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Abstrakt

Duplikácie a delécie rôznych £astí DNA sú známym zdrojom chorôb a syndrómov. V

na²ej práci sme uviedli porovnanie nástrojov, ktoré sa ²pecializujú na detekciu takýchto

delécií a duplikácií. Porovnali sme dokopy ²tyri nástroje: CNV-caller, WisecondorX,

iCopyDAV a CNVkit. Pre kaºdý nástroj sme uviedli ich popis a niektoré výhody a

nevýhody ich pouºitia. Pre porovnanie sme pouºili 54 vzoriek s potvrdeným výskytom

duplikácií a delécií. Následne sme narvhli predik£ný model na vylep²enie detekcie

týchto javov.

K©ú£ové slová: detekcia CNV, bioinformatika, nástroje na detekciu CNV
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Abstract

Duplications and deletions of di�erent sections of DNA are a cause of various genetic

disorders and diseases. In our work we compared tool that specialize in detection of

these kind of deletions and duplications. Together we compared four di�erent tools:

CNV-caller, WisecondorX, iCopyDAV and CNVkit. W described used methods of the

individual tools and listed some of their advantages and disadvantages. For this com-

parison we used 54 samples with con�rmed deletions and duplications. Subsequently,

we proposed a combined predictive model that improves the detection of mentioned

phenomenon.

Keywords: CNV detection, bioinformatics, CNV detection tools
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Introduction

Bioinformatic technologies have developed dramatically over the past decades. It took

over ten years to assemble �rst human genome. Nowadays, next generations sequencing

technologies are capable of sequencing whole genome in one day and for much lower

cost.

This resulted in numerous scienti�c researches, analyses and a development of new

bioinformatic software tools. Major attention deserve mutations on DNA. Although,

they are essential for evolution of all living organisms, they can cause numerous health

problems and complications. Copy number variants (CNV) are types of mutations

that are linked to several syndromes and diseases. Various software tools were created

speci�cally for detection of this type of mutation.

In this thesis we present a comparison of four di�erent CNV detection tools. We

compare their limitations to di�erent factors, which a�ect the detection process.

Furthermore, we propose a prediction model, which comprised of combination of

selected tools and suggested alternations for a better prediction.

In the �rst chapter, we put fundamental terms into context, for instance genome,

chromosome, nucleic acids and so on. We describe how are data obtained from DNA

by various technologies and a brief history of sequencing is presented as well. To

continue, we introduce copy number variations, their importance in nature as well as

their unfavorable impact on humans. Subsequently, we describe a method, from which

originate our test samples.

Second chapter comprises of a deeper description of selected CNV detection tool.

Methods that individual tools use, are listed as well with a detailed elucidation of

particular approaches. In addition, we present factors that have an impact on CNV

prediction in this section.

Third chapter is dedicated to a software, through which we were able to run each

tool. We present what are the bene�ts of this tool and how it simpli�ed the analyses.

We brie�y explain how this software functions.

Fourth chapter presents �nal results and overall evaluation of the comparison. We

added di�erent tables and graphs, where we point out the overall performance of the

individual tools. To directly demonstrate the e�ciency, we included various statistics

for each tool. Advantages and disadvantages are included in this section from both

1



2 Introduction

the user and the functional point of view. Finally, we propound a prediction model,

where we selected tools that performed the best in the analyses and we describe what

combinations and approaches would increase the overall �tness of the prediction itself.



Chapter 1

Biological and Bioinformatics

background

This chapter will brie�y cover some bioinformatic terms, that are important to under-

stand and will be mentioned later in this thesis. We will introduce DNA structure and

some basics about genetic information itself. Subsequently we will describe methods

for sequencing DNA and �nally, we will de�ne Copy Number Variations.

1.1 DNA structure

Genetic information of all living organisms is carried by molecules of DNA (Deoxyri-

bonucleic acid) [37]. These molecules are present in every cell of an organism. They

encode how will the organism develop throughout its lifetime, how many limbs it will

grow, what diseases it will be prone to and other information. DNA molecule con-

sists of coding regions called genes and non coding regions. Synthesis of other gene

products, such as proteins, is encoded in genes.

The term genome is used for genetic material of an organism. It includes genes

and non coding regions of DNA as well as other genetic material.

DNA composes of two strands that form double helix structure , which consists of

smaller structural units called nucleotides [37]. These two strands are of equal length

and are aligned so that i -th nucleotide is connected by a hydrogen bond to the (n-i+1)-

th nucleotide on the other strand. Each nucleotide stores one of the following bases:

adenine, cytosine, guanine, thymine. Simple drawing of DNA is shown in Figure 1.1.

Later in this thesis, we will not di�erentiate between the terms base and nucleotide,

since nucleotides di�er mainly in bases that they contain.

DNA molecule can be described as a string of letters A, C, G, T. Segment is

a sub-sequence or sub-string of a sequence . This string is not symmetric meaning

that it can be determined where the strand starts and where it ends. According to

3



4 CHAPTER 1. BIOLOGICAL AND BIOINFORMATICS BACKGROUND

Figure 1.1: Structure of the DNA. Double helix is imitated by two blue strands [31].

Bases are bond together according to base pairing rules

base pairing rules Adenine (A) always pairs with thymine (T), whereas Guanine (G)

pairs with Cytosine (C) as is showed in Figure 1.1. Therefore, one strand is enough

to determine complete DNA sequence [44]. We can do this by replacing a base with

its complementary base and subsequently reversing the order, for instance sequence

AATGCC is complementary with GGCATT.

A nucleotide pair, for instance A connected with T, is a base pair unit of mea-

surement. As expected, 1 kb (kilo base pairs) is equal to 1 000 bp (base pairs), 1 Mb

(Mega base pairs) equals to 1 000 000 bp, etc.

Chromosome is a DNA molecule carrying genetic information. Every organism

has its own set of chromosomes and each cell of the organism contains certain number

of complete sets of chromosomes. Number of the sets is called ploidy and depend-

ing on this number the organism falls under the category of monoploids (one set of

chromosomes), diploids (two sets), triploids (three sets) etc. Human is a diploid or-

ganism and a healthy individual has twenty two pairs of chromosomes and a pair of

sex chromosomes.

Fixed location on chromosome is called locus.
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1.2 Structural Variants

To de�ne structural variants, �rst we need to clarify used terms such as evolution,

mutation and so on.

Biological or organic evolution is an alternation in heritable characteristics of pop-

ulations in the course of generations, usually caused by random mutations [22, Chap-

ter 1].

Mutation is an alternation in DNA sequence. This change may have positive,

negative or no e�ects depending on the location where mutation took place, how many

bases have mutated and so on. Mutation itself is a very signi�cant event, it can cause

important evolutionary progress. Great example that introduces positive mutation is

antibiotic resistance [22, Chapter 1]. Before Alexander Fleming's Discovery of Penicillin

in 1940s, heart diseases or cancer were not as common. Instead people in hospitals

were battling with tuberculosis, typhoid fever, cholera and other bacteria infections.

