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Abstrakt

Skimali sme pokrytie kubickych grafov perfektnymi pareniami - podmnozinami
hran, z ktorych Ziadne dve nie st navzajom incidentné a zaroven kazdy vrchol grafu
je incidentny s presne jednou z tychto hran. Cyklicka suvislost predstavuje najmensi
pocet hran ktory musime z grafu odstranit aby sme dostali oddelené cykli vo vyslednych
komponentoch. Pozerali sme sa na pokrytia s tromi perfektnymi pareniami. Zaujimali
nas grafy s cyklickou sivislostou 3 a viac. Za pomoci vypoctovej sily sme ukazali

niektoré vlastnosti urcitych multipélov a nasli spésob ako pre kazdé racionélne ¢islo

23
277

perfektnymi pareniami je presne toto ¢islo. Podarilo sa ndm dostat podobny vysledok

Y
z intervalu ( 1) najst graf s cyklickou savislostou 3, ¢ije najlepsie pokrytie tromi

aj pre cyklicku suvislost 4 a interval (%, 1).

Krluacove slova: kubicky graf, perfektné parenie, multipol, cyklicka suvislost



Abstract

We studied covering of cubic graphs with perfect matchings (1-factors). Cyclic
connectivity is the smallest number of edges which one need to remove from the graph to
make its cycles separated in different components of the resulting graph. We looked at
covering with three perfect matchings. Our interest was directed at graphs with cyclic
connectivity 3 and more. With the help of a computer, we showed some attributes of

certain multipoles and found a way to generate a graph with cyclic connectivity 3, for

23
277 1

perfect matchings covers precisely this percent of edges. We managed to achieve a

any rational number from the interval ( ) such that its best covering with three

similar result for cyclic connectivity 4 and interval (%, )

Keywords: cubic graph, perfect matching, multipole, cyclic connectivity
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Introduction

Perfect matchings are an important topic of study in graph theory. Many unsolved
conjectures revolve around perfect matchings and covering graphs with them. We
decided to study covering of cubic graphs with three perfect matchings. We modified an
existing library for graph manipulation called ba-graph. Several functions that enabled
us to search for perfect matchings in multipoles were added and tweaked. Our goal was
to generate graphs that have a 3PM coverage equal to a given fraction we picked from
a certain interval. We tried to keep the lower bound of the interval lowest possible.
We built upon a known result about generating graphs with cyclic connectivity 2 and
3PM coverage equal to a given fraction from the interval (£,1) [11].

This work is divided into four parts. First part is about basic definitions and
properties of graphs and graph-like structures. Second part is about previous work
that was done in this field. Important unsolved conjectures are mentioned here. Next
part explains how we approached this problem - what software we used and how we
programmed it. Last part contains results that we achieved. Two theorems with

elaborate proofs are presented there.
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Chapter 1

Preliminaries

1.1 Elementary Definitions

What follows is a standard graph theory terminology as used in [3|. Section 1.1

gives brief and self-sufficient introduction to the most basic graph theory terms.

A graph is a pair (E, V) of sets such that the elements of E are 2-element subsets of
set V. These 2-elements subsets are called edges. Elements of set V' are called vertices.
For notation ambiguity, V' and E have empty intersection. Graphs are most commonly
denoted by letter G. For a particular graph we denote E(G) its edge set and V(G) its
vertex set.

Two vertices v and w in the graph G are said to be adjacent or neighbouring when
there is an edge (v,w) in the graph G. Two edges are adjacent when they have a
vertex in common. When edges connect same two vertices, they are called multi-edges.
When an edge connects vertex with itself, it is called a loop. A simple graph is a
graph containing no loops and no multi-edges. A complete graph is a graph in which
addition of another edge between existing vertices would create a graph that is not
simple. Complete graph containing n vertices is denoted as K".

Graph is called finite if its vertex and edge set is finite. In this thesis, we will
be concentrating on finite graphs without loops and multi-edges. Order of a graph is
cardinality of its vertex set.

Edge is incident with a vertex if that vertex is one of the two vertices the edge
connects. Degree of a vertex is number of incident edges. Cubic graphs are graphs
whose vertices are all of degree three. Most of the graphs studied in this thesis will be
cubic.

A sequence of edges which joins a sequence of vertices which are all distinct in
graph G is called a path in G. Graph G is connected when each pair of vertices in G
is connected by a path in G. A subgraph of graph G is a graph whose vertex set and
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edge set are subsets of V(G) and E(G), respectively. A component of a graph G is a
subgraph in which all vertices are pairwise connected. An edge is called a bridge when
its removal increases number of graph’s components. A bridgeless graph is a graph
which does not contain a bridge.

