
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Monte Carlo tree search in card and other
games

Bachelor Thesis

2023

Jakub Kaššák

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Monte Carlo tree search in card and other
games

Bachelor Thesis

Study Programme: Computer Science
Field of Study: Computer Science
Department: Department of Computer Science
Supervisor: doc. RNDr. Ján Mazák, PhD.

Bratislava, 2023
Jakub Kaššák

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Jakub Kaššák
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Monte Carlo tree search in card and other games
Stromové prehľadávanie Monte Carlo v kartových a iných hrách

Anotácia:

Cieľ:

Vedúci: doc. RNDr. Ján Mazák, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Dátum zadania: 18.10.2022

Dátum schválenia: 18.10.2022 doc. RNDr. Dana Pardubská, CSc.
garant študijného programu

študent vedúci práce

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Jakub Kaššák
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Monte Carlo tree search in card and other games

Annotation: Implement variants of Monte Carlo tree search for several chosen games,
investigate their performance and compare it to other game-playing algorithms.

Aim: 1. Study and create an overview of current research on Monte Carlo tree search
and its applicability to playing various games.
2. Implement variants of Monte Carlo tree search for a couple of chosen games
and investigate if they are viable for automated game play. Compare them with
other algorithms if any are available.
3. Investigate how heuristics affect the performance of Monte Carlo tree search
for specific games.

Supervisor: doc. RNDr. Ján Mazák, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 18.10.2022

Approved: 18.10.2022 doc. RNDr. Dana Pardubská, CSc.
Guarantor of Study Programme

Student Supervisor

Acknowledgements: I would like to thank a number of people who have had a
substantial influence on my work and I would like to mention them in this acknow-
ledgements section.

First of all, I would like to express my gratitude to Associate Professor Mazák for
his valuable comments, professional help, guidance, and encouragement throughout my
bachelor thesis. His wisdom, experience, and support were very helpful in helping me
achieve my goals and improve my bachelor’s thesis.

I would also like to thank Jozef Melicher for his feedback and support when I did
not feel like working.

Last but not least, I would also like to thank my family and friends who have
provided me with support and encouragement throughout the course of this thesis.

To all these persons I would like to express my sincere gratitude for their contribu-
tion and support which enabled me to successfully complete this bachelor thesis.

iv

Abstrakt

Hlavným cieľom tejto bakalárskej práce bolo preskúmať a analyzovať aplikáciu algo-
ritmu Monte Carlo Tree Search (MCTS) na novú kartovú hru. Najprv sme uviedli
komplexné definície kartových hier vo všeobecnosti a potom sme sa zamerali konkrétne
na hru Faraón. Táto hra má zvyčajne malý počet dostupných ťahov, ale je ťažké he-
uristicky vyhodnotiť aktuálny stav (na rozdiel napr. od šachu). Hru Faraón sme potom
implementovali spolu s algoritmom MCTS vrátane dvoch zaujímavých variantov od-
porúčaných existujúcim výskumom. Starostlivými manuálnymi úpravami sme doladili
parametre algoritmu MCTS.

Na vyhodnotenie vplyvu našich úprav sme uskutočnili rozsiahly turnaj s použitím
rôznych variantov MCTS a alternatívnych algoritmov. Výsledky sme zaznamenali a
analyzovali s cieľom posúdiť výkonnosť týchto algoritmov. Zaznamenali sme výrazné
zlepšenie výkonu pri rovnakom výpočtovom rozpočte, ale zároveň zavedenie Beam Se-
arch ako jedného z vylepšení neočakávane viedlo k poklesu výkonu.

Okrem toho bolo kľúčovým aspektom našej práce skúmanie evolučných zákonitostí
stromovej štruktúry vytvorenej algoritmom MCTS. Zistilo sa, že strom vykazuje pozo-
ruhodnú vyváženosť, čo naznačuje, že v hre Faraón neexistujú žiadne super výhodné
ťahy. Zavedenie heuristiky orezávania ťahov, druhého z dvoch zlepšujúcich variantov,
však spôsobilo jav, ktorý sme nazvali neočakávaná prehra, hoci celkový výkon sa zlepšil.

Naše výsledky naznačujú, že algoritmus MCTS má pozoruhodný potenciál na rie-
šenie úloh hier, ako je napríklad hra Faraón, pričom neustále prekonáva ostatné algo-
ritmy. Tento výskum poskytuje cenné poznatky o použití MCTS v kontexte hry Faraón
a ponúka zaujímavé vyhliadky na budúci pokrok v tejto oblasti.

Kľúčové slová: MCTS, kartové hry, Faraón, analýza, algoritmus

v

Abstract

The primary objective of this bachelor thesis was to explore and analyse the application
of the Monte Carlo Tree Search (MCTS) algorithm to a novel card game. First, we
provided comprehensive definitions of card games in general and focused specifically
on the game Pharaoh. The game typically has a small number of available moves,
but it is difficult to heuristically evaluate the current state (unlike e.g. chess). We
then implemented the Pharaoh game together with the MCTS algorithm, including
two interesting variants recommended by existing research. Through careful manual
adjustments, we fine-tuned the parameters of the MCTS algorithm.

To evaluate the impact of our modifications, we conducted an extensive tournament
using different MCTS variants and alternative algorithms. The results were recorded
and analysed to assess the performance of these algorithms. We observed significant
performance improvements for the same computational budget, but at the same time
the introduction of Beam Search as one of the improvements unexpectedly led to a
decrease in performance.

Furthermore, a crucial aspect of our work was to investigate the evolutionary pat-
terns of the tree structure constructed by the MCTS algorithm. It was found that the
tree exhibited remarkable balance, suggesting that there were no super-advantageous
moves in the Pharaoh game. However, the introduction of a move-pruning heuristic, the
second of the two improvement variants, caused a phenomenon we named unexpected
loss, although overall performance was improved.

Our results indicate that the MCTS algorithm has remarkable potential for game
solving tasks such as Pharaoh, consistently outperforming other algorithms. This re-
search provides valuable insights into the use of MCTS in the context of Pharaoh, and
offers exciting prospects for future advances in the field.