However, as medical situation improved with the above mentioned discovery, most

bacteria diseases have been defeated. Unfortunately, as a result of evolution, some

of these diseases came back stronger and resistant to the used types of antibiotics.

With each new antibiotic, bacterial diseases are evolving. Naturally, this is happening

constantly and since every organism mutates, the evolution continues.

Opposite to positive mutation is negative mutation, where the organism is at a

disadvantage or the phenomenon can even results in death.

The di�erence in DNA between populations of species is called genetic variabil-

ity. It can be present in various forms from single nucleotide polymorphism (SNP,

an alternation in single nucleotide) to DNA sequence modi�cation or even change in

chromosome structure [41].

Structural variation is a change in organism's chromosome, involving a DNA

fragment that is approximately 1 kb or larger, therefore we can consider it a larger

mutation event [19]. Under this category fall:

� Translocation, is a phenomenon when a fragment of a chromosome attaches

itself to a di�erent chromosome or when two chromosomes exchange their parts.

If there is no loss or gain of genetic material, it is referred to as balanced translo-

cation. Opposite to it is an unbalanced translocation, which are linked to several

health problems such as leukemia and others [5].

� Insertion, occurs when an additional set of base pairs are inserted into a DNA

sequence.

� Inversion, a phenomena when a segment of a chromosome is in a reversed order.

Growth retardation, infertility, cancer and other diseases are linked to this type

of mutation [1].
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Figure 1.2: An example of duplication and deletion event on a chromosome. The

chromosome in the middle is the original one, the right side displays deleted section C

(neon pink color) and the left side shows chromosome with the same section duplicated.

� Deletions and duplications are in the same category, which is called Copy Num-

ber Variations or CNVs will be introduced in more details below, since it plays

key role in this thesis.

CNV is a phenomenon in which sections of DNA repeat (duplicate) or they are

deleted. We can see an arti�cial example of a CNV event in Figure 1.2.

This phenomenon represents a signi�cant source of genetic diversity among di�erent

species including humans. For instance it was discovered that people with low-starch

diet have less copies of salivary amylase gene (AMY1) than people with higher-starch

diet [36]. As a result, higher number of AMY1 gene can have various bene�ts, especially

for digestive system thus this mutation is positive.

However, CNVs are associated with various syndromes and diseases as well [47].

They are associated with schizophrenia, autism or susceptibility to HIV infection.

What is more, CNVs can cover part of a gene, whole gene or even several genes and

therefore they are likely to have a role in alternation of human physiological functions,

which are essential processes such as metabolism, movements, reproduction etc [47].
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Reference genome is often used as a guide to identify abnormal mutations. This

reference represents idealized version of a DNA sequence of a species. Scientists assem-

ble the reference from sub-sequences that originate from di�erent donors. In our thesis

we will be working with tools that detect copy number variations that di�er from the

reference genome. These variants are referred to as aberrant CNVs.

1.2.1 Non invasive prenatal testing

Non invasive prenatal testing or in short NIPT, is method used to detect the risk that

a fetus will be born with a particular genome aberration. Small portions of DNA are

tested. This kind of DNA is referred to as cell-free DNA (cfDNA) because fragments

of genetic information are not within cells, but are free-�oating in the bloodstream.

Normally less than 200 DNA base pairs are contained in one fragment [7].

When a woman is pregnant, her bloodstream contains a mix of cfDNA that either

originated from her cells or cells from the placenta [7]. Since fragments from placenta

cells are almost identical to the DNA of the fetus, cfDNA can be analyzed for various

genome abnormalities. NIPT is mostly used for aneuploidy detection, which is when

an extra copy or a missing chromosome is found. Down syndrome (trisomy 21, three

copies of chromosome 21), Edwards syndrome (trisomy 18) and other disorders are

examples of aneuploidy, but other aspects can be examined such as a gender of the

fetus [7].

NIPT falls under the category of screening tests, which means its purpose is to

detect the potential risk of having a certain condition. It poses no danger to the fetus

or to the pregnant woman. False positives and negatives may also occur. Test is false

positive if the fetus was diagnosed with increased risk of genetic abnormality, but in

reality the fetus was una�ected (for instance only the placenta was e�ected, not the

fetus). Similarly, test is false negative when the results show decreased risk of the

condition, but the fetus was a�ected. However, current commercial NIPTs have a very

high accuracies (>99%) for whole chromosomal aneuploidies [48].

Data that we will test in this thesis all come from NIPT and we will analyze various

structural variants that the fetus may have.

1.3 Introduction to DNA sequencing

In order to work with any DNA sequence it is essential to understand how to obtain it.

Method that obtains and determines the order of the nucleotide acid sequence is called

DNA sequencing. We will brie�y introduce the history of sequencing and essential

terms.

First human genome was sequenced in 2001 and the work took thirteen years.
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Figure 1.3: The evolution of sequencing cost of a human genome. The x-axis represents

years and y-axis refers to the average sequencing cost of that year. The straight line

represents Moore's Law, which describes the trend in computer industry, that the

computing power doubles every two years [6].

However, with faster technologies and signi�cantly lower sequencing cost, new genome

analyses are produced [28]. Nowadays it takes a day in a well equipped laboratory [34].

The cost of sequencing decreased rapidly as is shown in Figure 1.3.

Methods of sequencing can be divided into three generations. The history of the

�rst generation sequencing extends to 1970s. British scientist Frederick Sanger

along with his colleagues introduced Sanger's chain termination [23]. It allowed scien-

tist to �nally distinguish the order of the nucleotide bases. Even though this method

is very laborious and expensive, it is still used up to this day especially for validations

of results of other sequencing methods, since it has a low error rate [21].

Following generation of sequencing technologies is referred to as -Second-generation

sequencing orNext-generation sequencing. During this phase throughput was in-

creased markedly, since biochemical reactions were performed concurrently. High num-

ber of short reads is characteristic for this generation. Examples of NGS technologies

are Illumina MiSeq [2] from Illumina, SOLiD4 from Life Technologies company.

Third generation include single-molecule sequencing technologies. Most common

characteristics among these technologies are long read lengths, lower cost and short

computing time. An example of company that is focused in third generations sequenc-

ing technologies is Oxford NANOPORE Technologies [3], they are popular for their
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First gen. Second gen. Third gen.

Raw read accuracy High High Low

Read length Moderate (800 -1000 bp) Short >1000 bp

Throughput Low High High

Cost per base High Low Medium

Time to result Hours Days Less than a day

Table 1.1: Comparison of First, Second and Third generation of sequencing [33].

Figure 1.4: An arti�cial example of a genome(the original sequence) and its reads. The

blue color resembles parts of genome that are not covered. The red color shows bases,

where a sequencing error occurred.

sequencer MinION, which is very small and can easily �t into a packet.