A cycle of a graph G is a subset of E(G) that forms a path such that first and last
vertex of the path is equal. A cycle that uses every vertex of a graph exactly once
is called a Hamiltonian cycle. A graph that contains a Hamiltonian cycle is called a

Hamaltonian graph.

1.2 Colouring

A vertex colouring of a graph G = (V, E) is amap ¢ : V — S such that ¢(v) # c(w)
whenever v and w are adjacent. The elements of set S are called colours. We will
be interested in the smallest integer £ such that G has a k-colouring that is a vertex
colouring ¢ with k colours. This k is the (vertez-) chromatic number of G. It is denoted
by x(G). A k-chromatic graph G is a graph with x(G) equal to k. If x(G) is less or
equal to k, we call G' k-colourable.

An edge colouring of G = (V, E) ismap ¢ : E — S with ¢(e) # ¢(f) for any adjacent
edges e and f. The smallest integer k such that graph is k-edge colourable, i.e. has an
edge colouring with k colours, is the edge-chromatic number, or chromatic index of G.
It is denoted by x/'(G).

1.3 Matchings

All graphs in this chapter are simple, if not stated otherwise.

A set M of pairwise non-adjacent edges in a graph G = (V, E) is called a matching.
The vertices incident with edges in the matching are called matched. Vertices not
incident with any edge of M are unmatched. A maximal matching is a matching M of
a graph G such that the addition of another edge to M would no longer be a matching
in G. A maximum matching is a matching that contains the largest possible number
of edges. The matching number v(G) of a graph G is the size of a maximum matching
in G.

A perfect matching (or 1-factor) is a matching in which every vertex of a graph is
incident with exactly one edge of the matching. This means that a perfect matching
can only exist in a graph of an even order. A near-perfect matching is a matching in
which exactly one vertex is unmatched. This occurs when the graph is of odd order.

If, for every vertex in a graph, there is a near-perfect matching that omits only that
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vertex, the graph is called factor-critical.

1.4 Snarks

Snarks are a family of simple, bridgeless cubic graphs which cannot be properly
coloured with three colours. Reasons why some cubic graphs are three colourable and
others are not, are not fully understood [7]. Snarks are hard to be found computa-
tionally, because most cubic graphs are Hamiltonian and therefore 3-edge colourable
[20]. Deciding whether a cubic graph is 3-edge colourable or not is NP-complete [8].
Smallest snark is the well-known Petersen graph |Figure 1.1]. Let us consider a snark
G which contains an induced subgraph H, where x'(H) > 3 and (G — H) < 3. We
can see that G — H does not make the graph GG a snark, so it can be cut off. The
remaining subgraph H can be converted into a snark H' by introducing at most one
vertex. Thus G is made out of smaller snark H’ by introducing a certain number of
unimportant vertices [1|. Removing unimportant vertices from a snark G is called a
reduction of G. Reductions in which we cut k£ edges are called k-reduction. Examples
for k = 2,3,4 can be seen in [1]| (digon, triangle and quadrilateral). Another example

of a snark is the Tietze’s graph [Figure 1.2].

Figure 1.1: The Petersen graph
Figure 1.2: The Tietze’s graph

1.5 Multipoles

An edge which is at both ends incident with a vertex is called a proper edge (also
an inner edge). If one end of an edge is incident with a vertex and the other is not,
that edge is called a dangling edge. If none of the ends are incident with a vertex, edge
is called an isolated edge. An end of an edge that is not incident with a vertex is called
a semi-edge.

Multipole is a graph that admits dangling and isolated edges. Multipoles are a
great tool for building large graph structures from smaller building blocks. They can
be crated in several ways. One of them is cutting an existing edge in a graph. Multipoles

can be joined via dangling edges to create proper edges in the new larger graph. Figures
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1.3 and 1.4 show two multipoles (created by cutting one edge in a K, graph) being

joined.
‘ }——— JR— 0 O
IX— —E 0 ¢
Figure 1.3: Multipoles before joining Figure 1.4: Two multipoles joined

1.6 Cyclic Connectivity

Let G be a connected graph. An edge-cut of G is any set S of edges of G such that
G — S is disconnected. Edge-cut is also called simply a cut. A cut is called trivial if
it is made out of all edges incident with one vertex, otherwise it is called non-trivial.
Cocycle is a type of an edge-cut which is a set dg(H) of all edges with exactly one end
in H, where H is an induced subgraph of G. An edge-cut is said to be cycle-separating
whenever at least two graph components of G — .S have cycles. Connected graph G is
said to be cyclically k-edge-connected if no set of less than k edges is cycle-separating
in G. Number (G) which is defined to be |E(G)| — |V (G)| 4 1 is the cycle rank of G.
The cyclic connectivity of G is the largest number k£ < S(G) for which G is cyclically

k-edge-connected. Figure 1.5 shows an example for k equals 4.