Keywords: MCTS, card games, Pharaoh, analysis, algorithm

vi

Contents

Introduction xiv

1 Definition of card game 1

2 Monte Carlo tree search 3
2.1 Four phases . 3
2.2 Tree policy . 5
2.3 MCTS variants . 5

3 Card game of Pharaoh 7
3.1 Rules and initial state . 7
3.2 The intricacies . 8

4 Implementation 9
4.1 Toolstacks . 9
4.2 Pharaoh business logic . 9
4.3 Computer opponents . 11
4.4 MCTS algorithm . 13

5 Performance analysis 15
5.1 Card decks . 15
5.2 Parameter optimization . 16
5.3 The great tournament . 29

6 Evolution of a play 37
6.1 Metrics . 37
6.2 Results . 39

Conclusions and future work 53

vii

viii

List of Figures

5.1 Win rate and iterations . 18
5.2 Wins with different exploration constant in a game with small deck . . 21
5.3 Wins with different exploration constant in a game with large deck . . 21
5.4 Wins with different heuristics in a match with small deck 23
5.5 Wins with different heuristics in a game with large deck 25
5.6 Wins with different for different values of width and limit in a game with

small deck using 32 iterations . 26
5.7 Wins with different for different values of width and limit in a game with

small deck using 243 iterations . 27
5.8 Wins with different for different values of width and limit in a game with

large deck using 32 iterations . 28
5.9 Wins with different for different values of width and limit in a game with

large deck using 243 iterations . 28

6.1 Maximum depth . 40
6.2 Maximum degree . 42
6.3 Average degree . 43
6.4 Root visits . 44
6.5 Tree size . 45
6.6 Number of terminal leaves . 46
6.7 Sackin index . 47
6.8 Cophenetic index . 48
6.9 Win expectancy . 50

ix

x

List of Tables

5.1 Overview of MCTS variants . 30
5.2 Win rates in matches with small deck 30
5.3 Average time per move in matches with small deck (in seconds) 32
5.4 Win rates in matches with large deck 33
5.5 Average time per move in matches with large deck (in seconds) 34

6.1 Comparison of surprising losses . 49

xi

xii

Introduction

The Monte Carlo Tree Search (MCTS) was introduced by Kocsis and Szepesvári as
suitable for playing the game of Go in 2006. This game was until then very problematic
mainly because of the high degree of branching in each move. The algorithm quickly
proved to be effective when Gelly et al. [8] constructed a computer Go player who was
at an advanced level (5 dan). Later, the MCTS algorithm was also behind the success
of DeepMind’s AlphaGo [15], which was the first to defeat a professional human player,
and a follower of AlphaGo eventually defeated the best human player in Go.

This bachelor’s thesis focuses on the application of the Monte Carlo Tree Search
(MCTS) algorithm in the context of the card game Pharaoh.

Card games have long been a source of entertainment, challenge, and strategic
thinking. The card game Pharaoh, with its unique mechanics and gameplay elements,
provides an interesting domain for studying the application of artificial intelligence
algorithms. By applying the MCTS algorithm to Pharaoh, we aim to improve our
understanding of how this algorithm can be used.

The structure of this work is as follows. First, we aim to define a card game in
general, which will help us to explain the MCTS algorithm and the game of Pharaoh.

Second, we will explore the fundamentals of the MCTS algorithm, explaining its
underlying principles such as selection, expansion, simulation and backpropagation.
This exploration will provide a solid foundation for understanding the mechanics and
functionality of the algorithm and its potential applications in Pharaoh.

Third, we provide a comprehensive analysis of the game Pharaoh, including its
rules, mechanics and winning conditions. By gaining a clear understanding of the
game’s characteristics, we can effectively adapt and apply the MCTS algorithm to this
specific domain.

Fourth, we implement the game Pharaoh and MCTS algorithm.
Fifth, we will conduct experiments and evaluate the performance of the MCTS

algorithm on the game of Pharaoh. By implementing and fine-tuning the parameters
of the algorithm, we aim to optimise its performance, and then we will conduct a
tournament using different variants of the MCTS algorithm as well as other algorithms
in the game of Pharaoh to compare the results and assess the performance of these
algorithms in the game environment.

xiii

Finally, we will analyse the evolution of the tree constructed by the MCTS al-
gorithm.

The results of this research will contribute to the field of artificial intelligence in
games, especially in the context of card games. The knowledge gained from applying
the MCTS algorithm to Pharaoh can potentially inform the development of intelligent
agents capable of competing with human players. Furthermore, the results of this
research may have implications beyond the game of Pharaoh. The principles and
techniques explored in this thesis can be extended and applied to other card games,
thereby increasing our understanding of the capabilities and limitations of the MCTS
algorithm in the broader domain of gaming.

xiv

Chapter 1

Definition of card game

In this chapter we explain what we mean by a card game. We hope that these definitions
will help us to better explain the MCTS algorithm later in this paper.

Definition 1. Let there be a set of SUITS and a set of V ALUES. Deck D is a
Cartesian product D = SUITS × V ALUES. Card C is a pair (suit, value) ∈ D. 1

Example 2. Let the deck be a Cartesian product SUITS×V ALUES, where SUITS =

{leaf, heart, bell, acorns} and V ALUES = {V II, V III, IX,X, under, over, king, ace}.
What we have just defined is a standard deck of german-suited playing cards.

Definition 3. Discard pile DP is a list of cards that are face-up. The top card in the
discard pile is called TOP . Stock ST is a list of cards where the cards are face-down.

Definition 4. Game state is a tuple GS = (DP, ST, LH, LP_MC, n, i, mc), where
DP is a discard pile, ST is a stock, LH is a list of hands, n, i and mc are integers,
LP_MC is a n-tuple of integers. The integer n denotes the number of players. We
call the integer i an index, because it marks whose player’s turn it is (turn is described
in definition 9). We call the integer mc a counter, because it counts the number of
turns. Sign deck(GS) = DP ∪ ST

⋃
H∈LH H marks the deck of the game GS.

Definition 5. Rule R is an implication of the form "if antecedent, then consequent".
The instance of a rule is called a move. Antecedents are conditions on a game state.
A move derived from a rule can only be applied to a game state if the conditions are
met. Consequents define the changes to the game state that occur when the move is
applied.

