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Abstrakt

V tejto práci sa zaoberáme skúmaním teórie formálnych jazykov so zameraním na ran-
domizované automaty. Skúmame jednosmerné viachlavé pravdepodobnostné konečné
automaty (PFA(k)) s rôznymi modelmi randomizácie, ktoré sa zvyčajne študujú.

Najprv formálne definujeme Monte-Carlo a LasVegas randomizácie, potom rôzne
chyby, s ktorými takéto automaty môžu rozpoznávať jazyky. Definujeme a dokážeme aj
normálny tvar, v ktorom PFA(k) musí v každom kroku výpočtu presunúť aspoň jednu
hlavu. Následne skúmame vlastnosti Monte-Carlo a LasVegas PFA(k). Pre všetky tieto
modely dokážeme hierarchiu, že s (k + 1)-hlavami majú väčšiu vyjadrovaciu silu ako s
k. Tiež skúmame rôzne uzáverové vlastnosti tried rozpoznávaných týmito automatmi
ako aj vzťahy medzi týmito triedami. Taktiež definujeme tzv. barely-random PFA(k)

a ukážeme, že tieto pravdepodobnostné automaty nemožno amplifikovať, t.j. ukážeme
dolný odhad na chybu, s ktorou dokáže taký PFA(k) rozpoznať konkrétny jazyk.

Kľúčové slová: jednosmerné viachlavové pravdepodobnostné konečné automaty, for-
málne jazyky, pravdepodobnostné automaty, LasVegas randomizácia, Monte-Carlo ran-
domizácia, hierarchia, barely-random pravdepodobnostné automaty, amplifikácia.
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Abstract

This thesis aims to explore the theory of formal languages, focused on randomized
automata. In this thesis, we explore one-way multi-head probabilistic finite automata
(PFA(k)) with the various models of randomization that are usually studied.

We first formally define both Monte-Carlo and LasVegas randomizations, then the
various errors, with which such automata can recognize languages. We also define and
prove a normal form in which the PFA(k) has to move at least one head at every
step of the computation. We then explore the properties of Monte-Carlo and LasVe-
gas PFA(k). For all these models, we prove a hierarchy, that with (k + 1)-heads they
have greater expressive power than with k. We also explore various closure proper-
ties of classes recognized by these automata, and the relations between these classes.
We additionally define a Barely-random PFA(k) and show that these probabilistic au-
tomata cannot be amplified, i.e., we prove a lower bound on the error with which a
Barely-random PFA(k) can recognize a certain language.

Keywords: formal languages, one-way multi-head probabilistic finite automata, ran-
domized automata, LasVegas randomization, Monte-Carlo randomization, hierarchy,
barely-random probabilistic automata, amplification.
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Introduction

A considerable part of computer science is devoted to the analysis of the power of
different computational models. Over the years, many different abstract models have
been proposed and studied, many of them with different computational power. On the
one end, we have the very powerful Turing machines, register machines, and on the
other end lay the “simple” finite automata with power equivalent to regular expressions.
These “simple” models, although having somewhat limited computational power, are
considerably easier to understand and work with. It follows logically that they, or
their modifications, have been studied in situations, where the register machine, and/or
Turing machine equivalents were, and some still are, rather difficult to comprehend.

In the theory of formal languages, a field of computer science, computational mod-
els are often understood as machines that, given some input, (the input word) are
supposed to decide whether or not this input instance is a solution to the problem (is
a member of the recognized language). When considering computational models, we
usually think about deterministic computations, yet numerous models have flirted with
non-determinism, i.e. the power to have multiple valid paths to choose from, and to
magically find, if it exists, the correct one, i.e., one that leads to a positive (accepting)
verdict. However, such models are nontrivial to work with. Namely proving lower
bounds, or the well-known question of whether P = NP seems to be tough to crack.

Other variations to the traditional models have been studied, such as the model
of probabilistic computation, which is the object of our interest. In recent years, the
question of whether or not a solution to a problem can be found in “reasonable” time,
is no longer a question of whether or not we have a polynomial-time (P ) algorithm,
but rather if we have a probabilistic polynomial-time (BPP ) algorithm with bounded
error that solves (accepts) our problem.

In our thesis, we will, as many before us did, explore a “less powerful” model
so that we can gain insight more easily, in our case insight into the inner workings of
probabilistic parallel computations. We will study multi-head variations of probabilistic
one-way finite automata, first defined by M.O.Rabin in 1963 [Rab63]. He proved that
a one-way (one-head) probabilistic automata with an unbounded error, can accept
languages that are not regular. Moreover, he also proved that one-way (one-head)
probabilistic automata with bounded error, only accept languages that are regular.
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2 Introduction

Therefore, we only need to explore the cases where the number of heads, k is greater
than 1. Since we study multi-head probabilistic finite automata, we build on the
numerous results for multi-head finite automata (many listed in [HKM09]), and one
especially notable result is the one aptly called “k+1 heads are better than k” by Yao
and Rivest [YR78].

The world of two-way probabilistic automata is vastly different. For example, the
following result, proven by Freivalds, is that even with one head, a two-way probabilistic
automaton can, with bounded error, accept {0n1n | n > 0} [Fre81], a language known
to be not regular (even though two-way finite automata have been proven to accept
only regular languages). Moreover, the multi-head versions of two-way probabilistic au-
tomata have already been widely studied (e.g. [Mac95]), and have been proven to have
expressive power equivalent to the power of log-space-constrained Turing machines.

We study the one-way version of the already studied multi-head probabilistic au-
tomata because, firstly, we believe that the constraint (one-way heads), will enable us
to see the power of randomization more clearly, and secondly, to the best of our knowl-
edge, we are not aware of any paper or article that would explore this model one-way
multi-head probabilistic automata.

Our contribution

We first formally define both LasVegas and Monte-Carlo randomizations, the various
types of errors with which such automaton can recognize a language, and the one-way k-
head probabilistic finite automaton (PFA(k)). We prove that for PFA(k), there is an ε-
free normal form in which the automaton, at each step, has to advance at least one head.
Then, we explore the properties of Monte-Carlo PFA(k), where we prove a Hierarchy
theorem analogous to the one for one-way multi-head finite automata by Yao and
Rivest [YR78]. We also prove various relations between classes of languages recognized
by Monte-Carlo PFA(k) with one-sided errors, and then their closure properties (union,
intersection, complement, and intersection with a regular language). We then explore
the properties of LasVegas PFA(k) where we prove a Hierarchy theorem, relations
between classes of languages recognized by LasVegas and Monte-Carlo PFA(k), and
the closure properties of these classes. We additionally define a barely-random PFA(k),
and its normal form. We show that for this special case of PFA(k), we can calculate a
lower bound on the error with which this model can recognize a certain language.



Chapter 1

Definitions

In this chapter, we explore and provide various definitions of probabilistic automata.
Moreover, we formally define various formalisms and concepts used in this theory that
we have not seen defined properly. We also provide an example of a language accepted
by one of these models, then define and prove a normal form for multi-head probabilistic
automata.

1.1 Finite Automata

We begin with a brief resume of the basic definitions. The symbol Σ will denote a
finite nonempty set (of symbols), to be referred to as the alphabet. Letters a, b (with
subscripts) will usually denote the elements of Σ. The set of all finite sequences of
elements of Σ will be denoted by Σ∗. The elements of Σ∗ will be called words (over
alphabet Σ). In some literature (e.g., [RS59]) words are referred to as tapes. The letters
w, x, y, z, u, v (with subscripts) will always denote words. The empty word (i.e., the
sequence of length zero) will be denoted by ε. Subsets of Σ∗ (i.e., sets of words) will
usually be called languages (sometimes sets of tapes). If x = a1 . . . ak is a word then the
length l(x) of x is l(x) = k. If x and y are words then xy will denote the concatenation
of x and y. The operation of concatenation will be denoted · (x · y ⇔ xy). //Note that
Σ∗ with this operation is a free semi-group with the elements of Σ as free generators.//

Definition 1.1.1. A (non-deterministic) finite automaton (NFA) over Σ is a 5-tuple
A = (Q,Σ, δ, q0, F ) where Q is a finite set (the set of states), δ is a function from Q×Σ

into 2Q (the transition function)1, q0 is an element of Q (the initial state), and F is a
subset of Q (the set of final states).

Definition 1.1.2. A deterministic finite automaton (DFA) over Σ is a finite automaton
A = (Q,Σ, δ, q0, F ), such that |δ(q, a)| ≤ 1 for all q ∈ Q, a ∈ Σ.

12Q denotes the set of all subsets of Q – a powerset of Q.

3



4 CHAPTER 1. DEFINITIONS

Remark. All following definitions for NFA work for DFA also, since DFA are just a
special case of NFA.

Definition 1.1.3. A configuration of a finite automaton is an element (q, w) ∈ Q×Σ∗.

Definition 1.1.4. A step of computation of a finite automaton A (`A) is a relation on
configurations, defined as: (q1, aw) `A (q2, w) ⇐⇒ δ(q1, a) 3 q2. It represents the
reading of the next symbol in the input word and the change of the state.

Definition 1.1.5. The language L(A) accepted by a finite automaton A is defined as
a set of words L(A) = {w ∈ Σ∗ | (q0, w) `∗

A (qF , ε), qF ∈ F}, where `∗
A is the transitive

closure of relation `A.

Remark. The condition for w to be accepted can be interpreted as the following: “If
there exists an accepting computation on w.”

An alternate approach for defining DFA (e.g., in Rabin and Scott [RS59]), defines
the language L(A) via extending the δ function to a function δ̂ from Q×Σ∗ into Q by
δ̂(q, ε) = q, δ̂(q, wa) = δ(δ̂(q, w), a) for any q ∈ Q,w ∈ Σ∗, a ∈ Σ. Then the output of
δ̂(q, w) is the state in which the deterministic finite automaton finishes the computation
on input word w. Therefore we can define L(A) = {w ∈ Σ∗ | δ̂(q, w) ∈ F}.

1.2 Probabilistic Automata

The following definitions have been heavily inspired by [Rab63], however, we extended
them to encompass more models of probabilistic computations (namely Monte-Carlo
and LasVegas).

Definition 1.2.1. A (one-way) probabilistic finite automaton (PFA) over Σ is
a 6-tuple PFA A = (Q,Σ, δ, q0, Qacc, Qrej) where:

• Q = {q0, . . . , qm} is a finite set (the set of states),
• δ is a function (the transition function) from Q×Σ into [0, 1]m+1 2 such that for

(q, a) ∈ Q× Σ, the following holds:

δ(q, a) = (p0(q, a), . . . , pm(q, a)) where 0 ≤ pi(q, a) and
m∑
i=0

pi(q, a) = 1

• q0 is element of Q (the initial state),
• Qacc is a subset of Q (the set of accepting states),
• Qrej is a subset of Q (the set of rejecting states), such that Qacc ∩Qrej = ∅.

Notation pj(qi, a) represents the probability of changing state from qi to qj if reading a.
These probabilities are assumed to be fixed and independent of time or previous inputs.

2[0, 1] denotes the closed interval of real numbers from 0 to 1.
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Definition 1.2.2. A Monte-Carlo PFA over Σ is a probabilistic finite automaton A

over Σ, such that A = (Q,Σ, δ, q0, Qacc, Qrej) where Qrej = Q−Qacc.

The PFA also has definite, fixed probabilities for going from state qi to qj when
reading a sequence of symbols a1a2 . . . an = x ∈ Σ∗. These probabilities (pj(qi, x)) are
calculated by computing the product of certain stochastic matrices we define.

Definition 1.2.3. ([Rab63]) Let A be a PFA with states q0, . . . , qm and pj(qi, a) the
probability as defined in Definition 1.2.1. For a ∈ Σ and x=a1a2 . . . an define the m+1

by m+ 1 matrices A(a) and A(x) by:
A(a) = [pj(qi, a)]0≤i≤m, 0≤j≤m

A(x) = A(a1)A(a2) . . .A(an)

Remark. An easy calculation (involving induction on n) shows that the (i + 1, j + 1)

element of A(x) is the probability of A for moving from state qi to state qj by reading
the input sequence x. Hence, the following corollary.

Corollary 1.2.4. Let A be a PFA with states q0, . . . , qm and pj(qi, a) the probability as
in Definition 1.2.1. For a1a2 . . . an=x ∈ Σn, the following holds:

A(x) = [pj(qi, x)]0≤i≤m, 0≤j≤m

Definition 1.2.5. For PFA A = (Q,Σ, δ, q0, Qacc, Qrej), Qacc = {qi1 , qi2 , . . . , qil}, and
I = {i1, i2, . . . , il}, define:

pA(x) =
∑
i∈I

pi(q0, x)

pA(x) is the probability of A starting in initial state q0 and finishing the computation
on the input word x in some accepting state (thus accepting).

Since our main interest lies in studying multi-head probabilistic automata, we see
that this definition is not really scalable, since, in the multi-head case, the heads can,
in different computations, move differently. Hence the automaton would read different
input symbol sequences. Therefore the use of stochastic matrices for the multi-head
version of PFA is complicated. Thus when we later define multi-head PFA, we need to
use a different method.

Language accepted by PFA

Definition 1.2.6 ([Rab63]). Let A be PFA, Qrej = Q − Qacc, λ a real number, such
that 0 ≤ λ < 1, and pA(x) the probability of A accepting the word x. The language
L(A, λ) is defined as follows:

L(A, λ) = {w ∈ Σ∗ | λ < pA(w)}

If x ∈ L(A, λ), we say that x is accepted by A with cut-point λ. The set L(A, λ) is
called the language accepted by A with cut-point λ.
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Remark. Deterministic finite automata can be considered as a special case of PFA. In
particular, in the Definition 1.1.2, the transition δ(q1, a) 3 q2 can be viewed as Amoving
to the state q2 with probability 1. Thus if rewriting the deterministic automaton as a
PFA A′, the stochastic vectors δ′(q1, a) = (p0, . . . , pn) will have exactly one coordinate
1 and all the others 0. It is readily seen that in this case pA′(x) = 1, for x ∈ Σ∗, if and
only if x ∈ L(A). Hence for any 0 ≤ λ < 1, we have L(A) = L(A′, λ). Thus every set
definable by a deterministic automaton is trivially definable by some PFA.

Definition 1.2.7 ([Rab63]). A cut-point 0 < λ < 1 is called isolated with respect to
A if there exists a number ∆ > 0 such that

∆ ≤ |pA(x)− λ| for all x ∈ Σ∗

We refer to the real number ∆ as the error bound of the isolated cut-point λ.

Definition 1.2.8. Let A be a PFA and L the language recognized by A. We say that
the (output of a) computation on w is correct if the automaton ends in an accepting
state when w ∈ L or the automaton ends in a rejecting state when w /∈ L. The
computation is incorrect if the automaton ends in a rejecting state when w ∈ L or the
automaton ends in an accepting state when w /∈ L.

Remark. Thus, we say that a Monte-Carlo PFA is a probabilistic automaton/algorithm
that can, with non-zero probability, produce an incorrect output, yet always “outputs”.

1.3 Types of errors

We introduce various restrictions on the sort of “error” a Monte-Carlo automaton can
make, i.e., on the probabilities of returning correct and/or incorrect answer. We do
that by specifying how both L and Lc look like. Essentially, what these definitions do,
is that they restrict the construction of the automaton since there must exist no word
that would be accepted with a probability that would not put it in either L or Lc.

Definition 1.3.1. Language L is accepted by a PFA A with unbounded (two-sided)
error, if there exists a cut-point λ, 0 ≤ λ < 1, such that:

L = L(A, λ) = {x | x ∈ Σ∗, λ < pA(x)}

(Lc = L(A, λ)c = {x | x ∈ Σ∗, λ ≥ pA(x)})
(1.1)

(L is accepted by A with cut-point λ)

Remark. Rabin [Rab63] defined the language accepted by a PFA as the above defined
language accepted with two-sided error.
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Definition 1.3.2. Language L is accepted by a PFA A with bounded (two-sided) error,
if there exists an isolated cut-point λ, 0 ≤ λ < 1, with error bound ∆ > 0, such that:

L = L(A, λ) = {x | x ∈ Σ∗, λ+∆ ≤ pA(x)}

Lc = L(A, λ)c = {x | x ∈ Σ∗, pA(x) ≤ λ−∆}
(1.2)

(L is accepted by A with isolated cut-point λ with ∆)

Definition 1.3.3. Language L is accepted by a PFA A with unbounded one-sided
true-biased error, if there exists a cut-point λ = 0, such that:

L = L(A, λ) = {x | x ∈ Σ∗, 0 < pA(x)}

Lc = L(A, λ)c = {x | x ∈ Σ∗, 0 = pA(x)}
(1.3)

(L is accepted by A with cut-point λ = 0)

Definition 1.3.4. Language L is accepted by a PFA A with bounded one-sided true-
biased error with error bound 0 < Λ, if there exists an isolated cut-point λ such that:

L = L(A, λ) = {x | x ∈ Σ∗, 1−Λ ≤ pA(x)}

Lc = L(A, λ)c = {x | x ∈ Σ∗, 0 = pA(x)}
(1.4)

(L is accepted by A with isolated cut-point λ = 1−Λ
2

with ∆ = 1−Λ
2

)

Remark. We call this type of one-sided error true-biased, because the PFA is always
correct when it answers true (“accepts” in one computation). We chose the definition
in such a way, so that A accepting L with error bound Λ=0 is deterministic.

Both the true-biased one-sided (bounded and/or unbounded) probabilistic automata
and the non-deterministic ones, accept w only if there exists at least one accepting
computation on it (bounded Monte-Carlo additionally requires that it occur with prob-
ability p ≥ 1−Λ), and require words outside L not to have any accepting computation.
Hence, we see that these models are, in some sense, a special case of non-determinism
(because they can be simulated by it). Moreover, since the unbounded Monte-Carlo
randomization requires the probability of accepting a word in L only to be positive, it
can simulate non-determinism trivially.

Now we define a model that we have not yet seen defined properly.

Definition 1.3.5. Language L is accepted by a PFA A with unbounded one-sided
false-biased error, if

L = {x | x ∈ Σ∗, pA(x) = 1}

Lc = {x | x ∈ Σ∗, pA(x) < 1}
(1.5)

(0 ≤ λ < 1, thus we cannot define this in the terms of accepting with cut-point)
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Definition 1.3.6. Language L is accepted by a PFA A with bounded one-sided false-
biased error with error bound 0 ≤ Λ < 1, if there exists an isolated cut-point λ such
that:

L = L(A, λ) = {x | x ∈ Σ∗, pA(x) = 1}

Lc = L(A, λ)c = {x | x ∈ Σ∗, pA(x) ≤ Λ}
(1.6)

(L is accepted by A with isolated cut-point λ = Λ + 1−Λ
2

with ∆ = 1−Λ
2
)

From now on, when considering languages recognized by a PFA with (un)bounded
one-sided true-biased error, we will refer to it as a language recognized by a PFA
with (un)bounded true-biased error for brevity. Moreover, we omit specifying that the
error is bounded when we consider a specific error bound Λ. For example a language
recognized by a PFA with true-biased error with error bound Λ. On the other hand,
when it is not useful to mention a specific error bound Λ, we simply omit it.

We now prove a pair o lemmas which show, in some sense, that the true-biased and
false-biased errors are complementary. This will prove very useful in later chapters.

Lemma 1.3.7. For a language L accepted by a PFA A with bounded false-biased error
(Λ), we can construct a PFA A′ recognizing Lc with bounded true-biased error (Λ).

Lemma 1.3.8. For a language L accepted by a PFA A with bounded true-biased error
(Λ), we can construct a PFA A′ recognizing Lc with bounded false-biased error (Λ).

Proof. (Of Lemma 1.3.7) Let PFA A = (Q,Σ, δ, Qacc, Qrej). We construct a proba-
bilistic automaton A′ accepting Lc with bounded true-biased error as follows: A′ =

(Q,Σ, δ, Qrej, Qacc). (We swap Qrej and Qacc). To prove that the above constructed A′

actually satisfies the conditions, we notice, reading definition, that A accepts L with
bounded false-biased error (Λ), hence:
For w ∈ L(w /∈ Lc), A accepts w with p(w) = 1, therefore, A′ rejects w with p(w) = 1.
For w /∈ L(w ∈ Lc), A accepts w with p(w) ≤ Λ, therefore, A′ rejects w with p(w) ≤ Λ.
Hence, for w ∈ Lc, A′ accepts w with p(w) ≥ 1 − Λ, and for w /∈ Lc, with p(w) = 0.
Therefore, reading Definition 1.3.4 , A′ accepts Lc with one-sided true-biased error,
with error bound Λ′ = Λ.

Proof. (Of Lemma 1.3.8) Analogous to the above, with the argumentation as follows:
For w ∈ L(w /∈ Lc), A accepts w with p(w) ≥ 1−Λ, thus, A′ rejects w with p(w) ≥ 1−Λ.
For w /∈ L(w ∈ Lc), A accepts w with p(w) = 0, thus, A′ rejects w with p(w) = 0.
Hence, for w ∈ Lc, A′ accepts w with p(w) = 1−0, for w /∈ Lc, with p(w) ≤ 1− (1−Λ).
Therefore, reading Definition 1.3.6 , A′ accepts Lc with one-sided false-biased error,
with error bound Λ′ = Λ.

Remark 1.3.9. Analogous lemmas can be stated for unbounded one-sided error. Their
proofs are analogous, just replace ≥ by > and ≤ by < in the proofs above, while setting
Λ = 0.
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1.4 Multi-head Probabilistic Automata

Before we define the multi-head PFA, we define a shortcut notation, since we often use
the alphabet Σ, extended by the end-marker $, $ /∈ Σ. Let Σ$ denote Σ ∪ {$}.

Definition 1.4.1. A k-head one-way probabilistic finite automaton (PFA(k)) over Σ

with allowed probabilities TP is a 6-tuple A = (Q,Σ, δ, q0, Qacc, Qrej) where
• Q = {q0, . . . , qn} is a finite set (the set of states),
• δ is a finitely encoded function (the transition function) from Q×Σk

$×Q×{0, 1}k

into {0, 1} ⊆ TP ⊆ [0, 1], 3 such that for every q and input a1 . . . ak, the function
δ is a probability distribution.