Figure 1.5: A cyclically 4-edge connected graph



Chapter 2

Previous work

2.1 Berge and Fulkerson

D. R. Fulkerson'® stated the following conjecture in [6] (some authors attribute it to
Berge). It was stated in the context of blocking and anti-blocking pairs of polyhedra.

Here we present it in a more modern version, using context of perfect matchings.

Conjecture 1 (Berge-Fulkerson) For every bridgeless cubic graph G, there exist 6
perfect matchings My, My, . .., Mg such that every edge e € G is in exactly two of the

matchings.

If X'(G) = 3 (see 1.2) then we can easily find three distinct perfect matchings M,
M, and Mjs - one for each color. These matchings cover all the edges in a graph.
Taking each one of them twice, we get six perfect matchings having the property from
the Berge-Fulkerson conjecture. This implies that the conjecture holds for every graph
having x'(G) = 3. We will be interested in those cubic graphs where x'(G) > 3 (see

1.4). Berge? also states a weaker version of Conjecture 1.

Conjecture 2 (Berge) For every bridgeless cubic graph G, there exist 5 perfect match-
ings My, My, ..., Ms such that every edge e € G is in at least one of the matchings.

Note: Even if the number 5 in Conjecture 2 is replaced by any larger number, the

statement in general is not known to be true. |9

G. Mazzuoccolo® studied previous two conjectures and proved their equivalence in

Delbert Ray Fulkerson (1924 - 1976), an American mathematician, who co-authored the Ford-

Fulkerson algorithm
2Claude Jacques Berge (1926 - 2002), a French mathematician, one of the founders of graph theory
3Giuseppe Mazzuoccolo, researcher at the Department of Computer Science, University of Verona

7
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[14]. Mazzuoccolo called the 6 perfect matchings in Fulkerson’s conjecture a Fulkerson
cover and used the notation x.(G) to denote the minimum number of 1-factors needed

to cover the edge-set of G.

Note: Conjecture 2 can be restated as: Let G be a bridgeless cubic graph. Then
XL(G) <5.

He proved the following, which directly implies the equivalence of Conjectures 1
and 2: (Mazzuoccolo) If for each bridgeless cubic graph G the relation xL(G) < 5

holds, then each bridgeless cubic graph admits a Fulkerson cover.

P. Seymour! came up with a more generalized version of Berge-Fulkerson conjecture.

Definition (r-graph). An r-graph is an r-reqular graph G with even order with the
property that every edge-cut which separates V(G) into two sets of odd cardinality has

size at least r.

Conjecture 3 (the generalized Berge-Fulkerson conjecture) Let G be an r-
graph. Then there exist 2r perfect matchings My, ..., Ms, of G with the property that

every edge e € G is contained in exactly two of the matchings. [21]

As a remark, we mention that for » = 3, this becomes the original Berge-Fulkerson
conjecture. The following conjecture is directly implied by Berge-Fulkerson conjecture

(k = 2) and for that reason is considered a weakening.

Conjecture 4 (the weak Berge-Fulkerson conjecture) There exists an integer
k > 0 such that every 3-graph G has 3k perfect matchings such that every edge e € G

1s contained in exactly k of the matchings.

Berge also stated the following weakening, which is still open. It is trivially implied

by Conjecture 2.

Conjecture 5 (Berge) There exists a fived integer k such that the edge set of every

3-graph can be written as a union of k perfect matchings.

The Berge-Fulkerson conjecture has another consequence about perfect matchings

known as Fan-Raspaud?? conjecture [18]. First we will define an FR-triple.

Paul Seymour (1950), a British mathematician, currently a professor at Princeton University
2Genghua Fan, a Chinese researcher at Fuzhou University
3 André Raspaud, a researcher at Laboratoire Bordelais de Recherche en Informatique
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Definition (FR-triple). Let G be a bridgeless cubic graph. Then a list of perfect
matchings (My, Mo, M3) of graph G is called an FR-triple, if My N My N Mz = ().

Conjecture 7 (Fan-Raspaud) Every bridgeless cubic graph has an FR-triple.

This conjecture directly follows from the Berge-Fulkerson conjecture - it is enough
to take any 3 perfect matchings from the original 6.[5] An existential oriented conjec-

ture was stated by Berge.

Conjecture 6 (Berge) There exists a fived integer k such that every 3-graph has a

list of k perfect matchings with empty intersection.

An equivalent conjecture to Conjecture 7 was stated by Macajova and Skoviera!.

[12] They proved the equivalence in the same paper. Conjecture revolves around Fano

colorings (see 1.2) and is as follows.