Example 6. Let R be a rule: If there is a card in the hand (of the player whose turn
it is) of the same value as the TOP, then that card may be played into the discard pile.

1In the real world, a card has two faces - the front and the back. The value and suit are marked
on the front. On the contrary, cards are indistinguishable by their backs.

1

Definition 7. Game is a pair G = (GS, RS) of an initial game state GS and a set
of rules RS. We require that if n is the number of players, then 0 ≤ G.i < n and
G.LP_MC has exactly n entries, where ∀j ∈ N, 0 ≤ j < n : G.LP_MC[j] ≤ mc.

Remark. To distinguish between a game as described in the above definition and the
activity of playing a game, we will call the latter a match.

Definition 8. Player is an entity that can change the game state by making moves.
Game play is pair GP = (G, LP), where G is a game and LP is a list of players. A
player is uniquely identified by its position in the list of players.

Definition 9. Turn is player’s opportunity to change the game state by using a move.
Players take turns in a fixed round-robin order.

Definition 10. The game state is terminal, if there is no move left.

Definition 11. Game state tree of a game G = (GS,RS) is an oriented rooted tree,
where each node stores a game state and the root stores the initial state GS. Each
edge in the tree corresponds to a move derived from rule R ∈ RS (i.e. for an edge from
node N1 to node N2, there exists a move M , so that when the move M is applied
to the state stored in N1 we get the state stored in N2), and for each move M from
the state S1 stored in a node N1, there exists an edge to a node N2 storing the state
reached from S1 by applying the move M .2 Note that each leaf stores a terminal state.
We will call a branch of the game state tree a play, and we will call a path from a
vertex to one of its descending leaves a playout.

2Note that it is also possible for a single state to be stored in multiple nodes if the state can be
reached by different sequences of moves.

2

Chapter 2

Monte Carlo tree search

In this chapter we explain how the Monte Carlo Tree Search (MCTS) algorithm works.
In the first subsection we describe the phases of the baseline MCTS, and in the second
subsection we take a closer look at the selection policy, which we also refer to as the
tree policy.

2.1 Four phases

MCTS is an algorithm that searches the state space represented as a tree - in our case,
the game state tree. The goal of the algorithm is to find the next promising move.
MCTS builds a subgraph of the game state tree and also stores statistical data about
possible decisions in the explored nodes.

Definition 12. To distinguish between the game state tree and the tree thath the
algorithm builds (which is a subgraph of the game state tree but also stores additional
data), we will call the latter a Monte Carlo tree or MC tree.

MCTS builds a MC tree by iterating these four phases:

1. Selection

2. Expansion

3. Simulation

4. Backpropagation

The first phase is called selection. The algorithm starts at the root and proceeds down
the already constructed MC tree, selecting the next node using the tree policy, which
will be described in the next section 2.2. The first phase ends when the algorithm
reaches a leaf.

3

The second phase is expansion. Let l1be a leaf. If leaf l1 does not represent a
terminal state, the algorithm constructs all states that are reachable from the state in
leaf l1 and hangs them as children under leaf l1. Otherwise, the algorithm proceeds
directly to the next phase.

Then the simulation phase follows. The algorithm chooses a child c of the leaf l1
(or if l1is terminal, then the l1 itself) and simulates a playout from it up to the terminal
state. If the playout is random, we call it a light playout. This is the Monte Carlo part
of the algorithm.

It is worth noting that that some variants use heavy playouts instead of light play-
out. Heavy playout involves enhancing the randomness of the playouts by introducing
more sophisticated and complex strategies. Instead of relying solely on purely random
moves, heavy playout incorporates additional heuristics, domain-specific knowledge, or
advanced game-playing techniques to guide the simulated play.

In the final stage - backpropagation - the algorithm propagates the result of the
playout to all nodes on the path to node c. The algorithm records the number of
simulated playouts and the number of wins. In the backpropagation phase at each
node on the branch with c, the algorithm increments the total number of simulated
playouts and, if the move to that node was chosen by the player who won in the current
playout, it increments the number of wins by one.

The algorithm iterates through these four phases until it spends all of its compu-
tational budget. The algorithm then returns the most promising move.

The computational budget can be based on several metrics:

1. Time

2. Number of iterations

3. Number of explored moves/states

4. Some combination of previous

The time-based approach allocates a specific amount of time for MCTS. This method is
useful for real-time decision making. The iteration-based approach specifies a number
of iterations of the four phases. It is useful for predictable and comparable perform-
ance across different platforms. This is why we used this approach. The explored
moves/states approach specifies the number of moves/states explored rather than the
number of iterations. Some approaches combine a time-based budget with a maximum
iteration limit. For example, the algorithm may run for a fixed time but terminate
early if the maximum iteration limit is reached.

4

2.2 Tree policy

Since the MCTS algorithm does not search the entire game state tree, we must ensure
that it searches at least some important part of it. To do this, we use a tree policy that
selects the next child in the selection. Thus, the goal of the tree policy is to balance the
discovery of new moves and the exploitation of already discovered advantageous moves.
In our work, we use the UCT (Upper Confidence bound applied to Trees) function
proposed by Kocsis and Szepesvári [11]. We give its prescription in the following
equation:

i∗ = arg maxi∈children(v)

wi

ni

+

√
c · log(N)

ni


where v is the current vertex reached in the selection phase, i is one of the children of
the vertex v, wi is the total number of wins in child i, ni is the total number of visits
to child i, N is the number of visits to vertex v, and c is the exploration constant.
We can see that the first component

(
wi

ni

)
is large if there are many wins in child i,

and in turn the second component
(√

c · log(N)
ni

)
is large if child i is under-explored

relative to its siblings. Thus, the first component ensures exploitation of discovered
advantageous moves and the second ensures discovery of new ones. The exploration
constant c is used to tune the balance between exploration and exploitation.

The UCT function is clearly the most widely used tree policy, but there are several
alternatives. One of them is called UCB1-TUNED and has been studied by Gelly
and Wang [8]. This method bears a strong resemblance to UCT, but additionally
adds an variance of the score. Gelly and Wang empirically showed that this function
gives better results than UCT in their game of Go. Examples of other tree policies
are Exploration-Exploitation with Exponential weights (Auer et al. [3]) or Thomson
sampling (Bai et al. [4]).