(∀q ∈ Q)(∀a1, . . . , ak ∈ Σ$) :
∑
q′

∑
d1,...,dk

δ(q, a1, . . . , ak, q
′, d1, . . . , dk) = 1

• q0 is element of Q (the initial state),
• Qacc is a subset of Q (the set of accepting states),
• Qrej is a subset of Q (the set of rejecting states), such that Qacc ∩Qrej = ∅

The meaning of δ(q, a1, . . . , ak, q
′, d1, . . . , dk) = p is as follows: Being in a state q,

reading a1, . . . , ak on the k heads respectively, the probability of changing state to q′

and advancing heads by d1, . . . , dk (head i by +di) is p. Because of this, sometimes the
new state and head advancements (q′, d1, . . . , dk) are referred to as the outcome. Here,
the symbol $ denotes the right end-marker, i.e., that “the head reached the end.”

Remark. The reasoning behind the δ-function is that the probabilistic model of the
automaton can move (from a state, reading symbols) to any state and advance any of
its k heads. We thus need to assign a probability to each such “action”.

Remark. The set TP is not included in the tuple since we usually want to analyze
whether or not a language can be recognized by a certain model of automata. However,
a restriction on the allowed probabilities does in fact change the class of languages
recognized, as shown in [Rab63] for PFA(1) (Theorem 2 and the following comment).
Therefore we parametrize the model by the set TP .

When we refer to k-head probabilistic finite automata (PFA(k)), we consider the
ones with allowed rational probabilities (TP = [0, 1] ∩ Q) unless explicitly stated oth-
erwise. We may also omit the alphabet Σ since it can often be deduced from the
context.

Note that a PFA(k) will never “halt”, since the probability of doing “something”
for any situation (q, a1, . . . , ak) has to be 1. On the other hand, the PFA(k) may loop
indefinitely, not moving any of its heads.

3closed interval of real numbers from 0 to 1 inclusive.
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Remark. An alternative definition of a k-head one-way deterministic finite automaton
DFA(k) is, that it is a PFA(k) with allowed probabilities TP = {0, 1}.

Definition 1.4.2. A configuration of a probabilistic k-head finite automaton is an
element (q, w, o1, . . . , ok) ∈ Q × Σ∗ × {1, . . . , |w| + 1}k, which we understand as the
automaton being in state q, with its k-heads positioned on offsets o1, . . . , ok into the
input word w respectively (or on endmarker $ if the offset is |w|+ 1).

Definition 1.4.3. A step of computation of a probabilistic k-head finite automaton A

is a relation on its configurations, (q, w, o1, . . . , ok) `A (q′, w, o′1, . . . , o
′
k) such that, for

w = a1 . . . an(an+1=$):

δA(q, ao1 , . . . , aok , q
′, d1, . . . , dk) > 0 and o′i − oi = di for all i

Remark (Head cannot move beyond end-marker). Even though we allowed the transi-
tion function to have a nonzero probability for transitions where the head moves from $,
such transition would result in an illegal configuration (index must be in {1 . . . |w|+1}).
Hence, we see that after a head arrives at $, it remains there.

Definition 1.4.4. A computation of a probabilistic k-head finite automaton A on word
w, |w| = n, is a sequence of configurations

(q0, w, 1, . . . , 1), (q2, w, o12, . . . , ok2), (q3, w, o13, . . . , ok3), . . . ,

where the following holds: either the computation is finite, of length l, where the l-th
configuration is the first such that o1l = · · · = okl = n+ 1, and

(qi, w, o1i, . . . , oki) `A (qi+1, w, o1(i+1), . . . , ok(i+1)) for all i ∈ {1, . . . , l−1}

or the computation is infinite, does not contain (q, w, n+1, . . . , n+1) for any q, and

(qi, w, o1i, . . . , oki) `A (qi+1, w, o1(i+1), . . . , ok(i+1)) for all i ∈ N.

If the computation is finite and ql ∈ Qacc, we say that it is an accepting computation.
If instead ql ∈ Qrej, we say that it is a rejecting computation. Otherwise, i.e., if
ql /∈ Qacc ∪ Qrej, or the computation is infinite, we say that it is an inconclusive
computation or that the computation ended in FAILURE.

Note that we have not yet used the probabilities defined in PFA(k). The com-
putation itself is just a sequence of configurations, and since many computations are
possible on a PFA(k) (with varying probabilities), we now need to define the proba-
bilities of different computations, to be able to “utilize” the power of randomness, to
define the languages accepted by PFA(k) as in section Types of Errors (1.3).
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Definition 1.4.5. We define the probability of one step of computation (pA) of PFA(k)

A on an input word w = a1a2 . . . an (an+1=$) as follows:

pA((q, w, o1, . . . , ok), (q
′, w, o′1, . . . , o

′
k)) = δA(q, ao1 , . . . , aok , q

′, d1, . . . , dk)

where o′i − oi = di for all i

We then define the probability of a computation (pA) of PFA(k) A on the word w as a
product4 of the probabilities of each of the steps of computation:

pA((conf 1), (conf 2), (conf 3), . . . ) =
∏
i

pA((conf i), (conf i+1))

Definition 1.4.6. The probability of accepting/rejecting/FAILURE on a word x (pA(x),
prejA (x), pFAIL

A (x)) with a k-head probabilistic finite automaton A is:

pA(x) =
∑

comp: accepting computation on x

pA(comp)

prejA (x) =
∑

comp: rejecting computation on x

pA(comp)

pFAIL
A (x) =

∑
comp: inconclusive computation on x

pA(comp)

The automaton, at some configurations, forks the computation into a few branches,
each occurring with the probability specified in the δ-function. This way, the automa-
ton creates a tree of all possible computations on the input word. By induction, we
see that the sum of probabilities of doing a sub-computation, starting in the initial
configuration, and ending in the respective configurations after i steps is 1.

Initially, the sum is equal to 1 (just the initial state). When moving from one level
to the next, a branching may happen (on each configuration), we know that each sub-
tree occurs with probability as defined in the delta-function, which by definition sums
to 1. Thus the new sub-computation’s probabilities sum up to the probability of this
sub-computation. Hence, the sum of the new level will be the same as the sum of the
previous level, equal to 1.

Thus pA(x) + prejA (x) + pFAIL
A (x) = 1, since eventually, all sub-computations are

either accepting, rejecting, inconclusive, or infinite (inconclusive again).

At times, when the automaton in question can easily be deduced from the context,
we may omit specifying it in the subscript (e.g. pFAIL(x) instead of pFAIL

A (x)).

4Or, in the case of infinite computations, a limit of partial products (limN→∞
∏N

i=0 pA((ci), (ci+1))
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Particular models

We define a standard model of randomization, Monte-Carlo. This automaton may
answer incorrectly (but must always answer), therefore we define various types of error
with which this model can recognize a language.

Definition 1.4.7. A Monte-Carlo PFA(k) over Σ with allowed probabilities TP is a
PFA(k) A over Σ with allowed probabilities TP , such that:

(∀x ∈ Σ∗) : pFAIL
A (x) = 0

Lemma 1.4.8. A PFA(k) over Σ with allowed probabilities TP , where Qrej = Q−Qacc

and every computation on A is finite is a Monte-Carlo PFA(k).

Proof. The only way for a computation to be inconclusive is to either end up in state
not in Qrej nor Qacc, or be infinite.

Definition 1.4.9 (Language recognized by Monte-Carlo PFA(k)). Let A be a Monte-
Carlo PFA(k), λ a real number 0 ≤ λ < 1, and pA(x) the probability of A accepting
the word x. The language L(A, λ) is defined as follows:

L(A, λ) = {w ∈ Σ∗ | λ < pA(w)}

If x ∈ L(A, λ) we say that x is accepted by A with cut-point λ. The set L(A, λ) will be
called the language recognized by A with cut-point λ.

When defining acceptation of languages with errors for the one-way multi-head Monte-
Carlo model, we use identical definitions as for PFA (see Types of Errors 1.3).

Another widely studied randomization is LasVegas (zero probability of error). Such
automaton, must always “answer” correctly, however, it may “not answer”, i.e., end in
a FAILURE (end in a state from Q− (Qacc∪Qrej) or get stuck in a loop indefinitely).

Definition 1.4.10. A LasVegas PFA(k) over Σ with allowed probabilities TP is a
PFA(k) A over Σ with allowed probabilities TP , such that A = (Q,Σ, δ, q0, Qacc, Qrej)

where for all words x ∈ Σ∗:

• pFAIL(x) < 1

• either p(x) = 0 or prej(x) = 0.

If additionally, for all x ∈ Σ∗, the probability of FAILURE is bounded from above by a
constant 0 ≤ κ < 1 (pFAIL(x) ≤ κ), we say that A is (1−κ)-correct LasVegas PFA(k).

Definition 1.4.11 (Language recognized by LasVegas PFA(k)). Let A be a LasVegas
PFA(k). The language L(A) is defined as follows:

L(A) = {w ∈ Σ∗ | 0 < pA(w)}

The set L(A) is referred to as the language recognized by A.
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1.5 Example

We now illustrate few of the previous definitions on an example. Moreover, it is a
language that will prove useful later. (The following language is defined over alphabet
Σ ∪ {#}.)

Lemma 1.5.1. The language Luvvu = {u#v#v′#u′ | u=u′, v=v′ ∈ Σ∗}, # /∈ Σ, is
recognized by a Monte-Carlo PFA(2) A with false-biased error with error bound Λ = 1/2.

Remark. Should we be excessively formal, we would write the following lemma:
For an alphabet Σ and a language Luvvu = {u#v#v#u | u, v ∈ Σ∗} where # /∈ Σ, there
exists a Monte-Carlo PFA(2) A over Σ∪{#} with allowed probabilities TP = [0, 1]∩Q,
such that Luvvu is a language recognized by A with bounded one-sided false-biased error
with error bound Λ = 1/2.

Proof. The following is a algorithm for PFA(2) accepting Luvvu:

0. Head 2, in tandem with its usual instructions, verifies that the word is of format
w1#w2#w3#w4, wi ∈ Σ∗ (a regular check – count #).

1. With probability 1
2
move head 2 to the beginning of the word u′, or, with proba-

bility 1
2
move head 1 to the start of the word v and move head 2 to the beginning

the word v′.

2. Accept if and only if the words under heads 1 and 2 are equal. (Move heads 1
and 2 simultaneously while they read the same symbols, until # or $, else reject).

3. Read until the end of the input word with both heads, then accept.

To prove that this automaton acepts Luvvu, we analyze the two cases of what
happens (how does the computation look like) for the words in, and not in the language
in question (Luvvu). Each word w ∈ Luvvu, is accepted by A with probability 1, since
any two sub-words are equal. For a word w /∈ Luvvu, the word is either not of the
format w1#w2#w3#w4 – which we detect with head 2 – or one of u,u′ and v,v′ are
unequal. Analyzing our algorithm, we see that A rejects such word with probability
≥ 1

2
(arrive at unequal sub-word (with p = 1

2
), then verify the (in)equality – words

with bad format are always rejected). Thus, A is a Monte-Carlo PFA(k) satisfying the
definition of accepting with one-sided false-biased error with error bound Λ = 1

2
.

Formal construction:
A = (Q,Σ ∪ {#}, δ, q0, Qacc, Qrej), where
Q = {q0, qF , qu[0], qu[1], qu[2], qu[3], qu[=], qv[0], qv[1], qv[2], qv[3], qv[=], qTRASH}
Qacc = {qF}
Qrej = Q−Qacc
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The δ-function is written in compact form, such that if a value for an input for the
δ-function is not explicitly set, it is assumed to be zero, and if for some “input” 3-tuple
(q, a1, a2) the δ-function is never defined, set δ(q, a1, a2, qTRASH , 0, 0)=1. Additionally,
whenever we write _, we would write the “rule” for each _ ∈ Σ ∪ {#}, and whenever
we write a, we would write the “rule” for each a ∈ Σ (not #, nor $).

Remark. We needed to define the state qTRASH and transitions into it, only to satisfy
the definition of PFA(2) (1.4.1). Specifically, that the δ-function be defined for all
inputs, and that the sum for each 3-tuple (q, a1, a2) be equal to 1.

//Choose sub-word

δ(q0,_,_, qu[0], 0, 0) =
1

2

δ(q0,_,_, qv[0], 0, 0) =
1

2

//Goto sub-word u, u′

δ(qu[0],_, a, qu[0], 0, 1) = 1

δ(qu[0],_,#, qu[1], 0, 1) = 1

δ(qu[1],_, a, qu[1], 0, 1) = 1

δ(qu[1],_,#, qu[2], 0, 1) = 1

δ(qu[2],_, a, qu[2], 0, 1) = 1

δ(qu[2],_,#, qu[=], 0, 1) = 1

//Verify equality, and accept

δ(qu[=], a, a, qu[=], 1, 1) = 1

δ(qu[=],#, $, qF , 0, 0) = 1

//Goto sub-word v, v′

δ(qv[0], a, a, qv[0], 1, 1) = 1

δ(qv[0],#,#, qv[1], 1, 1) = 1

δ(qv[1],_, a, qv[1], 0, 1) = 1

δ(qv[1],_,#, qv[=], 0, 1) = 1

//Verify equality

δ(qv[=], a, a, qv[=], 1, 1) = 1

δ(qv[=],#,#, qv[3], 0, 1) = 1

//Finish verifying format

δ(qv[3],_, a, qv[3], 0, 1) = 1

δ(qv[3],_, $, qF , 0, 0) = 1

//Head 1 to $, then ACCEPT

δ(qF ,_, $, qF , 1, 0) = 1

//Loop in qTRASH until reject

δ(qTRASH ,_,_, qTRASH , 1, 1) = 1

δ(qTRASH ,_, $, qTRASH , 1, 0) = 1

δ(qTRASH , $,_, qTRASH , 0, 1) = 1

(1.7)

Remark. Note that the proof would also have worked had we required TP = {0, 1
2
, 1}.
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1.6 Epsilon-free normal form

An interesting question that is often asked when considering models of automata, is
whether or not we can do without having the possibility to stay at one place. In this
case whether δ(q, a1, . . . , ak, p, 0, . . . , 0) can always be equal to 0. Ideally we want to
construct an “equivalent” automaton to every valid PFA(k) so that the new automaton
will move at least one head every step of computation. We show that it is feasible.

Definition 1.6.1. The two PFA(k) A0 and A1 are equivalent if for each word w ∈ Σ∗:
pA0(w) = pA1(w), pFAIL

A0
(w) = pFAIL

A1
(w), and prejA0

(w) = prejA1
(w).

Remark. We have chosen this definition since we want it to be universal, to work for
any particular model of acceptance. For Monte-Carlo, LasVegas and other models.

Definition 1.6.2 (ε-free form of PFA(k)). A k-head probabilistic finite automaton
A = (Q,Σ, δ, q0, Qacc, Qrej) is in ε-free form if

(∀q, p ∈ Q)(∀a1, . . . , ak ∈ Σ$) : δ(q, a1, . . . , ak, p, 0, . . . , 0)=0

Theorem 1.6.3 (ε-free form is a normal form for PFA(k)). Let A0 be a PFA(k) with
allowed probabilities TP . Then there exists a PFA(k) A1 with allowed probabilities [0, 1]

in ε-free form equivalent with A0.

Informally. This construction is quite long, thus we give an overview of how it works.
The main point of our construction is to replace infinite computations (which are incon-
clusive by definition) and arbitrarily long computations (a loop which the automaton
can leave) in such a way, that the automaton accepts/rejects each word with the same
probability as did the original automaton.

Our construction consists of 4 steps divided into sub-steps, at each sub-step, we
have a PFA(k) that accepts and rejects each word with the same probability as A0.

1) We divide the automaton into many copies, layers, such that on one layer,
transitions expect to read only one specific input a1, . . . , ak (we load input into a
“buffer” and only later do the original transition). The motivation is that this way, in
one certain layer, the transition depends only on the state (since the input is fixed).

2) We then divide each state into 3 sub-states: ingoing (sIN ), outgoing without
moving heads (sε), and outgoing moving at least one head (sa). Not moving heads
leaves the input the same, thus if the automaton moves no head, it will stay in the same
layer. The motivation is that now, we have states that either only use transitions that
move at least one, or only use transitions that move no head. Moreover “stationary”
transitions are stuck on the same layer.

3) The main part will be using the theory of Markov chains. We first recognize
that by looking at any one layer of the automaton (and redefining sa so that they
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loop in themselves) we get a Markov chain. In a Markov chain, each state is either
ergodic or transient. We first take care of each state that is ergodic (and not sa). A
state is ergodic if you eventually return to this state with probability 1. Since we have
only considered transitions that move no head, it means that if the automaton enters
this state, it will loop indefinitely (resulting in inconclusive computation). Hence, we
delete all outgoing edges from this state and redirect it into a state qFAIL, a new state
in which the automaton just walks to the end marker and ends in FAILURE. Now that
we have taken care of the infinite loops, each state (except sa) in our Markov chain
is transient, which means that eventually, we will leave this state and never return.
By the theory of Markov chains, we can compute the probability of eventually ending
in each of the states sa or in the infinitely looping states (which all end in qFAIL).
Therefore we replace all these transitions, by transitions jumping from one state to
another state’s sa or the fake-infinite-loop qFAIL. We repeat this for each layer.

4) We finalize the construction by tidying up, since by the above construction,
we have only removed the arbitrarily long and the infinite computations, i.e., the
automaton does at most O(n) steps of computation. Yet we wish to have no transition
that would not move at least one head.

Proof. Let A := A0 = (Q,Σ, δ, q0, Qacc, Qrej). We prove the theorem by constructing
a sequence of automatons (A′, A′′, A′′′=Ā0, Ā1, . . . , Ām, ¯̄A where m=(|Σ|+ 1)k), such
that it is easy to see that two consecutive automatons are equivalent.

Step 1 (A′): The first step is to construct a PFA(k), in which every state q from
A will be copied into m+1 = (|Σ|+1)k+1 new states: The input state qIN into which
all transitions which would end in q will now end, and the extended states q[a1,...,ak],
for every possible a1, . . . , ak ∈ Σ$, which simply “store” the input of the heads, and
from which the automaton makes the original outgoing transitions. (As if breaks each
original transition into two: “save” the input into the state; do the random decision.)

Formally we construct A′ = (Q′,Σ, δ′, q0,IN , Q
′
acc, Q

′
rej) as follows:

Q′ = {qIN | q ∈ Q} ∪ {q[a1,...,ak] | (q ∈ Q) ∧ (a1, . . . , ak ∈ Σ$)}
Q′

acc = {qIN | q ∈ Qacc} ∪ {q[a1,...,ak] | (q ∈ Qacc) ∧ (a1, . . . , ak ∈ Σ$)}
Q′

rej = {qIN | q ∈ Qrej} ∪ {q[a1,...,ak] | (q ∈ Qrej) ∧ (a1, . . . , ak ∈ Σ$)}
We additionally define Q′

IN = {qIN | q ∈ Q}, so that we can refer to it later.
For each q ∈ Q, a1, . . . , ak ∈ Σ$:

δ′(qIN , a1, . . . , ak, q[a1,...,ak], 0, . . . , 0)=1

For each q, p ∈ Q, a1, . . . , ak ∈ Σ$, d1, . . . , dk ∈ {0, 1} such that max{d1, . . . , dk}=1:
δ(q, a1, . . . , ak, p, d1, . . . , dk)=p>0 =⇒ δ′(q[a1,...,ak], a1, . . . , ak, pIN , d1, . . . , dk)=p

The delta-function is zero for any other inputs.
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For each computation on A, there is a corresponding computation on A′, where instead
of directly moving from (qi, w, o1i, . . . , oki) to (q(i+1), w, o1(i+1), . . . , ok(i+1)) with proba-
bility p, A′ does one intermediate step. The extra step is from (qi,IN , w, o1i, . . . , oki) to
(qi,[wo1 ,...,wok

], w, o1i, . . . , oki) with probability 1, followed by the randomized step, into
(q(i+1),IN , w, o1(i+1), . . . , ok(i+1)) with probability p. Moreover, each computation on A′

is of this form, i.e., corresponds to some computation on A. Since there is a one-to-one
correspondence of computations on A and A′ (preserving probabilities), the following
holds. For each word w: pA(w) = pA′(w), pFAIL

A (w) = pFAIL
A′ (w), prejA (w) = prejA′ (w).

Therefore, A′ and A are equivalent.

A common visualization of an automaton is a graph, where the vertices are the
states, and edges between states represent transitions (what has to be read, how heads
will advance). In our case, of PFA(k), the edges additionally contain the probability
p of doing that transition. We represent each transition by an edge. If the transition
moves no head, then the edge is dashed, and if the transition occurs with probability
0, it is dotted edge.

a1,...,ak; p; d1,...,dk−−−−−−−−−−−→

The automaton A′ can be viewed as having m + 1 copies of A, where edges go from
the lowest IN layer, reading a1, . . . , ak to layer [a1, . . . , ak], from which they go (maybe
after a random decision) back to the lowest IN layer, possibly moving heads.

A IN

[a1, . . . , ak]1

[a1, . . . , ak]2

[a1, . . . , ak]m

......

Figure 1.1: Construction of A′ from A: multiple layers

Remark. The motivation for A′ is that the first step into the layer [a1, . . . , ak] by “sav-
ing” what is being read into the state ensures that while in the same layer, transitions
occur based on the state only (since by their layer we know what is being read).

Step 2.1 (A′′): We construct a PFA(k) in which each state has the following
property: either no transition from it moves heads, or all transitions from it move at
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least one. (We split each state into sub-states and then we put all transitions which
move at least one head to one sub-state, and all transitions that move no head to
another.)

We construct A′′ by splitting each state s=q[a1,...,ak] ∈ Q′ (not qIN ) into three sub-
states sIN , sε, and sa (in this proof, the letter s denotes some state q[a1,...,ak] in one
of the layers). State sIN is the input state, such that transitions ending in s will now
end in sIN . Then (while in sIN ) the automaton will randomly, with suitably chosen
probabilities, choose whether it is going to move at least one, or move none of its heads
(transition to sε or sa). The state sε is a state from which the automaton will move as
A′ moves from s(=q[a1,...,ak]), but choosing only among transitions that move no head.
State sa, on the other hand, is a state from which the automaton will move as if from
s, yet choosing only from the transitions that move at least one head.