A comparison of these three generations are described in Table 1.1.

Majority of sequencing methods is not able to read the whole genome at once. A

genome is broken into smaller sections during fragmentation process and as a result,

smaller subsections called reads are produced by sequencers. Reads are sub-strings

of chromosome, which are �nite and non-empty. Subsequently, heuristic algorithms

connect smaller reads into a longer string that resembles the original DNA sequence.

These smaller sections ideally cover the whole original sequence, but often there are

gaps. Moreover, reads can overlap each other, they may contain sequencing errors due

to incorrectly discarded reads and so on [9]. An example of genome and its reads is

shown in Figure 1.4.

Genome assembling is a process of aligning and merging fragmented reads in order
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to remodel the original sequence. There are two approaches for genome assembling

problem. The �rst one is called de novo assembly, where original genome sequence is

recreated with no prior knowledge [10]. Latter approach is read mapping, where reads

are aligned (mapped) to a reference genome, which could be created by either of these

approaches.

Factors that a�ect genome assembling are:

� The length of the original sequence - shorted sequences are easier to process.

� The length of the individual reads - longer reads are easier to assemble.

� Coverage or depth of coverage. It refers to the average number of reads that

covered a nucleotide. The term genome coverage is an average number of reads

that align to a base in the original sequence. With higher coverage (>20x) even

rare variants can be found and have other advantages, at the same time it is

much costlier [12].

Summarization of the de-novo sequencing process can be seen in Figure 1.5.
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Figure 1.5: Summarization of the sequencing process illustrated on an arti�cial ex-

ample. A molecule is broken into smaller fragments, then they are sequenced and

afterwards they are assembled by assembling algorithm.
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Chapter 2

CNV detection tools

In this chapter we point out what important factors have to be taken into account

when comparing di�erent software tools. We introduce various tools that detect Copy

Number Variations(CNV) and desribe methods that were used for each tool.

2.1 Comparison of the CNV tools

Before we compare any CNV detection tools, we have to describe what elements a�ect

the detection itself. Overall, detection of any microdeletion/microduplication syndrome

is limited by four main factors [49]:

� fetal fraction,

� size of the particular CNV,

� coverage,

� biological and technical variability of the event region.

Fetal fraction is the proportion of cell-free fetal DNA (c�DNA), which refer to

fetal DNA that circulates freely in the maternal blood. The time elapsed since the

conception, maternal weight and other factors greatly a�ect the proportion of fetal

fraction [25]. Naturally, when detecting any given MD, we want fetal fraction to be as

high as possible. However, some factors might decrease this fraction [25].

Size of the CNV depends on a particular patient. Again, we can expect better

results for bigger CNVs because they are easier to detect. Yet, we will not neglect

analyses on data with small CNVs.

Coverage: Results from data with higher coverage can be more precise and sensi-

tive, however, lower coverage is overall cheaper and faster. In contrast to fetal fraction

13
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and length of CNV, this factor can be directly changed to obtain more accurate re-

sults, but with higher production cost. In this study we analyze data with a very small

coverages from 0.05x to 0.5x, that are usually in NIPT and similar tests.

Biological and technical variability of the event region refers to the fact that

some sectors can be more variable than others. It can be caused by various factors

such as repetitive elements, mapping ability and so on. As a result these regions are

harder to detect and are usually �ltered out from the analyses.

2.1.1 Detection of CNVs

Tools for CNV detection share some similarities in their approaches. Usually, there

are four main steps. The reads of target sequence are separated into smaller sections

called bins. Subsequently, normalization and noise correction techniques are applied

and �nally, normalized signal is segmented and scanned for CNVs. The scanning

process is often referred to as CNV-calling.

Binning

Most CNV detection tools separate the sequence into smaller segments, bins. This

process is called binning. Bin-size is the number of bases inside the bin. Although this

parameter can be often adjusted by the user, some tools propose a method to determine

the optimal bin-size. Final resolution strongly depends on the bin-size. Larger bin-size

results in worse resolution and faster computational time, however, the sensitivity for

smaller aberration decreases.

Term bin-count is the number of reads that are that are in the bin for a particular

sequence. This number varies between di�erent genomic regions due to di�erent map-

pability and biological reasons. Thus it needs to be normalized to obtain bin-count

puri�ed from these biological biases.

Normalization

One of the most important steps is normalization. In this process program adjusts

measured values to a hypothetically common scale. Process of normalization is very

important since it reduces noise commonly seen in samples and therefore can consid-

erably change �nal sensitivity and speci�city. Normalization helps to highlight the

aberrant segments as is shown in Figure 2.1.

Many systematic biases arise from whole genome NGS (next generation sequencing)

data, which are more susceptible to create greater sequencing noise. In our work we

included four CNV detection tools, each of them has to deal with one particularly

important bias called GC bias. This bias is caused by di�erent GC content (described
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Figure 2.1: Bin counts of a particular chromosome (before and after normalization).

Red color is the region region with microduplication, blue color refers to regions without

abnormal microduplication or microdeletion, red triangles are centromere regions (part

of the chromosome, which has a low mappability). The x-axis is the coordinate of each

bin in Mb. The y-axis in picture A is scaled bin count and in picture B it stands for

normalized bin count, where the expected bin count is 1 for the blue region. This picture

shows how normalization process helped to detect the region with microduplication

(red region), by reducing the sequencing noise [49]. In section A the region may seem

like a duplication or deletion and thus is hard to identify, however after a bin-count

normalization method is applied, as is shown in section B, the region becomes more

evident.

below) across the genome.

GC content is the proportion of guanine and cytosine bases in DNA. The content

of these bases can aggravate the sequencing process of the genome. Presence of regions

with poor or rich GC content lead to uneven or no coverage of reads across genome.

This inclination is called GC bias [14]. Local regression or local polynomial regression

(LOESS) ic commonly used to deal with GC bias [8]. Loess regression merges together

bins with similar GC content in a certain interval. This correction is applied to every

bin and depends on the average read depth value of the bin and median read depth

value for the whole genome. The GC bias is di�erent for each sequenced sample and

thus need to be dealt within the sample.

The mappability bias is another systematic bias that a�ects the results of any CNV

detection tool. Mappability of a region is the chance that read will be sequenced

and mapped successfully to the reference. However, particular regions are very hard

to sequence and some regions (e.g. repeating regions) are challenging to map thus

these regions will have a very low mappability. Mappability bias a�ects handling of

ambiguous reads. Alignment of theses reads depends on what approach is used. Reads

can be aligned to best-scoring positions, randomly assigned to any possible positions

or even to all possible positions [16].

The DNA structure can di�er between sub-populations and population [46]. This

relation is called population strati�cation and it can results in spurios disease studies.
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Principal component analysis (PCA) normalization is often used to remove this kind

of bias. This is a reduction method for large-scale datasets. The aim of this method

is to reduce the given data set while still preserving as much important information as

possible. Firstly data has to be standardized, this way each variable contribus to the

analyses equally. Next, covariance matrix is computed and �nally principal components

are obtained. Principal components are linear combinations of the original variables

[46].