Conjecture 7 (Four-Line Conjecture) Every bridgeless cubic graph has a Fano

colouring which uses at most four lines.

Since Fan-Raspaud conjecture is implied by Berge-Fulkerson and since Fan-Raspaud
is equivalent to Four-Line Conjecture, this means that Four-Line Conjecture is implied
by Berge-Fulkerson. Another consequence of Berge-Fulkerson is stated by Mazzuoccolo
[16].

Conjecture 8 (S4-Conjecture) For any bridgeless cubic graph G, there exist 2 per-
fect matchings My and My such that G — (My U Ms) is a bipartite subgraph of G.[17]

Such pair of perfect matchings is called an Sy-pair. [17]

We can say that the Berge-Fulkerson conjecture is very important in graph theory.
Its implications are far-reaching. Now we will study the tools that led to some successful
proofs surrounding our problem. We will focus on union of perfect matchings in a graph.
These unions do not necessarily need to have empty intersections, we will study those
that do not.

'Edita Macajova and Martin Skoviera, Slovak researchers at Comenius University
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2.2 Numbers m;

To better study unions of perfect matchings we will use notation introduced in [9]

particularly regarding numbers my.

where the infimum is taken over all bridgeless cubic graphs G, and M, ... M} range
over all perfect matchings of G. We can interpret this as a fraction of edges that can be
covered using k perfect matchings (chosen to cover the most edges) so that the fraction
holds for every bridgeless cubic graph. We can now again restate the Conjecture 2 as

m5:1.

Number m;,
Lemma 1. m; = 1/3.

Proof. Every perfect matching covers the same number of edges in a given graph,
|V (G)|/2 precisely (graphs with odd order can not have a perfect matching). In every
cubic graph a perfect matching covers one in three edges at a given vertex. This implies
that m; = 1/3. ]

Number m,

Upper bound for msy can be easily determined by the Petersen graph. This graph
has 15 edges and is a snark. Two perfect matchings can cover at most 9 edges i.e.
my < 3/5. It has already been shown that ms = 3/5 [9]. Powerful tool used in the
proof of mentioned equality is the Perfect Matching Polytope theorem of Edmonds [4].

Number mj

The Petersen graph can be again used to show that three perfect matchings can
cover at most 4/5 of the edges (see 2.1). This implies that ms < 4/5. It has been
proven that 27/35 < mg < 4/5 [9]. Many authors think that ms = 4/5.

2.3 Recent progress

There are some important results in graph coverings that hold for certain types of
graphs or for graphs with a certain amount of edges. It was known that for a graph
to have k perfect matchings, that cover all the edges, it needed to satisfy following

inequality: k > logg »(|E(G)]). [19] This was later improved by Mazzuoccolo [15].
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Figure 2.1: One possible triple of perfect matchings in the Petersen graph

Theorem 1 (Mazzuoccolo). If G is a bridgeless cubic graph with fewer than \2/—;

edges, then there is a covering of G by t perfect matchings.

In the same paper he made a new lower bound for ms. He studied the sequence
defined by the recurrence a; = #H(l —ax_1) + ax_1 and ap = 0. It was announced

(without a proof) that ar < my,Vk when the sequence was introduced in [9]. Maz-

__ 215

zuoccolo provides a proof of the relation between a; and my, and shows that a5 = 337,

directly implying that ms > % [15].

Theorem 2 (Mazzuoccolo). Let G be a bridgeless cubic graph. There exist five

perfect matchings of G that cover at least @?%E(G)H edges of G.

The following definition and theorem are important, because they show that Berge-

Fulkerson theorem holds for some classes of snarks, namely Goldberg graphs. [5]

Definition (Goldberg graphs). Let H be the graph depicted in 2.2. Let Gy, (k odd)
be a cubic graph obtained from k copies of H (Hy ... Hy_1 where the name of vertices
are indezed by i) by adding edges a;a;i1, ¢iCiv1, €i€iy1, fifir1 and hihiyq (subscripts
are taken modulo k). Graphs Gy are called Goldberg graphs. Gs is also known as the
Goldberg snark 2.5.

Theorem 3. For any odd k > 5, Gy can be provided with a Fulkerson covering.
Let us now consider the following conjectures introduced in [18]. vp(e) is the num-

ber of perfect matchings of the FR-triple F' that contain the edge e.

Conjecture 9 For any bridgeless cubic graph G, any edge e € G and i € {0,1,2},
there is an FR-triple F' of G, such that vp(e) = i.
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Figure 2.2: Graph H [5]

X . . ® ° x

z . . z

Figure 2.3: Goldberg snark [5]

Conjecture 10 Let G be a bridgeless cubic graph, e and f be adjacent edges, 0 < i,
J < 2 be two numbers with 1 < i+ 75 < 3. Then G contains an FR-triple F', such that

vr(e) =i and vp(f) = J.