2.3 MCTS variants

In this chapter we provide short summery of other works on MCTS especially those
which focus on some kind of MCTS variant. It is often the case that the base version
of MCTS underperforms on certain problems and so there are modifications and en-
hancements that attempt to improve efficiency on various problems. In our work, we
are currently concerned with complete information games, i.e., games where the player
knows the entire state of the game (e.g., chess), so we summarize at least a few in-
teresting approaches to improve the efficiency of the algorithm suitable for a complete
information game.

5

Connecting of transpositions By transposition, we call the same state that
can be achieved by playing different sequences of moves. Thus, let S1, S2 be the states,
let a = (a1, . . . , an) and b = (b1, . . . , bm) be two different sequences of moves that can
be played to the state S1. If both a and b transform the state S1 to S2, then S2 is a
transposition. The standard MCTS searches a regular tree, which results in a different
branches for each transposition and therefore each transposition has to be searched
separately, which is inefficient. However, it significantly eases the implementation
because if we link the transpositions we get an oriented acyclic graph instead of a
tree, which causes new non-trivial problems (e.g. how to prune this tree/graph after
playing a move). However, solving them successfully leads to a more efficient use of
the computational budget. This idea has been used, e.g., by Kishimoto and Schaeffer
[10] (but in their case it was not MCTS, but MiniMax).

Heuristic move-pruning The state tree tends to be very large, which causes
the MC tree to grow in width instead of depth. One possible solution is to prune
some moves using heuristics based on domain knowledge. Move-pruning heuristics in
Monte Carlo Tree Search (MCTS) aim to improve the efficiency of the search process
by selectively expanding or considering only a subset of the available moves at each
simulation step. The goal is to reduce the number of exploratory simulations required
while maintaining the effectiveness of the search. This approach was used by Sephton
et al. [13] for the game Lords of War.

Beam Search Another interesting variant is called Beam Search. The basic idea
behind Beam Search is to maintain a fixed-sized set of partial solutions called the
beam throughout the search process. Beam Search with MCTS (BMCTS) uses two
additional parameters L and W . W specifies the beam width, i.e the width of the MC
tree at depth k, and L the number of simulations after which low-success moves are
pruned. Thus, the algorithm performs k ·L simulations and then prunes the number of
vertices at depth k to at most W (keeping the most promising moves) for each integer
k greater then one. This can lead to faster convergence towards high-quality solutions
compared to traditional search. However, it’s important to note that beam search is not
guaranteed to find the optimal solution. With this technique, the spatial (and hence
temporal) complexity is reduced to linear. BMCTS was used by Baier and Winands [5]
and achieved a 2-4 fold improvement in efficiency with the same computational budget.

6

Chapter 3

Card game of Pharaoh

In our work we focus on the card game of Pharaoh. So in this chapter we describe the
rules of our version of Pharaoh and why we chose those rules. We also explain what
problems arise when playing game of Pharaoh.

3.1 Rules and initial state

Definition 13. Now we define the initial state of the game of Pharaoh for 2 ≤ n ≤ 6

players. The game starts in the initial state GS = (DP, ST, LH, LP_MC, n, i, mc),
where D is a subset of the german-suited playing cards, LH = [H1, . . . , Hn] is list of
hands, with each hand symbolising one player, LP_MC = [−1, . . . ,−1] of length n

and i = mc = 0. Next, the deck of cards deck(GS) is randomly shuffled, then each
player is dealt a specified number of cards into his hand (e.g., if playing with all 32
cards, 5 cards are usually dealt), one card is placed in the discard pile DP as the TOP

and the remaining cards are placed in the stock ST .

Definition 14. Now let us define the rule set RS of the game of Pharaoh. Let C̄ be
a k-tuple of cards of the same value, that the player, whose turn it is, has in his hand.
If the TOP has same value as the cards in C̄, then the player may play this k-tuple
C̄ into the discard pile. The last card he puts into the discard pile will be the TOP

next turn, so it depends on the order in which he discards the cards. We call this rule
match value. The second rule is similar, but the first card from the k-tuple C̄ must
match the suit of the TOP , so we call this rule match suit. There are two possibilities
regarding the last rule: if there is at least one card in the stock, a player can draw that
card into his hand, and we call it draw a card. Or there may be no card in the stock,
in which case the player whose turn it is may do nothing. We call it skip a turn.

After one of these rules has been played, it is the next player’s turn. If the player
has no cards left after his turn, he is finished in this match and the current value of
the move counter mc is stored in his part of LP_MC. At the end of the match, the

7

first player to finish (player with the lowest number in LP_MC) is the winner.

Definition 15. The game of pharaoh P = (GS, RS) is defined by initial state GS

described in definition 13 and rule set RS described in definition 14.

Remark. There are several other rules in the standard game of Pharaoh, for example
when a player plays a card with value over, he can choose the suit that other players
must match if they want to play a card into the discard pile. However, for reasons
of performance and ease of implementation, we have decided not to implement such
rules. We have chosen the three or four rules described above, because we believe they
represent the cornerstones of the game of Pharaoh.

3.2 The intricacies

The difficulties in implementing a computer opponent for the game of Pharaoh arise
from the fact that it is not clear what the most effective strategy is and we do not
know of a good heuristic functions for game state evaluation. Also, Pharaoh is a
game, where sometimes choosing a particular move at the beginning of the play has
little effect on the outcome. For these reasons we have chosen to implement MCTS
for the game of Pharaoh and describe the performance and progress of the algorithm
throughout the match. It is worth noting that Pharaoh is typically a game with
incomplete information1, but our implementation of MCTS uses complete information.

1In games with incomplete information, players only have access to part of the game state. For
example, in Pharaoh, each player sees the cards in his hand and the top card in the discard pile. The
opposite example is chess, where each player knows the entire game state.

8

Chapter 4

Implementation

This chapter describes the implementation process, starting with a description of the
tool stack we used, followed by a list of the most interesting problems and decisions we
made.

