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Abstrakt

�truktúrne varianty sú zmeny v ²truktúre DNA, ktoré môºu ovplyv¬ova´ vzh©ad a

zdravie jedinca, súhrne ozna£ované ako fenotyp. Zaoberali sme sa moºnos´ami predik-

cie fenotypu ©udského plodu z dát získaných sekvenovaním jeho DNA. Vvytvorili tri

predik£né modely, ktoré vyuºívajú dáta o ²truktúrnych variantoch z verejne dostupných

zdrojov. Popísali sme spôsob úpravy týchto dát a taktieº ako proces vzniku modelov.

Tieº sme porovnali a popísali výsledky modelov na na²ich dátach.

K©ú£ové slová: fenotyp, predikcia, ²truktúrne varianty.
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Abstract

Structural variations are changes in structure of DNA and they can in�uence health

and appearance of individual, which is referred to as phenotype. We were focused on

possibility of prediction of phenotype of human fetus from the data obtained by DNA

sequencing. We created three prediction models, which use data of structural variations

from publicly available sources. We described the way this data were adjusted and how

the models were created. We compared and described results of our models.

Keywords: phenotype, prediction, structural variations
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Introduction

Nowadays, public interest in DNA sequencing rapidly increased. Next generation se-

quencing technologies has made possible to obtain large amount of genomic data for

an a�ordable price. These data has wide utilization in many di�erent scienti�c �elds

and in clinical practice. This technology enables extensive analyses of human genome

and the variation in its structure as well.

Variation in structure of DNA can have signi�cant impact on phenotype of in-

dividual. They can cause serious genetic diseases or symptoms, however, structural

variations with no negative e�ect are known as well.

Throughout years the diseases and syndromes linked to the speci�c structural vari-

ations were assembled and stored in various publicly available databases.

In this thesis we attempted to use data from these databases to predict potential

e�ect of variation, which occurred in DNA of an individual, on its phenotype. In present

days, when the structural variation in the genome of a fetus is detected, it is di�cult

to predict whether it would have negative in�uence on its health and appearance or it

would be harmless. The aim of this work is to create prediction models, which could

predict possible impact of the structural variation on the phenotype of the fetus.

We created three model based on di�erent approaches, which will use di�erent

sources of data. But all of the three model make their prediction based on the records

of clinically observed relations between changes on human genome and the caused

phenotypes.

In the �rst chapter we describe and explained the changes in DNA, mutations and

structural variants in detail. We acquaint the reader with classes of mutations, their

in�uence and importance and their origin. We mention the characteristics of individual

classes of mutations as well. The �rst chapter contains a detailed description of CNV,

due to this type of structural variations is the center of our interest.

The second chapter introduce data sources, which were used in this thesis, as well

as the programming language and various packages designed for this language.

In the third chapter we describe the adjustment of obtained data and the process

of creating our three models. In the end of this chapter we provide several statistic,

which evaluate the results of our models.
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2 Introduction



Chapter 1

Genomic variations and phenotypes

Years back, the cost of DNA sequencing used to be signi�cantly higher. However,

with new technologies emerging, the price of DNA sequencing is more a�ordable and,

naturally, it has found its usage in di�erent medical �elds. Besides other usages, it

is also used for prediction of possible fetus's syndromes. By sequencing the DNA of

fetus, several types of mutations might be detected with serious e�ects on the fetus's

phenotype . Despite the fact that there are mutations that have no observable man-

ifestation, many of known mutations have signi�cant negative in�uence on the life of

individual, even may be lethal. In this chapter we describe various types of changes in

human genome, explain how do they arise in genetic information and illustrate what

in�uence and importance they have.

1.1 Mutations

A mutation is broad term covering extensive quantity of modi�cations in section of

DNA [7]. In general, these modi�cations of genome may be caused by exposure to

radiation, UV light or exposure to ionizing radiation. However, they may be also

caused by errors in processes of DNA replication, mitosis (cell division, which results

in two identical cell with retained number of chromosomes) and meiosis (cell division

process, which produces haploid gametes as sperm or egg cells), processes of DNA

repair or by other types of DNA damage.

Since mutations may be lethally dangerous and there are several opportunities for

them to arise, the cell has mechanisms to check and repair resulting damages in the

DNA. This mechanisms are designed to search and correct errors in the DNA with the

aim to prevent arising mutation and to return the damaged sequence to proper state.

However, not all of emerged DNA errors are successfully repaired and thus some of

them give rise to new mutations.

3



4 CHAPTER 1. GENOMIC VARIATIONS AND PHENOTYPES

1.1.1 Impact of mutations

Mutations, which occur in genome of organism, may a�ect sections of various lengths.

The number of in�uenced bases may vary from one extreme to another, as there are

lot of known mutations changing the DNA in only single base (for example single-

nucleotide polymorphism or one base deletion or insertion) as well as mutations with a

size of a whole chromosome of organism (for example, aneuploidy). Naturally, there are

mutations and changes in DNA of any size besides mentioned lengths and the length

of mutation usually have certain in�uence on signi�cance of mutation.

Additionally, impact and e�ect induced by mutation have strong connection with

a part of genome where the mutation occurred. Phenotypes of individuals di�er in

dependence of which genes or regions of DNA are a�ected by the mutations. A good

example are Mendelian disorders. Mendelian disorders are genetic disorders caused by

mutation in a single gene. For illustration, we can take achondroplasia (one of syn-

dromes is dwar�sm) and oculocutaneous albinism (which is certain type of albinism).

Both are diseases caused by mutation in only one gene, but phenotypes they lead to

are signi�cantly di�erent. [11] [31]

1.1.2 Importance and hleritability of mutations

Besides congenital syndromes (such as Down syndrome) and genetic diseases which ag-

gravate the life of an individual, mutations also signi�cantly a�ect whole populations

of organisms. Mutations are responsible for arising of new genes and together with

genetic recombination gives rise to genetic variability and subsequently, new pheno-

types (new colors of eyes, type of hair), which are essential for evolution. Although in

most cases mutations cause negative changes, which decrease �tness of an individual,

certain part of mutations do have neutral or even positive result on ability to survive

and reproduce [34]. As a consequence of natural selection, it may happen that this

mutations prevail in population and subsequently, accumulation of mutations can lead

to a formation of new species. Thus mutations play very important role in evolution

and also in diversity within the species.

But not all of gene mutation are transferred to next generations. Since mutations

are classi�ed by inheritance to hereditary (inheritable) and somatic (only in somatic

cells) mutations, only the hereditary mutations can be under selection. Changes in

DNA are caused by hereditary mutations, which occur in germ cells - sperms or eggs.

After conception of organism, these mutations are present in all of its cells. On the

other hand, somatic mutations are mutations that are induced by outer factors, as

exposure to radiation or chemical substances, thus occurring during the lifetime of an

individual. Naturally, they appear in only a portion of organism's cells and because

of this, they cannot be transferred to organisms's o�spring unless they are present in
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Figure 1.1: This �gure displays both events - deletion on the left and insertion on the

right side of the reference sequence in middle of the picture.

germ cells [33] [32].

Apart from classi�cation by inheritance, we divide mutations by way which variation

they cause. In general, genetic variations are divided into three categories, which are

indels (insertion and deletions), single nucleotide variations and structural variations

[8].

1.2 Indels

The term indel is an abbreviation for names of two genetic variations - insertions and

deletions. Category of indels includes only small insertions and deletions with length

varying in the range from two base pairs to a few hundreds [8]. Example of both of

them is shown on Figure 1.1. The indel mutations are the second most copious type

of variation in humans and the majority of them is caused by slippage of polymerase

during DNA replication [27]. When indels occur in coding sequence of human genome,

they are likely to cause frameshift mutation.