In order to construct such A′′, we need, for each state, to compute the probability
of doing a transition which moves at least one head, and the probability of doing a
transition that is not moving any heads, so that we can later scale the probabilities.
(Here we are using the structure of A′, that the probabilistic transitions must end in a
state in layer IN , and that when in layer [a1, . . . , ak], the input (a1, . . . , ak) is “saved”
in the state. More specifically, we know that in such state, A′ is guaranteed to read
a1, . . . , ak on its heads.)

(∀s=q[a1,...,ak] ∈ Q′) ps,ε =
∑

pIN∈Q′
IN

δ′(q[a1,...,ak], a1, . . . , ak, pIN , 0, . . . , 0)

ps,a = 1− ps,ε

Note that ps,a is the sum of probabilities of transitions that move at least one head.

Formally, we construct A′′ = (Q′′,Σ, δ′′, q0,IN , Q
′′
acc, Q

′′
rej) as follows:

We first define Q′
[layer] = Q′ −Q′

IN .
Q′′ = {sIN , sε, sa | s ∈ Q′

[layer]} ∪Q′
IN

Q′′
acc = {sIN , sε, sa | s ∈ (Q′

acc −Q′
IN )} ∪ (Q′

IN ∩Q′
acc)

Q′′
rej = {sIN , sε, sa | s ∈ (Q′

rej −Q′
IN )} ∪ (Q′

IN ∩Q′
acc)

For each s ∈ Q′
[layer], a1, . . . , ak ∈ Σ$:

δ′′(sIN , a1, . . . , ak, sε, 0, . . . , 0) = ps,ε

δ′′(sIN , a1, . . . , ak, sa, 0, . . . , 0) = ps,a

For each s ∈ Q′
[layer], a1, . . . , ak ∈ Σ$, pIN ∈ Q′

IN , d1, . . . , dk ∈ {0, 1} where
∑

i di ≥ 1:
δ′(s, a1, . . . , ak, pIN , 0, . . . , 0) = p>0 =⇒ δ′′(sε, a1, . . . , ak, pIN , 0, . . . , 0) =

p
ps,ε

δ′(s, a1, . . . , ak, pIN , d1, . . . , dk) = p>0 =⇒ δ′′(sa, a1, . . . , ak, pIN , d1, . . . , dk) =
p

ps,a

(the fraction is never p
0
, since when p>0, the corresponding ps,a or ps,ε is also nonzero)

By this construction, each transition that went from q1,IN to s1 to q2,IN with
probability 1 · p = p, now goes from q1,IN to s1,IN to s1,ε to q2,IN with probability
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1 · pε · p/pε = p (without moving heads, and analogously for pa when moving heads).
Just as when constructing A′, we “extended” each path between q1,IN and q2,IN , and
since there is a one-to-one correspondence between these computations (preserving
probabilities), it follows that A′ and A are equivalent.

s1 q3,IN

q2,IN

q4,IN

q5,IN

q1,IN

p1,~0

p2,~0

p3, ~d

p4, ~d

p5, ~d

1,~0
s1,IN

s1,ε

s1,a

q3,IN

q2,IN

q4,IN

q5,IN

q1,IN

p1+p2,~0

p3+p4+p5,~0

p1

p1+p2
,~0

p2

p1+p2
,~0

p3

p3+p4+p5
, ~d

p4

p3+p4+p5
, ~d

p5

p3+p4+p5
, ~d

1,~0

Figure 1.2: Construction of A′′: splitting of states into three

Step 2.2 (A′′′): When analyzing A′′, we see that when A′′ is in a state si,ε, the heads
will not move in the upcoming transition. Thus, after a transition, A′′ will read the same
“input” as it did arriving into si,IN (=qi,[a1,...,ak],IN ). Therefore, when A′′ moves from s1,ε

into a state q2,IN , we know that it will certainly go into the state s2,IN (=q2,[a1,...,ak],IN ).
We edit the automaton, so that it does not take the detour through q2,IN and only
moves from s1,ε directly to s2,IN . Formally, for si,ε in layer [a1, . . . , ak]:

δ′′(si,ε, a1, . . . , ak, qj,IN , 0, . . . , 0)=p ⇒ δ′′′(si,ε, a1, . . . , ak, qj,[a1,...,ak],IN , 0, . . . , 0)=p
⇒ δ′′′(si,ε, a1, . . . , ak, qj,IN , 0, . . . , 0)=0

What this construction does, is that it edits only the δ-function in A′′, in such a
way that joins two consequent transitions into one. Thus, for each computation on A′′

there is a corresponding one on A′′′ (and back). Hence, A′′ and A′′′ are equivalent.

The automaton A′′′ has many layers, just as A′ did. However, the shortest path
between two states in the layer IN is now longer. For each original (A) step from q1 to
q2, advancing at least one head, A′′′ now goes from q1,IN , into s1,IN , into s1,a, all without
moving any of its heads. It then finally “leaves q1” by doing the “original” transition
into q2,IN . Had the original moved no head, the simulated “original” transition would
take the automaton into s2,IN , since it would end up there anyway.

Remark. The advantage of A′′′ is that if it moves no head, it does not leave the one
layer in which it is, i.e., it enters the layer IN only when it moves at least one head.
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IN

[a1, . . . , ak]1

[a1, . . . , ak]2

[a1, . . . , ak]m

......

IN

[a1, . . . , ak]1

[a1, . . . , ak]2

[a1, . . . , ak]m

......

Figure 1.3: Comparison A′ vs A′′′: stay in layer if not moving heads

Step 3 (Ā1): This step of contruction will eliminate infinite computations. We do
that by creating an equivalent PFA(k), such that on each word it does at most O(n)

steps of computation before accepting, rejecting, or ending in FAILURE.
We begin the construction by taking the graph of the lexicographically first layer

of the automaton Ā0=A′′′ (since we are building Ā1). We wish to view this graph as
a Markov chain [KS60](page 24,25). Markov chain is a finite stochastic process that
has the Markov property and the transition probabilities pij(n) do not depend on n.
The Markov property is essentially [KS60](page 24): Knowing the outcome of the last
experiment we can neglect any other information we have about the past in predicting
the future. Our (graph of) one layer ([a1, . . . , ak]) of the automaton represents a
stochastic process where the transitions between states depend solely on the previous
state (in one layer we read the same input), with probabilities defined via the δ-function
(thus not changing), with slight tweak such that when in state si,a we stay in it with
probability 1. (States of the automaton are states of the Markov chain.)

In the theory of Markov chains, we divide the states of a Markov chain into equiv-
alence classes according to whether they are mutually reachable (with non-zero prob-
ability). We additionally define a partial ordering between these classes according to
whether it is possible to go from a given class to another given class. The partial order-
ing shows us the possible directions in which the process can proceed [KS60](page 35).
The minimal elements of the partial ordering of equivalence classes are called ergodic
sets. The remaining elements are called transient sets. The elements of a transient set
are called transient states. The elements of an ergodic set are called ergodic (or non-
transient) states. We see that if a process leaves a transient set it can never return to
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this set, while if it once enters an ergodic set, it can never leave it. Additionally, if an
ergodic set contains only one element, we call such a state absorbing.

Applying this theory to our situation, we see that {si,a} are ergodic sets for each i

(we defined δ this way for a reason, since if a process in this layer arrives in this state,
it will leave this layer). Moreover, if any other set of states is ergodic, should the
automaton arrive there, it will be stuck there forever (since such set cannot contain
si,a) resulting in an inconclusive computation (inside a layer, the automaton does not
move its heads, and the only way out of this layer is through one of the states si,a).

The following figure 1.4 represents a Markov Chain (of one layer) with 15 states.
Should we look at it as on the original automaton A (before we split the states in
three), it represents “5” states: An ergodic set of “two” states (an infinite loop), and a
set of “3” mutually connected transient states (allowing looping of arbitrary length).
// The state qIN is from layer IN (not in Markov chain), all other states are in the
layer [a1, . . . , ak]. Dotted lines represent transitions with probabilities 0. States si,a are
specially highlighted, since they are the gateway out. //

s1,IN
s1,ε

s1,a

q1,IN

s2,IN

s2,ε

s2,a

q2,IN

s3,IN

s3,ε

s3,a

q3,IN

s4,IN

s4,ε

s4,a
q4,IN

s5,IN

s5,εs5,a

q5,IN

Figure 1.4: Example layer of Ā0: 3 · 3 transient, 2 · 3 ergodic
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Our construction then follows by creating a new state qFAIL, that simply takes all
heads to the end-marker and then ends in FAILURE (there will be only one qFAIL,
outside all layers into which we later “throw” all inconclusive infinite loops).

We now analyze each state of the above constructed Markov chain, except for the
states sj,a. By definition, each state is either ergodic or transient. For any state that
is ergodic (we know that the automaton will loop indefinitely, i.e., end inconclusively),
we re-define the δ-function so that the only outgoing transition from this state is into
qFAIL with probability 1, and add the absorbing state qFAIL into the Markov chain.

qFAIL

s1,IN
s1,ε

s1,a

q1,IN

s2,IN

s2,ε

s2,a

q2,IN

s3,IN

s3,ε

s3,a

q3,IN

s4,IN

s4,ε

s4,a q4,IN

s5,IN

s5,εs5,a

q5,IN

Figure 1.5: Construction of Ā: removal of infinite loops

This way, each state, except for sj,a and qFAIL, is transient. Then the probability
of staying in this layer forever is 0, since the probability of ending in some absorbing
state is 1 [KS60](page 43, theorem 3.1.1). Therefore, by [KS60](page 52, theorem 3.3.7)
we can calculate, for each transient state, the probability that the process starting in
transient state si,ε ends up in absorbing state sj,a (qFAIL). Thus, we can remove
all outgoing transitions from si,ε, replacing them by direct transitions from si,ε to
sj,a (qFAIL), for each i, j. This construction preserves the probability of ending in
sj,a (qFAIL) from qi,IN for each i, j. Hence, an automaton constructed this way (by
changing one layer) is equivalent with Ā0. See Figure 1.6 for illustration.
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qFAIL

s1,IN
s1,ε

s1,a

q1,IN

s2,IN

s2,ε

s2,a

q2,IN

s3,IN

s3,ε

s3,a

q3,IN

s4,IN

s4,ε

s4,a q4,IN

s5,IN

s5,εs5,a

q5,IN

Figure 1.6: Construction of Ā: building of direct transitions

What is more, we can also calculate the probability of moving from qi,IN to sj,a

(or qFAIL), which will allow us to replace all except one stationary transition, making
states si,IN and si,ε irrelevant. We calculate it by summing the probabilities of all
possible paths (if i=j there are 2 paths, otherwise there is only one) between these
states, which we get by multiplying the probabilities of transitions. Example (i 6=j):
p(qi,IN , sj,a) = 1 · p(si,IN , si,ε) · p(si,ε, sj,a). See Figure 1.7 for illustration.

By this construction, we have “solved” our problem for one transition layer. Should
the automaton read the input (a1, . . . , ak) that would lead it to this layer, the automa-
ton will make just one transition without moving heads into some state sj,a (or qFAIL),
from which it will do a transition that moves at least one of its heads.

We repeat this process (Step 3) for each layer, creating m automatons along the
way Ā1, Ā2, . . . , Ām (m = (|Σ| + 1)k). We see that the final automaton (Ām) makes
at most 1 “consecutive” step without moving its heads. It is the transition (reading
a1, . . . , ak) from qi,IN to qj,[a1,...,ak],a = ”sj,a” (or qFAIL) for any i, j. Since from sj,a, it
moves at least one of its k-heads (definition of sj,a). Moreover, when in any state qIN

reading a1, . . . , ak, the only possible transition is to some state qj,[a1,...,ak],a or qFAIL (by
construction). Also, when in qj,[a1,...,ak],a, by definition then only possible transition is
to some state qIN . Thus, the length of computation on Ām is O(n).
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qFAIL

s1,IN
s1,ε

s1,a

q1,IN

s2,IN

s2,ε

s2,a

q2,IN

s3,IN

s3,ε

s3,a

q3,IN

s4,IN

s4,ε

s4,a q4,IN

s5,IN

s5,εs5,a

q5,IN

Figure 1.7: Construction of Ā: combine multiple steps (qIN→sIN→sε→sa to qIN→sa)

Step 4 ( ¯̄A): The last step to construct the automaton ¯̄A (from Ām) that moves
at least one head each step, is a simple construction of replacing the two step process
of moving from some qIN to qi,[a1,...,ak],a to qj,IN (or qFAIL) by a single step process of
moving from qi,IN to qj,IN (or qFAIL). We just calculate the probability of each such
transition sequence and create new transitions removing the old ones afterward. Which
effectively makes all states in all layers [a1, . . . , ak] unused and unnecessary – hence we
remove them.

qIN si2,a

si1,a

qj2,a

qj1,a

qFAIL

qIN si2,a

si1,a

qj2,a

qj1,a

qFAIL

Figure 1.8: Collapsing transitions to one

We are then left with an automaton A1 := ¯̄A with the same states as the original
A0 plus one new (qFAIL in which every old infinite loop now returns FAILURE), such
that each its allowed transition advances at least one head.
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Theorem 1.6.4 (ε-free form is a normal form for PFA(k) with TP ). Let A0 be a
PFA(k) with allowed probabilities TP . Then there exists a PFA(k) A1 with allowed
probabilities TP in ε-free form equivalent with A0, if there exists a field (F,+, .) such
that F ∩ [0, 1] = TP .

Proof. Since all the opreations we used when manipulating with the probabilities in
the previous construciton were addition, multiplication and taking inverses (for +, ·),
the newly-constructed probabilties are still elements of F . Moreover, since they are
probabilities, they are in [0, 1].
(The theory of Markov chains which we used computes the resulting probabilities via
matrices whose construction also requires only the use of +, · and taking inverses.)

Corollary 1.6.5 (ε-free form is a normal form for PFA(k) with rational TP ). Let A0

be a PFA(k) with allowed probabilities Q ∩ [0, 1]. Then there exists a PFA(k) A1 with
allowed probabilities Q ∩ [0, 1] in ε-free form equivalent with A0.

Proof. Apply the previous theorem for the field (Q,+, ·).

Corollary 1.6.6. Let A0 be a PFA(k) with allowed probabilities TP ⊆ Q. Then there
is a PFA(k) A1 with allowed probabilities Q ∩ [0, 1] in ε-free form equivalent with A0.

Proof. Follows trivially from the previous corollary, since if TP ⊆ T ′
P , then each PFA(k)

with allowed probabilities TP is also a PFA(k) with allowed probabilities T ′
P .

Remark. This corollary upgrades the main theroem (1.6.3), in the following way:
Should we now additionally prove that the initial TP is a subset of Q, the PFA(k)

in ε-free form that we construct will only use “rational” probabilities.
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Chapter 2

Cutting-and-pasting technique

In this chapter, we illustrate a technique for proving that a language cannot be accepted
by any k-head one-way finite automaton. We show this technique because we utilize
it, with a certain modification, for proving few of our results.

Informally, the technique as shown in [YR78] consists of first defining a location
(type in [YR78]) of a configuration, which essentially represents, on which word which
head is, and a pattern of a computation, that is, a sequence of corresponding locations
of configurations. It continues by analyzing the possible head movement, and showing
that for each pattern there exist two integers i 6= j, such that the heads cannot be at
the same time at both sub-words wi and wj.

The argument then, is the following. We show – by some counting argument – that
there do exist two words x ∈ L and y ∈ L that have the same pattern and differ only
in those sub-words, in which the heads are never simultaneously. The technique then
finishes by constructing a new word z /∈ L, where z is x with xj substituted by yj,
and finding an accepting computation on z by cutting-and-pasting configurations of
computations on x and y.

DFA(2) cannot accept Luvvu

The following lemma is an example of this technique, cutting-and-pasting. Moreover,
it is a twist on the proof for the more general Hierarchy Theorem.

Consider the following language (where # /∈ Σ)

Luvvu = {u#v#v′#u′ | u = u′, v = v′ ∈ Σ∗}

Lemma 2.0.1. Language Luvvu cannot be accepted by any one-way 2-head deterministic
automaton. (Luvvu /∈ L (DFA(2)))

Proof. Let us begin with a simple observation of head movement. During any one
computation, heads can visit simultaneously only either u and u′, or v and v′, never

27
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both. (Since in order to visit simultaneously u and u′, one head may not leave u, and
the other has to – irreversibly – travel over v#v′ to get to u′. Therefore, afterwards that
head cannot visit v nor v′ again. Analogously, in order to visit v and v′ simultaneously,
both heads have to leave u, and no head can visit u′ (it is beyond v, v′)).

Define Ln = {w1#w2#w′
2#w′

1 | w1=w′
1, w2=w′

2 ∈ Σn}, obviously Ln ⊆ Luvvu. We
will show that for any DFA(2), that accepts every word in Ln, then it must also accept
a word /∈ Luvvu. Let DFA(2) A be the automaton that accepts each word in Ln.

We define a location of a configuration (q, p1, p2) as 2-tuple (p1/(n+1), p2/(n+1)).
Then, for a computation c1(w), c2(w), . . . , clw(w) define a pattern of a word as a sub-
sequence of computation d1(w), d2(w), . . . , dl′w(w) obtained by taking c1(w) and all
subsequent ci(w) such that location(ci(w)) 6= location(ci+1(w)).

Let k be the number of heads (k=2). Since the length of a pattern l′w ≤ k(4 + 1)

(each head must go through all 4 sub-words and $), the number of possible patterns ρ
is at most (|Q| · (4(n+ 1))k)k(4+1) 1 We then divide words in Ln into ρ sets, depending
on the word’s patterns. By the pigeonhole principle we know that one of those sets
contains at least 22n/ρ words. Let S0 be that set.

As a corollary of our observation, note that for each pattern P , there exists an index
iP , such that during computation, heads are never on wiP and w′

iP
in the same configu-

ration. Let j be the index of the pair of words which are never visited simultaneously in
computations on words in S0. Now, we partition the words in S0 (w1#w2#w′

2#w′
1) into

classes according to the string ”wi, w
′
i”, where i6=j (We group words that differ from

each other only in wj, w
′
j). Since there are 2n such strings2, by Dirichlet’s box principle

(pigeonhole principle) we see that there exists a class with at least (22n/ρ)/2n = 2n/ρ

words. Let S1 be the set of words from that class, and assume n is large enough so
that |S1| ≥ 2 (we can make that assumption, since ρ is at most polynomial in n).

Now follows the main “cutting and pasting” argument:
Since |S1| ≥ 2, the set contains at least two different words: x = x1#x2#x′

2#x′
1 and

y = y1#y2#y′2#y′1. By cutting-and-pasting configurations, we construct an accepting
computation on word z /∈ Luvvu, z = z1#z2#z′2#z′1, where (∀i 6=j)zi = xi, z

′
i = x′

i and
zj = xj, z

′
j = y′j. (we only replace x′

j by y′j – the sub-word that is not checked).
By construction (x, y ∈ S0), both computations c1(x), . . . and c1(y), . . . contain the

pattern d1(x), . . . (of length l) as a subsequence. Therefore we divide the sequences
c1(x), . . . and c1(y), . . . into l blocks, each by beginning a new block with each occur-
rence of an element di, as in the following figure (i.e., we group together configurations
with the same location).

1(#configurations)
k(#subwords+1)

2since w1#w2#w′
2#w′

1 ∈ S0, and S0 ⊆ Ln, we see that wi=w′
i
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x : c1(x)..︸ ︷︷ ︸ ci2(x)...︸ ︷︷ ︸ ci3(x)...︸ ︷︷ ︸ . . . ciIN1
(x)......︸ ︷︷ ︸ . . . ciOUT1

(x).....︸ ︷︷ ︸ . . . cil(x)...︸ ︷︷ ︸
d1(x) d2(x) d3(x) dIN1(x) dOUT1(x) dl(x)

y :
︷ ︸︸ ︷
c1(y)...

︷ ︸︸ ︷
cj2(y)....

︷ ︸︸ ︷
cj3(y)...... . . .

︷ ︸︸ ︷
cjIN1

(y).. . . .
︷ ︸︸ ︷
cjOUT1

(y).. . . .
︷ ︸︸ ︷
cjl(y)......

* dINi(x)/dOUTi(x) denotes the first configuration where i-th head entered/left w′
j

Figure 2.1: Division of sequences c1(x) . . . , c1(y) . . . into blocks on Luvvu.

Remark. In the above figure, various numbers of dots convey that the blocks may be of
different length – only the pattern is the same. Moreover, we are not showing dIN2(x),
dOUT2(x) for clarity.

We construct an accepting computation for A on z by selecting successive blocks
from {ci(x)}, except when A during that block would be reading x′

j( 6= z′j), in which case
we select the corresponding block from {ci(y)} instead (since y′j = z′j). This sequence
forms a valid computation for z since the last configuration in block i for either {ci(x)}
or {ci(y)} yields di+1(x) as the next configuration of A, and by construction, A is never
reading sub-words zj and z′j simultaneously. Therefore, at any instant, A behaves
exactly as it would if the input had been one of x or y.

z : c1(x).. . . .

x

y

ciIN1
(y).. . . . ciOUT1

(x).... . . .

x

y

ciIN2
(y).. . . . ciOUT2

(x)... . . . cil(x)...

x

* cINi(x)/cOUTi(x) denotes the first configuration where i-th head entered/left w′
j

Figure 2.2: construction of an accepting computation for z /∈ Luvvu

In order to be able to reuse the “cutting and pasting” argument in subsequent proofs
we state it in a lemma. However, in order to generalize it, we define the following: Let
Ln
b = {w1 ∗ w2 ∗ · · · ∗ w2b | (wi ∈ {0, 1}n) ∧ (wi = w2b+1−i) for 1 ≤ i ≤ 2b}. Let pattern

be defined identically as above. However, because the automaton may have more than
two heads (k), the location based on which pattern is defined, will have to scale up to
a k-tuple (p1/(n+ 1), . . . , pk/(n+ 1)).