Segmentation

Another major step in CNV prediction is segmentation. The aim is to gather read

depth signals with similar intensity, following this, the bin-count that deviate from

the average read-depth signal are considered to be variant regions. However, read-

depth signals are noisy due to di�erent aspects such as di�erent mapping ability of

the tested sample and reference genome. As a result variant regions may be falsely

identi�ed. Crucial process in this step is distinguishing the spurious variants from true

copy variants.

Circular binary segmentation (CBS) is a popular method used for segmentation.

Vast majority of CNV detection tools that we compare in this work use CBS. This

method is a recursive algorithm, that separates bins x1, x2, ..., xn into a smaller sets

with similar read-depth values for each segment [16]. The algorithm recursively searches

for an interval i, ..., j where segments xi..., xj have similar read-depth value and at the

same time this value is di�erent from x1..., xi − 1 and xj + 1..., xn regions. If no such

region is found, than the whole x1..., xn region has no change point, otherwise three

intervals are distinguished: x1..., x1−1, xi..., xj and xj +1..., xn. A region is consideret

to contain a CNV aberration if a result from a certain statistic for that particular

section exceeds a computed threshold.

2.2 Individual tools

In this section, we will introduce particular tools for CNV detection. Advantages and

disadvantages will be pointed out and in addition we will brie�y describe the process

of CNV detection for every tool.

2.2.1 iCopyDav

Authors of this tool were focused in handling some of the systematic biases that rise

from CNV detection in whole genome NGS (next generation sequencing) data. Frame-

work comprises of �ve main steps: Data pre-treatment, Segmentation, CNV calling,

Annotation and Visualization [16]. We will describe each step in better details bellow.
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Data pre-treatment

At the beginning user can de�ne desired bin-size. For low coverage data 500bp are

recommended. However, this value is recommended for coverage around 3x, since our

testing data can have coverage as low as 0.5x we decided to use same bin size for every

tool (20 000bp).

To continue, this step copes with non-uniform coverage of reads that result from

GC content bias and mappability bias. GC-bias correction is carried out by Local

Polynomial Regression �tting (Loess) algorithm described in 2.1.1.

This tool deals with mappability bias, by scoring the individual bins according

to their mappability. The score can reach values from zero to one and is computed

along the genome. Subsequently, user can de�ne the threshold for mappability score,

meaning that no mappability bias is allowed if the value is set to zero and opposite to

this no mappability correction is done if the value is set to one.

Segmentation

CBS is predominantly used for identifying larger CNVs. For smaller aberrations a

di�erent method is applied, which results in wider range of CNV prediction. Since

we used only CBS during the execution of this tool, we will not describe the other

mentioned method.

Variant Calling

In this step copy number regions are detected and start and end positions, type of

variant and absolute copy number are reported. Absolute copy number estimates the

credibility of a particular CNV. Variant calling is done by computing mean RD value of

the chromosome that reported CNV. This value is not a�ected by deviant RD signals

that originate from variant regions, since these segments are ignored. Subsequently,

upper and lower threshold is computed using this value.

UpperThreshold(UT ) = 1.45x(averageRDvalueofthechromosome)

LowerThreshold(LT ) = 0.55x(averageRDvalueofthechromosome)

If RD-value exceeds UT that it is reported as duplication and opposite to this if

the value is lower than LT than it is identi�ed as deletion.

Results

This tool proved to be reliable in detection of CNVs larger than 1 Kb with coverage

from 10x and higher (90 % occuracy was reached). However, for smaller CNVs the

occuracy was around 50 % even though the sequencing depth was more than 30x. This
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indicates that iCopyDAV detects large CNVs with better precision than smaller ones

[16].

To continue, iCopyDAV detected start and end positions better when sequencing

depth was increased. This is naturally due to higher resolution. Large variation in

detection of these positions is detected for cases with low coverage data (less than

30x). In addition authors state that in low coverage data duplications are easier to

detect than deletions.

This tool is not originally meant for such low coverages as we are dealing with and

it is likely to have problems detecting CNV on our datasets.

2.2.2 WISECONDOR

One of the most promising tool in our research seemed to be WISECONDOR [43].

Authors presented some novel approaches that reduced the testing costs.

WISECONDOR took inspiration from z-score method developed by Chiu et al [38].

It was used for detection of trisomy 21 (Down syndrome) and their goal was to develop

high-resolution version of this approach by testing di�erent alterations.

For normalization authors applied within-sample comparison method. This

approach compares the read counts within the tested sample of each genomic region

with regions on other chromosomes that behave alike in control samples. Regions with

similar characteristics will behave in a similar way within a test sample, since they are

exposed to the same experimental procedure.

In order to calculate sub-chromosomal scores, they developed and combined indi-

vidual bin method and sliding window method, we describe both these methods bellow.

Individual bin method applies GC-correction for each target bin in test samples.

After this, it calculates the z-score (standard score) from mean and standard deviation.

They improved sensitivity by ignoring bins with aberration in the reference set for every

target bin. Because excessive calls close to each other could slow-down the program

they accepted small gaps around the detected part and work with this region as with

one whole aberration.

The socond method for calculating sub=chromosomal scores is called Sliding win-

dow analysis. Sliding window approach takes into account the z-scores of the bins

neighboring the target bin. For the detection they use Stou�er's z-score:

zwi =

∑i+v
k=i−v zk√
2 ∗ v + 1

The symbol zwi is the z-score of each sliding window for particular i -th bin, this bin

takes into account v bins on the left and right side of the processed bin i. After this

following calculation is applied, which informes whether the region contains some kind

of aberration or not. If the | zwi |≥ 3, than the bin is considered aberrated.
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Results: Authors used samples from pregnant woman where fetal fraction was at

least 5%. Their tool was tested for di�erent bin sizes, speci�cally 1Mb, 500kb, 250kb

and 100kb. The worst results were on smaller bins where their program su�ered strong

variations and noise. On the other hand mega base pair showed promising and stable

results.

Sex chromosomes X and Y had to be omitted due to strong correlation with the

percentage of fetal DNA, even though they stated that detection of subchromosomal

disorders could be possible for chromosome X with more reference sample, chromosome

Y remained challenging due to small size and repetitive sequence.

They achieved good results, when detecting deletion of 30Mb and unbalanced

translocation. One sample could not be identi�ed due to the combination of low fetal

fraction and low sample coverage. WISECONDOR had hard time detecting aberra-

tions on chromosome 19, although they did stated that this area has a high GC-content

and is overal harder to analyze.

To sum everything up WISECONDOR did not show satisfying results on triploid

and mosaic samples at low sequencing. Other than these mentioned samples this tool

detected subchromosomal and chromosomal disorders.