Berge-Fulkerson conjecture implies Conjecture 10, Conjecture 10 implies Conjecture
9, and Conjecture 9 implies Fan-Raspaud conjecture. It was proved that Fan-Raspaud
conjecture and Conjecture 9 are equivalent. It was also proved that if Conjecture 10

has a counter-example then it must be a cyclically 4-edge-connected graph.|18|

Mkrtchyan! notes that it is unknown whether the smallest counter-example to Fan-
Raspaud conjecture is a cyclically 4-edge-connected graph. It was shown that the
smallest counter-example to Conjecture 9 must be a 3-edge-connected. It is unknown

whether Conjecture 10 is equivalent to Fan-Raspaud conjecture.[18]

!Mkrtchyan Vahan, researcher at Gran Sasso Science Institute, Italy
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Chapter 3
Computational methods

To study perfect matchings, we relied on extensive computational power. Many

cubic graphs and multipoles were searched through.

3.1 Introduction to graph library ba-graph

Graph library ba-graph contains useful tools for working with graphs and other
graph-like structures. In this library a graph is represented as a collection of graph
neighbourhoods called rotations. Rotation represents a neighbourhood of a certain
vertex. This gives us possibility to refer to the underlying vertex, meaning we can
easily iterate over all vertices in the graph. Each rotation contains a collection of
incidences. Incidence has references to the underlying edge, both vertices, rotations and
half-edges. Graph also contains its order (vertex count) and its size (edge count) among

other things. Adding vertices and edges to a graph is very simple and straightforward.

Graph G(createG()); //creates an empty graph

Vertex vl = createV();

Vertex v2 = createV();

addV (G, vil);

addV (G, v2);

addE(G, v1, v2); //adds en edge between vertex vl and vertex v2

Each vertex contains a number, used to refer to the vertex itself. For example, we can

refer to a vertex with number 0 as follows

Vertex v = G[0].v();

Notice that without v() we get the rotation for that vertex. We can refer to edges in
a similar way. Here we refer to an edge between vertices with numbers 0 and 1. We
can also check whether this edge is a loop. Similarly as in rotations, without the e()

we get an incidence.

13
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Edge e = G[0][1].e();
bool is_loop = G[0][1].is_loop();

This library implements some very good graph searching functions. We could want to
find what number does a certain vertex have or whether does a graph contain a given

number.

Number n = G.find(v)—>n();

bool contains = G.contains(n);

We can also list all incidences that satisfy some predicates. We can also pass rotation
predicates to the search function. predicate all() does not filter out any rotations or

incidences. The primary() predicate filters out all non-primary incidences.

G.list(RP::all(),IP::all());
G.list(RP::all(),IP::primary());

This can be used in relatively complicated, but very useful ways. Another example

follows.

G[1].find(v2)—>r2().v()==v2 //true

Here we search for a rotation with number 1, then we find an incidence between number
1 and vertex v2. Then the incidence gives us the second rotation 2, which we use to

access its vertex which is actually the vertex v2.

3.2 CNF formulas

A boolean formula is in a conjunctive normal form (CNF) if it represents a con-
junction of one or more clauses, where every clause is a disjunction of literals. Boolean
formula in conjunctive normal form is simply called CNF formula. Problem of finding
perfect matchings in a graph can be encoded in a CNF formula. A sat solver can then
check whether this formula is satisfiable and can list all possible configurations in which
it is satisfiable. Figure 3.1 is an example of how we can find a perfect matching in a
graph with the help of a CNF formula. Every edge is labelled with a literal, meaning
it can either be in a perfect matching or not. Now we can construct a CNF formula
by making constraints for every vertex neighbourhood. We can start by looking at the
bottom left vertex. A perfect matching must include precisely one edge incident with

this vertex. It can be either a, b or c. A formula for this vertex would be:

(@VbVe)A(=aV=b)A(=bV —c)A(—aV —c)
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First clause makes sure that at least one edge is included in the matching. Other
clauses make sure that no two edges are included in the matching at the same time.
A CNF formula for the whole graph can now be simply a conjunction between CNF

formulas for each vertex.

