, and a set of instances of the class Edge representing the edges of
the graph. It provides methods to determine whether the graph has a bridge, a
2-edge cut, or a nontrivial 3-edge cut. The class also provides a method to find
all circuits of the graph.

• Cycle - it contains a set of instances of the class Circuit that form the cycle. It
provides a method to determine whether the cycle is induced.

• CycleDoubleCover - it contains a set of instances of the class Cycle representing
the cycles that form the CDC, as well as a set of instances of the class Edge

representing the edges of the CDC. It provides a method to find all strong edges
in the cycle double cover.

4.3 Algorithm

We implemented an algorithm for finding cycle double covers of a graph. We firstly
generated all circuits of the graph, and then we found all cycles of the graphs by
merging disjoint circuits into cycles. The basic idea of our algorithm is that it adds a
new cycle to a list of cycles if and only if the set of the edges of the newly added cycle
and the set of the edges that are already covered twice are disjoint. We find a cycle
double cover if the number of edges of the graph equals the number of edges covered
twice.

• cycles - a list of all cycles of a graph.
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• foundCDCs - a list of found cycle double covers.

• any - a boolean. True if we want to determine whether the graph has any cycle
double cover rather than finding all of them (useful to determine whether a CDC
with selected properties exists).

• StopRecursionException - an exception that is thrown in order to stop the
computation immediately.

• processTwoTimesUsedEdges() - a function that determines the edges that are
already covered by two cycles.

The recursive function findCycleDoubleCovers() takes these three parameters:

• data - a list of cycles that represents an actual combination of cycles.

• start - an integer that represents the position that are new cycles chosen from.

• twoTimesUsedEdges - a set of edges that are already covered by two cycles in
the actual combination.

The basic implementation of the algorithm:

void findCycleDoubleCovers(List<Cycle> data, int start, Set<Edge>

twoTimesUsedEdges) throws StopRecursionException {

if (twoTimesUsedEdges.size() == graph.getEdges().size()) {

CycleDoubleCover cycleDoubleCover = new CubicCycleDoubleCover(new

HashSet<>(data));

foundCDCs.add(cycleDoubleCover);

if (any) { throw new StopRecursionException(); }

return;

}

for (int i = start; i <= cycles.size() - 1; i++) {

if (Collections.disjoint(twoTimesUsedEdges,

cycles.get(i).getEdges())) {

List<Cycle> newData = new ArrayList<>(data);

newData.add(cycles.get(i));

Set<Edge> newTwoTimesUsedEdges = new

HashSet<>(twoTimesUsedEdges);

processTwoTimesUsedEdges(newData, newTwoTimesUsedEdges,

cycles.get(i));

findCycleDoubleCovers(newData, i + 1, newTwoTimesUsedEdges);

}

}

}
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4.4 Verification of our conjecture

In addition to verifying our conjecture on the cubic graphs that we generated via
Genreg [6], we used our software to help us to prove our conjecture on Issacs and
Loupekine snarks (we were able to prove our theorem for generalized Blanuša snarks
without the help of our software). These infinite graph classes are constructed by the
cyclic connection of multipoles. Our approach was to find a semi-induced 6-CDC (an
induced 7-CDC) of the smallest graph from the class and find a semi-induced 6-CDC
(an induced 7-CDC) of the multipoles such that the cycles extend correctly and in the
case of induced 7-CDC, such that there is no weak edge acquired. We found out that
if we connect the corresponding dangling edges of two copies of (3, 3)-poles Y , which
we use to construct Issacs snarks, the obtained graph does not have an induced 7-CDC
but four cyclically connected (3, 3)-poles Y do have an induced 7-CDC, so we split
the proof. We split the proof for generalized Blanuša and Loupekine snarks for the
same reason (we divided the proof for generalized Blanuša snarks even though we had
not known before that one such connected copy of the (2, 2)-pole B does not have an
induced 7-CDC).

4.4.1 Proving our conjecture on Issacs snarks

The induced 6-CDC that we used in the proof of our conjecture for Issacs snarks
consisted of six circuits such that each circuit of the CDC passes through exactly one
of the edges that we want to remove. Firstly, we were lucky to find such induced 6-CDC
for J5+4k for a non-negative integer k. As we know, if a graph has an induced 6-CDC,
it implies that it has a semi-induced 6-CDC as well as an induced 7-CDC. Therefore,
we can use an induced 6-CDC to prove both parts of our conjecture at once.

To find an induced 6-CDC for the J7+4k, we excluded the induced circuits that
do not pass through exactly one of the edges that we remove. We then divided the
remaining induced circuits into three categories based on the removed edge that they
pass through. To find an induced 6-CDC, instead of finding the right 6-combination of
all circuits, we tried to find three 2-combinations of the circuits from the same category
such that these three 2-combinations form an induced 6-CDC.

4.4.2 Proving our conjecture on Loupekine snarks

We tried the same approach, which we used on Issacs snarks, on Loupekine snarks, but
we found out that small Loupekine snarks do not have an induced 6-CDC consisting
of 6 induced circuits. We were not able to prove our conjecture on Loupekine snarks
for L5+4k for a non-negative integer k, because L5 has 40 vertices, and our software
cannot find a cycle double cover for such large graphs within a reasonable time.



Conclusion

In this thesis, we aimed to prove our own conjecture on some infinite graph families
and discover new facts with regard to cycle double covers. We defined a circuit as a
2-regular connected graph and a cycle as a collection of edge-disjoint circuits. We also
considered circuit double covers of graphs since each circuit is a cycle. The cycle double
cover conjecture is equivalent to the assertion for cubic graphs [4]. Therefore, we only
considered cubic graphs. We defined a weak and a strong edge in cycle double cover
of cubic graphs. By Vizing’s theorem [9], cubic graphs have chromatic index 3 or 4.
We showed that the cycle double cover conjecture holds true for those with chromatic
index 3. Such cubic graphs have a cycle double cover such that all edges are weak in
it. We proved that an edge is weak in a circuit double cover if and only if the edge is a
chord of a circuit of the circuit double cover. For cycle double covers, we showed that
an edge is weak if and only if the edge is a chord of a circuit that comprises a cycle or
the edge connects two circuits of the same cycle in the cycle double cover.

With regard to 2-edge cuts, we proved that the edges of a 2-edge cut are weak in
any circuit double cover. We also proved that when we subdivide a 2-edge cut by an
edge, the edge is weak in any cycle double cover. Concerning nontrivial 3-edge cuts,
we showed that if two graphs have a semi-induced 6-CDC (an induced 7-CDC), then
the graph obtained by a 3-cut-connection of these graphs also has a semi-induced 6-
CDC (an induced 7-CDC). We showed that if a graph has a triangle, then each (semi-)
induced CDC contains a cycle comprised of the triangle. We also pointed out that if
a graph has a semi-induced 6-CDC (an induced 7-CDC), then the graph obtained by
any inflation of a vertex has a semi-induced 6-CDC (an induced 7-CDC) as well. The
same is true for the graph obtained by the E-inflation of an edge.

We proved our conjecture for Issacs snarks, generalized Blanuša snarks, and par-
tially for Loupekine snarks. We also implemented software to find cycle double covers
of cubic graphs and to help us to prove our conjecture. We accomplished the goals of
our thesis. The future work might comprise proving our conjecture on other infinite
graphs families and implementing a faster software to verify our conjecture.
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