4.1 Toolstacks

This bachelor thesis is a follow up for the year project and it carries some decisions since
then. One of these decisions is the choice of the programming language to be used. We
chose Python because we liked its simplicity and we had some experience with it from
other assignments. It is somewhat questionable whether this was a good choice, as the
MCTS algorithm would benefit greatly from a more performance-oriented language, as
we found out later. Python is a dynamically typed language, but we decided to use
type annotations and mypy to check for type correctness. This was a great decision as
it helped us find many errors that naturally occur in a project of this size.

We believe that one of the many aims of an undergraduate degree is to learn new
things. That is why we decided to use Docker to host and run our code.

4.2 Pharaoh business logic

In our work, we implement the business logic of the game of Pharaoh using the object-
oriented paradigm. Initially, we thought that an immutable game state would suit our
needs, since the MCTS algorithm stores different versions of the game state in the
vertices of the MC tree, and we could examine each macth in more detail. We used
pyrsistent’s PClass as the base class for our GameState class, which made implement-
ation easy.

However, when we later implemented the first version of MCTS, we encountered
rather unimpressive performance. As a result, we had to limit ourselves to a small

9

number of rules, as mentioned in Chapter 3 about the game of Pharaoh. We suspected
that part of the problem might be caused by the fact that the game state is immutable
and the other part might be caused by the choice of language. The main disadvantage
of an immutable game state is that a new state has to be constructed after every
change, which we believe is a big problem for MCTS, since it relies heavily on fast
simulation of random playouts.

We measured the time the algorithm spent simulating random playouts and found
that it used about 96-98% of the allocated computational budget there. We decided
to shift the paradigm to a mutable game state, which cost us a lot of work because
the paradigm shift was significant. However, we saw about a twofold improvement in
performance, and the time spent simulating random outcomes dropped to about 90%.

Move and Rule

In this section we explain why we distinguish between the notion of a rule and the
notion of a move. When we explain a game to someone, we usually describe it in terms
of rules. Rules describe what a player can do in a macth. Usually rules do not tell
us exactly what a player can do, but they do give several ways of interpreting and
using them. However, as we will explain in the subsection on implementing the MCTS
algorithm, one of the requirements is the ability to list all legal moves/transitions
from a given game state. The problem we faced was how to define a game without
manually listing all these moves/transitions to subsequent states, but when needed,
how to generate them all.

We decided to separate rules and moves, as we did in our definition, and we im-
plemented the rule as a generator of moves that can be derived from the rule. So a
rule generates moves according to a version of Pharaoh that we want to play (more
precisely, it generates moves according to the number of players that will be playing
the game and the deck that will be used). Now a move class is an object composed
of conditions and actions, and it has two member functions - test and apply. The test
function returns true if the conditions are met and false if they are not. The apply func-
tion changes the state of the game. Before a match starts, a list of moves is generated
from the rules. Thanks to this distinction we can easily generate all possible moves if
the number of players or the deck changes. If we want to enumerate only moves that
are actually applicable to a particular state (which is a requirement of MCTS, as we
mentioned earlier), we filter the moves that return true for that state.

Ties

A play of Pharaoh is potentially infinite. The problems arise from the skip a turn rule
and from the fact that we do not shuffle the discard pile back into the stock. When

10

the stock is exhausted, it can happen that no player can play a card into the discard
pile (because no one has a card that matches the top card in the discard pile), or that
a player can play a card into the discard pile but does not want to. If this happens,
everyone gets stuck in an endless skip-a-turn loop.

To prevent this unwanted behaviour, in our implementation of game state we have
introduced two counters - the lock counter and the draw counter. The lock counter
addresses the first problem. If all players have only one move left (skip a turn), the
match ends. The draw counter works similarly: if all players skip a turn for three full
rounds, it arbitrarily ends the match, even though the match is not yet stuck in the
infinite skip a turn loop.

But if a match ends early, some players will still have cards in hand and there will
be a tie. We do not want ties because a tie gives us no additional information about the
performance of the MCTS algorithm. And we have seen that the algorithm sometimes
prefers a tie when it would probably have lost on any other move. So we decided to
remove ties altogether. If a match ends early, the players who have already finished
(have no cards left) will be assigned positions normally (in to the order in which they
finished). Those who still have cards are ordered in descending order according to the
number of cards they have left. And those who have the same number of cards are
placed in the reverse order in which they have played, i.e. the player who started each
round with cards left is placed last, and the player who played last in each round is
placed immediately after the players with no cards left.

4.3 Computer opponents

In order to measure the performance of our MCTS algorithm, we needed to compare
it with some alternative algorithms. In this subsection we explain other algorithms/-
players that we have created to compare with the MCTS. We also give reasons why we
think our solutions should be effective.

We have implemented the following algorithms/players:

1. Random player

2. Biggest tuple player

3. Smallest tuple player

4. Annoying player

5. Back tracking player

11

The simplest is the random player. It does exactly what the name suggests - it
randomly chooses a move from the legal moves. As we will see in a later section, this
is the worst performing strategy compared to the others.

Biggest tuple player, smallest tuple player and annoying player are inspired by
strategies commonly used by human players in the game Pharaoh. However, we have
not found any research that has looked at them more closely.

The biggest tuple player works like this - from all the legal moves available from
a given state, it chooses the one that plays the largest number of cards. For example,
if it can play one X, two X, one V II, or draw a card, it will choose to play the two
X. The reason this should be a good strategy is that it can quickly play a lot of cards
into the discard pile, which should hopefully help it get rid of all of its cards. It is also
usually better to play all cards of the same value in one turn.

The smallest tuple player is in a way an extension and opposite of the biggest
tuple player. It builds on the idea that it is usually better to play cards of the same
value together in one turn. But it introduces a new idea that if a player has several
cards of the same value, they have a much higher chance of matching the top card
in the discard pile. This may sound a little counterintuitive, because if a player has
multiple cards of the same value, the likelihood of matching the top card’s value is
lower (or impossible if the player has all the cards of the same value). On the other
hand, the likelihood of a match in suit increases because each card of the same value
has a different suit (in the German suited deck). So if a player has two cards of the
same value, he can match them with card of two suits, which is on average half the
deck. And if he has four cards of the same value, he can always match them with the
top card, because he can match cards of any suit. Therefore, it makes sense to play
the tuple of cards with the lowest probability of matching the top card in the discard
pile before playing a tuple with a higher probability. So the smallest tuple player plays
the smallest meaningful tuple of cards of the same value. For example, if it can play
one X, two X, one V II, or draw a card, he will play that one V II.