Figure 3.1: Finding a perfect matching in a graph

3.3 Adding possibly not covered vertices parameter

First thing we needed to do to be able to work with multipoles and their perfect
matchings was enabling some vertices not to be covered in a 3PM covering. This was
done because we wanted to represent a dangling edge using two vertices with one vertex
being uncovered i.e. ignored from a perfect matching. One of the functions which was
changed was cnf kfactor. This function builds a CNF for a k-factor given graph and a
number k. We added a optional parameter which makes sure that chosen vertices can
be incident with at most k edges of the k-factor, but do not have to be incident with

one (we removed the first clause from the example in 3.2).

inline CNF cnf_kfactor (const Graph &G, int k,
const std::vector<Number>& possiblyNotCoveredVertices)

Similarly we changed the function cnf perfect matching. Chosen vertices doesn’t have
to be covered with a perfect matching. This makes possible for us to find a perfect
matchings inside a multipole by specifying all the dangling vertices. Number of other
functions were also changed in a similar way. We also made them accept Number and

Vertex vectors for easier and more flexible usage.
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3.4 Stored graphs

Library ba-graph can work with graph6 and sparse6 graph storing formats. We
worked with pre-generated graphs with up to 36 vertices, mainly concentrating on

snarks with cyclic connectivity 4 and girth 5. Some of the files used were

cubic_cc04 g05.10.snark
cubic_cc04 g05.18.snark
cubic_cc04 g05.20.snark
cubic_cc04 g05.22.snark

where cc means cyclic connectivity, ¢ means girth and the last number indicates order
of graphs in that file. Accessing these graphs in code is simple, we can just make a
graph configuration, then read the graphs we need and access a certain graph by simple
indexing. Following code sample can be used to access all graphs from the first file in
the list above. Files are located in the folder resource/graphs/snarks relative to the

library’s root directory.

Configuration cfg;
cfg.load_from_string("{\"storage\": {\"dir\": \"../../resources/graphs\"}}");
auto sg = StoredGraphs::create<SnarkStorageDataC4G5>(cfg);

auto order = 10;

auto graphCount = sg—>get_graphs_count (order);
for (int i = 0; i < graphCount; i++)
{

Graph G(sg—>get_graph(order, i));

}

3.5 Sat solvers in ba-graph

Library ba-graph uses couple of different sat solvers for certain tasks. In our work
we needed to ensure that we get all possible solutions for coverings, so we used the all
sat solver. It was implemented either by CryptoMiniSat all solver or BDD all solver.
Sat solvers are relatively fast and therefore very useful in computations that are easily
transformable to a CNF satisfiability problem. As we showed in 3.2, finding a perfect
matching is a good example of a CNF satisfiability problem. We can ask the solver to
return all the solutions that satisfy the CNF formula, thus getting all possible perfect

matchings. Then we can easily iterate through every three-combinations.
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3.6 Creating multipoles

There are a multipole ways to create multipoles :). We created multipoles by cut-
ting edges or vertices in cubic graphs. By splitting an edge we get a 2-pole i.e. the
resulting graph has 2 dangling edges [Figure 3.2]. By splitting a vertex we get a 3-pole
with 3 dangling edges |Figure 3.3].

Figure 3.2: A 2-pole Figure 3.3: A 3-pole

For cyclic connectivity 2 we made multipoles by cutting one of the edges. For cyclic
connectivity 3 we made multipoles by cutting one of the vertices. Cyclic connectivity
4 can be achieved by splitting two edges or by removing two neighbouring vertices.
Finally, cyclic connectivity 5 can be achieved by removing a vertex and cutting an

edge that was not incident with the removed vertex.

3.7 Calculating uncovered edges

Snarks usually have many perfect matchings. We want to know how many edges can
be covered with 3 perfect matchings. The function minimum_uncovered edges 3PM
calculates how much edges can’t be covered with 3 perfect matchings. The func-
tion minimum__ uncovered_ edges 3PM _for multipoles is similar and does the same
thing but works with multipoles, one just needs to specify number of dangling edges.
This function works by simply iterating through every possible three-combination of
all perfect matchings in the graph. For every combination we calculate amount of
uncovered inner and uncovered dangling edges in the graph using the function wun-
covered_edges for multipoles count. Then we find the combination with minimum
uncovered edges. Finally we need to add those combinations that have the same amount
of uncovered edges but in a different arrangement i.e. number of uncovered dangling
edges is not the same. This is done, because different dangling edges covering configura-

tions can be useful in different scenarios. An example of this situation can be as follows:

A 2-pole has 3 inner and 2 dangling edges uncovered. Additionally there is a

combination in which 5 inner and 0 dangling edges are uncovered. In the end both will
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be included in the result returned by the function.

3.8 Source code

The source code for ba-graph library as it appeared when this thesis was being
written is supplied as an attachment to this work. The source code for our program
used to search and generate graphs and multipoles is also provided as an attachment.
Additionally a textual file is provided that summarizes all the changes made to the ba-
graph library. Finally, we also added some stored graph files that were used to generate

multipoles.



Chapter 4

Results

Problem 1. Let r € (0,1)NQ be a fraction and k > 2 an integer. Is it true that there
exists a cyclically k-connected cubic graph G such that ms(G) = r?