The new definition is a mistake of a pattern, defined as a location which could be
valid, but does not occur in the pattern (i.e., the indices of sub-words, in which the
heads are never simultaneously). Moreover, a mistake i is a mistake (i, 2b−i+1). It
is a useful/notable mistake informing us that during the computation, the heads are
never simultaneously in wi and w2b−i+1.
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Lemma 2.0.2. If words x, y ∈ Ln
b , x 6= y have the same pattern on a DFA(k) A, and

if the pattern has a mistake i, then we can construct an accepting computation on A

on a input word z /∈ Ln
b , constructed by replacing x2b−i+1 by y2b−i+1 on x.

Proof. The proof is identical to the argumentation from the “cutting and pasting”
argument in the previous proof, except x and y, have the following format for Ln

b .
x1 ∗ · · · ∗ xb ∗ x′

b ∗ · · · ∗ x′
1 (this way, by the identical construction (replace x′

i by y′i), we
get the correct z for the rest of the argumentation).

Remark. A high-level overview of what we did, may be the following: Define a pattern
in such a way, so that one can define a mistake, such that it is feasible to prove that on
each deterministic computation, some useful mistake must occur. Then, if two words
x, y have the same pattern (which has a mistake), we are able to construct z from x, y

such that we can construct a valid accepting computation from computations of x, y,
by exploiting the mistake by cutting-and-pasting the “blocks” based on the pattern.

2.1 The Hierarchy Theorem

Yao and Rivest, in their paper [YR78], prove that there are languages which can be
recognized by a deterministic (k + 1)-headed one-way finite automaton, yet cannot by
any k-headed one-way finite automaton. They also show few notable corollaries of the
Hierarchy Theorem.

Consider these languages :

Lb = {w1 ∗ w2 ∗ · · · ∗ w2b | (wi ∈ {0, 1}∗) ∧ (wi = w2b+1−i) for 1 ≤ i ≤ 2b}

L′ = {w1 ∗ w2 ∗ · · · ∗ w2b | (b≥1) ∧ (wi ∈ {0, 1}∗ for 1 ≤ i ≤ 2b) ∧ (∃i)(wi 6= w2b+1−i)}
(2.1)

Theorem 2.1.1 (The Hierarchy Theorem [YR78]). For each integer k ≥ 2

• The language Lb is recognizable by a NFA(k) if and only if b ≤
(
k
2

)
.

• The language Lb is recognizable by a DFA(k) if and only if b ≤
(
k
2

)
.

Corollary 2.1.2 ([YR78]). For every k ≥ 1, there is a language Mk recognized by a
NFA(2) but by no DFA(k).

Corollary 2.1.3 ([YR78]). The language L′ is recognizable by a NFA(3) but by no
DFA(k).

Infromal proof for 2.1.1. It can be shown that if b >
(
k
2

)
, then for any computation of

one-way finite automaton on an x ∈ Lb there exists an index i such that wi and w2b+1−i

are never read simultaneously. The rest of the proof is similar to the proof for Lemma
2.0.1, with added complexity since we need to account for k heads.



Chapter 3

Monte Carlo

In this chapter we explore one-way multi-head Monte-Carlo probabilistic finite au-
tomata with one-sided error with allowed rational probabilities (TP = Q ∩ [0, 1]). For
brevity, in this chapter, whenever we refer to a probabilistic finite automata or PFA(k),
we mean a Monte-Carlo PFA(k) (recall definition: (∀x ∈ Σ∗) : pFAIL

A (x) = 0).

Remark. Acceptance with error is defined only for Monte-Carlo PFA. Also, since
(∀x ∈ Σ∗) : pFAIL

A (x) = 0, we can freely assume that Qrej = Q−Qacc, since if there was
a state in Q− (Qacc ∪Qrej), no computation ever ended in it, thus nothing will change
if we add it to rejecting states.

Lemma 3.0.1 (Unbounded ⊇ Bounded). Let L be a language recognized by a certain
PFA(k) A with bounded two-sided (resp. one-sided true-biased, one-sided false-biased)
error. Then the language L is also recognized by A with unbounded two-sided (resp.
one-sided true-biased, one-sided false-biased) error.

Proof. Follows trivially from definition.

Lemma 3.0.2 (Unbounded Two-sided⊇ Unbounded True-biased). Let L be a language
recognized by a certain PFA(k) A with unbounded one-sided true-biased error. Then
the language L is also recognized by A with unbounded two-sided error.

Proof. L = L(A, λ), for λ = 0

Lemma 3.0.3 (Bounded Two-sided ⊇ Bounded One-sided). Let L be a language rec-
ognized by a certain PFA(k) A with bounded one-sided error. Then the language L is
also recognized by A with bounded two-sided error.

Proof. Proof is just showing that you can calculate the cut point λ and its error bound
∆, from the error bound Λ, such that it satisfies the definition of bounded two-sided
error. (Which we have already done in the definitions 1.3).

31
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Lemma 3.0.4. Let L be a language recognized by a certain PFA(k) A, with bounded
one-sided error with error bound Λ0. Then L is recognized by A with bounded one-sided
error with all error bounds Λ ≥ Λ0.

Proof. Is true by definition.

Lemma 3.0.5 (Bounded One-sided ⊇ Deterministic). Let L be a language recognized
by a certain DFA(k) A, then we can construct a PFA(k) A′ recognizing L with bounded
true-biased error and bounded false-biased error, both with error bound Λ=0.

Proof. Construction is the following, for every transition in δA, we set such transition’s
probability to 1 in δ′A. The rest, we copy. The PFA(k) A′ constructed this way
behaves exactly the same as the DFA(k) A (deterministically, accepting each word with
probability 0 or 1) Therefore, just looking at the definitions of the types of acceptance,
we observe that such algorithm satisfies both definitions (with Λ = 0).

Corollary 3.0.6 (PFA(k) ⊇ DFA(k)). Let L be a language recognized by a DFA(k) A.
Then we can construct a PFA(k) A′ recognizing L with bounded and unbounded two-
sided, one-sided true-biased and one-sided false-biased error, for each (isolated) cut-
point λ (with its bound ∆), and for each error bound Λ.

Proof. Combine the previous lemmas ( 3.0.5, 3.0.4, 3.0.3, 3.0.1 ). The construction of
the corresponding PFA(k) in the above lemma also satisfies all other definitions.

Lemma 3.0.7 (The Complement Lemma). For language L recognized by a

• PFA(k) A with true-biased error with error bound Λ, there is a PFA(k) A′ rec-
ognizing Lc with false-biased error with error bound Λ.

• PFA(k) A with false-biased error with error bound Λ, there is a PFA(k) A′

recognizing Lc with true-biased error with error bound Λ.

• PFA(k) A with unbounded true-biased error, we can construct a PFA(k) A′ rec-
ognizing Lc with unbounded false-biased error.

• PFA(k) A with unbounded false-biased error, we can construct a PFA(k) A′

recognizing Lc with unbounded true-biased error.

Proof. The same arguments used in the proof for the complement lemmas for PFA’s,
(1.3.7, 1.3.8) will also work here (only swapping accepting and rejecting states). We
need not worry about infinite computations, i.e., computations that get stuck in an
infinite loop, because such computation is inconclusive, and we know that pFAIL

A (x) = 0

for all x ∈ Σk. To prove the second pair of points unbounded, we will follow the Remark
1.3.9.
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NFA and (un)bounded one-sided PFA(k)

The following theorem shows the power of probabilistic computation with unbounded
one-sided error. Namely, that it is more powerful then non-deterministic computa-
tion, since the true-biased flavour of unbounded error can simulate non-determinism,
and the false-biased flavour can recognize complements of languages accepted by non-
determinism.

Theorem 3.0.8. The following statements are equivalent:

i. Language L can be recognized by a NFA(k),
ii. Language L can be recognized by a PFA(k) with unbounded true-biased error.

iii. Language Lc can be recognized by a PFA(k) with unbounded false-biased error.

Proof. We prove the three implications i. ⇒ ii., ii. ⇒ iii. and iii. ⇒ i. separately.

(i. ⇒ ii.) For a language L, recognized by some NFA(k), we take the NFA(k) A

recognizing L such that A is in a normal form where it has to move at least one
head each transition 1. We create the corresponding PFA(k) A′, by assigning prob-
abilities to transitions which involve non-determinism (where we pick between mul-
tiple paths). Formally, for every state q ∈ QA, and symbols a1, . . . , ak ∈ Σ$, where
δA(q, a1, . . . , ak) = {(p1, d11, . . . , dk1), . . . , (pm, d1m, . . . , dkm)}, we define the function
δA′(q, a1, . . . , ak, pi, d1i, . . . , dki) =

1
m
, for each i ∈ {1 . . .m}.

The correctness of our construction follows from the following: For each word in
L, there exists a computation on A that is accepting, therefore our newly constructed
PFA(k) A′ will, with non-zero probability, run that computation. Hence, the word is
accepted with nonzero probability. On the other hand, for each word not in L, there
existed no accepting computation on A, and we – by assigning uniform probabilities to
transitions – have only weighted the possible computations with probability, we have
not added, nor removed any possible transitions between states. Hence, such word
(/∈L) will be accepted with probability equal to zero. Thus satisfying the definition of
a language accepted with a true-biased unbounded error.

(ii. ⇒ iii.) We have a PFA(k) A, recognizing L with unbounded true-biased error.
Then, using the Complement lemma (3.0.7), we construct a PFA(k) A′, accepting the
complement of L (Lc) with unbounded false-biased error.

(iii. ⇒ i.) From PFA(k) A accepting language Lc with unbounded false-biased
error, we, using the Complement lemma (3.0.7), construct a PFA(k) A′, accepting the
complement of Lc ((Lc)c = L) with unbounded true-biased error.

1A possible proof for this normal form is analogous to proof of ε-free normal form for PFA(k)

(1.6.3), except we need not bother with computing probabilities (and using Markov chains).
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Then, we create the corresponding NFA(k) A′′ by replacing every probabilistic
choice of A′ by a non-deterministic one. More rigorously, for every state q ∈ QA′ , and
a1, . . . , ak ∈ Σ$, where δA′(q, a1, . . . , ak, p, d1, . . . , dk) 6= 0, we insert (p, d1, . . . , dk) into
δA′′(q, a1, . . . , ak).

This construction is correct, because, for a language to be accepted by a PFA(k)

with a true-biased unbounded error, the following must hold: for each word in L,
there must exist an accepting computation (the word must be accepted with non-zero
probability), and, for each word not in L, there must exist no accepting computation
with probability 6= 0 (it must be accepted with probability zero).

Since we inserted into the non-deterministic δ-function only transitions with nonzero
probability, the non-determinism will, for each word w, find one accepting computation
if and only if w ∈ L.

Corollary 3.0.9 (Bounded true-biased ⊆ NFA(k)). Every language recognized by a
PFA(k) with bounded true-biased error can also be recognized by a NFA(k).

Proof. Follows from the fact that every language recognized by a PFA(k) with bounded
true-biased error can be recognized PFA(k) with unbounded true-biased error (Lemma
3.0.1), and the previous theorem.

3.1 Hierarchy for one-sided error

Recalling the Hierarchy Theorem that Yao and Rivest [YR78] proved, we may ask
ourselves, if we can get similar results for the probabilistic multi-head automata, in
this case/chapter for ones with one-sided error. The answer is yes. Consider this
language (2.1):

Lb = {w1 ∗ w2 ∗ · · · ∗ w2b | (wi ∈ {0, 1}∗) ∧ (wi = w2b+1−i) for 1 ≤ i ≤ 2b}

Theorem 3.1.1 (Hierarchy for one-sided error PFA(k)). For each integer k ≥ 2

• The language Lb is recognizable by a PFA(k) with bounded true-biased error if
and only if b ≤

(
k
2

)
.

• The language (Lb)
c is recognizable by a PFA(k) with bounded false-biased error if

and only if b ≤
(
k
2

)
.

Proof. Both languages Lb and (Lb)
c are recognizable by a PFA(k) with both bounded

true-biased and false-biased error when b ≤
(
k
2

)
, because of the same argument as used

in Yao and Rivest [YR78], since they proved that it can be recognized by a DFA(k).
Hence we only need Lemma 3.0.5.
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Lb is not recognizable by any PFA(k) with bounded true-biased error when b >
(
k
2

)
,

because if such PFA(k) existed (accepting any one specific Lb), by Corollary 3.0.9,
we could construct a NFA(k), recognising Lb. Which would contradict the Hierarchy
Theorem (2.1.1).

In order to prove that (Lb)
c is not recognized by any PFA(k) with bounded false-

biased error when b >
(
k
2

)
, for the purposes of contradiction, assume that is (for some

specific b >
(
k
2

)
). Then, by the Complement lemma 1.3.8 we can construct a PFA(k)

accepting Lb with bounded true-biased error which is in direct contradiction with the
previous point, that we have already proven.

Remark. We have actually proven, that for each k, there exists a language Mk (M ′
k)

that is recognized by a PFA(k+1) with bounded true-biased error (bounded false-biased
error) and not by any one PFA(k) with bounded true-biased error (bounded false-biased
error). Hence the name, “Hierarchy for one-sided error PFA(k)”.

Theorem 3.1.2. For each integer k ≥ 2

• The language Lb is recognizable by a PFA(k) with unbounded true-biased error if
and only if b ≤

(
k
2

)
.

• The language (Lb)
c is recognizable by a PFA(k) with unbounded false-biased error

if and only if b ≤
(
k
2

)
.

Proof. Analogous to the proof for 3.1.1 (use lemmas for unbounded error).

Gaps in number of heads required

Analyzing the Hierarchy Theorem for one-sided error, we note that the language Lb

((Lb)
c) can be accepted with a probabilistic automaton with “the opposite” one-sided

error, and with only two heads, showing that there is a gap between the number of
heads required to accept a certain sequence of languages with true-biased error and
false-biased error.

Lemma 3.1.3 (Head Gap). For each integer b ≥ 1,

• the language Lb, can be recognized by a PFA(2) with bounded false-biased error.

• the language (Lb)
c, can be recognized by a PFA(2) with bounded true-biased error.

Proof. The language Lb can be recognized by PFA(2) with bounded false-biased error,
by the following algorithm:

0. “Check format”
In tandem with the main algorithm, with head 2, check that w is of the format
({0, 1}∗∗)2b−1{0, 1}∗ (its only a regular check – count ∗).
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1. “Pick sub-word”
Throw b-sided die (=: i), then move head 1 to word wi, and head 2 to w2b+1−i.
(With probability 1

b
, arrive at/pick wm (for m ∈ {1 . . . b})).

2. “Verify equality”
Accept iff the words under heads 1 and 2 are equal.
(Move heads 1,2 simultaneously while they read the same symbols, until #).

Each word w in Lb, A accepts with probability 1, since any two corresponding sub-
words of it are equal, therefore any computation will always be accepting. For word w

not in Lb, the word is either not of the format ({0, 1}∗∗)2b−1{0, 1}∗ – which we detect
with a regular check – or there exists an index i, such that wi 6= w2b−i+1. Analyzing
our algorithm, A rejects such word with probability ≥ 1

b
, since we arrive at sub-word i

with probability 1
b
, and then verify the (in)equality deterministically. Thus satisfying

the definition of accepting with bounded false-biased error with error bound Λ=1
b
.

In order to prove the second point, intuitively, we do an analogous algorithm, this
time verifying inequality at random sub-word, and/or checking for the absence of valid
format. Formally, by the Complement lemma (3.0.7), we construct a PFA(2) accepting
(Lb)

c with bounded true-biased error.

PFA(k) and DFA(k)

Recall the Corollary (2.1.2) that Yao and Rivest [YR78] observed as a consequence of
the Hierarchy Theorem 2.1.1:

For every k ≥ 1, there is a language Mk recognized by a NFA(2) but by no DFA(k).
We might want an analogous corollary to the above, for PFA(2) with one-sided error
instead of NFA(2), as a corollary to the Head Gap lemma (3.1.3). The following
corollary can also serve as an indication to the reason why we refer to the previous
lemma as the “Head Gap lemma”.

Corollary 3.1.4. For every k ≥ 1, there

• is a language Mk recognized by a PFA(2) with bounded false-biased error but by
no NFA(k) nor any DFA(k).

• is a language M ′
k recognized by a PFA(2) with bounded true-biased error but by

no DFA(k).

Proof. Let Mk = Lb where b =
(
k
2

)
+1. No NFA(k) nor DFA(k) can accept Mk, by the

Hierarchy Theorem (2.1.1). However, by the Head Gap lemma (3.1.3), PFA(2) with
bounded false-biased error can recognize Mk.

We prove the second point by letting M ′
k = (Lb)

c for b =
(
k
2

)
+ 1. No DFA(k) can

accept M ′
k, because if it did, since DFA(k)’s are closed under complement, a DFA(k)
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would recognize ((Lb)
c)c = Lb, which would contradict the Hierarchy Theorem. Yet, by

the Head Gap lemma, PFA(2) with bounded true-biased error can recognize M ′
k.

Remark. Analogous corollary is also true for PFA(2) with unbounded error.

In a sense, we have proven that k-head deterministic finite automata cannot sim-
ulate their k-head probabilistic counterparts with any one-sided error. Since this is a
common question, whether or not a variation of a model can recognize a bigger class
of languages, we state it in the following corollary.

Corollary 3.1.4.1 (DFA(k) ( PFA(k) one-sided). For each k ≥ 1, there

• exists a language Mk that is recognizable by PFA(k) with bounded false-biased
error, but by no DFA(k),

• exists a language M ′
k that is recognizable by PFA(k) with bounded true-biased

error, but by no DFA(k).

Proof. Follows trivially from the previous corollary.

Moreover, since we have shown that PFA(k) can save heads on certain languages, a
valid question might be if PFA can save heads in general. The answer is no – the classes
of languages recognized by PFA(k) with (un)bounded one-sided error and DFA(k+1)’s
are incomparable (one direction of this incomparability is in the Corollary 3.1.4).

Corollary 3.1.4.2 (DFA(k + 1) * PFA(k) one-sided). For each k ≥ 1,

• there exists a language Mk that is recognizable by DFA(k+1), but by no PFA(k)

with unbounded true-biased error,

• there exists a language M ′
k that is recognizable by DFA(k+1), but by no PFA(k)

with unbounded false-biased error.

Proof. Consider Mk=Lb, for b =
(
k
2

)
+1. By the Hierarchy Theorem (2.1.1), no NFA(k)

can accept it, hence no true-biased PFA(k) with unbounded error (Theorem 3.0.8) .
The reason why Lb is recognizable by a DFA(k+1) follows from the Hierarchy Theorem.

M ′
k = (Lb)

c. Consider Lb, for b =
(
k
2

)
+1 again. Looking at previous corollary, no

true-biased PFA(k) with unbounded error can accept it. Therefore, if a false-biased
PFA(k) with unbounded error recognized (Lb)

c, it would lead to contradiction (by the
Complement lemma 3.0.7). The reason why (Lb)

c can be recognized by a DFA(k + 1)

follows from the Hierarchy Theorem, since L (DFA(k+1)) is closed under complement.
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True-biased vs false-biased error

Now, we put in contrast the true-biased and false-biased error Monte-Carlo computa-
tions. We look at whether or not it is possible to construct at least a PFA(k) with
unbounded true-biased error, for each language recognized by their bounded coun-
terpart with more heads (PFA(k+1)). Looking at the Corollary 3.1.4, we create an
analogous corollary, this time about the gap in the number of heads required to accept
a certain languages by a PFA(k) with different one-sided errors.

Lemma 3.1.5. For all 2≤k1, 2≤k,

1. there is a language Mk, recognized by PFA(k1) with bounded false-biased error,
that cannot be recognized by any PFA(k) with unbounded true-biased error.

2. there is a language M ′
k, recognized by PFA(k1) with bounded true-biased error,

that cannot be recognized by any PFA(k) with unbounded false-biased error.

Proof. By the Hierarchy Theorem for one-sided error 3.1.1, we know that the language
Lb for b=

(
k
2

)
+1 (>

(
k
2

)
), is not recognizable by PFA(k) with unbounded true-biased

error. However, by the Head Gap lemma (3.1.3), it is recognizable by a PFA(2) with
bounded false-biased error. Hence trivially recognizable by a PFA(k1) with number of
heads k1 ≥ 2.

To prove the second point, by the Hierarchy Theorem, (Lb)
c for b=

(
k
2

)
+1, cannot be

accepted by a PFA(k) with unbounded false-biased error. Yet, by the Head Gap lemma,
it can be recognized by a PFA(2) with bounded true-biased error (thus unbounded with
k1 ≥ 2 heads).

We have essentially proven that the classes of languages recognized by PFA(k)

with (un)bounded true-biased error and PFA(k) with (un)bounded false-biased error
are incomparable:

Corollary 3.1.6. For all 2≤k1, 2≤k2, the classes of languages recognized by

1. PFA(k1) with bounded false-biased error, and PFA(k2) with bounded true-biased
error are incomparable,

2. PFA(k1) with bounded false-biased error, and PFA(k2) with unbounded true-biased
error are incomparable,

3. PFA(k1) with bounded true-biased error, and PFA(k2) with unbounded false-biased
error are incomparable.

4. PFA(k1) with unbounded false-biased error, and PFA(k2) with unbounded true-
biased error are incomparable.

Proof. Follows from the previous lemma, since any language recognized by PFA(k) with
bounded one-sided error, can also be recognized with unbounded error (Lemma 3.0.1).
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Also, any language that cannot be recognized by no PFA(k) with unbounded one-sided
error, also cannot recognized by any PFA(k) with bounded one-sided error.

Power of PFA(k) with unbounded error

The second corollary that Yao and Rivest [YR78] have stated, can be extend for prob-
abilistic automata with unbounded one-sided error. Consider this language (see 2.1):

L′ = {w1 ∗ w2 ∗ · · · ∗ w2b | (b≥1) ∧ (wi ∈ {0, 1}∗ for 1 ≤ i ≤ 2b) ∧ (∃i)(wi 6= w2b+1−i)}

Whether or not it can be extended by a multi-head probabilistic automaton with
bounded one-sided error is nontrivial, and maybe not possible. Since the language
L′ contains arbitrary many sub-words, and by randomly picking one to check the
probability of guessing the “correct” one is arbitrarily low.