Some disadvantages of WISECONDOR are its exclusiveness for NIPT and its ex-

tremely slow run-time for small, yet realistic bin sizes such as 15kb, where the program

took 24 hours to �nish [39]. We describeat their improved version WisecondorX bellow.

2.2.3 Wisecondor X

Wisecondor X is an improved version of WISECONDOR, which we described earlier.

The need for WisecondorX comes from a fact that WISECONDOR could only work

with NIPT and was also too slow for real life usage. With WisecondorX authors claim

that they have altered some of the WISECONDOR limitations, yet they kept same

normalization principles.

This tool uses 100kb bin-size for NIPT samples.

With Wisecondor X, gender is automatically predicted, which means the tool eval-

uates male and female samples separately. For gender prediction WisecondorX uses

Gaussian mixture model, which is a probabilistic model. The tool generates reference

for non-sex chromosomes and two additional references for both genders. When the

tool scans new sample it chooses the correct reference and afterwards it is sent for

normalization.

In the original tool authors used Stou�er's z-score method for segmentation. This

method was replaced with Circular Binary Segmentation method described in 2.1.1.

DNAcopy (v1.50.1) R package was used and this modi�cation lowered computation

time and made Wisecondor X usable for analyses beyond NIPT.
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During reference creation, bin-wise values from healthy samples are saved into

reference-matrix for later use in calculating z-scores.

When it comes to aberration calling, the authors follow this methodology: statistical

signi�cance is unrelated to the interest of type of analysis, meaning that even a small

aberration from a healthy should be studied and observed. Therefore, user can de�ne

a cut-o� for aberration calling.

Normalization process is very similar in both tools. Normalization method used in

WISECONDOR prooved to be reliable enough.

Owning to the fact that this tool kept normalization approaches used in WISEC-

ONDOR and in addition is faster than its precursor, we expect this tool to be reliable

and usable in real life.

2.2.4 CNVkit

Another tool we decided to include is CNVkit. Their approach is based on the fact

that some regions are sequenced at higher coverage and thus they are creating biases

related to CNV prediction. Massive parallel sequencing proved to be useful for CNV

prediction by analyzing the read depth in sequencing data. For clinical use some

genome partitions, for instance disease-relevant genes, are either re-sequenced or higher

coverage is desired. However, other non-coding regions are neglected and as a result

some CNVs (especially larger CNVs) are not detected.

Two main inputs that CNVkit takes are set of test samples and normal samples,

from which a reference will be created. CNVkit calculates bin-size speci�cally for

o�-target (non-coding) regions. Normal samples go trough this process as well.

To continue read depth is calculated. Read depth of each base pair in every bin is

summed and subsequently this value is divided by the size of the bin to calculate mean

read depth of bin. Following this step, bins are log2 transformed.

Reference is created as well from normal samples in order to produce reference

copy-number pro�le, which is used in correction of test samples. CNVkit calculates

bins with systematically high or low coverage. In addition, bins where the coverage

could not be computed are identi�ed and de-emphasized in following steps.

This tool accept input with no control samples, thus it can work without reference

from normal samples. However, reference genome such as hg19 should be provided.

Created reference can be reused, which decreases detection time.

Next step is to normalize test samples to the reference. Bins that do not meet

prede�ned criteria are removed, the rest undergoes bias correction (we will describe

this step bellow). After further modi�cation bins are weighted according to their size,

if control samples are provided weight is further modi�ed.

Since read depth is a�ected by various systematic biases a correction process is
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needed.

Repetitive sequences can cause various systematic biases, since regions where they

occur indicate high variability in coverage. In reference genome repetitive regions are

masked out and the proportion of masked bins is later used in bias correction. The

bias correction procedure assigns an expected bias for each bin. We have to point out

that if one or more normal samples are given for reference creation, systematic biases

are largely removed by normalization. Still, some biases persist and bias correction has

to be done.

This tool used the same segmentation algorithm as iCopyDAV: CBS (Circular Bi-

nary Segmentation). Next step is calling the absolute copy number, where for each

segment absolute integer copy number is computed using a list of thresholds.

Finally, gene-level copy number information can be extracted with a special com-

mand.

CNVkit o�ers an easy usage pipeline tool. One command can create reference and

simultaneously detect copy number from given test samples. In addition, this tool

generates its native BED-like format, which has a strict form (additional parameters

can be added) thus it is easy to read and analyze. However, it proposes conversion to

other formats that are supported by other software tools, such as SEG format used by

GenePattern [40], VCF format etc.

To sum everything up, CNVkit is easy to use since for a whole CNV detection the

user has to run only one command.

2.2.5 CNVcaller

Finally, last tool we describe is CNVcaller.

Similarly as in CNVkit, GC normalization (correction) was applied 2.1.1. Subse-

quently bins were normalized using Principal component normalization described in

2.1.1.

Bins with low read coverage, bins from unmappable regions and bins with high

variance or read coverage bins were �ltered out, yet keeping at least 88% of bins.

Finally, to obtain data normalized around zero, mean read count was subtracted from

every bin.

Segmentation was done by CBS (Circular Binary Segmentation) to identify same-

coverage segments. However, since this procedure partitions a chromosome excessively,

following rule was applied to determine signi�cance of a segment. Ideal deletion or

duplication is a decrease or increase by a factor (mb ∗ ff/2), mb is a mean bin count

and � is fetal fraction. Segment was marked as signi�cant (it carried fetal aberration)

if it overstepped 75% of the ideal increase/decrease. Segments classi�ed around 100%

of the fetal fraction were classi�ed as maternal in origin.
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Authors carried a sensitivity test, to con�rm the tools credibility. Sensitivity test

was carried out with 200 di�erent NIPT data sets and on 533 pathogenic regions. For

samples where fetal fraction reached at least 10%, 99.6% sensitivity was measured,

which implies that this tool might be successful in our analyses.
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Snakemake

In this chapter we characterize software that we used to compare CNV detection tools.

We describe advantages of each software and reasons on why we choose to use each

individual work�ow.

In this thesis we de�ned four di�erent CNV detection tools: CNV-caller, CNVkit,

iCopyDAV, WisecondorX, each of them is a command line tool. However, working with

command line can be protracted, impractical and often chaotic, especially if chained

execution of multiple commands or applications is requested. Since this was our case,

we decided to search for a work�ow engine that would simplify the execution of di�erent

CNV tools. Snakemake [26] turned out to be the perfect tool for this. It is easy to use,

it provides various e�ective features and can be run on a remote server as well as on

any personal computer.

Snakemake is a Python-based environment that helps to automate pipelines. No

graphical environment is needed, therefore work�ows can be assembled directly on a

remote server. This software can process commands from any installed tool, if input

and output �les are well-de�ned. In addition, Snakemake work�ow supports �le names

with multiple wildcards.