Proofs that follow rely on a so-called dilution technique, appearing in an unpub-
lished paper On covering cubic graphs with three perfect matchings by J. Mazak and
E. Macajova [11].

4.1 Cyclic connectivity 3

We will show that for any r € (%, 1) we can find a cyclically 3-connected cubic

graph G for which m3(G) = r. Let us start with a cyclically 3-connected ladder graph
L¢ (symbol ¢ stands for cyclically connected) [Figure 4.1].

Figure 4.1: Cyclically 3-connected ladder graph L§

We can easily see that for any natural number n, ms(L¢) is equal to 1. Next, we
will start exchanging some vertices of this graph with a multipole made from splitting
one vertex in the Petersen graph. This will push the mg coverage down as the Petersen
graph cannot be fully covered with 3 perfect matchings. Finally if we exchange all the
vertices, we show that the mg of such graph is 3_3

Let A denote the Petersen multipole and let B be a vertex with 3 dangling edges.
Graph G, will be a graph made from exchanging a vertices of the graph Lioivy /2 with

19
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vertex split Petersen multipoles. We can easily see that (a + b) must always be even.

Additionally, %’ must also be even, otherwise graph L?a +b)/2 does not have a 3PM

configuration covering all outer edges in the B graphs.

Figure 4.2: Graph G7,
Figure 4.2 shows an example of a graph G, for a =7 and b = 1.

Number of edges in the graph G,; can be calculated by counting inner and outer
edges of the graph, where outer are the edges that connect graphs A and B. There
are 12 inner and 3 outer edges in every copy of the graph A. Graph B contains only 3

outer edges. The number of edges in the whole graph can now be calculated easily as

1244—%@44—3)

(we needed to divide by 2 because we counted every outer edge twice). Computing all
possible 3PM coverages of graph A shows that 2 edges can be uncovered only when
we have a configuration in which 2 PMs cover a unique dangling edge and the third
PM covers all 3 dangling edges. To be able to connect multipole A with the rest of the
graph, we must ensure that the 3 dangling edges are covered with 3 different perfect
matchings. This can easily be done by taking only the third dangling edge in the
perfect matching that covers all dangling edges. Our computation also showed that
there are no configurations in which there are more than 2 uncovered inner edges in
the graph A. Thus the maximum number of covered edges in a 3PM coverage in the

graph G, is

mA+;A+&

This gives us the ms for our graph.
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_ 10A+3(A+B) 23A+3B
124+ 3(A+B)  2TA+3B

mS(Ga,b)

23

Theorem 4. For each fraction © € (3,
q

graphs G such that ms(G) = 2.

1), there exists infinitely many bridgeless cubic

23

Proof. Let us consider the graph G, for a = 3(¢ —p), b = 27p—23¢ (since 1 > ’—; > 5

both a and b are positive).
_233(¢—p) +3(2Tp—23¢) _ 12p _p

ma(Gap) = 27(3(¢ —p)) +327p — 23¢) 12¢ ¢

so G, satisfies the required property. In fact G, for any integer n satisfies this

property too. ]

Now we can formulate a more general theorem for cyclic connectivity 3. Let us
consider that we found a graph C that has lower 3PM coverage than graph A. Let us
say that it has y uncovered inner edges out of x edges (all outer edges are covered).
There are x — 3 inner and 3 outer edges in this graph. This gives us the mg for graph
Gep.

G (r-y-3)C+3(C+B) (2x—2y—3)C+3B
s{Gies) = (x—3)C+3(C+B) (28—3)C+3B

2c—2y—3
2r—3

y the number of uncovered edges in the lower bound graph, there exists infinitely many

Theorem 5. For each fraction § € ( , 1), where x is the number of edges and

bridgeless cubic graphs G' such that mz(G) = E.

Proof. Let us consider the graph G, for ¢ = 3(¢ — p), b = (22 — 3)p — (22 — 2y — 3)q

(since 1 > 2 > 222203 'hoth ¢ and b are positive).
q z—3

2x — 2y — 3)C' + 3B
(22 — 3)C + 3B

(o) =

(22 — 2y —3)3(¢ —p) +3((2x = 3)p— (2(x —y) +3)q) _ 2yp

(22 —3)3(qg —p) + 3((2z — 3)p — (2(z — y) + 3)q) 2yq

3

so Gy satisfies the required property. In fact G,y for any integer n satisfies this

property too. ]
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4.2 Cyclic connectivity 4

28

We will show that for any r € (57,

graph G for which m3(G) = r.

Consider a multipole made from splitting two neighbouring vertices in the Petersen

1) we can find a cyclically 4-connected cubic

graph. Let us call it graph B. This multipole has 4 dangling edges [Figure 4.3]. Graph
B can be fully covered with 3 perfect matchings |Figure 4.3|.