Corollary 3.1.7. For each k ≥ 1,

• the language L′ is recognizable by a PFA(3) with unbounded true-biased error but
by no DFA(k).

• the language (L′)c is recognizable by a PFA(3) with unbounded false-biased error
but by no NFA(k) nor any DFA(k).

Proof. To prove the first point, the argument is the following. For each integer k, no
DFA(k) can recognize L′, because if it did, for some k′, it could recognize its complement
(L′)c (since DFA(k)’s are closed under complement) with a fixed number of heads k′.
We could therefore easily construct a DFA(k′) accepting Lb, b =

(
k′

2

)
+ 1, because

Lb = (L′)c ∩ ({0, 1}∗∗)2b−1{0, 1}∗ (since L (DFA(k′)) is closed under intersection with
regular languages) which is a direct contradiction with the Hierarchy Theorem (2.1.1).

From the second corollary (2.1.3), we know that L′ can be recognized by a NFA(3).
Therefore, by the Theorem 3.0.8 (unbounded true-biased is same as non-deterministic),
a PFA(3) with unbounded true-biased error can accept L′ with a simple imitation of
non-determinism.

Proving the second corollary, the argument is analogous to our proof of the first
point. For each integer k, no NFA(k) can recognize (L′)c, because if it did, for some
k′, we could again easily construct a NFA(k′) accepting Lb, b =

(
k′

2

)
+ 1, because

Lb = (L′)c ∩ ({0, 1}∗∗)2b−1{0, 1}∗ (since L (NFA(k′)) is closed under intersection with
regular languages) which is a direct contradiction with the Hierarchy Theorem (2.1.1).

We could, using the Theorem 3.0.8 (unbounded true-biased is non-deterministic),
construct PFA(3) with unbounded false-biased error accepting (L′)c. However we choose
to write an algorithm for the PFA(3) A accepting (L′)c with unbounded false-biased
error, since this way, we have an example of a automaton accepting with unbounded
error.
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0. “Verify format”
With head 3, run a regular check for the format in tandem with the main algo-
rithm. (({0, 1}∗∗)2l−1{0, 1}∗ for some l)

1. “Pick sub-word”
Flip a fair coin, until you throw Heads. Every Tails, advance heads 1,3 by one.
With probability 1

2m+1 , arrive at sub-word wm (throw Tails m times, Heads once).

2. “Find the corresponding sub-word”
Move heads 2 and 3 simultaneously, where if a head reads * (or $), it waits for
the other head to arrive to its next * (or $) until head 3 reaches end-marker $.
(We can assume that the number of sub-words is even, since we verify that.)
Thus, with head 2 we arrive at sub-word w2b−m+1.

3. “Verify equality”
Accept iff the words under heads 1 and 2 are equal.

Each word w in (L′)c, A accepts with probability 1, since any two sub-words are equal,
therefore any computation is always accepting.

For word w not in (L′)c, the word is either not of the format ({0, 1}∗∗)2l−1{0, 1}∗

for some l, which we can detect with a regular check, or, there exists an index i, such
that wi 6= w2l−i+1. Analyzing our algorithm, we see that A rejects such word with
probability ≥ 1

2i+1 > 0 (arrive at sub-word i, then verify the (in)equality) 2 . It thus
accepts the word with probability ≤ 2i+1−1

2i+1 < 1. Hence satisfying the definition of
accepting a language with unbounded false-biased error.

This corollary strengthens the previous claim for acceptance with unbounded error,
by presenting a language that no (non-)deterministic automaton can accept, with any
fixed number of heads, yet probabilistic automata can, with unbounded one-sided error.
This only illustrates the strength of probabilistic computations with unbounded error.

3.2 Summary: comparison of k-head models

The following tables illustrate the corollaries that we have stated.
The first table summarizes relations between classes of languages recognized by

PFA(k) with various one-sided errors. Relations between them and classes recognized
by DFA(k) are the result of the Corollary 3.1.4, and an observation of The Hierarchy
theorems. Relations between classes recognized by PFA(k)’s with various errors follow
from the Corollary 3.1.6. The rest follow from the equivalence between unbounded
PFA(k)’s and NFA(k)’s (3.0.8) and some trivial observations from the beginning of
this chapter (3).

2Or arrive at the corresponding word w2l+1−i (happens with nonzero probability). Hence the “≥”.
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PFA(k) PFA(k)

with bounded ⊆ with unbounded = NFA(k)

( true-biased true-biased + *

DFA(k)

+ * + *
+ *

+ * DFA(k+1)

( PFA(k) PFA(k) + *

with bounded ⊆ with unbounded
false-biased false-biased

Table 3.1: Relations between classes of languages recognized with k-heads

The second table illustrates the relations between the classes of languages recog-
nized by PFA(k) and PFA(k + 1) with (un)bounded true-biased error, and the (non-
)deterministic finite automata. The relations hold based on the the Hierarchy theorems
(2.1.1, 3.1.1), the previous corollary (3.1.6), the fact that even unbounded probabilistic
automata with one-sided error cannot simulate deterministic with more heads (3.1.4.2),
and the obvious lemmas in section at the beginning of this chapter (3).

PFA(k) PFA(k)

DFA(k) ( with bounded ⊆ with unbounded = NFA(k)

true-biased true-biased

(
+

* (

+
* (

PFA(k+1) PFA(k+1)

DFA(k+1) ( with bounded ⊆ with unbounded = NFA(k+1)

true-biased true-biased

Table 3.2: Relations between classes of languages recognized with k and k+1 heads

Remark. Extra +* could be written between DFA(k+1) and PFA(k) with unbounded.

An analogous table can be constructed for PFA(k) with false-biased error, while
removing the last column (= NFA).

3.3 Closure properties

Regular intersection

Theorem 3.3.1 (One-sided PFA(k) are closed under regular intersection). For k ≥ 1,
for every regular language R ∈ R, and

• each language L accepted by a PFA(k) with true-biased error with error bound Λ,
there is a PFA(k) recognizing L ∩R with true-biased error with error bound Λ.
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• each language L accepted by a PFA(k) with false-biased error with error bound Λ,
there is a PFA(k) recognizing L ∩R with false-biased error with error bound Λ.

• each language L accepted by a PFA(k) with unbounded true-biased error,
there is a PFA(k) recognizing L ∩R with unbounded true-biased error.

• each language L accepted by a PFA(k) with unbounded false-biased error,
there is a PFA(k) recognizing L ∩R with unbounded false-biased error.

Proof. Our construction will be similar to the classic proof of why regular languages
are closed under intersection (see [HMU07]). The new automaton A′ will verify the
regularity with its first head (by simulating the DFA recognizing R).

Let A = (QA,Σ, δA, q0, Qacc, Qrej) be the automaton recognizing L with given error.
For each regular language, there exists a DFA, recognizing that language, let DFA Ā

by the one recognizing R. We construct the new PFA(k) A′ as follows. The set of
states of the new automaton A′ will be Q× Q̄, and the set of accepting states will be
Qacc × F̄ . Formally:

A′ = (QA×Q̄, Σ, δ′, (q0, q̄0), Qacc×F̄ , QA×Q̄−Qacc×F̄ )

where the new transition function δ′, is constructed as follows:

(∀q, q′ ∈ QA)(∀p ∈Q̄)(∀a1, . . . , ak ∈ Σ$)(∀d1, . . . , dk ∈ {0, 1})

δA(q, a1, . . . , ak,q
′, d1, d2, . . . , dk)=p > 0

=⇒ δ′((q, p), a1, . . . , ak, (q
′, δ̄(p, a1)), 1, d2, . . . , dk)=p iff d1=1

=⇒ δ′((q, p), a1, . . . , ak, (q
′, p), 0, d2, . . . , dk)=p iff d1=0

The correctness stems from the idea, that when A′ moves the first head, it computes one
step of computation of Ā (if head 1 is stationary, no computation takes place). Since
PFA(k) can accept only if all heads arrive at $, at the end of the computation, the
DFA Ā already finished its computation (read the whole word). Thus, we know whether
or not the word is in R, by simply looking at the state (of the regular component).
Moreover, since all reads are at $, the PFA(k) is already decided whether or not w is
in L (look at the state of the original automaton). Hence, we know whether or not the
word w is in language L ∩R (it is, if the state of both the regular component and the
original component is accepting, i.e., if the last state (q, q̄) ∈ Qacc×F ).

This construction uses no new randomization, we simply additionally reject words
if they are not in R. Therefore, if a word w, was accepted (rejected) with probability
pA(w) (p

rej
A (w)), it is now accepted (rejected) with probability pA(w) or 0 (respectively

prejA (w) or 1). If L was accepted with bounded error, because accepting or rejecting
words with probability 0/1 is “deterministic”, we have not “broken any bound”, hence
satisfying any error bound (see Corollary 3.0.6).
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Complement

We will prove, both for bounded and unbounded PFA(k) in one proof, that the class
of languages recognized by a PFA(k) with (un)bounded one-sided error are not closed
under complement.

Corollary 3.3.2 (True-biased PFA(k) are not closed under complement). For all k≥2,
there is a language Mk, recognized by a PFA(k) with bounded true-biased error, such
that there exists no PFA(k) accepting (Mk)

c with unbounded true-biased error.

Proof. Let Mk=(Lb)
c, for b =

(
k
2

)
+ 1. Firstly, by the Head Gap lemma (3.1.3), Mk

can be recognized by PFA(2) with bounded true-sided error, hence by PFA(k) with
(un)bounded true-sided error. Secondly, (Mk)

c = (Lb)
cc = Lb cannot be recognized by

no PFA(k) with unbounded true-sided error as a result of the Hierarchy Theorem for
one-sided error (3.1.1).

Corollary 3.3.3 (False-biased PFA(k) are not closed under complement). For all k≥2,
there is a language Mk, recognized by a PFA(k) with bounded false-biased error, such
that there exists no PFA(k) accepting (Mk)

c with unbounded false-biased error.

Proof. Let Mk=Lb, for b =
(
k
2

)
+1, the reasoning is analogous to the previous proof.

Intersection

In order to prove that true-biased PFA(k), both bounded and unbounded, are not
closed under intersection, we define the following useful languages.

Lvwv = {v ∗ w ∗ v | (v ∈ {0, 1}∗) ∧ (w ∈ {0, 1, ∗}∗)}

L′
b = {w1 ∗ w2 ∗ · · · ∗ w2b | (wi ∈ {0, 1}∗) ∧ (wi = w2b+1−i) for 2 ≤ i ≤ b}

(3.1)

Lvwv ∩L′
b = Lb, since L′

b is Lb where we do not care about the first and last sub-words.

Lemma 3.3.4. The language Lvwv can be recognized by a DFA(3) and the language L′
b

can be recognized by a DFA(k) for b ≤
(
k
2

)
+ 1, for all k ≥ 2.

Proof. The language Lvwv can be recognized by a DFA(3) by the following algorithm,
combined with a regular check for the format (at least two ∗).

i. “Find last sub-word”

1. Move head 3 to the next *.

2. If head 3 reads *, continue. If head 3 reads $ instead, go to [ii.],

3. Move head 2 to the next *.

4. Goto [1.].
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ii. “Verify equality” Accept if and only if sub-words under heads 1 and 2 are equal.
(move heads simultaneously while they read the same symbols).

Since L′
b = {0, 1}∗ · {∗} · Lb−1 · {∗} · {0, 1}∗, it is not hard to see, that to recognize

this language we can do a regular check for format, and use the deterministic algorithm
from the Hierarchy Theorem (2.1.1), to verify the rest (more complicated part).

Lemma 3.3.5. Lvwv can be recognized by a PFA(3) with bounded true-biased error,
and L′

b can be recognized by a PFA(k) with bounded true-biased error, for b ≤
(
k
2

)
+ 1,

Proof. Trivial observation, follows from Lemma 3.3.4 and Corollary 3.0.6.

Now we can state the theorem we were aiming for, that PFA(k) are not closed
under intersection. However, we prove it for case k ≥ 3, and only later add a case for
k = 2. The reason is, that in the general case, we prove a bit more, that for each k,
one of the languages in the counterexample pair is recognized by a PFA with just fixed
number of heads (3).

Theorem 3.3.6 (True-biased PFA(k) are not closed under intersection). There exists
a language M , such that for all k≥3, there is a language Mk, such that there exists no
PFA(k) recognizing Mk ∩M with unbounded true-biased error, yet both Mk and M are
recognized by a PFA(k) with bounded true-biased error.

Proof. Let M = Lvwv, and Mk = L′
b for b =

(
k
2

)
+ 1. We see that Mk ∩ M = Lb,

which we know, by the Hierarchy Theorem for one-sided error (3.1.1), that cannot be
recognized by a PFA(k) with unbounded true-biased error, since b >

(
k
2

)
. Lvwv, L

′
b

are accepted by a PFA(k) with bounded true-biased error (for k ≥ 3), because of the
previous Lemma 3.3.5.

Theorem 3.3.7 (True-biased PFA(2) are (also) not closed under intersection). There
exist two languages M2 and M , such that there exists no PFA(2) recognizing M2 ∩M

with unbounded true-biased error, yet both M2 and M are recognized by a PFA(2) with
bounded true-biased error.

Proof. Let M = {v ∗w1 ∗w2 ∗ v | (v ∈ {0, 1}∗)∧ (w1, w2 ∈ {0, 1}∗)} and M2 = L′
2. The

language M is easily acceptable by a DFA(2), since now, we know the number of ∗. L′
2

is also recognizable PFA(2) (by Lemma 3.3.5). Also L′
2 ∩M = L2 (Luvvu), which we

know to be not recognizable by any PFA(2).

Now we look at the class of languages recognized by Monte-Carlo PFA(k) with
false-biased error. Unlike their true-biased counterpart, this class is closed under in-
tersection. However, our general construction comes with a cost of increasing the
probability of error (which may not always be the optimal error bound).
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Theorem 3.3.8 (False-biased PFA(k) are closed under intersection). For each k ≥ 1,
and for every two languages L1 and L2,

• both accepted by some PFA(k) with bounded false-biased error,
there is a PFA(k) recognizing L1 ∩ L2 with bounded false-biased error.

• both accepted by some PFA(k) with unbounded false-biased error,
there is a PFA(k) recognizing L1 ∩ L2 with unbounded false-biased error.

Informally. We construct a PFA(k) that will with probability p1 verify if word w is in
L1, and with p2 if w is in L2. Accepting if and only if the selected algorithm accepts.
(Both succeed on the good words, just as the false-biased definition requires.)

Proof. Let A′ = (Q′,Σ, δ′, q′0, Q
′
acc, Q

′
rej) be the PFA(k) recognizing L1 with false-biased

error with error bound Λ1 and A′′ = (Q′′,Σ, δ′′, q′′0 , Q
′′
acc, Q

′′
rej) the PFA(k) recognizing

L2 with false-biased error with error bound Λ2. Without loss of generality we assume
that Q′ ∩ Q′′ = ∅. We construct the PFA(k) A = (Q,Σ, δ, q0, Qacc, Qrej) accepting
L1 ∩ L2 with bounded false-biased error by joining states and delta functions of A′

and A′′. We first define an initial delta function δinit for any3 non-zero probabilities
p1 + p2 = 1, by (∀a1, . . . , ak ∈ Σ$) :

δinit(q0, a1, . . . , ak, q
′
0, 0, . . . , 0)=p1, δinit(q0, a1, . . . , ak, q

′′
0 , 0, . . . , 0)=p2

We then construct A:
Q = Q′ ∪Q′′ ∪ {q0}
δ = δ′ ∪ δ′′ ∪ δinit (since functions are just sets in their essence).
Qacc = Q′

acc ∪Q′′
acc

Qrej = Q′
rej ∪Q′′

rej

The automaton constructed in this fashion, with probability p1 simulates a com-
putation on A′, and with probability p2, simulates a computation on A′′. Therefore we
can analyze that words

• in L1 and L2 are accepted with probability 1.

• in L1 but not in L2 are accepted with probability ≤ p1 + p2Λ2.

• in L2 but not in L1 are accepted with probability ≤ p1Λ1 + p2.

• not in L2 neither in L1 are accepted with probability ≤ p1Λ1 + p2Λ2

Hence, every word not in L1 ∪ L2 is accepted by A with probability at most Λ =

max{p1 + p2Λ2, p1Λ1 + p2} (since Λ1,Λ2 ≤ 1). Because p1p2>0, Λ < 1, therefore
L1 ∩ L2 is recognized by PFA(k) A with bounded false-based error.

The proof for the unbounded case is analogous, we simply need to argue that the
probabilities of accepting words not in L1 ∩ L2 is not 1, which is obvious since with

3subject to the TP – the set of allowed probabilities
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nonzero probability we simulate an algorithm that with nonzero probability rejects such
word. Thus it is rejected with nonzero probability, which is equivalent with accepting
said word with not-certain probability (< 1).

Remark 3.3.9. We may want to minimize Λ. First, let p1=p and p2=1−p, then
we are minimizing max{p+(1−p)Λ2, pΛ1+(1−p)}. By a simple observation we see
that by increasing p, we increase the first probability, and by decreasing p we increase
the second. Hence, the optimal minimized Λ will have these two probabilities equal
(because by changing p, we increase one of the probabilities, increasing Λ, no longer
being optimal).

p + (1− p)Λ2 = pΛ1+(1− p)

p(1− Λ1) + (1− p)(Λ2 − 1) = 0

p(1− Λ1) + 1(Λ2 − 1)− p(Λ2 − 1) = 0

p(1− Λ1 + 1− Λ2) = (1− Λ2)

p =
1− Λ2

2− Λ1 − Λ2

*(If one were to compute (1− p) one would end up at a symmetric 1−Λ1

2−Λ1−Λ2
.)

Λ = p + (1− p)Λ2

=
1− Λ2

2− Λ1 − Λ2

+ (1− 1− Λ2

2− Λ1 − Λ2

)Λ2

=
1− Λ2

2− Λ1 − Λ2

+
(2− Λ1 − Λ2)− (1− Λ2)

2− Λ1 − Λ2

Λ2

=
1− Λ2

2− Λ1 − Λ2

+
1− Λ1

2− Λ1 − Λ2

Λ2

=
1− Λ2 + Λ2 − Λ1Λ2

2− Λ1 − Λ2

Λ =
1− Λ1Λ2

2− Λ1 − Λ2

We can see that the optimal probability is not always picking p = 1/2, but actually
computing p depending on the error bounds of the original algorithms.

Union

Now we explore the set operation union. By de Morgan’s laws, we know that L1∪L2 =

((L1)
c ∩ (L2)

c)c. Therefore we can easily use proofs for intersection to prove properties
of union, because of the Complement lemma 3.0.7.

Theorem 3.3.10 (True-biased PFA(k) are closed under union). For each k ≥ 1, and
for every two languages L1 and L2,
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• both accepted by some PFA(k) with bounded true-biased error,
there is a PFA(k) recognizing L1 ∩ L2 with bounded true-biased error.

• both accepted by some PFA(k) with unbounded true-biased error,
there is a PFA(k) recognizing L1 ∩ L2 with unbounded true-biased error.

Informally. We construct a PFA(k) that will with probability p1 verify if word w is in
L1, and with p2 if w is in L2. Accepting if and only if the selected algorithm accepts.
(Both fail on the incorrect words, just as the true-biased definition requires.)

Proof. Since L1 and L2 are accepted by some PFA(k)’s with true-biased error with error
bounds Λ1 and Λ2, by the Complement lemma 3.0.7, (L1)

c and (L2)
c are accepted by

some PFA(k)’s with false-biased error with error bounds Λ1 and Λ2. Because the class
of languages recognized by a PFA(k) with bounded false-biased error are closed under
intersection (Theorem 3.3.8), we know that there exists a PFA(k) accepting (L1)

c∩(L2)
c

with false-biased error with error bound Λ. We now apply the Complement lemma
(again), to prove that ((L1)

c ∩ (L2)
c)c is accepted by some PFA(k) with true-biased

error, with error bound Λ. Hence we have proven that L1∪L2 is accepted by a PFA(k)

with bounded true-biased error.

Remark. Moreover, since the Complement lemma keeps the error bounds intact, we
can use the Remark 3.3.9 to calculate the optimal probabilities p1,p2, to minimize Λ.

Theorem 3.3.11 (False-biased PFA(k) are not closed under union). There exists a
language M , such that for all k≥3, there exists a language Mk, such that there exists
no PFA(k) recognizing Mk ∪M with unbounded false-biased error, yet both Mk and M

are recognized by a PFA(k) with bounded false-biased error.

Proof. LetM = (Lvwv)
c andMk = (L′

b)
c for b =

(
k
2

)
+1. BothMk andM are recognized

by a PFA(k) with bounded false-biased error, by the Complement lemma (3.0.7), since
both (Mk)

c = L′
b and M c = Lvwv are recognized by some PFA(k), k ≥ 3, with bounded

true-biased error (Lemma 3.3.5).
For the purposes of contradiction, assume that there exists a PFA(k) recognizing

Mk ∪M with unbounded false-biased error. Then, by the Complement lemma, there
exists a PFA(k) recognizing (Mk∪M)c = (Mk)

c∩M c = L′
b∩Lvwv = Lb with unbounded

true-biased error, which contradicts the Hierarchy Theorem for one-sided error (3.1.1),
since b =

(
k
2

)
+1 >

(
k
2

)
.

Theorem 3.3.12 (False-biased PFA(2) are (also) not closed under union). There exist
two languages M2 and M , such that there exists no PFA(2) recognizing M2 ∪M with
unbounded false-biased error, yet both M2 and M are recognized by a PFA(2) with
bounded false-biased error.

Proof. Proof is analogous to the proof of the previous theorem (3.3.11). We adapt the
corresponding proof of intersection, with the use of the Complement lemma.



48 CHAPTER 3. MONTE CARLO

Summary: Closure properties

The following table summarizes the theorems encountered in this section.