3.1 Structure of the Snake�le

Snakemake work�ow is de�ned in a Snake�le, which is essentially an extension of the

Python language with de�ned structure for rules [26]. Each rule has a name, although

an anonymous rule can be created. Rule consists of input, output and a shell or run

blocks that are de�ned by user. Input and output blocks can contain one or more

input �les, where user can name each �le individually. In the shell block user can invoke

any tool or service that is installed or available, including basic shell commands. The

three mentioned blocks are required in order to create a rule, however more additional

pre-de�ned blocks are available.

23
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Individual rules can be given a number of threads to use. This is done by creating

the additional block called threads. It is not recommended to use more threads than

there are cores available, to avoid excessive context switching.

Wildcards are a very useful feature of this software. They are used to generalize

rules inputs and outputs so that they are applicable to a larger number of datasets.

For instance, if a user wants to apply the same command on a �le A.bam and B.bam,

two separate commands has to be typed down in command line. However, in a Snake-

�le, user can de�ne a rule with inputs samples{character}.bam, which is subsequently

replaced by the regular expressions.

File names can be obtained from di�erent data sets as well. For instance, user may

create a list of �le names through a Python script and then use it in rules.

3.2 Snakemake engine

The order in which Snakemake executes individual rules, is represented by directed

acyclic graph (DAG) [26]. Nodes are executions of the particular rules. Directed edges

between nodes determine the order of rule executions (jobs). For instance if a directed

edge exists from node A to node B, it means that in order to execute job A an output

from job B is needed.

Target rule represents the node that is the root of the DAG. The user can specify

a target rule or created a rule named all. By default, the �rst rule in the Snake�le is

executed. An example of a snakemake work�ow is in Figure3.1.

Snakemake rule is executed only if the stated output �les are not generated yet or

if the input �les have been modi�ed. This quality is very useful for our work since

it allows us to train any CNV tool and subsequently run it on various test samples

without creating the reference again.

To analyze the work�ow, a parameter �dryrun can be added in the command line.

This command will print the jobs that are going to be executed, yet without the actual

execution. Dryrun is crucial to perform before running the Snake�le on large-scale

data.
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Figure 3.1: An example of a DAG for an arti�cial Snake�le. The program needs

Sample.bam as main input and proceeds to create additional Sample.sorted.bam and

Sample.sorted.bam.bai �les.
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Chapter 4

Results

In this section we present �nal results of our comparison. Advantages and disadvan-

tages for each tool are pointed out and described. In addition, we brie�y describe the

comparison process, data preparation and other important details.

4.1 Data preparation

One of our goals was to discover the relation between detection accuracy and param-

eters such as fetal fraction and CNV size. Three sets of samples were used for this

analyses: training samples, mixed data samples and normal NIPT samples. All ob-

tained samples are from patients, who signed consent with the study.

4.1.1 Training samples

CNV-caller, WisecondorX and CNVkit use a constructed reference for CNV detection.

For the reference creation process 134 samples were used.

Training data were collected from standard NIPT samples, originating from con-

�rmed genetically healthy pregnancies. In NIPT, the prediction of any syndrome is

a�ected by the number of fetuses thus we included only samples from singleton preg-

nancies [45].

4.1.2 Mixed samples

To analyze the a�ect of fetal fraction and CNV length, samples with di�erent values

of these factors were needed. NIPT data with con�rmed microdeletion or microdupli-

cation are sparse. Therefore we used data mixed in the laboratory.

Since these data should resemble data obtained by NIPT testing, both maternal and

fetal parts had to be assembled to create this data set. Plasma DNA from non-pregnant

female volunteers was used for the maternal part. This material was subsequently

27
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mixed with male DNA with con�rmed microdeletion syndromes. This way we were

able to control the level of fetal fraction.

The selected microdeletion syndromes were: DGS-DiGeorge syndrome (chr 22),

AS-Angelman syndrome (chr 15), PW-Prader Willy syndrome (chr15), CDC-Cri du

chat syndrome (chr5), WHS-Wolf Hirchhorn syndrome (chr4), 1p36-1p36 (chr1).

Total number of obtained mixed samples is 19.

4.1.3 Normal NIPT samples

We gathered 35 NIPT samples with con�rmed 41 CNVs. Maternal CNVs were pro-

cessed as well (11 CNVs). An average percentage of fetal fraction for these samples is

14%. For each CNV fetal fraction and the approximate start/end position was stated.

All samples were sequenced by Illumina Nextseq [2]. Subsequently, reads were

aligned by Bowtie2 [29] to a reference genome hg19 [17].

4.2 The Comparison of CNV tools

In our work we researched the a�ect of three main factors on CNV detection: Fetal

fraction (�), size of microdeletion/microduplication and coverage. We have selected

samples with di�erent values of the �rst two factors to demonstrate its a�ects.

We have constructed a table to demonstrate the comparison results. Each row

represents one aberration, its CNV size, read count and percentage of fetal fraction.

Each tool occupies one column, where its stated whether the tool detected the given

sample variation or not. Results are shown in Table 4.1.

Additionally, we have calculated success rate for each tool along with its accuracy

rate for positions for both fetal aberrations and maternal aberrations. To obtain this

number we calculated average start/end position from CNV-caller, Wisecondor and

predicted position of the particular aberration. If the tool did not detect a particular

CNV we left it out. Subsequently we subtracted the detected start/end position from

the mean position. We used absolute value of this number and divided it by two (since

we have start and end positions).

4.2.1 CNV-caller

The best results yielded CNV-caller. The tool detected 16 CNVs from 19 testing

Samples 4.1. This tool, as well as other tools, was tested on additional NIPT samples,

where overall success rate was 92%. Additionally, all maternal CNVs were detected.

Results are shown in Table 4.2.

Accuracy of positions is shown in Table 4.3.
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Size coverage � CNV-caller WisecondorX CNVkit iCopyDAV

19.24M 5.90% N N N N

20.36M 11.50% D D N N0.9Mb

21.52M 17.30% D D N N

19.6M 8.70% N N N N

14.54M 16.69% D D N N2.6Mb

19.45M 17.30% D D N N

25.27M 4.50% N N N N

20.59M 11.20% D N D N3Mb

20.39M 20.10% D D N N

15.3M 7.30% D N N N
5.3Mb

24.3M 13.40% D D D N

19.31M 10.60% D D N N
6Mb

19.26M 14.60% D D D N

8.3M 9,10% D D N N

8.4M 14.10% D D N N9.3Mb

16.2M 16.40% D D N N

17.7Mb 16.47M 5.11% D N N N

15.9M 4.86% D N N N
21 Mb

21.5M 9.85% D N N N

Table 4.1: Comparison of CNV detection tools on mixed samples. Table is sorted by

the size of CNV and subsequently by percentage of fetal fraction. For each tool letter

D (Detected aberration) or N (Not detected aberration) is present.