Frameshift mutation is a change in coding sequence of genome and is caused by

adding or deleting bases in number which is not divisible by three. Coding sequences

consist of triplets of nucleotides creating codons, corresponding to triplet genetic code.

As soon as is this arrangement changed by indel indivisible by three, whole information

is shifted and resulting protein coded by this new mutated code will possibly have very

di�erent qualities in comparison to original protein.
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1.3 Single nucleotide variations

Single nucleotide variation (SNV) is mutation in a single nucleotide and represents

substitution of one base on speci�c position in genome by another base. Figure 1.2

[5] illustrates single nucleotid variation between two strands of DNA. Single nucleotide

variations are the most frequent type of DNA alternation in humans [4]. They are

most commonly present in noncoding regions of DNA and most of these do not have

any negative e�ect on phenotype of the individual. These occur in human genome

normally and are part of variability within populations. Although there are many

harmless single nucleotide variations, SNVs can also occur in coding regions of genome

or in regulatory regions of genes. Their presence there may signi�cantly a�ect the

expression of the gene or the type of protein which is coded by this gene. However,

due to impact of selection, which has often much stronger e�ect on SNVs in coding

and regulatory regions than on other SNVs, there is observable disproportion between

them in human genome [35].

As was mentioned above, single nucleotide variation is the most frequent genetic

variation in humans. According to the reference genome, average healthy human has

approximately from four millions to �ve millions genomic variations. More than 99%

of them is represented by single nucleotide variantions and short indels, which means

that in average, there is one SNV or indel in almost every kilobase of human genome,

according to reference genome [4].

When speci�c base on speci�c position in genome di�ers from reference, but is

present in more than 1% of the population, it is termed single nucleotide polymorphism.

Many of SNPs are known and are associated with certain symptoms or reaction to

drugs, although a lot of them do not cause disfunctions itself, but in a combination

with other alternations of DNA.

1.4 Genomic structural variations

Structural variations represents modi�cation in structure of a chromosomal DNA. Ac-

cording to general de�nition, structural variations are sections of chromosomal DNA

with altered number of copies, orientation or location in chromosome. The alterna-

tions in number of copies cover insertions and deletions. Both of them fall under the

term copy number variations. When a change in orientation occurs, we refer to it as

inversion. The term translocation is used in relation to transitioned location. Part of

structural variations, named balanced, do not induce any change in amount of genetic

material. The opposite, unbalanced structural variations, are connected to gain or loss

of parts of DNA.
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Figure 1.2: In this �gure is displayed illustration of Single nucleotide polymorphism

between two samples of DNA strand.

1.4.1 Inversions

Part of balanced structural variations are inversions. Inversion cause overturning of sec-

tion of chromosomal DNA. After this modi�cation, whole inverted section is placed on

chromosome without added or missing bases or other genetic material, but in reversed

order to the original sequence. Inversions are located on the same chromosome as was

the section before overturning, they do not relocate any genetic material between more

chromosomes.

Two types of inversions are distinguished - paracentric inversions and pericentric

inversions. They di�er in location within the chromosome, exactly in relation to cen-

tromere. The �rst type, paracentric inversions occur in regions which do not include

the centromere of chromosome. On the other hand, the second type, pericentric inver-

sion cover sections of chromosome containing the centromere. Figure 1.3 shows simple

example of both the types.

Inversion usually do not cause any pathological phenotype, unless the break in

chromosome is placed directly in a gene splitting it into two parts. After overturning

this section, the gene stays broken and completely non-functional. If the gene with some

vital function is a�ected by this inversion, this mutations is lethal for the individual

[14].

1.4.2 Translocations

In the term translocations are included balanced and unbalanced translocations that

belong to balanced and unbalanced structural variations respectively. Both types of
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Figure 1.3: This �gure shows example of both types of inversion. The main di�erence

between paracentric and pericentric inversion is very obvious here.

translocations cause exchange of sections of two chromosomes. We provide illustrative

example in the Figure [20]. This can generate two derived chromosomes, where, in the

case of balanced translocations, each of them contains complete and undamaged section

of the other one. The di�erent case, unbalanced translocations, also lead to exchange

of sections between two chromosomes, but these section do not have to be found on

the other chromosome entire and intact after this translocation, meaning there can be

some missing part or they can contain an extra material.

1.5 Copy number variations

Copy number variations are type of the unbalanced structural variants. As the term

says, they cover changes on DNA linked to change of number of copies and thus change

of amount of genetic material. In this section we describe CNVs in more detail as soon

as we are interested in copy number variants in this thesis.

In general, copy number variations represents a section of a genome that is copied

multiple times, e.g. AAAC with copy number 4 results in AAACAAACAAACAAAC.

The case when the section is present in genome in zero copies (meaning it is not in

genome) also falls into the category of CNVs. This implies that deletions belong to

CNVs as well. Both types of CNV are displayed in Figure 1.5. Copies of a certain
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Figure 1.4: This �gure show two chromosomes before translocation and after transloca-

tion. The light blue section from chromosome 4 and the green section from chromosome

20 have been switched.

region of DNA are almost identical. This phenomenon does not alter gene structure, if

the whole gene is present in copied section, therefore the product of the gene remains

unchanged. However, the amount of the gene product can vary from standard quantity.

Size of CNVs are variable as they can a�ect sections from 1kb to whole chromo-

somes. When the chromosome is a�ected by CNV, it is referred to as aneuploidy. The

term monosomy represents deletions of a chromosome, while increased number of chro-

mosomes is called polysomy. Infamous example of polysomy is a trisomy of chromosome

21, know as Down syndrome. Patient with this disorder has three complete copies of

entire chromosome 21, what is termed full trisomy. In human genome may occur full

trisomies of other chromosomes as well. However, the only known full monosomy in

humans is monosomy of chromosome X. For this disorder, short stature, webbed neck

and low-set ears are characteristic. Full monosomy of any other chromosome is lethal,

but partial monosomies may occur.

Although CNVs are connected with syndromes and genetic malfunctions, they are

equally related with evolution and positive selection. CNVs participate in formatting

of genetic variability and thus they are creating opportunities for natural selection. In

addition, CNVs create copies of genome section without damaging the function of genes

in the original section. Therefore room for new positive mutations, which may innovate

functions of the copied genes, is formed. New CNVs appear more frequently than other
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Figure 1.5: On this �gure are shown both deletion and duplication of section of chro-

mosome.

structural variants, which implies higher likelihood of positive mutation [17].

CNVs represent around 5-9 % of human genome. Distribution of this phenomenon

is not even across the human genome. Higher occurrence of CNVs was discovered in

regions located near centromere and telomeres [37]. Some CNVs have no serious e�ect

on phenotype and these are commonly small sized and located in intergenic regions.

On the other hand, pathogenic CNVs, which have negative phenotypic manifestation,

mostly cover several important genes and are of larger size. However, establish rate of

pathogenicity of all CNVs and ascertain their phenotypic manifestation still remains a

di�cult task [6].

1.5.1 Clinical interpretation of CNVs

In our thesis we are mainly interested in predicting possible impact of CNVs detected

in genome of fetus. Various CNV detecting tools are used to determine particular type

of disorder in the sequenced samples of the DNA of fetus. Next generation sequencing

approach proved to be reliable for this type of structural variants detection [38].