Class of languages recognized by ∩R c ∩ ∪
PFA with (un)bounded true-biased error X − − X

PFA with (un)bounded false-biased error X − X −

Legend: X: closed under this operation. −: not closed under this operation.



Chapter 4

LasVegas

In this chapter we study the LasVegas variation of the one-way multi-head probabilistic
finite automata. We first state few obvious lemmas, as we did in chapter for Monte-
Carlo PFA(k). For brevity, instead of writing (1 − κ)-correct LasVegas PFA(k), we
may write α-correct LasVegas PFA(k) (α = 1−κ).

Lemma 4.0.1. Let L be a language recognized by a LasVegas PFA(k) A, then

1. p(w) > 0 ⇐⇒ prej(w) = 0

2. p(w) = 0 ⇐⇒ prej(w) > 0

3. L(A) = {w | 0 = prej(w)}

4. L(A)c = {w | 0 < prej(w)}

Proof. Because the definition of LasVegas PFA(k), requires that pFAIL(x) < 1, and
because p(w) + prej(w) + pFAIL(w) = 1 for each w, we prove the first two points:

p(w) > 0
def
=⇒ prej(w) = 0

prej(w) = 0 =⇒ 1 = p(w)+pFAIL(w) < p(w)+1 =⇒ 0 < p(w)

prej(w) > 0
def
=⇒ p(w) = 0

p(w) = 0 =⇒ 1 = prej(w)+pFAIL(w) < prej(w)+1 =⇒ 0 < prej(w)

To prove the rest, we recall the definition, for a language accepted by LasVegas PFA(k):
L(A)={w ∈ Σ∗ | 0 < p(w)}. Since p(w) > 0 ⇔ prej(w) = 0, we equivalently rewrite it
as L(A)={w ∈ Σ∗ | 0 = prej(w)}, proving the third point. The complement (L(A)c),
by definition, is {w ∈ Σ∗ | 0 = p(w)}. Since p(w) = 0 ⇔ prej(w) > 0, we equivalently
rewrite it as L(A)c = {w ∈ Σ∗ | 0 < prej(w)}, proving the last point.

Lemma 4.0.2. For each 0 ≤ κ1 < κ2 < 1: If A is a (1−κ1)-correct LasVegas PFA(k),
then it is also a (1− κ2)-correct LasVegas PFA(k).

Proof. Follows trivially from definition (1.4.10).

49
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Lemma 4.0.3 (DFA(k) ⊆ LasVegas PFA(k)). Let L be a language accepted by DFA(k),
then we can construct a 1-correct LasVegas PFA(k) accepting L.

Proof. Since L is accepted by DFA(k), let the DFA(k) A = (Q,Σ, δA, q0, F ) accepting
L in a normal form where each computation on it is finite1. We construct PFA(k) A′ =

(Q,Σ, δ′A, q0, F,Q − F ), where for each valid transition in δA, we set such transition’s
probability to 1 in δ′A.
Formally: (∀q, p ∈ Q)(∀a1, . . . , ak ∈ Σ$)(∀d1, . . . , dk ∈ {0, 1}) :

δA(q, a1, . . . , ak)=(p, d1, . . . , dk) =⇒ δ′(q, a1, . . . , ak, p, d1, . . . , dk) = 1

The PFA(k) A constructed this way is a LasVegas PFA(k), since it behaves exactly the
same as the DFA(k) A (deterministically). Moreover, since the inconclusive states Q−
(F ∪ (Q−F )) = ∅ are nonexistent, and since all possible computations on the DFA(k)

were finite, the probability of FAILURE is bounded by the constant 0. Therefore, A
is a 1-correct LasVegas PFA(k).

Lemma 4.0.4 (LasVegas PFA(k) ⊆ NFA(k)). Let L be a language accepted by a
LasVegas PFA(k), then we can construct a NFA(k) accepting L.

Proof. Let A = (Q,Σ, δA, q0, Qacc, Qrej), we construct NFA(k) A = (Q,Σ, δ′A, q0, Qacc),
where for each transition with nonzero probability in δA, we add it as a possible tran-
sition in δ′A. Formally: (∀q, p ∈ Q)(∀a1, . . . , ak ∈ Σ$)(∀d1, . . . , dk ∈ {0, 1}) :

δ(q, a1, . . . , ak, p, d1, . . . , dk) > 0 =⇒ δ(q, a1, . . . , ak) 3 (p, d1, . . . , dk)

L(A) contains words with p(x) > 0, in another words, for each word w in L(A),
there exists an accepting computation on w. Since we have just copied the δ-function
(removing the probabilities) the accepting computation is still valid, hence, the non-
determinism will find it, and accept it.

L(A) does not contain words x with p(x) = 0, words with no accepting computation.
Hence non-determinism will conclude that there exists no accepting computation on x,
and reject it. Thus, for the NFA(k) A′ constructed, we have proven L(A′) = L(A).

Remark. We have not required anywhere that the LasVegas PFA(k) be α-correct.
Hence this proof works even for “unbounded” LasVegas.

4.1 Union of DFA(k)

Consider the way how LasVegas algorithms are defined. When they give an answer,
it must be correct, yet sometimes, they may provide no answer (FAILURE). Since

1Possible, since we can detect infinite cycles in deterministic automata (DFA(k)) – one cannot
meaningfully move without moving heads for much longer than the number of states |Q|.
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we are in the domain of one-way automata, we can never re-read our input (and
we cannot store it in our finite state), yet we can see one set of problems that can
easily be solved by these LasVegas multi-head automata, and not their multi-head
deterministic counterparts: Problems where no actual non-determinism is involved,
yet the information, about what we were supposed to verify deterministically, is given
too late (e.g. at the end). Let L be a language over Σ = {0, 1,#, U, V }:

L = {u#v#v′#u′α | u, v, v′, u′ ∈ {0, 1}∗, α∈{U, V }, (α=U ⇒ u=u′), (α=V ⇒ v=v′)}

This idea is similar to the idea of marked union, but we give the information too
late, rather than early. Example: an end-marked union.

L = {wU | w ∈ Lu} ∪ {wV | w ∈ Lv}

Lu = {u#v#v′#u′ | u, v, v′, u′ ∈ {0, 1}∗, u = u′}

Lv = {u#v#v′#u′ | u, v, v′, u′ ∈ {0, 1}∗, v = v′}

(4.1)

Remark. Note that all the above is true for a usual union of languages L′
u, L

′
v, if they

have a different end-marker, such as {u#v#v′#u′U | u=u′}∪{u#v#v′#u′V | v=v′}.

Lemma 4.1.1. The above constructed language L cannot be accepted by any DFA(2).

Proof. If, during computation, the automaton reads the last symbol U/V , one head is
at the end of the word. And with only one remaining head, the automaton cannot check
the equality of two sub-words,a corollary of simple pumping lemma (see [HMU07]).

This proof is quite similar to the proof of 2.0.1 (DFA(2) cannot accept Luvvu).
However the trick this time is the following: We define a mistake for a pattern of a
word on a deterministic automaton A, as the index of sub-words, in which the heads
are never simultaneously (we know from our analysis of Luvvu, that on words of format
u ∗ v ∗ v′ ∗ u′, with two heads, either u, u′ or v, v′ are never visited simultaneously).
Then, we classify words w ∈ (Lu ∪ Lv) into classes depending on the pair of patterns
(pattern(wU), pattern(wV )), we prove that for each word the mistake in pattern for
wU and wV is the same. Lastly, we look at the mistake (wlog V), and we use the
cut-and-paste argument (on xV, yV ).

Formally, we define location and pattern identically as in Lemma 2.0.1. We addi-
tionally define a mistake for a pattern of a word on a deterministic automaton A, as
the index of sub-words, in which the heads are never simultaneously (we know from
our analysis of Luvvu, that on words of format u∗ v ∗ v′ ∗u′, with two heads, either u, u′

or v, v′ are never visited simultaneously).
Define Ln = {w1#w2#w′

2#w′
1 | w1=w1′ ∨w2=w′

2 ∈ Σn}, obviously Ln ⊆ (Lu∪Lv).
We classify words w ∈ Ln into classes based on the pair (pattern(wU), pattern(wV )).



52 CHAPTER 4. LASVEGAS

There are 23n+23n−22n(≥ 23n) words in Ln, the length of a pattern is at most 2(4+1)

(each head must go through all 4 sub-words and $), then the number of possible patterns
p(n) is at most (|Q| · (4(n+1))2)2(4+1) 2. Thus, based on the Dirichlet’s principle, there
is a class S0 with |S0| ≥ 23n

p(n)2
words.

Now, since words in S0 have the same mistake (wi), we classify words in S0 into
classes based on the string “wjw

′
j” i 6= j (if mistake on u, classify based on v). By the

Dirichlet’s principle, there is a class S1, such that |S1| ≥ |S0|
22n

≥ 2n

p(n)2
. Pick reasonably

large n, such that |S1| ≥ 2 (we can, since p(n) is polynomial in n).

We now have two words x 6=y ∈ S1, which have the same pattern for xU, yU and
xV ,yV . Also, these two words differ only in the corresponding sub-words that are
never read simultaneously.

Hence an analogous cut-and-paste argument follows. WLOG. heads never visit u, u′

simultaneously. We take the two words: x=xu#xv#xv′#xu′U, y=yu#yv#yv′#yu′U

and create z=xu#xv#xv′#yu′U . Since when reading xu, the other head does not read
yu′ , the heads of the DFA(2) read the same input (and vice-versa), cut-and-pasting
configurations as in 2.0.1, constructs a valid accepting computation of A for a word
not in L.

We have thus constructed an accepting computation on a word where the sub-words
u, u′ were supposed to be equal, but were not. Contradiction.

Addendum: The reason why, for each 2-head deterministic automaton A, and for
each word w ∈ Lu ∪ Lv, the mistake for pattern for wU and wV on A, is the same,
is the following. The difference in the mistake on wU,wV must take place before any
head reaches the end, since after one heads reaches the end, the movement of heads
in pattern is determined (the other head goes to the end). However, before any head
reads the last symbol, the heads read the same input as if they were reading w (have
the same pattern). Therefore, the mistake is the same on wU and wV , moreover, the
pattern is the same until one head reads the end.

Remark. Note that we have intentionally used the words “too late” to describe the
“timing” when we get the missing information. Because we can define a language L′,
similar to L, such that we get the information “before” the end and still it won’t help.

L′ = { u#v#v′αv#u′αu | αu, αv ∈ {ε, !}, αuαv=!, (αu=! =⇒ u=u′), (αv=! =⇒ v=v′) }

In this case we are given the information (which word we should have checked) only
later, after one head irreversibly skips over v′, or compares v, v′ irreversibly skipping
u, i.e., after it checked/decided not to check one of the words. The argumentation why

2(#configurations)
#heads(#subwords+1)
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L′ cannot be accepted by DFA(2) would follow analogously as above – since we just
argued why the mistake is the same “both” patterns 3.

However, we prove that LasVegas PFA(k) can recognize a union of disjoint lan-
guages recognized by DFA(k), with an additional requirement, that those languages
have different format of words, detectable by a finite automaton. Such as languages
{u#v#v#u} ∪ {w ∗ w} ∪ {anbncndn}.

Theorem 4.1.2. Let L = (L1, L2, . . . , Lm) be an m-tuple of disjoint languages rec-
ognizable by k-head one-way deterministic automata (Li ∈ L (DFA(k))). Let A =

(A1, A2, . . . , Am) be an m-tuple of one-way deterministic automata (DFA(1) Ai), such
that

(∀i)(∀w ∈ Σ∗) w ∈ Li ⇒ w ∈ L(Ai)

(∀i, j i6=j)(∀w ∈ Σ∗) w ∈ Lj ⇒ w /∈ L(Ai)

Then, there exists a 1/m-correct LasVegas PFA(k) that accepts
⋃m

i=1 Li.
(It follows logically that Li ⊆ L(Ai).)

Informally. We have some languages we want to accept a union of. Moreover, we have
a finite automaton that can (regularly) detect in which of the given languages the input
word has a chance of being accepted. Therefore, we can verify whether w ∈ Li, for
random i, and the regular check will, at the end, tell us whether or not we checked the
correct Li. (Only one k-headed automaton can run at one time, however any number
of regular checks can be performed in parallel)

For example, we detect {u#v#v#u} or {w#w} or {anbn}. The DFA check, if
word has exactly 3 # or exactly 1 # or zero #. Note that any automaton in A can do
anything with a word that has 10 #, since none of our languages contain such word.

Proof. We have that Li is recognizable by DFA(k), so it follows that for each i, there
exists a DFA(k) Bi such that L(Bi) = Li. We also have a m-tuple of finite automatons
A, each accepting a Regular language. It then follows (because regular languages
are closed under union), that there must exist a one-way deterministic automaton A

accepting a union of these languages
⋃m

i=1 L(Ai).

The one-way LasVegas PFA(k) accepting the union L =
⋃m

i=1 Li works as follows:

• “Roll a m-sided die”
With probability 1

m
, go into into a state q0,i for each i ∈ {1..m}

• Simulate the computation of Bi (k-head test w
?
∈ Li) while simultaneously run-

ning the computations of Ai and A (both regular).
3We argued that the automaton decides “not to check” one of the words prior to reading ”!”. Hence,

it cannot compute differently based on the sole change in ”!”.
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• After each and every head arrives at end ($), check the states:
– if A rejected, REJECT. //definitely not in any Li

– if A accepted,
∗ if Ai rejected, FAILURE //not in this Li, maybe in another
∗ if Ai accepted, //maybe in this Li, but nowhere else

· if Bi accepted, ACCEPT.
· if Bi rejected, REJECT.

Probabilistic analysis:

• w ∈ L =⇒ (∃j)w ∈ Lj, and we know that Lj ⊆ L(Aj) ⊆ L(A).
Hence, if we roll i 6=j, Ai will reject, result is FAILURE (with probability m−1

m
).

However, if we roll i=j, A,Ai and Bi will accept, result is ACCEPT (correctly).

• w /∈ L, we need to consider two cases: w /∈ L∧w /∈ L(A) and w /∈ L∧w ∈ L(A).

w /∈ L ∧ w /∈ L(A) =⇒ will trivially be rejected by A (correctly).

w /∈ L ∧ w ∈ L(A) =⇒ (∃j)w ∈ L(Aj)

Hence, if we roll i 6=j, Ai will reject, result is FAILURE (with probability m−1
m

).
But, if we pick i=j, Ai will accept, and Bi reject, result is REJECT (correctly).

Hence, the probability of FAILURE on each w ∈ Σ∗ is at most κ = m−1
m

= 1− 1
m
,

and when the algorithm accepts or rejects, it does so correctly (It never accepts a word
it rejects or vice-versa). We therefore satisfy the definition of a language recognized by
a 1/m-correct LasVegas PFA(k).

Remark. Note that (∀i) Li ⊆ L(Ai), therefore a situation “Ai rejected and Bi accepted”
will never happen. Note that we need to check both A and Ai, in order to differentiate
between w not in any Li, and w not in this Li.

Corollary 4.1.3 (DFA(2) ( LasVegas PFA(2)). There is a language M , recognizable
by a LasVegas PFA(2), but by no DFA(2).

Proof. Let M=L (see equation 4.1). By Lemma 4.1.1, L cannot be recognized by no
DFA(2). However L can by recognized by a 1/2-correct LasVegas PFA(2), since for L =

LuU ∪ LvV , we can use Lemma 4.1.2 with L = (Lu·{U}, Lv·{V }) and A = (AU , AV ),
where AU , AV are finite automata recognizing regular languages {0, 1}∗U, {0, 1}∗V
respectively.

4.2 Hierarchy for LasVegas

Just as we did in the chapter about Monte-Carlo PFA(k), we can ask, whether or not,
adding heads does increase the expressive power of the model. In this case, the result
and the proof are analogous to the Monte-Carlo case.
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Consider this language (see 2.1):

Lb = {w1 ∗ w2 ∗ · · · ∗ w2b | (wi ∈ {0, 1}∗) ∧ (wi = w2b+1−i) for 1 ≤ i ≤ 2b}

Theorem 4.2.1 (Hierarchy for LasVegas PFA(k)). For each integer k ≥ 2 the language
Lb is recognizable by a LasVegas PFA(k) if and only if b ≤

(
k
2

)
.

Proof. When b ≤
(
k
2

)
, the language Lb is recognizable by a DFA(k) as a result of the

Hierarchy Theorem (2.1.1). Thus, by Lemma 4.0.3, we construct a 1-correct LasVegas
PFA(k) recognizing Lb. Secondly, Lb is not recognizable by any LasVegas PFA(k)

when b >
(
k
2

)
, because if such LasVegas PFA(k) existed, we could construct a NFA(k)

recognising Lb (Lemma 4.0.4), which would contradict the Hierarchy Theorem.

Corollary 4.2.2. Lb is accepted by a 1-correct LasVegas PFA(k), for b ≤
(
k
2

)
, k ≥ 2.

Remark. We have proven, that for each k ≥ 2, there is a language Mk (M ′
k) that

is recognized by a 1-correct LasVegas PFA(k + 1) but not by any LasVegas PFA(k).
Hence the name, “Hierarchy”. Also note that we have proven this hierarchy for both
α-correct and unbounded LasVegas PFA(k).

4.3 LasVegas and Monte-Carlo

In this section, we explore the relations between LasVegas and Monte-Carlo PFA(k).
We show analogous results as in the model of Turing machines ZPP = RP ∩ coRP ,
i.e., LasVegas can recognize languages if and only if both True-biased and False-biased
algorithms can.

Lemma 4.3.1 (True-Biased ⊇ LasVegas). For every k ≥ 1, and every language L

recognized by a (1−κ)-correct LasVegas PFA(k), L can also be recognized by a PFA(k)

with bounded true-biased error with error bound κ.

Informally. LasVegas always tells the truth. Thus, if we want to be true-biased, we
move the inconclusive computations to rejecting (accepting will still be truthful).

Proof. Let A = (Q,Σ, δ, q0, Qacc, Qrej) be the (1−κ)-correct LasVegas PFA(k) in ε-free
normal form (we need to avoid infinite computations) recognizing L. We construct A′ =

(Q,Σ, δ, q0, Qacc, Q − Qacc). By this construction, each computation that previously
ended with FAILURE, (pFAIL

A (w) ≤ κ), is now rejecting. Hence, for w ∈ L, the
probability of accepting w is just as it was before, ≥ 1−κ. The probability of accepting
w /∈ L is also still 0. Moreover, by transferring the “inconclusive” states to rejecting,
we have eliminated inconclusive computations (A′ is Monte-Carlo). Thus satisfying the
definition of recognizing L with bounded true-biased error with error bound κ (section
1.3).
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Lemma 4.3.2 (False-Biased ⊇ LasVegas). For every k ≥ 1, and every language L

recognized by a (1−κ)-correct LasVegas PFA(k), L can also be recognized by a PFA(k)

with bounded false-biased error with error bound κ.

Informally. LasVegas tells always the truth, thus if we want to be false-biased, we move
the inconclusive computations to accepting (rejecting will be truthful).

Proof. Let A = (Q,Σ, δ, q0, Qacc, Qrej) be the (1−κ)-correct LasVegas PFA(k) in ε-free
normal form (we need to avoid infinite computations) recognizing L. We construct A′ =

(Q,Σ, δ, q0, Q − Qrej, Qrej). By this construction, each computation that previously
ended with FAILURE (pFAIL

A (w) ≤ κ), now ends with acceptance. Hence, for w /∈ L,
the probability of rejecting w is just as it was before, ≥ 1−κ. The probability of
rejecting w ∈ L is also still 0. Therefore the probability of accepting w /∈ L is ≤ κ, and
the probability of accepting w ∈ L is 1. By transferring the “inconclusive” states to
rejecting, we have eliminated inconclusive computations. Hence, A′ is a Monte-Carlo
PFA(k) that is satisfying the definition of accepting with false-biased error with error
bound κ (see 1.3).

Lemma 4.3.3 (LasVegas ⊇ (True-biased ∩ False-biased)). For each k ≥ 1, and each
language L recognized by a PFA(k) with true-biased error with error bound Λ1, si-
multaneously recognized by a PFA(k) with false-biased error with error bound Λ2, the
language L is also recognized by a (1−κ)-correct LasVegas PFA(k).

Informally. The LasVegas randomly chooses one of the algorithms, if picked true-biased
and accepts, or picked false-biased and rejects it knows it is correct. In the remaining
cases, it cannot be certain, hence it outputs FAILURE.

Proof. Let A′ be the PFA(k) accepting L with true-biased error with error bound
Λ1, and A′′ the PFA(k) accepting L with false-biased error with error bound Λ2. Let
A′ = (Q′,Σ, δ′, q′0, Q

′
acc, Q

′
rej), and A′′ = (Q′′,Σ, δ′′, q′′0 , Q

′′
acc, Q

′′
rej) such that Q′∩Q′′ = ∅.

We construct the LasVegas PFA(k) accepting L by joining states and delta functions
of A′ and A′′. We first define an initial delta function δinit for any4 non-zero probabilities
p1 + p2 = 1, by the following (∀a1, . . . , ak ∈ Σ$) :

δinit(q0, a1, . . . , ak, q
′
0, 0, . . . , 0)=p1, δinit(q0, a1, . . . , ak, q

′′
0 , 0, . . . , 0)=p2

We then construct the PFA(k) A = (Q,Σ, δ, q0, Qacc, Qrej) by:
Q = Q′ ∪Q′′ ∪ {q0}
δ = δ′ ∪ δ′′ ∪ δinit (since functions are just sets in their essence).
Qacc = Q′

acc (accept iff. true-biased accepted)
Qrej = Q′′

rej (reject iff. false-biased rejected)
4subject to the TP – the set of allowed probabilities
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Firstly, the constructed δ satisfies the constraints in the definition of PFA(k) (1.4.1),
since we have joined δ-functions that used different states. Secondly, by construction
Q − (Qacc∪Qrej) = Q′

rej ∪ Q′′
acc, i.e., we end in a FAILURE if and only if either the

true-biased algorithm rejects, or the false-biased algorithm accepts. For a word w ∈ L,
the false-biased algorithm always accepts, and the true-biased, with probability ≤ Λ1

rejects. Hence pFAIL
A (w) ≤ (Λ1p1 + 1 · p2). Analogously, for a word w /∈ L, the true-

biased algorithm always rejects, and the false-biased, with probability ≤ Λ2 accepts.
Hence pFAIL

A (w) ≤ (1 · p1 + Λ2p2). Since each word is either in L or not in L, by
construction, computation of A on w ∈ Σ∗ is inconclusive with probability at most
κ = max{Λ1p1 + p2, p1 + Λ2p2}. Thus A is a (1−κ)-correct LasVegas PFA(k).