Tool Success rate (SR) Fetal CNVs SR Maternal CNVs SR

CNV-caller 92% 80% 100%

WisecondorX 60% 56% 73%

CNVkit 46% 16% 100%

iCopyDAV 25% 16% 70%

Table 4.2: Overall comparison of success rate for CNV detection tools. Overall success

rate includes NIPT samples and mixed data samples.



30 CHAPTER 4. RESULTS

Tool Overall Mixed data normal NIPT
Fetal CNVs

from NIPT

maternal CNVs

from NIPT

CNV-caller 1930 1310 2118 1933 2591

WisecondorX 3493 625 3183 3293 3218

CNVkit 35696 16388 49829 36292 40522

iCopyDAV 13214 - 27428 3062 13214

Table 4.3: Accuracy rate for positions for CNV detection tools (in kb). Each number

represents the average deviation from an expected position. For instance if Wisecon-

dorX has a position accuracy of 3493 kb, it means that on average the actual start/end

position of the aberration would be located 3493 kb away from the detected position.

Naturally, the smaller this number is the better precision the tool has. For each tool

various rates from di�erent data were calculated. Position accuracy for iCopyDAV

from mixed data was not calculated since this tool failed to detect any CNV on this

data set.

Figure 4.1: The e�ect of fetal fraction and CNV size on detection of CNVs for CNV-

caller. The X-axis represents fetal fraction in percentage and Y-axis represents size of

CNV in Mb. The green dots represent detected samples and red not-detected samples.

Red line is separating the detected and not-detected samples. Detection for low fetal

fraction (less than 10%) in combination with small CNV size (less than 8Mb) remained

challenging for this tool.
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The detection process for one sample took approximately one minute. However,

computation time for each tool varied according to di�erent data preparation. Tools

often convert input �les to a di�erent format, which is not detection itself, but this

process can be lengthy.

This tool could detect samples with lower fetal fraction (less than 5%), however

samples with both low fetal fraction and small CNV size remained challenging. Gen-

erally, tool could deal with smaller CNVs better than with really low fetal fraction.

Overall results for di�erent levels of mentioned parameters are shown in Figure 4.1 .

Advantages: In the �nal output, CNVs where highlighted by color scale, which

indicated the con�dence of the detection. Naturally, the red/magenta colors indicated

unambiguous CNV region with its start, end positions. Therefor the user knew exactly

the level of con�dence for the given CNV. The tool is also able to interpret the results

in .png format for every chromosome, which is very helpful.

Disadvantages: This tool generates many di�erent outputs, which may be con-

fusing at �rst. Additional column that would state clearly what type of event was

detected would be helpful.

4.2.2 WisecondorX

Following CNV-caller, WisecondorX performed second best. This tool successfully

detected 11 out of 19 mixed samples. Overall success rate calculated from both mixed

samples and NIPT samples is 60%. WisecondorX was one of the fastest tools, although

training process took approximately two days, the detection itself was relatively fast.

It took approximately an hour to detect 54 samples, still as mentioned earlier, data

preparation took more time.

The detection of this tool was greatly a�ected by low fetal fraction as well. As is

shown in Figure 4.2, samples with fetal fraction under 10% were hard to detect.

Accuracy of positions is shown in Table 4.3.

Advantages: This tool is relatively easy to install and run. The manual for it is

very clear and exactly speci�es which additional software are required for this tool. All

outputs and their format are described in the manual, which is essential for making

Snake�le with speci�c outputs. Detected CNVs are stored in .bed �les, which are

standardized �les with strict structure, which makes the results easy to understand.

Moreover, user can set a parameter to generate .png plot as well.

The information about the �nal result is usually divided into four �les, this way the

user is not overwhelmed by too many additional information and can choose what is

needed for their analyses. For the purpose of this thesis �le ending with aberrations.bed

contained the main information: start, end positions of the CNVs, type (dup/del) and

z-score, which was very simple and practical during comparison.
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Figure 4.2: The e�ect of fetal fraction and CNV size on detection of CNVs for Wisec-

ondorX. The X-axis represents fetal fraction in percentage and Y-axis represents size

of CNV in Mb. The green dots represent detected samples and red not-detected sam-

ples. The red line roughly shows the turning point from which the samples were either

detected or not detected.

Disadvantages: The documentation for this particular document turned out to

be slightly chaotic since WisecondorX carries many features from Wisecondor. The

user has to assemble information from both tools, which can be confusing.

4.2.3 CNVkit

This tool along with iCopyDAV did not perform well in comparison to CNV-caller

and WisecondorX. The success rate was only 16% for fetal aberrations and 46% for all

samples as is shown in Table 4.2.

The detection was relatively fast, approximately 2 minutes per sample. Naturally,

the training process took about two days, but this process is lengthy for every tool in

our work.

However, it is important to note that the success rate on maternal aberrations

reached 100% . This indicates that even though this tool performed poorly in detection

of fetal aberrations, it is still e�cient for normal CNV prediction.

The e�ect of fetal fraction and CNV size was hard to determine. Low coverage

could led to spurious results. However, with increasing CNV size and percentage of

fetal fraction a slight improvement can be detected 4.3.

Advantages: Documentation for this tool was well arranged and simple. Used
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Figure 4.3: The e�ect of fetal fraction and CNV size on detection of CNVs for CNVkit.

The X-axis represents fetal fraction in percentage and Y-axis represents size of CNV

in Mb. The green dots represent detected samples and red not-detected samples. For

average fetal fraction (15% - 20%) and average CNV length, the red and green dots

are mixed together.
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methods were not described in too much details and the user could easily understand

the work�ow. The activation of this tool was remarkable easy. The user has to run

only one command for both training and CNV prediction.

Disadvantages: Understatement of the manual was much more complicated than

in other tools. It was hard to �nd out what output �les will be created during the pre-

diction process. After running the main command for detection, user has to explicitly

extract the desired format, but in the manual there are no clear explanations of what

information each format stores.

4.2.4 iCopyDAV

This tool turned out to be useless for the comparison of mixed samples, since did

not detect any CNVs. There may be several reasons for this (we address them below).

However, overall success rate turned out to be 23%, which means that some aberrations

were detected and thus we launched the detection correctly. The computation time

was very long, more than four hours for a sample. Although the segmentation and

cnv-calling itself ran under a minute, data-preparation for each chromosome took 15

minutes on average. iCopyDAV does not use any reference from healthy samples, but

for each sample data-preparation still has to be done. In addition, this tool does not

require any reference samples.

Accuracy of positions for fetal aberrations was not good either. This tool could not

detect the whole aberration. This could be a results of low coverage. The results for

this parameter are shown in Table 4.3.

Advantages: A great advantage of this tool is its documentation and manual.

They were the most straightforward among other tools. Even though, the documen-

tation was extensive it provided very clear and simple explanation for each basic nor-

malization method and systematic bias. This was very advantageous for this thesis.