If a speci�c duplication or deletion is found four major factors have to be considered

[30]:

• Parental inheritance - Other members of family have to be tested as well. The

same mutations may be discovered, which may simplify the prediction.
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• Databases - Various CNVs are already recorded with description of phenotype.

Databases such as Online Mendelian Inheritance in Man (OMIM), human genome

browsers (UCSC, Ensembl) or DatabasE of Chromosomal Imbalance and Pheno-

type in Humans using Ensembl Resources (DECIPHER) may be reliable source

of information.

• CNV size - Large deletions or duplications are more likely to a�ect essential

segments of DNA. Although smaller CNVs should not be underestimated, the

larger a�ected sequence, the more attention it requires.

• Genomic content - Mutations in coding regions may lead to more serious man-

ifestations. Especially if a�ected genes are known to be associated with recessive

or dominant diseases, in addition deletion of vital genes may be lethal.

1.6 Problem statement

As was mentioned above, mutations and structural variations in human genome can

have negative impact on individual's health and overall phenotype. Even if the CNVs

are detected in genome of a fetus, prediction of their potential manifestations yet

remains a challenge.

The main aim of this thesis is to assess the impact of these genomic changes on the

phenotype of individual. With this intention we inspect the possibility of using data

about structural variations collected in publicly available databases.

Our objective is to create a model, which could assist in phenotype prediction of a

tested patient. Inputs for this models will be coordinates of detected CNV such as start

position and end position on a speci�c chromosome and for this input, our models will

yield a set of possible characteristics expected to occur in resulting phenotype. As we

are breaking new ground, to simplify our models, we consider only deletions of CNVs,

as duplications would brought more, yet unwelcome complexity to our models.

In case our models would have acceptable success rate in its testing, it may be

extended to application usable in clinical practice.
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Chapter 2

Data sources and modules

In this chapter we introduce databases from which we have obtained our data. We

describe data sources � some we describe in more detail. We subsequently brie�y

describe used programming language and libraries we utilized.

2.1 Human Phenotype Ontology

Human Phenotype Ontology (HPO) is a large ontology (or vocabulary) of phenotypes

and phenotypic abnormalities that are related to gene mutations and diseases. The

HPO database was created as most signi�cant product of Monarch Initiative, a web

platform focused to connect phenotypic and genotypic information across species. The

HPO is aimed at supporting researches in �eld of bioinformatics and at helping with

clinical diagnosis as well. In these days Human Phenotype Ontology cover over 13,000

terms and over 156,000 annotations to genetic diseases [23]. Structure of data in this

database is reasonably organized. In our work we use bene�ts of its representation in

considerable extent.

2.1.1 HPO term

Each term in Human Phenotype Ontology represents a clinical disorder. It could be a

very general term, or on the other hand, the term could be very speci�c. For instance

term Abnormality of the skeletal system is more general, whereas Pituitary calci�cation

describes speci�c disorder. General terms are usually higher in the graph structure and

represent parents of specialized and very speci�c terms. These terms, which symbolize

speci�c genetic disorders and phenotypic abnormalities, are in the deepest nodes of

directed acyclic graph (hereafter know as leaves) of ontology and thus they do not have

children.

All terms have their unique identi�er named HPO_ID and label or name called

DB_name, for example term with label Synotia has ID HP:0100663. In addition, most

13
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of Human Phenotype Ontology terms have a supplemental description or de�nition,

which provides detailed characterization and more comprehensible explanation of the

disorder or abnormality. As an example term Synotia, has a de�nition A congenital

malformation characterized by the union or approximation of the ears in front of the

neck, often accompanied by the absence or defective development of the lower jaw.

Human Phenotype Ontology database has came into existence by joining medical,

clinical, genetic and bioinformatics resources. Therefore a signi�cant number of terms

and expressions with the identical meaning have lot of various names. Taking this into

consideration, terms store their di�erent synonymous names in annotation synonyms.

For instance the term Microtia has various synonyms such as Hypoplastic ears, Small

ears, Hypoplasia of the external ear, Underdeveloped ears and others.

Human Phenotype Ontology is divided into �ve sub-ontologies: Phenotypic abnor-

mality, Mode of Inheritance, Clinical modi�er, Clinical course and Frequency and each

term is assigned to one of the sub-ontologies. Every sub-ontology adds extra informa-

tion characterizing the term in more details.

Besides assigning to one of sub-ontologies, every term in HPO is described and

characterized in detail by annotations. These annotations are statements that show

association between particular HPO terms and speci�c genes or diseases. Not only

speci�c terms have these annotations, but all their ancestors and all terms of database

are precisely annotated. HPO annotations follow a strict format, which is composed

of a certain number of columns. Each column stores speci�c information that may be

required or optional. In our work, only two of them are important: HPO_ID, which is

most cardinal �eld of every term in this ontology, and DB_name. DB_name is word

appellation of the phenotypic abnormality.

2.1.2 Structure of Human Phenotype Ontology

HPO is represented by directed acyclic graph, what is similar to hierarchy, or maybe

to tree representation. However, the main di�erence is that more speci�ed term can

have multiple parent terms with lesser speci�cation. This property of directed acyclic

graph can be shown in this example: the HPO term Iris Coloboma is child of the term

Abnormality iris morphology, but is also child of the term Coloboma. Ontology without

this property would not be so �exible and so comfortable to work with.

In addition, the relationship between two Human Phenotype Ontology terms is

expressed by is-a edges. This connection means that one more specialized term is-

a subclass of its parent, which is less speci�c and more general. For illustration, the

Human Phenotype Ontology term named Cardiovascular calci�cation is-a (is a subclass

of) term named Abnormality of cardiovascular system morphology. Is-a relationships

are inherited from the lowest terms up to the root of Human Phenotype Ontology.
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This characteristic of is-a relationship is called transitivity.

2.1.3 Formats of Human Phenotype Ontology

The Human Phenotype Ontology database was made and is available in two database

formats. Each of them has its speci�cs and advantages just as disadvantages. Both

formats are downloadable directly from the o�cial web site of HPO [23].

• The OBO �at �le format - OBO is an abbreviation for the title Open Biomedical

and Biological Ontologies and it represents a language for creating ontologies.

This format was invented to be as much as possibly comfortable and compre-

hensible for humans. As of today, it is widely used as a language for biological

ontologies. There are also programming libraries specialized for work with this

format of database.

• OWL - OWL means Web Ontology Language. It is a language primarily made

for working and designing ontologies. The OWL version of Human Phenotype

Ontology is a full version of this database, while the OBO version is simpli�ed

version of it. Therefore OWL version has some features, that are not present in

the shortened OBO version, however as in our work there is no need for these

features, OBO version will be su�cient for us.

2.2 ClinVar

ClinVar is a freely available database providing source of information for the public,

maintained at the National Institutes of Health [25] [28]. It stores records of variations

in human genome and their impact on phenotype. The archive contains any genomic

variations of human genome. Records of any type or size are stored in database, as well

as germline and somatic variants or records with various genomic location. Researchers,

scientists, laboratories and others can submit variations, which they detected in their

patients, with proper description and details regarding the diseases the patients mani-

fest. After submission, the record is labeled by accession in SCV format, for example

SCV000184036 [24]. If there are multiple submissions with equal combination of varia-

tion and phenotype, ClinVar assembles them together and labels them by accession in

RCF format, as for example RCV000129276. If any con�icts in interpretation occur,

they are reported.

Data from this database are necessary for our work and since it provides entries

from clinical practice, our work does not need to rely on simulated or arti�cial data.
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2.2.1 Database content

Content of ClinVar database consists of �ve main classes, which are: submitter, who

provides data, detected variation, phenotype related to this variation, evidence of mani-

festation of variation, and interpretation of said evidence [24]. A record unit is speci�ed

by a unique union of three of them, which are submitter, variation and phenotype.