Remark 4.3.4. The value of κ = max{Λ1p1+p2, p1+Λ2p2} is interestingly identical
to the value of the error bound Λ, computed in the proof that the intersection of
two languages recognized by a false-biased PFA(k) can also be recognized with the
same type of error (Theorem 3.3.8). We can therefore use the same calculations as in
Remark 3.3.9, to calculate the optimal p1,p2 to minimize the probability of FAILURE
(minimize κ).

Corollary 4.3.5 (True-Biased ) LasVegas). The class of languages recognized by a
α-correct LasVegas PFA(k) is a strict subset of the class of languages recognized by
PFA(k) with bounded true-biased error.

Proof. We already know that it is a subset from previous Lemma 4.3.1. Therefore,
we only need to prove that the relation is strict, i.e., that there exists a language
recognizable by a PFA(k) with bounded true-biased error, but not by any α-correct
LasVegas PFA(k) (for all concievable α). We use the well known Lb (2.1).

Let Mk = (Lb)
c for b =

(
k
2

)
+ 1. A PFA(k) can recognize Mk with bounded true-

biased error, by the Head Gap lemma 3.1.3. For the purposes of contradiction, assume
that there exists a LasVegas PFA(k) accepting Mk. Then, by Lemma 4.3.2, there
exists a PFA(k) accepting Mk with bounded false-biased error. Which contradicts the
Hierarchy Theorem for one-sided error (3.1.1), since b =

(
k
2

)
+ 1 >

(
k
2

)
.

Corollary 4.3.6 (False-Biased ) LasVegas). The class of languages recognized by a
α-correct LasVegas PFA(k) is a strict subset of the class of languages recognized by
PFA(k) with bounded false-biased error.

Proof. Analogously to the previous corollary, we already know that it is a subset from
previous Lemma 4.3.2, thus we prove that there exists a language recognizable by a
PFA(k) with bounded false-biased error, but not by any α-correct LasVegas PFA(k).

Let Mk = Lb for b =
(
k
2

)
+ 1. A PFA(k) can recognize Mk with bounded false-

biased error, by the Head Gap lemma 3.1.3. For the purposes of contradiction, assume
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that there exists a LasVegas PFA(k) accepting Mk. Then, by Lemma 4.3.1, there
exists a PFA(k) accepting Mk with bounded false-biased error. Which contradicts the
Hierarchy Theorem for one-sided error (3.1.1), since b =

(
k
2

)
+ 1 >

(
k
2

)
.

Unbounded error case

Lemma 4.3.7 (True-Biased ⊇ LasVegas). For every k ≥ 1, and every language L

recognized by a LasVegas PFA(k), L can also be recognized by a PFA(k) with unbounded
true-biased error.

Lemma 4.3.8 (False-Biased ⊇ LasVegas). For every k ≥ 1, and every language L

recognized by a LasVegas PFA(k), L can also be recognized by a PFA(k) with unbounded
false-biased error.

Lemma 4.3.9 (LasVegas ⊇ (True-biased ∩ False-biased)). For each k ≥ 1, and each
language L recognized by a PFA(k) with unbounded true-biased error, simultaneously
recognized by a PFA(k) with unbounded false-biased error, The language L is also
recognized by a LasVegas PFA(k).

Proof. Proofs of the above theorems are analogous to the proofs of their “bounded”
versions (4.3.1, 4.3.2, 4.3.3), simply replace '≤ κ' by '< 1' and '≥ 1−κ' by '> 0'.

Corollary 4.3.10 (True-Biased ) LasVegas). The class of languages recognized by a
LasVegas PFA(k) is a strict subset of the class of languages recognized by PFA(k) with
unbounded true-biased error.

Corollary 4.3.11 (False-Biased ) LasVegas). The class of languages recognized by a
LasVegas PFA(k) is a strict subset of the class of languages recognized by PFA(k) with
unbounded false-biased error.

Proof. Proofs of the above corollaries are analogous to the proofs of their “bounded”
counterparts (4.3.5, 4.3.6), just use the unbounded versions of lemmas used in those
proofs.

4.4 Closure properties

Regular intersection

Theorem 4.4.1 (LasVegas PFA(k) are closed under regular intersection). For k ≥ 1,
for every regular language R ∈ R, and for every language L accepted by an (α-correct)
LasVegas PFA(k), there is an (α-correct) LasVegas PFA(k) recognizing L ∩R.
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Informally. Our construction will be analogous to the proof why Monte-Carlo PFA(k)

are closed under regular intersection (3.3.1). The new automaton A′ will simulate
the original PFA(k) A, and verify the regularity with its first head, by simulating the
DFA Ā recognizing R in addition to its usual operation.

Proof. Let A = (QA,Σ, δA, q0, Qacc, Qrej) be the α-correct LasVegas automaton recog-
nizing L. Let Ā by the DFA recognizing R. We construct the new PFA(k) A′ as follows:
The set of states of the new automaton A′ will be Q×Q̄, and the set of accepting states
will be Qacc × F̄ . Formally:

A′ = (QA×Q̄, Σ, δ′, (q0, q̄0), Qacc×F̄ , (Qrej×Q̄) ∪ (QA×(Q̄−F̄ )))

where the new transition function δ′, is constructed as follows:

(∀q, q′ ∈ QA)(∀p ∈Q̄)(∀a1, . . . , ak ∈ Σ$)(∀d1, . . . , dk ∈ {0, 1})

δA(q, a1, . . . , ak,q
′, d1, d2, . . . , dk)=p > 0

=⇒ δ′((q, p), a1, . . . , ak, (q
′, δ̄(p, a1)), 1, d2, . . . , dk)=p iff d1=1

=⇒ δ′((q, p), a1, . . . , ak, (q
′, p), 0, d2, . . . , dk)=p iff d1=0

For each computation on w of the original LasVegas automaton A, there is a cor-
responding computation of A′ on w (DFA will never halt). Thus at the end, after
each head arrives at $, we simply check the final state (qF , q̄F ) and accept if both are
accepting and reject if at least one is rejecting. Thus accepting only words in L ∩R.

For each word w ∈ Σ∗ either pA(w) = 0 or precA (w) = 0. Since the only way for
computation to be inconclusive, is to finish in a state whose first component is from
Q−Qacc∪Qrej, a computation is inconclusive if and only if the original computation (on
A) had also been inconclusive. Thus, if A is a LasVegas PFA(k), A′ is also. Moreover,
if A is a α-correct LasVegas PFA(k), A′ is also.

Remark. Alternative proof might be the following: By lemmas 4.3.1 and 4.3.2, we know
that some Monte-Carlo PFA(k)’s can accept L with both true and false-biased error
with error bound κ. By Theorem 3.3.1, we then know that there do exist Monte-Carlo
PFA(k)’s can accept L ∪ R with both true and false-biased error with the same error
bounds – both κ. Using Lemma 4.3.3, we construct a (1−κ2)-correct LasVegas PFA(k)

accepting L ∩R. However this automaton constructed this way is not (1− κ)-correct,
since κ2 = max{Λ1p1 + p2, p1 + Λ2p2} ≤ κ/2.

Complement

Theorem 4.4.2 (LasVegas PFA(k) are closed under complement). For every k ≥ 1

and every language L recognized by an‘ α-correct LasVegas PFA(k), there exists an
α-correct LasVegas PFA(k) recognizing Lc.
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Proof. Let A = (Q,Σ, δ, q0, Qacc, Qrej) be the α-correct LasVegas PFA(k), accept-
ing L. We construct the corresponding LasVegas PFA(k) as follows: PFA(k) A′ =

(Q,Σ, δ, q0, Qrej, Qacc). The automaton A′ constructed this way, is indeed a LasVegas
PFA(k), because firstly, for automaton A, the following expression is true

For all words w : either pA(w)=0 or prejA (w)=0.

since we only switched accepting and rejecting states, leaving the δ-function intact, A′

accepts words A would reject, and vice-versa. Hence, for A′ the expression is also true.
Secondly, the probability of ending in FAILURE, bounded from above by κ(= 1−α)

on A, is affected by states not in Qacc, Qrej. Thus, transferring states between these
two sets will not affect the probability of FAILURE. Hence, it is also bounded by κ.
Therefore A′, satisfies the definition of a (1−κ)-correct LasVegas PFA(k).

Since L(A) = {w ∈ Σ∗ | 0 < pA(w)}, A′ needs to accept words that have pA(w) = 0,
Because of the Lemma 4.0.1, if a word has pA(w) = 0 it must have prejA (w) > 0. Hence
it is accepted by A′ (since A′ accepts words, that A rejects). On the other hand, if a
word has pA(w) > 0 (by Lemma 4.0.1), it has prejA (w) = 0, it is thus rejected by A′.

Theorem 4.4.3. For every k ≥ 1 and every language L recognized by a LasVegas
PFA(k), there exists a LasVegas PFA(k) recognizing Lc.

Proof. Analogous to the proof for α-correct LasVegas PFA(k).

Intersection

Consider these languages (3.1):

Lvwv = {v ∗ w ∗ v | (v ∈ {0, 1}∗) ∧ (w ∈ {0, 1, ∗}∗)}

L′
b = {w1 ∗ w2 ∗ · · · ∗ w2b | (wi ∈ {0, 1}∗) ∧ (wi = w2b+1−i) for 2 ≤ i ≤ b}

Recall that Lvwv ∩ L′
b = Lb.

Theorem 4.4.4 (LasVegas PFA(k) are not closed under intersection). There exists a
language M , such that for all k≥3, there exists a language Mk, such that there exists
no LasVegas PFA(k) recognizing Mk ∩ M , yet both Mk and M are recognized by an
α-correct LasVegas PFA(k).

Proof. Let M = Lvwv and Mk = L′
b for b =

(
k
2

)
+ 1. By Lemma 3.3.4, M and Mk are

recognized by some DFA(3),DFA(k) respectively. Therefore, by Lemma 4.0.3, M and
Mk are accepted by a 1-correct LasVegas PFA(3),PFA(k) respectively.

For the purposes of contradiction, assume that there is exists a LasVegas PFA(k)

recognizing Mk∩M = Lb. That in itself contradicts the Hierarchy Theorem for LasVe-
gas (4.2.1), since b =

(
k
2

)
+1 >

(
k
2

)
.
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Theorem 4.4.5 (LasVegas PFA(2) are (also) not closed under intersection). There
exist two languages M2 and M , such that there exists no LasVegas PFA(2) recognizing
M2 ∩M , yet both M2 and M are recognized by a α-correct LasVegas PFA(2).

Proof. Let M = {v ∗w1 ∗w2 ∗ v | (v ∈ {0, 1}∗)∧ (w1, w2 ∈ {0, 1}∗)} and M2 = L′
2. The

language M is recognized by a DFA(2) (one head to second v, check that they are equal
+ check format), thus also by a 1-correct LasVegas PFA(2). L′

2 is also recognizable
by a 1-correct LasVegas PFA(2), since it is recognizable by a DFA(2) (Lemma 3.3.4).
The intersection L′

2 ∩M = L2 (Luvvu), however, we know to be not recognizable by no
LasVegas PFA(2) (Hierarchy Theorem 4.2.1).

Union

Theorem 4.4.6 (LasVegas PFA(k) are not closed under union). There exists a lan-
guage M , such that for all k≥3, there exists a language Mk, such that there exists
no LasVegas PFA(k) recognizing Mk ∪ M , yet, both Mk and M are recognized by an
α-correct LasVegas PFA(k).

Proof. Let M = (Lvwv)
c and Mk = (L′

b)
c for b =

(
k
2

)
+ 1. By Lemma 3.3.4, M c and

(Mk)
c are recognized by some DFA(3),DFA(k) respectively. By Lemma 4.0.3, and since

the class of languages recognized by LasVegas PFA(k) is closed under complement
(Theorem 4.4.2), M and Mk are accepted by a 1-correct LasVegas PFA(3),PFA(k)

respectively.
For the purposes of contradiction, assume that there is a LasVegas PFA(k) recog-

nizing Mk ∪M . Since the class of languages recognized by LasVegas PFA(k) is closed
under complement, there is a LasVegas PFA(k) recognizing (Mk)

c ∩ M c = Lb. That
contradicts the Hierarchy Theorem for LasVegas (4.2.1), since b =

(
k
2

)
+1 >

(
k
2

)
.

Theorem 4.4.7 (LasVegas PFA(2) are (also) not closed under union). There exist two
languages M2 and M ′, such that there exists no LasVegas PFA(2) recognizing M2∪M ′,
yet both M2 and M ′ are recognized by a α-correct LasVegas PFA(2).

Proof. Let M ′ = {v ∗w1 ∗w2 ∗ v | (v ∈ {0, 1}∗)∧ (w1, w2 ∈ {0, 1}∗)}c, and M2 = (L′
2)

c.
Both are accepted by a 1-correct LasVegas PFA(k) since (M ′)c and (M2)

c are (see
proof of 4.4.5), and the class of languages recognized by LasVegas PFA(k) is closed
under complement (4.4.2). If we assume that M ′ ∪ M2 = (M ′)c ∩ (M2)

c = (Luvvu)
c

can be recognized by a LasVegas PFA(k), then since the class of languages recognized
by LasVegas PFA(k) is closed under complement Luvvu is accepted also. Contradiction
with the Hierarchy Theorem for LasVegas 4.2.1.
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Summary: Closure properties

The following table summarizes the theorems encountered in this section.

Class of languages recognized by ∩R c ∩ ∪
(α-correct) LasVegas PFA X X − −

Legend: X: closed under this operation. −: not closed under this operation.



Chapter 5

Barely-random

In this chapter, we will study a restricted version of a PFA(k) (a special case). The
motivation is simple, we are able to prove for this “restricted” PFA(k) that it cannot
be “amplified”. By amplification we refer to a common technique used on probabilistic
machines, which works by essentially repeating an existing algorithm multiple times,
thus reducing the probability of error. This can easily be done on two-way machines,
since one reverts to a quasi-initial configuration (remembering previous result) and
restarts.

Trivially, we see that this technique of amplification cannot work on one-way multi-
head PFA, since they are one-way (no such automaton can re-read its input). However,
proving that the probability of error cannot by lowered beyond a certain point, by any
other means (some novel amplification 2.0), is as always, more difficult.

Definition 5.0.1. A barely-random PFA(k) over Σ with allowed probabilities TP is a
PFA(k) A over Σ with allowed probabilities TP , for which there exists an integer N ,
such that for each word x ∈ Σ∗ and each computation on x, the number of steps of a
computation whose probability is nontrivial ( 6= 1) is bounded from above by N .

Informally. For each word and each computation on it, the number of random decisions
is finite, or that the PFA(k) uses a finite number of bits.

The barely-random PFA(k)may seem rather weak at a first glance. However, should
we look closely at the chapter about Monte-Carlo PFA(k), we find that the PFA(2)’s
that recognize Lb with bounded error (Head Gap lemma (3.1.3)) are all barely-random
PFA(k). The same is true for the LasVegas PFA(k) constructed in Lemma 4.1.2.

Remark. Until now, all of our constructed PFA(k) that accept languages with bounded
error (or are α-correct) are barely-random PFA(k).

A barely-random PFA(k) uses at most a finite number of random decisions/bits.
Hence, we can see, that on such model only a finite amount of computations is valid.

63
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Corollary 5.0.2. For each barely-random PFA(k) A, there is an integer C, such that
for each input word x, the number of computations of A on x is bounded by C.

Proof. Since A is a barely-random PFA(k), the number of steps whose probability is
not 1 is bounded by a constant. Let that bound be N . Moreover, let B be the bound
on a branching factor, i.e.

(∀q ∈ Q)(∀a1, . . . , ak ∈ Σ$) : B ≥
∑

p∈Q, d1,...,dk∈{0,1}

[(q, a1, . . . , ak, p, d1, . . . , dk) > 0]1

(B always exists, since there is finitely many values to consider – δ is finitely encoded)
Then, since the automaton chooses at most N times and chooses among at most B

possibilities, we see that on each word x, there are at most BN valid computations.

Theorem 5.0.3 (Barely-random PFA(k) ⊇ DFA(C·k)). For every barely-random
PFA(k) A, and there is an integer C, such that:

• for each λ there exists a DFA(C·k), recognizing L(A, λ) if A is Monte-Carlo.

• there exists a DFA(C·k), recognizing L(A) if A is LasVegas.

Proof. By the previous corollary, we know that there exists, for every barely-random
PFA(k) A, an upper bound (C) on the number of computations on A. Therefore, we
can simulate all of those computations. To do that, k · C heads will suffice, since for
each computation we have brand new k heads. Each of the simulated computations
will either accept, reject, end in FAILURE, or loop forever (which we can detect – the
automaton did not move any head in the last |Q|+47 configurations and did not make
any randomized decision).

Since we know the probability with which each computation would have happened
on A, we can compute the probability of accepting/rejecting that word (pA(x), prejA (x)),
i.e., the automaton will sum the probabilities of computations that accepted (and
another sum for those that rejected). Since there are at most C computations, there
are at most 3C possible outcomes (which computation accepted/rejected/failed), thus
there are at most 3C different sums of probabilities. Since it is finitely many, we can
encode each of these situations into some state. Therefore, we can decide whether the
input word belongs into L or Lc.

We now consider this language (see 2.1) from the corollary of Yao and Rivest [YR78]:

L′ = {w1 ∗ w2 ∗ · · · ∗ w2b | (b≥1) ∧ (wi ∈ {0, 1}∗ for 1 ≤ i ≤ 2b) ∧ (∃i)(wi 6= w2b+1−i)}

We may have been unable to prove that a Monte-Carlo PFA(k) with bounded error
can never recognize L′, however, for barely-random PFA(k), we can prove that.

1Here, we are using a so-called Iverson backet/Iverson notation, the bracket is equal to 1 if the
expression inside it is true, and 0 otherwise.
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Corollary 5.0.4. For all k ≥ 1, the languages L′ and (L′)c cannot be recognized by
any barely-random PFA(3) with bounded true-biased nor bounded false-biased error.

Proof. For the purposes of contradiction, let us assume that there exists such barely-
random PFA(k) accepting L′ with bounded true-biased error or with bounded false-
biased error. Then, by the previous theorem (5.0.3), we can construct a DFA(C·k)
accepting L′. Contradicting the Corollary 2.1.3.

The proof for (L′)c is analogous, when we recall that L (DFA(k)) are closed under
complement, or that we have proven the Complement lemma 3.0.7.

5.1 Choose-compute normal form

Definition 5.1.1. A barely-random PFA(k) A is in a choose-compute form, if and only
if there exists a set Q0 ⊆ Q (set of initial choosing states) such that Q0 ∩ Qacc = ∅,
and (∀q, p ∈ Q−Q0)(∀q′, p′ ∈ Q0)(∀a1, . . . , ak ∈ Σ$)(∀d1, . . . , dk ∈ {0, 1}) :

δA(q
′, a1, . . . , ak, p

′, d1, . . . , dk) = 0 unless d1= . . .=dk=0

δA(q
′, a1, . . . , ak, p, d1, . . . , dk) = 0 unless d1= . . .=dk=0

δA(q, a1, . . . , ak, p
′, d1, . . . , dk) = 0

δA(q, a1, . . . , ak, p, d1, . . . , dk) ∈ {0, 1}

Informally. PFA(k) A is in choose-compute form if:
To move probabilistically (δ(·)6=0; 1), Amust not move heads, and must start in q ∈ Q0.
Once in a state other than from Q0, we cannot move “back” into a state from Q0.
All movement between states other than states in Q0 is deterministic (δ(·) = 0|1).

Definition 5.1.2. A barely-random PFA(k) A is in a strong choose-compute form if
and only if it is in a choose-compute form where Q0 = {q0}.

Remark. Strong choose-compute form is actually the more intuitive form of the two.
The algorithm, in the first step, chooses which computation to undertake. However,
this form is too strict to be a normal form for even a barely-random PFA(k) with
coin-flips. We have therefore defined the choose-compute form (more general), which
allows us to split the decision of which computation to choose into multiple steps.

We now prove that these forms are normal forms for some barely-random PFA(k).
Whether or not one can construct a corresponding PFA(k), depends on the allowed
probabilities of the PFA(k). For example, to construct a corresponding strong choose-
compute form of a barely-random PFA(k), we need (TP−{0},·) to be a monoid2.

2Multiplication must be an associative binary operation on TP−{0} and TP−{0} must contain 1

(the identity element).
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Theorem 5.1.3 (Choose-compute form is a normal form for barely-random). For each
barely-random PFA(k) A with allowed probabilities {0, 1

2
, 1}, there is a corresponding

barely-random PFA(k) A′ with allowed probabilities {0, 1
2
, 1}, in a choose-compute form,

such that they are equivalent.3

Informally. We build an automaton working in two phases, “choose” and “compute”.
In the “choose” part, it fills a buffer of coin-flips, via truly random decisions, from
which it will later read the stored “randomness” when needed in the “compute” part
of the new computation, simulating the original automaton.

Proof. Let A = (QA,Σ, δA, q0, Qacc, Qrej). By Definition 5.0.1, we know that for a
barely-random PFA(k), the number of steps of a computation whose probability is not
1 is bounded by a constant, let the bound be N (at most N randomized decisions).