The manual contained exact information for each command. For each command

a list of needed input �les and expected output �les was presented. The description

of parameters was slightly confusing. However, a demonstrative example for each

command was a great help during Snake�le creation. In addition, structure of every

output �le was shown, this way we could verify our results.

Accuracy of positions for mixed data could not be compute since no CNVs were

detected. However, iCopyDAV managed to detected some of the fetal and maternal

aberrations. Results are listed in Table 4.3.

Disadvantages: Although this tool has a great manual, the commands themselves

were rather complicated. For instance, the user could not adjust the name of the output

in-between steps. Almost every command needed a pre�x of the requested input �le

in order to �nd the right �le according to the su�x. This led to crammed folders and
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inconsistency.

To continue, this tools separates detected CNVs for each chromosome, which is in-

convenient when whole genome analyses is needed. It does not create only 24 �les be-

cause for each chromosome there are three �les generated during the detection process.

The fact that user can not modify the path of the output �le arbitrarily complicates

the whole process.

Output is stored in .bed �les. Deletion is presented as 0 and duplication as 1.

However, it would be more clear if deletions were stated as loss and duplications as

gain. WisecondorX has the same output �le (.bed), where it used this description.

iCopyDAV limitations: We suppose that low coverage was the main reason that

this tool did not perform satisfyingly. Deeper research showed that this tool was unable

to yield good results for the coverage under 1x [24]. An average coverage of our data

is greatly under 1x (from 0.1x to 0.5).

Another complication that arose during the execution was that some samples failed

to be processed by this tool. What is even more interesting is that for instance data-

preparation and CNV detection for a chromosome 1 in sample A ran without an error,

yet detection for the same sample, but di�erent chromosome, it did not succeed. We

left out these samples from analyses for this tool.

To sum everything up, we recommend to use this tool for analyses with higher

coverage than 1x, this way the tool can function properly.

4.3 Combining predictors and future work

In this section we describe prediction model for CNV detection that would be based

on combination of di�erent CNV detection tools.

The results of this analyses showed that most reliable tools were CNV-caller to-

gether with WisecondorX. Combination of these tools could be used to improve the

prediction itself.

4.3.1 Simple decision tree

If we simply wanted to increase the number of detected aberrations, we could made a

very simple decision tree. There would be two options: An aberration is considered

to be correctly detected if CNV-caller or WisecondorX detected a CNV, otherwise no

aberration was reported. The probability that this prediction model will not detect

an aberrant sample is 3,2%. This way we could seemingly catch more aberrations.

However, the number of false positives would rise up considerably.
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4.3.2 Decreasing the number of false positives

False positives are untrue aberrant detections, where in reality there are no CNVs. The

number of these aberrations could be decreased by restricting the conditions for detec-

tion. Any aberration would have to be detected by both CNV-caller and WisecondorX,

meaning we would double check any detection. However, CNV-caller performed excel-

lently on problematic data while WisecondorX did not sense any aberrations. Therefore

by choosing this approach, limitations for CNV detection would increase.

This approach could be further improved by adding an additional tool such as

CNVkit. Naturally, proclaiming an aberration as detected only if it was found by all

three tools would not yield satisfying results, since success rate of CNVkit was not

high. Therefore instead of expecting three positive results, we would only need two

from all mentioned tools.

Furthermore, an additional analyses could be done for a greater number of samples.

This way we could �nd out limitations of each tool. According to this we could decide

if the detected region is truly an aberration or if it was only a false positive caused for

instance by small fetal fraction.

This way we could add an interesting parameter: con�dence of detection. Although,

tools already contain z-scores and con�dence levels, this parameter would be more

focused on percentage of fetal fraction. For instance if the tool is known to be incorrect

for samples with fetal fraction under 10%, we would assign a lower signi�cance for its

detection.

Computation time would increase, since running all three tools would take more

time. Still, WisecondorX and CNV-caller both require .npz �les, which take long

time to convert. We could hypothetically join this processes if the generated �les are

indeed the same. Segmentation process and CNV-calling is not as consuming as data

preparations.

4.3.3 Recommended approach

Detection of microaberations from NIPT samples is a process that strongly depends

on various factors (fetal fraction, coverage CNV size). These factors can disturb the

correct estimation of CNVs. Therefore applying the �rst prediction model with the

simple decision tree could result in many false CNV detections. In real life usage

patients would be falsely informed, which may be unnecessarily unsettling.

On the other hand decreasing the number of false positives would solve this issue

(the second proposed prediction model). This approach would result in lower success

rate, therefore increasing the number of false negatives. Still the detected CNVs would

be more reliable. Precision of the detected region would increase, which would help in

identi�cation of the particular syndrome or disease (for instance by comparing it to a
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valid CNV database). It could even uncover new or unexplored CNVs.

4.3.4 Future work

Although we managed to put together a comparison of several CNV detection tools, we

address some important improvements that would enhance the quality of the results.

Comparing more than four tools would bring new insights into the analyses. With

deeper study a more suitable tool could be found that would serve as a good oponent

for other CNV detection tools. This way we could ended up with di�erent ranking of

the particular tools.

To continue, more training samples would de�nitely improve the detection accuracy.

It is hard to determine the minimum number of training samples, but more reference

samples will only improve the tools prediction capability.

More testing samples with di�erent values of fetal fraction and CNV lengths would

specify the limitations for each tool. This way the relation between these factors and

the individual tool would be more relevant.

Therefore in the future we would like to try more extensive comparison, from which

we would be able to compile more both sensitive and speci�c prediction model for CNV

prediction.
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Conclusion

The prediction of CNVs from NIPT samples can expose various structural variants

that are linked to di�erent types of diseases and syndromes. Even though, each CNV

detection tool has certain limitations that are hard to overcome, combining these tools

can result in more reliable and correct CNV detection that is applicable in real life.

We presented several di�erent CNV detection tools. For each of them, we described

their approaches in CNV prediction, explained the used methods and overall work�ow.

Practical and technical side was described for each tool as well. Although, some tools

were not easy to execute and various errors had to be solved we managed to summarized

di�erent advantages and disadvantages and compile the overall comparison.

Di�erent statistics from mixed samples and normal NIPT samples were presented.

Tools were tested on samples with various values of fetal fraction and CNV size, to

give a better perspective of the tool's limitations. In addition, we provided results for

each tool on both fetal aberrations and maternal aberrations.

Finally, we proposed several approaches for combined CNV prediction that would

result in improvement of correctness of CNV detection. We also addressed improve-

ments that could be made to improve our comparison.

Our comparison points out the importance of fetal fraction and CNV size, reason-

ably describes bene�ts of each CNV tool and proposes a prediction model for better

CNV detection, which may be found useful in future works, other CNV researches and

analyses.
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Appendix: Additional electronic �les

comparison.xlsx: This table containes two sheets: Mixed samples, normal NIPT

samples. All both set of samples are listed in these tables. Each tool is detected for

these samples with their detected state, start of aberration and end of aberration.
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