ClinVar database maintainers make e�ort to ensure strict structure of the content,

which is at disposal for public. Some of details of the content format are explained

below in description of classes.

• Submitter Submit their observations to ClinVar database may both individuals

and organizations [26]. ClinVar stores information about all submission on its

websites.

• Variation is major category of ClinVar database content [26]. The class variation

connects two pieces of information about the genomic change. An information

about the location of variation on genome and about the altered sequence as well.

The category variation in ClinVar is represented as a set of genomic variations,

however many of them contain only one genomic variation. The main function

of variations in ClinVar database is to represent the relation between genomic

variations and the human health as accurate as possible.

• Phenotype as category in ClinVar is represented by MedGen entry [24]. (Med-

Gen is portal holding information on phenotypes related to medical genetics.) Al-

though submitters are emboldened to use identi�ers from other o�cial databases,

for example term ID from HPO, ClinVar accepts textual descriptions as well. If

there is not any suitable MedGen record to substitute this textual description,

new MedGen entry is created and used.

As in the case of variation category, phenotype can consist of set of values in

ClinVar as well. To describe overall phenotype caused by genetic alternation are

used mostly sets. Single value in ClinVar phenotype category are used more likely

as diagnostic terms.

• Evidence Function of evidence in database is to support interpretation of relation

between phenotype and variation in submitted record [26]. Evidence may have

various structure. It can be represented as textual description of obtaining the

evidence. Or evidence can store the information, if there were any other varia-

tions observed together with submitted variation. Those evidence records with

structure include names of variants or description of context, for example genetic

testing, etc.
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• Interpretation category explains the relation between submitted variation and

phenotype [24]. Records in this category are provided to ClinVar database solely

by submitters.

2.3 AnnotSV

AnnotSV is a program intended to annotate given structural variations [13]. In An-

notSV, signi�cant information about functions of structural variations and clinically

important information are connected. The main goal of AnnotSV is to provide high

quality annotations, which may be used to detect potentially pathogenic structural

variations. Beside this, the annotations may be useful to discover and separate varia-

tions with potential to be false positive, as well.

AnnotSV is accessible as a stand-alone program and after installation can be used

as a command-line tool. It is designed to be easily executed on most of operating

systems. However, on the website of AnnotSV, an interface for running AnnotSV

online is available [13].

Similarly to ClinVar database, AnnotSV provides important valid data used in our

work. Purpose of both, AnnotSV and ClinVar is described in a following chapter.

2.3.1 Annotation process

As an input, AnnotSV accepts �les in VCF or BED format. VCF is an abbreviation for

variant call format, which is a text �le format for storing data of structural variations.

VCF �le consists of a header with information about body of �le and the body as such.

The body is divided into eight required columns and several optional columns. The

BED format, which stores variations data as well, requires three columns with speci�ed

content and nine optional columns, however the order of optional columns is de�ned

and when certain column is used, all previous columns have to be �lled as well.

From the input �le AnnotSV takes coordinates of variation. At �rst, the overlap

between variation and annotation features is calculated and then gene names with

connected annotations are reported. At the end, the output of the program consists

of records, which store for each variation several entries. One annotation is stored for

whole section of genome a�ected by variation and every gene from interval between the

coordinates of variations is stored its own annotation [13]. The output �le is in TSV

format, which represents values separated by tabulator.

As platform for annotation process may be used reference genome GRCh38 or

GRCh37, as the user de�nes. GRCh38 is the Genome Reference Consortium Human

genome build 38 [15], the latest version of reference human genome, and it is built from

genomes of several individuals. GRCh37 is a previous standard reference sequence,
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which was as all previous reference sequences, from one individual [15].

2.4 Python and modules

Our partial aim was to develop a program, which would be able to obtain and display a

subgraph of Human Phenotype Ontology graph containing HPO terms in nodes. After

a research of available options regarding potential programming languages, we decided

to use Python3 programming language as it is both easy-to-use with great community

support and has all libraries we need.

First we tried to found libraries which worked with Human Phenotype Ontology

directly. We managed to �nd two of them:

• phenopy - This Python package does work with Human Phenotype Ontology.

More precisely, it is made to score similarity of phenotypes using their semantic

similarity [22]. Semantic similarity is a metric which represent similarity between

terms or documents. This similarity proceeds from resemblance between mean-

ings of contents of terms or documents. It does not compare the lexicographic

similarity.

After a deeper research it became apparent that this library is not suitable for

our needs, since it was specialized only to score similarity in various ways.

• pyhpo - Pyhpo library seemed to be appropriate to our thesis, however shortly

before our installation this library became unavailable due to unknown reasons.

Finally we decided to create our programs using libraries, which are not focused di-

rectly on Human Phenotype Ontology, but they are specialized in graph manipulation.

2.4.1 obonet

Obonet is Python package designed for parsing ontologies in OBO format into a for-

mat, which package NetworkX can easily work with [18]. Obonet has implemented

functions, which can read OBO-formated �les from several types of input and subse-

quently transform it into networx.MultiDiGraph representation. For this use function

obonet.read_obo() is created. The input �les can be loaded from open �le, URL or

from a path. In our project we have used obonet 0.2.5 version.

Human Phenotype Ontology is available in OBO version. Obonet is the only Python

package we have found, which handles with OBO formatted �les. In addition it turns

this �les into more comfortable format in a way, that is very practical and easy for

user. Therefore we chose this package in our work.
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2.4.2 NetworkX

This Python package is very extensive and it gives its users wide possibilities to create,

manipulate and study graphs and other networks [16]. NetworkX includes several

classes for graphs, directed graphs and multigraphs and is able to convert them from

and into various formats. Naturally, common graph functions are incorporated, such

as function for the shortest path search, obtaining subgraphs etc.

In this project NetworkX 2.4 version was used [29], since it provides broad range

of functions. In addition, we can easily obtain NetworkX representation from OBO

format of Human Phenotype Ontology using obonet package, which is described above.

For the purpose of this thesis, class MultiDiGraph was used. This class represents

and stores directed graphs. Directed graph is a suitable representation for Human

Phenotype Ontology since this representation covers also directed acyclic graph, which

is a structure of HPO itself.

However, in order to represent results, a reasonable visualization was needed as

well. Even though networkX o�ers some basic visualization using matplotlib library

(described below), other graph visualization tools are recommended. We decided to try

the matplotlib library, because unlike other recommended tools, no graph conversion

is needed.

2.4.3 matplotlib

Matplotlib is an comprehensive library for visualization of graphs [19]. It is compatible

with di�erent graphical interfaces from command line to web applications. Through

this library NetworkX graphs can be easily visualized.

Matplotlib is popular among Python programming community especially for visu-

alization of di�erent graph plot types, such as pie plot, bar graph or histogram [21].

However, it is not e�cient for displaying graphs with nodes and edges, which turned

out to be problematic. Although its usage was seemingly practical, since no graph

format conversion was necessary, visualization by this library did not meet our re-

quirements. Therefore, we decided to select a package from tools recommended for

NetworkX graphs.

2.4.4 PyGraphviz

After we did not succeed with visualization of NetworkX graph using matplotlib, we

decided to use Graphviz library, or more precisely PyGraphviz. PyGraphviz provides a

Python interface, which enables handling Graphviz library for displaying graphs [3]. It

o�ers ability to create graph and comfortably set colors or shape of nodes, their labels

and others.
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Although exporting graph from NetworkX MultiDiGraph format to AGraph is re-

quired, programming interface provide by PyGraphviz is comparable with NetworkX.