-

Figure 4.3: The graph B with 3PM coverage

Let us start with a cyclically 4-connected graph B; made from connecting n B
graphs in a circular way, by connecting 2 of the dangling edges to the right graph and
remaining 2 dangling edges to the graph on the left.

We can easily see that for any natural number n, m3(B¢) is equal to 1. Next, we
will start exchanging some B subgraphs of this graph with a multipole made from
splitting 2 neighbouring vertices in a graph with order 22 and size 33. Let us denote
this graph A |Figure 4.4|. It has 3 inner edges uncovered in a 3PM coverage. Notice
that 3 of the covered edges are coloured green. Green edge represents and edge that
was covered with 2 perfect matchings (it’s easy to see which two by looking at colours

of neighbouring edges). Gray edge on the other hand represents an uncovered edge.

Note: Dangling edges have vertices of degree one on them. This is only due to how

Gepht works, these vertices don’t actually exist.

Computing power showed that in this configuration dangling edges are covered with
two perfect matchings in the graph A. This means that it connects nicely with the
graph B. This way can create a graph G, consisting of a copies of graph A and b
copies of graph B. The number of edges in the whole graph can now be calculated

easily as

4A +4B

108 + 29A + 5

(again we divided by two to negate duplicate edge counting from joined dangling edges).
Extensive computation showed that there are no better 3PM coverages of the graph A

that this one. The maximum number of covered edges is thus
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Figure 4.4: Graph A, visualized with Gephi [2]

4A+ 4B

10B + 26A + 5

This gives us the mg for our graph.

_10B+26A+2(A+B) 12B+28A
- 10B+29A+2(A+B) 12B+314

m3<Ga,b)

Theorem 6. For each fraction § € (g—f, 1), there exists infinitely many bridgeless cubic

graphs G such that ms(G) = £.

Proof. Let us consider the graph G, for a = 12(¢—p), b = 31p—28¢ (since 1 > g > %,

both a and b are positive).

_ 12(31p —28¢) +28(12(¢ —p)) _3-12p p
- 12(31p —28q) +31(12(¢ —p))  3-12¢ ¢

ms(Ga,b)
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so G, satisfies the required property. In fact G, for any integer n satisfies this

property too. O

Now we can formulate a more general theorem for cyclic connectivity 4. Let us
consider that we found a graph C that has lower 3PM coverage than graph A. Let us
say that it has y uncovered inner edges out of = edges (all outer edges are covered).
There are x — 4 inner and 4 outer edges in this graph. This gives us the ms for graph
Gep.

e, )_1OB+(x—y—4)C'+2(C+B)_(x—y—2)C+12B
ST 0B+ (2 —40)C +2(C+B)  (z—2)C+12B

Theorem 7. For each fraction © € (%, 1), where x is the number of edges and y
the number of uncovered edges in the lower bound graph, there exists infinitely many
bridgeless cubic graphs G such that m3(G) = §.

Proof. Let us consider the graph G, for ¢ = 12(¢ —p), b = (z —2)p — (x —y — 2)q

(since 1 > 2 > V-2 both ¢ and b are positive).

(x —y—2)C+2B

ma(Ger) = 0501 2B

oy =220 -p+ 2@ -2p—-(r—-y—2)¢) _12yp p
(x=2)12(¢—p) +12((x = 2Jp— (r —y —2)q) 12y ¢

so G.p satisfies the required property. In fact G, for any integer n satisfies this

property too. O



Conclusion

Importance

Results achieved can be deemed somewhat interesting, but what is more important
is the dilution technique used in those proofs. This technique can be applied to any
coverings and any interval (z,1) as long as the lower bound graph is found successfully

(upper bound graph can stay the same, because it is fully covered).
Further study

Results presented in the Chapter 4 can be improved and extended in various ways.
One way would be to increase the computing power or provide more time for the com-
putation to run longer and find graphs that maybe have better (lower) 3PM coverage
than the graphs used in these proofs. Another way would be to study cyclic connectiv-
ity of higher order. Finding graphs with cyclic connectivity 5 and 6 can be relatively
easily added to the program and used to provide similar results to the ones presented

in this work, albeit with higher cyclic connectivity.

Altogether different way to study coverings with perfect matchings would be to
study coverings with 4 or 5 perfect matchings. We chose coverings with 3 perfect
matchings, because they showed very promising. We did not need to search for a long
time to find graphs that had good 3PM coverage. On the other hand, almost all small
snarks are completely covered with 4 perfect matchings, so one would need to search

bigger snarks, but unfortunately those are out of reach for today’s computers.

25
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Conclusion
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