The annoying player uses strategy that prevents the next player from playing a
card. This strategy is based on the fact that we play Pharaoh with full information,
i.e. we play with open cards. In the case of multiple options that result in the following
player not being able to play a card, the annoying player chooses according to one of
the above strategies.

All of these heuristic players are based on our experience with the game, because
we did not find any useful research about strategies for the game of Pharaoh.

Finally, the back tracking player search the game state tree for strategy of moves
/ sequence of moves that always lead to win. It is based on algorithm from the univer-
sity textbook on computability and complexity written by Dana Pardubská. However
this approach is too slow even for the small size of game (which we will define in chapter

12

5.1). Therefore we add in heuristic move-pruning similar to the one used in MCTS
algorithm (mentioned in chapter 2.3 and we will also explain it in more detail in the
following subsection 4.4) and we limit the search depth to some arbitrary limit. This
makes a reasonably powerful opponent as will be shown later.

4.4 MCTS algorithm

The MCTS algorithm is not difficult to implement once understood. The reason why
we implemented the MCTS algorithm ourselves comes from the year project from
which our bachelor thesis follows. Back then we wanted to implement the algorithm
so that more than two players could play, and we found no implementation of MCTS
for multiple players. However, our design was influenced by articles on baeldung.com
[2] and analyticsvidhya.com [1].

Our task was to understand the algorithm properly and then implement it so that
it would work for multiple players. We were not sure how to keep track of the number
of wins in a particular node, because in a multiplayer game the result is not binary win
or loss. In our implementation, the node in the MC tree stores the sum of the results
for the player who had the previous turn (because his move brought the game to the
state in that node).

We were wondering whether we should recycle part of the MC tree after a full
round (when the MCTS player is on the turn again), and if so, how we should do it.
We implemented this recycling using BFS – the algorithm searches the MC tree until
it finds a node with the current state and the roots the MC tree there.

In the explanation of MCTS we write that in the expansion phase the algorithm
constructs all states that are reachable from the state in the leaf. But this is not
the most efficient way. A better option seems to be lazy expansion, i.e adding only
that child from which the playout follows and so on until all legal moves are covered.
Otherwise a lot of constructed leaves will never be visited, wasting time and space.

Improving variant

We implement two enhancements to the baseline MCTS. The first enhancement uses
move-pruning with domain knowledge-based heuristics. We mentioned this enhance-
ment in Section 2.3. We implemented this by passing a simple heuristic function to
the MCTS’s object constructor. This function filters out moves that are unlikely to
be good options and then returns a list of available moves sorted according to domain
knowledge. We have implemented the following three heuristic functions:

1. my_shuffle - this function simply shuffles the available legal moves.

13

2. biggest_tuple - works similarly to biggest tuple player, i.e. it only returns moves
that play all cards of the same value and prefers to play the biggest number of
cards.

3. smallest_tuple - acts in the opposite way to biggest_tuple, i.e. it only returns
moves that play all cards of the same value and prefers to play the smallest
number of cards.

The second improvement uses the Beam Search method, which was also mentioned in
chapter 2.3. It takes two parameters limit L and width W . When nodes in the pruning
depth have been visited L times, the procedure prune_tree is called. The procedure
will keep only W most visited nodes in the pruning depth. The remaining nodes in the
prune depth are removed along with the subtrees rooted in them. Then the pruning
depth is incremented by one so that the children of the nodes that were in the pruning
depth are now in the pruning depth. If there are at most W nodes in the prune depth,
no nodes are pruned, only the prune depth is incremented.

Note that when W equals 1, the search behaves like a step by step search. And
when W approaches infinity, it behaves like a basic MCTS.

14

Chapter 5

Performance analysis

In this chapter, we present our methodology and the performance results of the MCTS
algorithm compared to other algorithms in the game of Pharaoh. We first explain our
testing environments, then describe the process of optimising the algorithm parameters,
and finally provide a large-scale comparison of the different computer players we have
implemented in our work, focusing on MCTS.

5.1 Card decks

In this subsection we explain our test environments, which are characterised by the
number of players and the number of cards used in all the simulations described in this
chapter.

We only simulate two-player matches, although our implementation of MCTS is
capable of playing a game with more than two players. The reason for this is that we
feel that the performance comparison can be best seen in a two player game. However,
it would be interesting to see how the algorithm would perform in a game with more
than two players.

We decided to test our algorithms in two different environments. First, with a small
number of cards. This makes the search space smaller, which is more suitable for the
backtracking algorithm, and it is also less time consuming to simulate. To achieve this,
we define a small deck of cards with only three different suits and five different values,
giving a total of 15 cards. Both players are initially dealt 6 cards. From our experience,
this seems to be the smallest deck that gives us interesting results (with smaller decks,
the results of a match depend too much on the initial state of the game). It may also
seem that giving each player 6 cards at the start leaves only 3 cards in the deck to
be drawn, and this is true. However, this is intentional, as giving players fewer cards
makes the results less dependent on the algorithm used, making it difficult to compare
the performance of different algorithms.

15

We also wanted to see how the algorithm performed in a large game. Therefore,
we also test with the full set of German-suited playing cards, i.e. four different suits
and eight different values, giving a total of 32 cards. Both players start with 10 cards,
which is more than usual in Pharaoh, but still leaves 12 cards in the deck.

5.2 Parameter optimization

The MCTS algorithm has multiple parameters, which we can set:

1. Iteration count1

2. Exploration constant2

3. Move pruning heuristic 3

4. Beam Width 4

5. Beam Limit

In this subsection we describe the process by which we set these parameters. Optimising
multivariable models can be challenging, as the number of variables and interactions
can quickly become overwhelming. However, there are several optimisation techniques
that can be used to efficiently optimise multivariable models.