That is the reason we chose this Python package.

Graphviz

As the name indicates, this library is focused on visual representation of graphs and

networks. This way of displaying information is very useful and Graphviz library a�ords

many practical features for editing and developing graphs [9] [12]. It enables users to

set font, many various shapes of nodes and also edges, node layouts and even more.

Layout programs of this library can make the visual representation in formats such

as images and SVG useful for web pages. To create them, graph described in simple

textual form is required. This can be done manually, using graphical editor, or simply

in text �le. However, in most cases are graphs obtained from external sources, such as

being converted from other formats.

2.4.5 FuzzyWuzzy

In this thesis it was necessary to match HPO terms with textual description of pheno-

type. However, not all of this descriptions were equal to term names. Therefore the

FuzzyWuzzy package was used.

FuzzyWuzzy is Python package, which is designed to compare strings according

to their lexicographical similarity [1]. It provides several methods for comparing two

strings and also for comparing one string to list of strings.

Since FuzzyWuzzy uses Levenshtein distance for its computations, installation of

python-Levenshtein is demanded.

Levenshtein distance is string metric, which de�nes the di�erence between two

string as the smallest possible number of changes on single character needed to make

the strings equal. These changes include insertions, deletions and substitutions of a

single character.

python-Levenshtein

This module calculates Levenshtein distance and several types of string similarities [2].

However, for FuzzyWuzzy is su�cient just to have this module installed. Therefore we

do not use python-Levensthein directly in our work.

2.4.6 colour

This library is used to convert between many various formats of color representation,

such as RGB, HSL, six digit hexadecimal and others [36]. It also o�ers very simple and
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intuitive way to create colors and handle them. In our work we need to automatically

assigns colors to objects, thus this library was used.
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Chapter 3

Data preparation

Data for our work were obtained from the ClinVar database, which is described in

Chapter 2 [25]. ClinVar database provides its data in XML format, however they were

converted to TSV format, since this format is more suitable for our needs.

3.1 Reducing surplus data

The table we obtained stores in every row several information about one CNV. In

this data a huge amount of information in many columns was stored. However, the

reduction was necessary, due to excess of information, that were not useful for our

work. As was mentioned, we consider only deletions of CNVs. Thus solely entries with

copy number loss in column type were selected from all the entries in this data.

Using linux command line command we removed surplus information and main-

tained only six columns from the original table - RCV accession, chromosome, where

the CNV occurred, starting position in this chromosome and ending position, disease

�nding and the order number. The order number was retained to be used in case it

would be necessary to look up the particular CNV in the original table.

Each CNV is labeled by RCV accession, which was assigned to it by ClinVar

database. This accession is used as an ID for particular CNV in this work, although

the combination of chromosome, start position and stop position is also unique for each

CNV. However, in our data, there were some entries with missing records in this �elds

that we had to ommit.

3.2 Subgraphs for phenotypes

One of the most signi�cant column in our data is disease �nding. In this column is

stored information of phenotypes (some CNVs have more then one phenotype recorded),

which are linked to this CNV and are recorded to ClinVar database. On the basis of

23
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this phenotype information we created subgraph of the HPO graph for each CNV in

our data. New column representing this subgraph was added. It stores IDs of each

HPO term, which occurs in particular graph.

In the table resulting from previous adjustments, there were some entries with string

value �not provided� recorded in this column that we had to remove.

Our intent was to each phenotype of one CNV �nd corresponding term and create

its subgraph. After that merge the subgraphs and then the terms from this subgraph

write down to the table. However, it became apparent that its not possible to search in

the terms using directly records from disease �nding column, since most of them do not

equal with any term names from the HPO database. But there were obvious similarities

between this records and the corresponding terms. This corresponding terms we found

manually, to �nd out how to match the records with the HPO terms.

To clarify this may be used this example with arti�cial values: In our data, there

is a record in diesease �nding column with string value �Coloboma of iris�, but there

is no term in HPO with this name. In the HPO database is only term HP:0000612

with name Iris coloboma.We considered the possibility to match each individual word

from disease �nding column with each word from the term name, and value each term

with some matching score. But this method appeared to be too complex for further

implementation.

3.2.1 FuzzyWuzzy Python package

We decided to use a python package to �nd the most matching terms. The package

FuzzyWuzzy has several useful methods. Especially the method process.extractOne()

was e�ective in solving our situation. This method gets as arguments one string and

list of string to compare, and it choose one string from the list which has the highest

ratio of match. We used this method giving it a value from disease �nding column

and a list of all names of terms from the HPO database. We also manually veri�ed

if this method matches the terms properly by choosing several random disease �nding

records and inspecting the terms, which were assigned to them.

A problem occurred with record �Developmental delay AND/OR...�, which has no

matching term in the HPO database. We tried to replace it using string value �De-

velopmental delay�, however this value was still very general and there was not any

appropriate term for it, only eight similar terms, but each of them was more speci�c

to match them for certain. Although this record was very frequent (it comprised al-

most 31% of all recorded phenotypes) in our table, it has very weak value in describing

phenotype. Thus we decided to remove it from our data.
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3.2.2 Error in FuzzyWuzzy

Later, during our work we realized that one disease �nding value is not assigned to

corresponding subgraph, i.e. term. It was a record with string Keratocystic odontogenic

tumors of jaws in disease �nding column and the term HP:0000002, which was assigned

to it represented phenotype Abnormality of body height. This two phenotypes do not

correspond obviously. Appropriate term from the HPO found manually is the term

HP:0010603 representing Odontogenic keratocysts of the jaw.

We made several experiments to �nd were the error appeared. Using methods of

FuzzyWuzzy package we noticed, that method fuzz.ratio(), which gets two string and

returns ratio of their match, returns higher value when it gets Keratocystic odontogenic

tumors of jaws with Abnormality of body height, than when the Odontogenic keratocysts

of the jaw and Keratocystic odontogenic tumors of jaws are used as arguments.

Probably there is some mistake in this package and we will report this �nding to

authors of this package.

After this discovery, we manually inspected several hundreds of our records, however

no more mismatches were found. All the mistakes in our data connected to record

of Keratocystic odontogenic tumors of jaws were �xed using speci�c condition in the

program.

3.3 Assigning genes to CNVs

Next information we needed to add into our table was information comprising the

genes a�ected by CNVs. We used AnnotSV tool, which for every sequence (de�ned by

start and end position) on a particular chromosome determines all genes, which occurs

in this section of genome and thus are hit by the structural variation located in this

position.

We took all the starting and ending coordinates together with corresponding chro-

mosomes from our table, and we stored them in a �le in BED format. The fourth

column was added to the three original columns containing extra information that all

the entries were representing deletions.

Data we obtained from AnnotSV were more extensive, than we needed. Entries in

this data are of two types. First of them has record split in the column AnnotSV type

and second is connected to record full in the same column. This values refer to the

fact, that the �rst type of entries represent records about only one of gene a�ected by

CNV and for each CNV all the a�ected genes are stored in this way. The second type

represents all genes connected to particular CNV stored in one record. For our work

the full record is relevant.

Finally the genes were added to our table storing CNVs and information about
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phenotype in form of new column. CNVs from phenotype table and gene table were

identi�ed and connected on the basis of unique combination of chromosome and coor-

dinates.

3.4 Gene-phenotype relation

Although we had interconnect genes to phenotypes trough their connection to speci�c

CNV, relationship between genes and phenotypes, which apply to them is described

separately. File characterizing this connection is publicly available via HPO o�cial

website. This �le is in TXT format however we converted it to TSV format.