The new automaton A′, without reading the input, pre-computes (“chooses”) the
randomized decisions into a buffer buf ∈ {1, 2}≤N , which it then stores into each state,
that is qi[buf ] ∈ Q′, for qi in QA. Moreover, for each state qi in Qacc (resp. Qrej), the
corresponding buffered state qi[buf ] is in Qacc (resp. Q′

rej).
Then A′ simulates the computation of A, such that whenever it encounters a sit-

uation, where A should pick between 2 options via a randomized coin-flip, the new
automaton A′ will choose the next configuration via reading the coin-flip from the
buffer. If read 1, choose the first outcome, if read 2, choose the second (based on a lex-
icographical order on outcomes (p, d1, . . . , dk)). We never run out of coin-flips, because
the PFA(k) A is barely-random, i.e., it may do at most N randomized decisions.

Formally, A′=(Q′,Σ, δ′, qchoose[], Q
′
acc, Q

′
ref ) where Q′={q[buf ] | q ∈ Q, buf ∈ {1, 2}≤N}

The δ′ function first builds the buffer (“choose”)
(∀i ∈ {0 . . . N − 1})(∀buf ∈ {1, 2}i) :4

δ′(qchoose[buf ], a1, . . . , ak, qchoose[0buf ], 0, . . . , 0) = 1/2

δ′(qchoose[buf ], a1, . . . , ak, qchoose[1buf ], 0, . . . , 0) = 1/2
(5.1)

Switch to second phase:

(∀buf ∈ {1, 2}N) : δ′(qchoose[buf ], a1, . . . , ak, q0[buf ], 0, . . . , 0) = 1

Finally, the automaton will simulate the original automaton (“compute”)
(∀q, p ∈ QA)(∀buf ∈ {1, 2}≤N)(∀a1, . . . , ak ∈ Σ$)(∀d1, . . . , dk ∈ {0, 1})
(∀ (p1, d11, . . . , dk1) <lex (p2, d12, . . . , dk2)) :5

3see Definition 1.6.1.
4{1, 2}0 is {ε}, i.e., the state is qchoose[]
5<lex represents a comparison in some lexicographic ordering.
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δA(q, a1, . . . , ak, p, d1, . . . , dk) = 1 =⇒ δ′( q[buf ], a1, . . . , ak, p[buf ], d1, . . . , dk)=1

δA(q, a1, . . . , ak, p1, d11, . . . , dk1) = 1/2 =⇒ δ′(q[1buf ], a1, . . . , ak, p1[buf ], d11, . . . , dk1)=1

δ′(q[1buf ], a1, . . . , ak, p2[buf ], d12, . . . , dk2)=0

δA(q, a1, . . . , ak, p2, d12, . . . , dk2) = 1/2 =⇒ δ′(q[2buf ], a1, . . . , ak, p1[buf ], d11, . . . , dk1)=0

δ′(q[2buf ], a1, . . . , ak, p2[buf ], d12, . . . , dk2)=1

(5.2)

The correctness of this construction follows from the following: Firstly, the sets of
accepting, rejecting and “failing” (/∈ Qacc∪Qrej) states are the same (disregarding the
buffer in the states). Secondly, each computation on A′, is only a computation on A

with prepended “choose” phase, which has the same probability of occurrence as its
corresponding computation on A, just the random decisions are done elsewhere.

Theorem 5.1.4 (Choose-compute form is a normal form for barely-random). For each
barely-random PFA(k) A with allowed probabilities [0, 1] ∩Q, there is a corresponding
barely-random PFA(k) A′ with allowed probabilities [0, 1] ∩ Q, in a choose-compute
form, such that they are equivalent.

Proof. The proof is analogous to the previous, however, since TP is [0, 1] ∩ Q, certain
modifications are in order. We first do a gcd6 of the denominators that appear in the
nonzero probabilities in δA. Let G be the gcd ( our goal is to “rewrite” the fractions,
so that they all have the same denominator (ni

G
). e.g. 1

6
, 3
6
, 2
6
instead of 1

6
, 1
2
, 1
3
). We

then build a buffer of “G-sided dice rolls”, buf ∈ {1 . . . G}≤N . The outcomes are sorted
lexicographically, and when the need to choose arises, A′ picks the i-th outcome (its
probability ni

G
), if and only if it reads (from the buffer) a number R, 7 such that:

i−1∑
j=1

nj < R ≤
i∑

j=1

nj

The rest of the construction is analogous to the above proof.

Example (for brevity only nonzero entries are shown):
δA(q, a1, . . . , ak, p1, d11, . . . , dk1) = 1/6 =⇒ δ(q[1buf ], a1, . . . , ak, p1[buf ], d11, . . . , dk1) = 1

δA(q, a1, . . . , ak, p2, d12, . . . , dk2) = 3/6 =⇒ δ(q[2buf ], a1, . . . , ak, p2[buf ], d12, . . . , dk2) = 1

δ(q[3buf ], a1, . . . , ak, p2[buf ], d12, . . . , dk2) = 1

δ(q[4buf ], a1, . . . , ak, p2[buf ], d12, . . . , dk2) = 1

δA(q, a1, . . . , ak, p3, d13, . . . , dk3) = 2/6 =⇒ δ(q[5buf ], a1, . . . , ak, p3[buf ], d13, . . . , dk3) = 1

δ(q[6buf ], a1, . . . , ak, p3[buf ], d13, . . . , dk3) = 1

6greatest common divisor
7R as in dice-Roll.
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Theorem 5.1.5 (Strong choose-compute form is a normal form for barely-random).
For a barely-random PFA(k) A with allowed probabilities [0, 1]∩Q, there exists a barely-
random PFA(k) A′ with allowed probabilities [0, 1]∩Q, in a strong choose-compute form,
such that they are equivalent.

Proof. By the previous theorem, for A, there is a barely-random PFA(k) A′ with
allowed probabilities [0, 1] ∩ Q, in a choose-compute form. Since multiplication is a
binary operation on the set (0, 1] ∩Q, and because we can compute the probability of
arriving in a state q0[buf ] (= 1

GN ), instead of building the buffer incrementally, we do it
in one step, (∀buf∈{1, 2}N) δ(qchoose[], a1, . . . , ak, q0[buf ], 0, . . . , 0)=1/GN . That way, we
can reduce the number of states in Q0 to one by a small change in A′.

Remark. One cannot do this for PFA(k) with coin-flips (TP = {0, 1
2
, 1}). Since to jump

to a full buffer, one needs to do a step with probability 1/2N . (TP must be monoid.)

5.2 Barely-random cannot be amplified

Consider the following language

Let Lb = {w1 ∗ w2 ∗ · · · ∗ w2b | (wi ∈ {0, 1}∗) ∧ (wi = w2b+1−i) for 1 ≤ i ≤ 2b}

Theorem 5.2.1. barely-random PFA(2) with one-sided false-biased error, can accept
Lb with error bound Λ, if and only if Λ ≥ 1

b
.

Remark. In another words, a barely-random PFA(2) cannot accept Lb with Λ < 1
b

Informally. We strive to use the “cutting and pasting” technique. Therefore we define
location, pattern and mistake as in chapter 2 (Lemma 2.0.2). {A quick reminder:
location: in which word is each head; pattern: subsequence of the (one deterministic)
computation, only taking configurations where you change location; mistake: location
that does not occur in whole pattern} Then we continue as follows:

• Notice that for each pattern there may be mistake on it.

• Notice that there are b “notable” mistakes possible
(on each pair of sub-words wi, w2b−i+1).

• We prove, that for each pattern there is only 1 “notable” mistake which we cannot
exploit (mistake which is not that pattern.)

• We show that we can find two distinct words with the exact same pattern-m-tuple
(pattern of each of the m sub-procedures, among which the PFA(k) chooses).

• Notice that in a barely random PFA(k) choosing between sub-procedures, each
of those m sub-procedures occur with certain probability.
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• We analyze which mistake we “cannot exploit” the least
(which mistake occurs with the highest probability).

• We exploit that mistake – by “cutting and pasting” argument.

Proof. Let A0 be a barely-random PFA(2) recognizing Lb with false-biased error with
error bound Λ. We construct an equivalent barely-random PFA(2) A in choose-compute
form. Since the constructed equivalent barely-random PFA(2) in choose-compute form
accepts/rejects words with the same probability as the original (Theorem 5.1.4), A
recognizes Lb with false-biased error with error bound Λ also.

Since every PFA(2) in choose-compute form effectively chooses between a number
of deterministic algorithms (with given probability), we count them and denote the
number of deterministic algorithms as m. Moreover, for each such deterministic com-
putation, we assign a number pi representing the probability of choosing that particular
computation.

We define a location of a configuration (q, p1, p2) as 2-tuple of integers (p1/(n +

1), p2/(n+1)). Then, for a deterministic computation 8 c1(w), c2(w), . . . , cl(w)(w) define
a pattern of a word as a subsequence of that computation d1(w), d2(w), . . . , dl′w(w)

obtained by first taking c1(w), and then all subsequent ci(w) such that location(ci(w)) 6=
location(ci+1(w)). We define a mistake of a pattern as the location which could be valid,
but does not occur in the pattern (i.e., the indices of sub-words, in which the heads
are never simultaneously). Moreover, a mistake i is a mistake, 2-tuple (i, 2b−i+1). It
is a notable mistake informing us that during the computation, the heads are never
simultaneously in wi and w2b−i+1.

We prove the following lemma, stating that only one mistake out of mistakes 1 . . . b
can be “detected” by a one-way deterministic 2-head computation.

Lemma 5.2.1.1. If a pattern of word w ∈ Lb, on a deterministic computation of a
PFA(2), does not have mistake i, it has a mistake j for each j ∈ {1 . . . b}−{i}.

Proof. Assume that a 2-head automaton during a computation on w ∈ Ln
b has its heads

simultaneously in wi and w2b−i+1. This all is implied:
Firstly, both heads need to move beyond the first i sub-words to get to wi (w2b−i+1).

However, the none of these heads may not go beyond w2b−i+1 before the other arrives
at wi. (Otherwise they would never be simultaneously on wi, w2b−i+1). Therefore, on
sub-words wj, w2b−j+1, j ∈ {0 . . . i− 1} the heads will never be simultaneously.

Secondly, one head needs to go over all sub-words between wi and w2b−i+1, while
the other does not go beyond wi. (Otherwise, they would never be simultaneously on

8deterministic computation as a computation on PFA(k), where the probabilities of steps are =1.
The choose-compute form, even though simulating a randomized automaton, is deterministic in the
compute part of the computation.
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wi, w2b−i+1.) Therefore, on sub-words wj, w2b−j+1, j ∈ {i+1 . . . b} the heads will never
be simultaneously.

Hence, we have proven that if the automaton wants to have heads simultaneously
on wi and w2b−i+1 (not have mistake on wi),it will never have heads simultaneously on
wj and w2b−j+1 (will have mistake on wj) for each j ∈ {1 . . . b}−{i}.

Just as we did in other proofs inspired by the cutting-and-pasting technique (from
chapter 2), we assign “something” to each word, in order to be able to categorize them.
Then, to each word w from Ln

b , we assign the following:

• pattern-m-tuple (d1, d2, . . . , dm) consisting of patterns of w on each of the m de-
terministic computations in A (among which the choose-compute PFA(k) picks).

• mistake-b-tuple (p1,p2, . . . ,pb) consisting of probabilities of doing a computation
on w with a mistake on wi (for corresponding pi).

Since we know the probability of doing each deterministic sub-algorithm, we know
the probability (p1, . . . , pm) with which, which pattern will occur. Moreover, by con-
struction of a choose-compute PFA(k), 1 =

∑m
j=0 pj, we can compute each pi in the

mistake-b-tuple via the following sum:

pi =
m∑
j=0

pj [i is a mistake on the pattern dj]
9

In order to be able to walk the final step in the upcoming chain of steps, we state
a corollary of the previous lemma (5.2.1.1):

b∑
i=0

pi ≥ (b− 1).

We can easily prove this by looking at the mistake-b-tuple or the sum in a different
way: If we “check” nothing (move both heads to $ and accept), each mistake has
probability of occurrence equal to 1 (

∑b
i=0 pi = b). The automaton however, does

with various probabilities various computations. Every one computation may visit
wi, w2b−i+1 simultaneously. However, it definitely cannot visit more that one such pair
during one computation – by Lemma 5.2.1.1. Hence, each one computation occurring
with its probability p, decreases the probability of pi by at most p.

By adding up (or subtracting down) all possible computations with their probabili-
ties, we see that the outcomes are the correct values of mistake-b-tuple (p1,p2, . . . ,pb).
Moreover, we see that from the initial sum (b), at most

∑b
j=0 pj(= 1) was subtracted.

Hence
∑b

i=0 pi ≥ b−
∑b

j=0 pj = b− 1.

Let Ln
b = {w1 ∗ w2 ∗ · · · ∗ w2b | (wi ∈ {0, 1}n) ∧ (wi = w2b+1−i) for 1 ≤ i ≤ 2b}

trivially Lb ⊇ Ln
b , thus words from this set must have an accepting computation. Since

9we use Iverson bracket/notation again, the bracket is 1 iff. the expression inside it is true, else 0.
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the length of any pattern l′w ≤ 2(2b+ 1), (each head must go through all 2b sub-words
and $) note that the number of possible patterns ρ is at most (|Q| · (2b(n+1))2)2(2b+1)

10 We divide words in Ln
b into ρm sets, depending on the word’s pattern-m-tuple.

|Ln
b | = 2bn, thus by the pigeonhole principle11, at least one of those sets contains at

least |Ln
b |/ρm = 2bn/bρm words. Let S0 be that set.

All words from S0 have the same pattern-m-tuple, (have the same pattern on the
same sub-computation). Therefore, all words in S0 have the same mistake-b-tuple.
Let i pi be the index of the greatest element (in case of a tie, pick the smaller index
(∀j)pj ≤ pi). We then classify words from S0 into classes based on the string

w1 ∗ · · · ∗ wi−1 ∗ wi+1 ∗ · · · ∗ wb (5.3)

Informally. We classify based on the whole word, except the two corresponding sub-
words on which the mistake is made with the greatest probability (pi  wi, w2b−i+1).

By the pigeonhole principle, because the number of possible classification strings
(see 5.3) is at most 2(b−1)n, there exists a class S1, such that it contains at least
|S0|/2(b−1)n = 2bn−(b−1)n/bρm = 2n/bρm words. Moreover, because ρ is at most polyno-
mial in n, ρm is too. We can thus pick big enough n, so that S1 contains at least two
distinct words x, y.

We have two words x, y, both from S1 ⊆ S0 ⊆ Ln
b . Thus x, y are both from Ln

b . Also
since x, y are both from S0, they have the same patterns on each of the m deterministic
computations. Moreover, many of these computations have mistake i. Lastly x, y are
both from S1 hence they differ only on wi, w2b−i+1. Therefore we can construct z

by taking x and replacing x2b−i+1 by y2b−i+1. Thus satisfying all that is required for
the applicability of the cut-and-paste argument (Lemma 2.0.2), which we repeat for
completeness.

For each pattern in the pattern-m-tuple with mistake i individually: We construct
an accepting computation for A on z by selecting successive blocks from {cj(x)}, except
when A during that block would be reading x2b−i+1(6= z2b−i+1), in which case we select
the corresponding block from {cj(y)} instead (since y2b−i+1 = z2b−i+1). This sequence
forms a valid computation for z since the last configuration in block i for either {cj(x)}
or {cj(y)} yields dj+1(x) as the next configuration of A, and we already know that, A
is never reading sub-words zi and z2b−i+1 simultaneously. Therefore, at any instant, A
behaves exactly as it would if the input had been one of x or y.

By our previous analysis, we know that with probability pi, the PFA(2) A will run
one of the algorithms with a mistake on i. Therefore A accepts z with probability at

10(#configurations)
#heads(#subwords+1) = (#states · (|w|+ 1)#heads)#heads(#subwords+1)

11also known as Dirichlet’s box principle
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least pi. Moreover, since we know that z /∈ Lb, we have an example of a word z such that
z and is accepted with probability at least pi, and z ∈ (Lb)

c = {x | x ∈ Σ∗, pA(x) ≤ Λ},
Thus pi ≤ Λ. Moreover, because

∑b
j=0 pj ≥= b− 1, and because we chose the greatest

pj from the mistake-b-tuple, we know that pi ≥ 1/b.
We therefore derive the following conclusion: Should the language Lb be accepted

by a barely-random PFA(2) with bounded one-sided false-biased error, the error bound
Λ is at least 1/b.

To prove the if direction, we look at the construction in Head Gap lemma (3.1.3),
where we construct a PFA(k) accepting Lb with false-biased error with an error bound
Λ = 1/b. We just note that the PFA(k) constructed there is also barely-random.

We state the following as a theorem despite the fact that the proof is rather simple,
since it shows that barely-random PFA(k) with true-biased error, cannot be amplified
in general the same way that their counterparts with false-biased error cannot.

Theorem 5.2.2. A barely-random PFA(2) with one-sided true-biased error, can accept
(Lb)

c with error bound Λ, if and only if Λ ≥ 1
b
.

Proof. For the purposes of contradiction, assume that there is a barely-random PFA(2)

accepting (Lb)
c with true-biased error with error bound Λ < 1

b
. Then, by the Comple-

ment lemma (3.0.7), we construct a barely-random PFA(2) accepting (Lb)
cc = Lb with

false-biased error with error bound Λ, and we know that Λ < 1
b
. Which contradicts

the previous theorem. (We see that the construction is only swapping states between
Qacc and Qrej. Hence the PFA(k) stays barely-random if it was beforehand.) The if
direction follows from the Head Gap lemma 3.1.3 again.



Chapter 6

Conclusion

This thesis explored the model of probabilistic one-way multi-head finite automata. In
the first chapter, we formally defined the various types of errors, with which a Monte-
Carlo automaton can accept a language. We also defined there the one-way multi-
head probabilistic finite automaton PFA(k), and later, using the theory of Markov
chains, proved that PFA(k) have an ε-free normal form, i.e., a normal form where at
every step of computation the automaton has to advance at least one head. In the
second chapter, we introduced the Cutting-and-pasting technique from the proof of
the Hierarchy Theorem by Yao and Rivest [YR78] and used it on an example.

Then, we proceeded to explore the Monte-Carlo PFA(k) accepting languages with
one-sided error (true-biased and/or false-biased), for which we proved that analogous
Hierarchy Theorem holds for PFA(k) with one-sided error. We have also proven analo-
gous corollaries for PFA(k), as Yao and Rivest have shown for FA(k) [YR78]. However,
for the general case of PFA(k), we have been unable to prove whether or not they can
recognize the language L′ with bounded error. (L′ = {w1 ∗w2 ∗ · · · ∗w2b | (b≥1)∧ (wi ∈
{0, 1}∗ for 1 ≤ i ≤ 2b) ∧ (∃i)(wi 6= w2b+1−i)}). We have only proven that it cannot be
recognized by a barely-random PFA(k). We leave it as an open problem.

Interestingly, the language that was used to show this hierarchy is recognizable with
only 2 heads with a PFA(k) with the opposite error. This observation helped us prove
numerous properties of the classes of languages recognized by Monte-Carlo PFA(k)

with one-sided error, such as relations between them or with L (DFA(k)), or their
closure properties (we considered union, intersection, complement, and intersection
with regular languages).

Looking at LasVegas randomization, we first wanted to find a language recognizable
by LasVegas PFA(k), yet not by any DFA(k). We found it in observing that LasVe-
gas can accept languages, that are a union of disjunct languages, such that one can
distinguish the formats of these languages by only a regular expression. (one may not
know if the word belongs “there”, but is certain that the only language into which it
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can belong is “this”.) We have then shown an analogous Hierarchy Theorem for LasVe-
gas. Also, we have proven an analogous result to the one from the theory of Turing
machines, that “LasVegas = true-biased ∩ false-biased”, and that LasVegas is a strict
subset of both Monte-Carlo PFA(k) accepting with true, and false-biased error. The
results about the various relations between classes of languages recognized by various
randomizations of one-way multi-head automata can be summarized in the following
figure:

PFA(k) PFA(k)

bounded ⊆ unbounded = NFA(k)

( true-biased true-biased

DFA(k) ⊆
LasVegas
PFA(k)

+ * + *
+ *

+ *

( PFA(k) PFA(k)

bounded ⊆ unbounded
false-biased false-biased

Table 6.1: Relations between classes of languages recognized with k-heads

For LasVegas PFA(k), we have also we have explored their closure properties (we
considered the same operations). The following table summarizes the closure properties
that we have proven for the LasVegas and Monte-Carlo models of PFA(k).

Class of languages recognized by ∩R c ∩ ∪
(α-correct) LasVegas PFA XΛ XΛ − −

PFA with (un)bounded true-biased error XΛ − − X

PFA with (un)bounded false-biased error XΛ − X −

Legend: X: closed under this operation. Λ: construction keeps the error bound.
Legend: −: not closed under this operation.
The last chapter considered a version of PFA(k), where the automaton is allowed to

make at most a finite amount of randomized decisions, namely barely-random PFA(k).
An interesting observation is, that all PFA(k) that we constructed in this thesis and
were “bounded” (Monte-Carlo accepting with bounded error or α-correct LasVegas),
were in fact barely-random. What is more, we have not been able to come up with a
language, for which we could construct a “bounded” PFA(k), for which we could not
easily construct a barely-random PFA(k) recognizing it.

We did show that barely-random PFA(k) have a normal form, such that all ran-
domized decisions happen before any one head moves (as if without reading the input).
Then we proceeded to prove, that for certain class of languages we can show a lower
bound for error with which a barely-random PFA(k) can recognize given language,
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i.e., that barely-random PFA(k) cannot be amplified. This result feels intuitive since
we are considering one-way automata, i.e., automata that cannot re-read their input.
However, we have been unable to prove this for the general case of PFA(k) . We won-
der whether the right approach is finding proof for the lower bound, or proving that
barely-random PFA(k) are in fact a normal form of “bounded” PFA(k). We leave it as
an open problem.

A possible continuation of our work might be exploring Monte-Carlo PFA(k) with
two-sided error. Another possible way is to prove the closure properties of the remaining
AFL operations, such as homomorphism, inverse homomorphism, concatenation, or
iteration. Looking at LasVegas PFA(k), a viable question might be, whether or not,
there is a difference in expressive power between LasVegas PFA(k) and DFA(k), for
k ≥ 3. We have only answered this for k = 2.
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