Gradient based optimisation is a popular technique for optimising multivariable
models. This technique involves calculating the gradient of the objective function with
respect to each of the model’s parameters, and adjusting the parameters in the direction
of the gradient to minimise the objective function. The most commonly used gradient-
based optimisation algorithm is gradient descent. For more information, see the book
on deep learning by Ian Goodfellow and Yoshua Bengio and Aaron Courville [9].

Genetic algorithms are another powerful optimisation technique for multivariable
models, introduced by M. Mitchell [12]. This technique involves evolving a population
of candidate solutions over time, using selection, crossover and mutation operations to
produce better and better solutions. The most commonly used genetic algorithm is
the simple genetic algorithm (SGA).

Bayesian optimisation is a relatively new optimisation technique for multivariable
models. This technique involves modelling the objective function as a probability
distribution and using Bayesian inference to guide the search for the optimal solution.
The most commonly used algorithm for Bayesian optimisation is the algorithm based

1explained in Section 2.1
2explained in Section 2.2
3explained in the paragraph about heuristic move-pruning in Chapter 2.3
4Width and limit are part of Beam Search, which was explained in paragraph about BMCTS in

Chapter 2.3

16

on the Gaussian process. Bayesian optimisation has been studied by B. Shahriari et
al. [14].

As it is beyond the scope of our work to investigate and use these techniques, we
have decided not to use them. After a thorough literature review, we implemented
several algorithm variants that differed in minor details or parameter configurations.
We then ran different versions of these algorithms against each other many times, which
allowed us to gain rich insights. Based on this experience, we identified parameters
that we considered worthy of further quantitative evaluation, which we focus on in this
chapter.

Iteration count

One of the main strengths of the MCTS algorithm is that it can be easily adapted to
deal with time constraints. In the case of games, the algorithm can be used to find the
next promising move to make in a given amount of time.

Reduction of the time available for the algorithm to search the game tree may,
however, reduce the quality of the results produced by the algorithm. This is because
the algorithm may not be able to explore enough of the game state tree and may miss
important moves.

However, in our work we have chosen to limit the computational budget by the
number of iterations the algorithm runs. One reason is that we cannot compare different
time constraints between small and large decks. The second is that the time constraint
is very sensitive to the performance of the CPU - we got different results depending
on which performance mode we used on our test computer. We therefore decided that
limiting the number of iterations was better for our purposes, even though it has less
real-world relevance.

In general, increasing the number of iterations that the MCTS algorithm is allowed
to run will lead to better results because the algorithm has more opportunities to ex-
plore the space of possible moves. However, the trade-off is that more iterations also
require more computing resources, which may not always be available in practical ap-
plications. Therefore, finding the optimal balance between computational resources and
number of iterations is an important consideration when using the MCTS algorithm.

To evaluate the performance of our MCTS algorithm, we compared its win rate
against a backtracking player in multiple matches. We simulated 400 matches for the
small deck and 200 for the large deck for each number of iterations. We also used the
same number of simulated matches for each combination described in the following
subsections of this chapter. We varied the number of iterations given to the MCTS
algorithm and measured its win rate against the backtracking opponent.

The MCTS algorithm was configured with the following settings: exploration con-

17

Figure 5.1: Win rate and iterations

stant of 2, heuristic my_shuffle and a limit of 100 000 000 and a width of 100 000 000.
The exploration constant value is a recommended baseline setting, as we will explain
in the following section, and the my_shuffle heuristic also simulates the behaviour of
the baseline MCTS. We used such a high number for limit and width because Beam
Search behaves like standard search with these settings. Meanwhile, the backtracking
player was configured with the smallest_tuple heuristic and a depth limit of 13 for the
small deck and a depth limit of 9 for the large deck.

The results of our experiments were plotted to visually compare the win ratios of
the MCTS algorithm and the backtracking opponent over different numbers of itera-
tions. Figure 5.1 shows the win rate of MCTS player as the number of iterations for
the MCTS algorithm increases. The results show that the MCTS algorithm outper-
forms the backtracking player as the number of iterations increases. The results of our
experiments showed that the win rate of the algorithm, plotted against the number of
iterations given to it, has a shape similar to logarithm, although it is obvious that the
relationship cannot be logarithmic because it is not possible to win more than 100% of
the matches.

Furthermore, our experiments showed that this logarithmic trend in win rate was
consistent across matches with both small and large decks. This suggests that the
apparent logarithmic relationship between iteration count and performance is inde-
pendent of the size of the game tree.

18

To explore the behaviour of the MCTS algorithm in the following sections in this
chapter over a range of iteration counts, we focused our analysis on two different
iteration counts: 32 and 243. These iteration counts were strategically chosen to
provide insight into the performance of the algorithm at different ends of the spectrum.

The choice of 243 as the higher iteration count was deliberate in order to assess the
behaviour of the MCTS algorithm when provided with a reasonably high number of
iterations. This number of iterations was chosen to strike a balance between gaining
meaningful insights and the practical consideration of simulating multiple matches
within a manageable time frame.

On the other hand, the choice of 32 as a lower number of iterations was aimed at
investigating the performance of the algorithm with a significantly reduced number of
iterations. This choice allowed us to investigate how low we could reduce the number
of iterations and still obtain meaningful results.

Exploration constant

The exploration constant in the MCTS algorithm defines the balance between explor-
ation of new moves and exploitation of already discovered and promising moves, as
mentioned in Section 2.2.

A higher exploration constant encourages the algorithm to prioritise exploration,
resulting in a more extensive search of the game tree. This can help discover new,
potentially promising paths in the search space. However, a higher exploration constant
can also lead to increased computational complexity and longer search times as the tree
grows.

Conversely, a lower exploration constant encourages exploitation by prioritising the
use of already known, promising paths. This can lead to faster convergence, but may
cause the algorithm to miss potentially valuable but unexplored areas of the search
space as the tree grows deeper.

The choice of exploration constant depends on the specific problem, the charac-
teristics of the game or domain being explored, and the desired trade-off between ex-
ploration and exploitation. According to Brownley et. al. Many MCTS enhancements
require the optimisation of some parameter, for example the UCT exploration constant
... These values may need adjustment depending on the domain and the enhancements
used. They are typically adjusted manually, although some approaches to automated
parameter tuning have been attempted [6, 5.2.9 Parameter Tuning].