This �le contains genes stored individually in rows and each gene is linked to several

phenotypes described as a speci�c HPO terms and also IDs of this terms. Other

information from this table are insigni�cant for us, thus we extracted only the tree

mentioned columns - the gene, related phenotype and the ID of term. Thereafter

we created a subgraph of HPO for each term in this table as well, and added this

information in form of set of terms into the table as an extra column. Finally we sorted

the table according to names of genes to simplify using it in further work. Further in

the text we refer to this data as to a table of genes, or gene table.

3.5 Explicit term

During following steps, the need of having explicit terms stored individually in our

data appeared. Explicit term is the term, which name was matched with disease �nding

directly . We added a new column storing this information and �lled it with explicit

terms for each CNV, again using FuzzyWuzzy.
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Visualization of HPO subgraph

As was mentioned in Chapter 2, we made an e�ort to create a model which would

made a prediction of resulting phenotype for given CNV coordinates. This model will

yield a set of possible manifestations of entered CNV. These will be represented as

subgraph of HPO graph, in which the possible phenotypes will be present in form of

corresponding HPO terms.

4.1 Subgraph of the HPO graph

Since the HPO graph is directed and acyclic, the subgraph of a speci�c term stands

for a graph of all the terms accessible from this speci�c terms trough directed edges.

Hereafter in connection with graphs, the word term is used synonymously for the node,

in this thesis.

The edges in the HPO graph represent �is-a� relationship of two connected terms,

so they are oriented from leaves to root of the graph, what is the term All with ID

HP:0000001. This implies that the subgraph of the speci�c term includes parents of

the term and all the ancestors of it to the root term.

As a �rst step we wanted to write a program, which would take as an input name

or ID of a speci�c HPO term and obtain a subgraph of said term from the entire HPO

graph. Since every term has a unique name and a unique ID, to identify a term, any

of both is su�cient. Although terms are reachable in the HPO graph on the basis of

ID only, Python dictionary connecting names and ID was our solution.

4.1.1 Packages for the HPO manipulation

We needed to be able to read the HPO database and transform it into graph represen-

tation, so that we could easily search and manipulate with this graph. We tried to �nd

Python modules, which work directly with the HPO graph and which could satisfy our

demands. As we have mentioned before, we found two python packages (phenopy and
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pyhpo) working with HPO, but unfortunately they do not meet our needs. They are

described in more detail in Chapter 2.

4.1.2 Reading the HPO

After the failure with the two modules above we attempted to �nd another way to

work with the HPO in graph representation. The HPO database is freely available in

two formats, the OBO and the OWL. OBO format of HPO database is more simple, as

the OWL format contains some extra features, that we do not need for our work. Thus

the obonet package, which can handle with OBO-formated databases was very practi-

cal choice. In addition, obonet function obonet.read_obo() transforms this format of

database to a representation of NetworkX class MultiDiGraph.

4.1.3 Graph manipulations

NetworkX is very practical package and it is highly suitable for our intention. We

appreciated especially functions networkx.algorithms.dag.ancestors(),

networkx.algorithms.dag.descendants() and networkx.Graph.subgraph().

First two of them get as an argument a node, which ancestors/descendants we

request and the graph, where the node is located. They return a set of nodes, which

are reachable from the given node. While �nding the reachable nodes, this function

moves through the graph in the direction of the edges or in opposite direction. The

direction of this movement depends on what set of nodes is called, whether the ancestors

or the descendants.

In general, edges in directed graphs are oriented from root down to leaves. Thus

the set of ancestors usually refers to set of nodes reachable in reverse direction to

orientation of edges. Due to the fact, that edges in HPO are oriented from leaves to

the root, we had to use function networkx.algorithms.dag.descendants(), to get the

ancestors of the node.

Function networkx.Graph.subgraph() takes list of nodes as an input and returns a

MultiDiGraph with the nodes from the list only as well as edges connecting only these

nodes. Using these functions we managed to accomplish the �rst step.

4.1.4 Vizualization using matplotlib

As soon as we were able to extract desired subgraph from the HPO graph, we tried

to visualize it. NetworX o�ered some basic visualization using the package matplotlib.

Although using other packages was recommended, visualization by matplotlib does not

require conversion of graph from NetworkX format to another, thus the matplotlib was

used.
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Figure 4.1: HPO term Abnormality of limb bone with ID HP:0040068 visualized using

matplotlib package.

Example in the Figure 4.1 displays how the visualized graphs looked like. This

visualization is not perfect, however it appeared acceptable for our uses.

4.2 Score and merging of subgraphs

Next important feature we added to our work was impact score. Impact score is

numeric value, which is assigned to every term in subgraph. Calculation and usage of

this value for each term is explained and speci�ed below. Function of impact score is

to determine the expected impact of a given term on the overall phenotype. It enables

comparison of the importance of impact of the terms on the phenotype.

Impact score is essential in merging the subgraphs as well. In this thesis a graph,

which results from the process of merging two subgraphs of HPO is also a subgraph of

HPO, which includes all the terms from both subgraphs. The terms, which occurred

in both subgraphs are in merged graph present in only one copy and its impact score

is summed from the terms in both subgraphs. The impact score of the terms, which

occurred in only one of the two subgraphs stays unchanged.

To illustrate the merging of two subgraphs the situation displayed in the Figures

4.2 and 4.3 can be used. The values in labels of nodes represent the impact score.

In this case arti�cial values of impact score were used, to simplify the example. The

�gure 4.2 shows two subgraphs of the HPO before merging process. On the �gure 4.3

is displayed subgraph after merging. It is apparent, that impact score of terms All and

Phenotypic abnormality results from sum of values from the original subgraphs.
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Figure 4.2: On the left side of this �gure is shown subgraph of the term Abnormal eye

morphology with ID HP:0012372, on the right side is Neoplasm with ID HP:0002664.

Both of them are visualized using matplotlib.

Figure 4.3: This �gure displays subgraph resulting from merging the two subgraphs

from the example on �gure 4.2.
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Figure 4.4: This �gure shows how unclear is our visualization in this phase of our work.

4.3 Visualization improvement

We prepared all the necessary data and subsequently we attempted to create and

visualize graphs directly from the data.

4.3.1 Fisrt visualization of HPO subgraph from gene

The �rst data which we visualized were genes from the our gene table. We wrote

program, which for input gene �nds all occurrences of this gene in our gene table.

For each occurrence, the subgraph of related phenotype is taken and merged to the

uni�ed subgraph. As a result from this program we obtained graph representing all

the phenotypes of the particular gene. Unfortunately the visualization was highly

unsatisfactory. In this stage we were still using the matplotlib visualization, which

appeared to be not suitable for larger graphs of this type.

To clarify this by example we use Figure 4.4 where is visualized gene A2M using

matplotlib visualization. Graph of this gene is one of the smallest and most simple

graphs among genes in our data, however the visualization is still very disorganized.

In this stage of our work the impactScore is not de�ned yet, thus arti�cial zero

values are used till now.
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4.3.2 Solution using PyGraphviz library

After the visualization of NetworkX graph using MatPlotLib rendered unsatisfactory,

we were constrained to substitute it with another library. As was mentioned in Chapter

?? the library PyGraphviz o�ers programming interface similar to NetworkX package

albeit conversion of NetworkX graph to PyGraphviz graph format is needed. How-

ever, this conversion is very uncomplicated since NetworkX provides a method net-

workx.to_agraph(G) designed directly to convert given graph G in some NetworkX

graph format to an AGraph format of Pygraphviz.

4.3.3 Error in PyGraphviz

The program was adjusted (including graph conversion) for using PyGraphviz, however

the program was able to visualize only a small portion of genes from our data. If the

other genes were entered, individually or in pairs, our program ended up with error

report. We tried also enter two copies of the same gene, which do not cause error

inputted in one copy, as in case of merging of two graphs and the error occurred even

with this input. We were however able to locate and adjust our data to accommodate

this error.

In the OBO formatted ontologies, some of the terms do have in their annotations

a string \� (backslash and quotation marks, without space) meaning as an escape for

" character. For example in the term HP:0001166 named Arachnodactyly is de�nition

"Abnormally long and slender �ngers (\�spider �ngers\�)." Pygraphviz however did

not escape these quotation marks as the backslash de�nes and instead it ends the string,

making the rest of the string a command in the underlying C library that naturally

yields a syntax error. Bearing in mind the tenets of Python programming language, we

believe that a PyGraphviz, as a wrapper to a Graphviz library (written in C), should

be able to deal with a quotation marks, thus we informed authors of the PyGraphviz

package about this de�ciency.

To be able to work with PyGraphviz and the HPO simultaneously, we modi�ed our

version of the HPO simply removing the \� string in all its occurrences. Since this

string is used only in descriptions and de�nitions of the terms, its removal do not have

any negative e�ect on the function of the database.

Thereafter was our program functional again and we were able to visualize subgraph

of all phenotypes related to particular gene. In the Figure 4.5 is visualized gene A2M -

the same gene as on the Figure 4.4. The structure of the subgraph of HPO is obvious

and labels do not overlap each other. Improvement compered to previous visualization

is signi�cant.
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Figure 4.5: This �gure represents example of subgraph of gene visualized using Py-

Graphviz.

4.3.4 Explicit terms in graph

After resolution of problem with PyGraphviz we intended to improve the visualization

by highlighting the explicit term. Visualized graph with highlighted explicit terms is

displayed in the Figure 4.6.

This faze of our work was also the moment, when was needed to add the explicit

term into our data as well, so the gene table were extended into its �nal form.

We wrote two programs for visualization of subgraphs based on the data from this

table. These programs get RCV accession of particular CNV, which we were using

for identifying the CNVs. The �rst of the programs creates graph using subgraph of

phenotypes related directly to particular CNV and stored in the table. Using only

phenotype related to one given CNV, usually only small graphs were arising. One of

them is displayed in the Figure 4.7. In connection with this CNV was noted down only

one phenotype.

The second program takes, for the given CNV, list of related genes from the record

in our CNV table and then for each gene creates subgraph on the basis of records from

our gene table that links genes to phenotypes. The process of creating subgraph using

genes is similar as the process the program from section above done, but this is done

for more then two genes. Graphs obtained from this program were larger and more

extensive, but still similar to Figure 4.6.
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Figure 4.6: The graph on this �gure represents subgraph of the gene A2M.

Figure 4.7: The graph created on the basis of phenotype directly connected to given

CNV.



Chapter 5

Prediction models and results

Two visualization programs mentioned in previous Chapter ?? were extended and im-

proved to become prediction models. We changed the input format from RCV accession

to three of information, which determines the particular CNV equally as the RCV. New

inputs � start position, end position and the chromosome � enables us to simulate

possible real use of our work. The three values used as input comprise the information

about deletion obtained through DNA sequencing.

5.1 Model based on CNV overlaps

Our �rst model is based on the assembly of the subgraphs of all overlapping CNVs

from our data table.

Overlapping CNV is the CNV that occurred on the same chromosome as examined

CNV and which does have certain number of bases common with entered CNV, e.g.

a CNV de�ned by starting position on base 10, ending position on base 15 and chro-

mosome 2. and a CNV on chromosome 2 with starting position 8 and ending position

12. These CNVs are overlapped since the bases 10, 11 and 12 were a�ected by both of

CNVs.

The inputted values are coordinates of CNVs from our data as well. Naturally, when

going through table, our model skips the record of the CNV, which was entered as an

input. For this purpose the fourth information was inputed with CNV coordinates �

the RCV accesion, which was used only to recognize particular CNV in our data.

Statistic of CNV overlaps

In this statistic we inspected the number of CNVs which do overlap. More preciously,

for each CNV in our data we count the number of CNVs which do have any overlap

with this speci�c CNV. As a result we found out that CNVs are overlapped by 61,5

of CNVs in average, while the highest number of overlaps of one CNV was 1323. Of
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course there were also CNVs which are not overlapped by any other CNV, in our data.

But there are only two CNVs of this kind in our data.

We also count average overlap ratio for each CNV. Overlap ratio of CNV is the

ratio of number of overlapped bases and the length of the CNV from the data. Average

overlap ratio is the average value calculated from all the overlaps which are related to

this CNV.

The calculations showed that the maximum average overlap ratio ascertained in

our data was 1. This means that the CNV was overlapped by the full length of the

CNVs, which it shares bases. Unsurprisingly, in our data occurred also CNVs with

zero average overlap ratio, but in average, considering average through whole data this

value is 0,3.

Impact score in CNV overlap model

Until this stage of our work we were using arti�cial zero values as a score, however we

�nally de�ned how would be the impact score determined. The score for each term in

this model is calculated as follows. All the terms from the subgraph of particular CNV

are added to arising graph with score with the same value. This value represents ratio

of overlapped bases to the number of bases of whole the particular CNV. Impact score

of terms which already are in the graph is summed as was described below.

The score in resulting subgraph predicts the expected impact of this CNV on phe-

notype of individual.

5.2 Model based on a�ected genes

The second model gets chromosome and coordinates of CNV as an input, �nds the re-

lated genes in our CNV data and creates the graph of phenotypes using the phenotypes

related to genes from the table storing relation between genes and phenotypes.

Despite we use stored information, which genes were a�ected by CNV, usage of this

model is not di�rent from possible usage in real life. In real life the information about

a�ected genes can be obtained from the AnnotSV for each speci�c CNV determined

by chromosome and coordinates.

5.2.1 Score in gene model

This model was extended by the impact score as well. Since in this case there is no

overlap, the impacts score is determined in a simpler way. To each term from subgraph

of phenotype related to speci�c gene is assigned score with value 1, as we expect

that every gene is contributing with the same degree. Again, when the subgraphs are

assembled, the score of terms, which occur more then once, are summed.
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Figure 5.1: Displayed part of graph shows an example of visualization of di�erent

impact score values among the terms.

5.3 Visualization of the models using score

In visualization of graphs created by our models are di�erent values of impact score

represented by di�erent shades of color. This shades from speci�c interval are assigned

to terms according to their score. More preciously, the shade is determined by the ratio

of the score of particular term to the highest score in the visualized graph. To set this

the python package Colour was used.

Example of resulting graph is shown in the Figure 5.1. This �gure shows part of

graph obtained from the �rst model (CNVs overlap model). The di�erence between

shades of terms are obvious. The darker terms on the right side of Figure refer to

higher impact score. Naturally, the darkest shade, i.e. the. highest score, has the term

All in the bottom of the Figure, since it is the root of HPO graph and thus is present

in subgraphs of all the CNVs.

Visualization of the graph from the gene model is technically equivalent to the

visualization of the CNV model, however graphs from gene model are usually much

more extensive. Due to this fact visualization of gene model graph was not suitable to

be exampled by �gure.

Unsuitable term

During our tests on visualization we noticed that in almost every graph resulting from

our CNVs overlap model the term Global developmental delay appears, representing a

leaf with a signi�cantly high impact score.
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After we inspected our CNV table, we found out that from approximately 23 thou-

sands of terms, almost six thousands (more than 25%) is comprised by the term Global

developmental delay. Since this term is not very speci�c nor informative, we decided

to remove it from our data as well as the term Developmental delay in previous stages

of this work.

5.4 The third model

Besides the two mentioned model, we also created third version of prediction model.

This complex model arose as connection of graphs from both previous models. It

creates the graph using overlaps as well as genes for given chromosome and coordinates

of CNV.

Since the impact scores in the two models are based on di�erent principles, it is

not possible to simply sum them together, when the same term occurs. To solve this

problem the α value was de�ned.

α is a number, which determines the rate in which the two models contribute into

resulting impact score. The value of score of the terms from each of the two models

is modi�ed according to the α. For example, if the α value is 0,3 the score values of

the terms from the CNV model are multiplied by 0,3 and the gene model terms are

multiplied by (1 - 0,3).

5.4.1 Appropriate value of α

Thereafter the α was added to the third model, the question, which value is appropriate

for it, occurred. We decided to estimate the value of α, which would provide the highest

possible accuracy of this model.

In order to estimate the value of α we added a support value M, which is related

to the dept (the shortest path from term to the root) of the particular explicit term in

the graph. Value M in the speci�c depth is than de�ned as a ratio of the number of

terms with higher score than the score of explicit term in this speci�c depth to all the

terms in this depth.

We tested ten various values from 0,1 to 1.0 with a step of 0,1 for the the α and

we took approximately one fourth of the CNV data as data for calculation of α. For

each of this values of α, we calculated an average value of M for each CNV in data.

Thereafter we had the ten average M values for each CNV, one average M value for one

value of α. From these α values were selected those with minimum average M value.

The value of α, which has the minimum average M value in most of the cases, was

proclaimed to be the most appropriate for the model.

The resulting alpha value was 1.0. Which means that the highest accuracy, the
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Percentage of CNV every term at least one term none term

CNV overlap model 37,2% 39,4% 60,6%

Gene model 17,6% 18,6% 81,4%

Complex model 42,0% 44,1% 55,9%

Table 5.1: Percentage value of CNVs with their covered explicit terms.

contribution of the gene model should not be taken into consideration. This fact is

discussed in more detail below.

5.5 Statistics and results

To see to which extent are our models able to �nd the proper terms for given CNV we

did some basis statistic.

Occurrence of explicit terms

As a �rst step, we compered the clinically observed phenotypes, which are recorded in

our CNV data, with the phenotypes predicted by our model. For each CNV from our

data (approximately eighteen thousands of entries) we count if the explicit terms of the

particular CNV are present in prediction or not. In this statistic we did not consider

the score of the terms.

In prediction made by the CNV model all explicit terms of CNV were included in

37,2% of cases. In 39,4 % of cases was included at least one of explicit terms and in

60,6% of cases were no explicit terms included in predicted graph.

Prediction made by the gene model has noticeably worse results. In 81,4% of cases

no explicit term was found in predicted graph. All the explicit terms were included in

17,6% of cases and at least one explicit term in 18,6%.

The best result in this statistic reached the complex model. In 44,1% of cases at

least one explicit term was found. All of them were present in 42,0% of cases and in

55,9% no explicit term was included. This result of complex model were obtained with

α set on value 0,5.

Summarization of these values is presented in Table 5.1 In the columns are numbers

of covered explicit terms.

We suppose that the more extensive data with higher amount of records of CNV�

phenotype relationship would signi�cantly increase the percentage of covered explicit

terms.

The statistic for α with value 1,0 should be done as well, however the results would

be identical with the results of the CNV model. This is implied by fact that complex
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Alpha value 0,1 0,3 0,5 0,8 1,0

Maximum percentage 43,68% 33,22% 26,44% 18,34% 13,53%

Minimum percentage 0,70% 0,70% 0,70% 0,70% 0,70%

Average percentage 25,50% 21,73% 19,09% 15,33% 11,12%

Table 5.2: The table shows percentage relation between increasing α value and the

values of average M.

model with α set on 1,0 do not consider the impact of genes, since their score is

multiplied by zero.

Although the complex model with α value 0,5 has signi�cantly higher occurrence of

explicit terms in its graph, the most suitable α was calculated to be value 1,0. This is

due to high extensiveness of the graphs from gene model. The graph from gene model

contains large amount of terms, thus it is likely to increase the number of explicit

terms occurred in it. However, simultaneously it increases the number of the terms

with higher impact score then the explicit term. This is equal for the whole graph and

for particular depths in this graph as well. Thus, higher number of terms in graph

increases the M value as well and it cause the lower accuracy of model with α, which

assigns higher score to terms from gene model.

Demonstration of this fact is represented by the following statistic.

M value statistic

We did the statistic for the M value as well. We inspected what percentage of terms in

equal depth with speci�c explicit term of particular CNV does have higher score then

this explicit term. The examination, how is this value in�uence by changes of α, was

done.

The best results were obtained for α 1,0. The average M value for CNV in our

data is 0,11, which means that there are 11% terms with higher score than the score

of explicit term, in the speci�c depth of graph. The maximum M value was 0,13 and

the best recorded percentage was 0,6%.

The attached Table 5.2 displays how is the average percentage connected to α. It

is apparent that with increasing α the average percentage decreases. The same applies

to maximum percentage. In our data CNV with no related gene occur as well. The

minimum percentage is probably percentage of one of them and the changing weight

of score of genes did not in�uence it.

-



Conclusion

In human genome various types of structural variants can occur. Although some of

them are benign, others can have negative consequences on human phenotype, such as

di�erent syndromes or genetic disorders. Therefore it is important to correctly detect

them and predict their possible impact on health of individual.

We implemented three prediction models based on di�erent approaches. We dis-

covered that prediction based solely on a�ected genes is too non-speci�c. This is due

to the fact, that individual gene is often related to a great number of phenotypes.

To continue, the approach based on CNV overlaps yielded more satisfying results.

In future work we would like to elaborate their full potential. CNV model was able to

cover all clinically observed phenotypes of particular CNV in 37,2% of cases. The main

factor that in�uenced the �nal percentage is the shortage of valid data. Our statistic

proved that on average only 11% of terms in speci�c depth of the graph has higher

impact score than the explicit term.

Originally we aimed to improve the prediction models, however our work was highly

complicated by errors in used packages. Especially an error in PyGraphviz was of high

signi�cance, since this package is widely used. However, we were able to locate the

source of both problems and subsequently adjust our data to omit these errors. We

informed the authors about these inconveniences.

We assume that more extensive data with higher number of properly recorded CNVs

with related phenotypes would bring relevant improvement. In future work research

for additional valid data resources can result in noticeable progress.

We propose further improvement. Using only the subontology of the HPO named

Phenotypic abnormality would reduce the number of terms in predicted graph, which

could result to decrease of the terms with higher score than the explicit terms.

This work met our expectations and we believe that it can serve as foundation for

future projects and researches.
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Appendix: content of electronic

appendix

In the electronic appendix of this work are included these �le, which are also available

on the https://github.com/krisbal97/phency.

• graphForGene.py � program implementing the gene model.

• graphForSequence.py � program implementing the CNV overlap model.

• complexGraph.py � program implementing the complex model.

• hpo.txt � �le storing our adjusted version of HPO database in OBO format.

• cnvs_big.tsv � table storing information about CNV and their relation to phe-

notypes.

• genes_to_phenotype4.tsv � table storing information about gene�phenotype

relationship.
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