In the case of our research, we initially set the exploration constant to 2, as this is
a commonly used and recommended value5. According to wikipedia value 2 is derived

5It should be noted that the exploration constant is often excluded before the square root. There-
fore, the recommended value is

√
2

19

from theoretical analysis, but in practice is chosen empirically, therefore we decided to
start with the value 2.

In order to assess the impact of different exploration constants on the performance
of the MCTS algorithm, we ran experiments comparing it to another MCTS variant
(which we call mcts_vanilla) instead of backtracking player. We were concerned
about mis-tuning MCTS by comparing it to backtracking player, since it does not search
through all possible moves (as it uses the my_shuffle heuristic for move-pruning). The
mcts_vanilla configuration has these settings: exploration constant of 2, heuristic
my_shuffle, 243 iterations, limit and width of 100000000.

The other MCTS player used exactly the same settings except for the exploration
constant and iteration count. We varied the exploration constant from zero to approx-
imately three, and we did this for both 32 and 243 iteration counts. By analysing
the results at different iteration counts, we aimed to gain insight into the effect of the
exploration constant on the performance of the algorithm at both ends. Keeping other
parameters constant allowed us to isolate the effect of different exploration strategies
on the performance of the algorithm.

During our experiments, we found that a lower value for the exploitation constant
gave better performance for both the small and large decks, and for both the 32 and
243 iteration counts. The difference in performance was measurable, especially for the
higher iteration count. It resulted in up to 12.5% improvement in win rate compared to
the default setting of 2 in the case of 243 iterations and the large deck, as can be seen
in Figures 5.2 and 5.3, where we plot the wins with different settings of the exploration
constant.

The best value for the small deck matches seems to be equal to 0.4 for both iter-
ation counts. For the large deck matches, we observed the best performance with an
exploration constant of 0.29 for 32 iterations and 0.57 for 243 iterations.

In conclusion, we believe that the low value of the exploration constant is advant-
ageous because the game of Pharaoh, as we have implemented it, is deterministic. In
deterministic games, where the outcome is determined solely by the actions of the
players and there is no random element involved, a low exploration constant can be
advantageous in certain cases. The rationale behind this is that a low exploration con-
stant encourages the exploitation of current knowledge and known good moves rather
than the exploration of unknown paths. By focusing on exploitation, the algorithm
aims to make the most immediate gains based on the available information. One of
the notable references that discusses the impact of the exploration constant in MCTS
is the paper A Survey of Monte Carlo Tree Search Methods by Cameron Browne et al
[6].

20

Figure 5.2: Wins with different exploration constant in a game with small deck

Figure 5.3: Wins with different exploration constant in a game with large deck

21

Comparison of heuristics

In this section we investigate the impact of incorporating domain knowledge-based
move-pruning heuristics, specifically in our case in the context of the game Pharaoh.
The move-pruning heuristic is a technique used in both the backtracking player and
the MCTS algorithm to optimise the search process by reducing the number of moves
considered. A good heuristic should allow the algorithm to prioritise and explore the
more promising moves, while excluding less favourable or less relevant moves from
consideration.

In our research we defined three heuristics: my_shuffle, biggest_tuple and smal-
lest_tuple. However, only the latter two, biggest_tuple and smallest_tuple, are true
move-pruning heuristics. The my_shuffle heuristic simply randomises the available
moves, while the biggest_tuple and smallest_tuple heuristics selectively filter out
moves based on criteria, that most of the time it is bad not to use all cards of the
same value. The biggest_tuple heuristic also favours playing as many cards as pos-
sible, while the smallest_tuple heuristic favours playing the smallest sensible amount.
For more details go to Section 4.4.

We incorporated the smallest_tuple heuristic into the backtracking player, which
significantly improved the efficiency of the search process. By selectively pruning moves
that are unlikely to lead to desirable outcomes, we were able to increase the search
depth while still maintaining an acceptable search time. This move-pruning mechanism
allowed the backtracking player to focus on more promising branches of the game tree,
resulting in reduced computational resources and faster decision making.

However, our main focus in this paper is on the MCTS algorithm. We per-
formed a comparison between different variants of the MCTS algorithm that use
the biggest_tuple and smallest_tuple heuristics, and a baseline MCTS that uses the
my_shuffle heuristic. For the baseline MCTS with the my_shuffle heuristic, we used
the best setting of the exploration constant determined in the previous section (we call
this variant expl_s for small deck and expl_l for large deck) .

Due to practical constraints, it was not possible for us to repeat the entire process
of optimising the exploration constant for each new heuristic. Therefore, we decided to
use three different settings for the exploration constant: the one found in the previous
section, a much smaller one (half of the previous best), and a much larger one (four
times larger). This allowed us to study the effect of different exploration constants on
the performance of the MCTS algorithm with different heuristics.

The other two parameters, Width and Limit, were kept constant for all MCTS
variants. They were set to 100 000 000, similar to the settings used in our previous
test, to isolate the effect of the heuristics and exploration constants on the performance
of the MCTS algorithm.

22

Figure 5.4: Wins with different heuristics in a match with small deck

Through this comparison, we aimed to evaluate how the different heuristics and
exploration constants affect the efficiency and effectiveness of the MCTS algorithm in
the context of our specific problem domain.

The results differ between large and small deck and between 32 and 243 iterations,
so we will describe them separately.

Small deck

First, we describe a small deck and 32 iterations, which can be seen in Figure 5.4 on
page 23. In our experiments, the MCTS variant with smallest_tuple and exploration
constant of 0.4 performed best. Compared to the my_shuffle heuristic with an ex-
ploration constant of 0.4, we achieved an 8% increase in win rate. This suggests that
the smallest_tuple heuristic effectively pruned moves that were less likely to lead to
desirable outcomes, resulting in a more focused and efficient search.

The results from the small deck and 243 iterations are plotted in the same Figure
5.4 on page 23. In our experiment with the small deck and 243 iterations, we observed
that incorporating the smallest_tuple heuristic, along with the previous best setting
of the exploration constant equal to 0.4, led to an improvement of up to 5% in the win
rate of the MCTS algorithm.

On the other hand, the biggest_tuple heuristic performed slightly worse than the

23

smallest_tuple heuristic. While it still provided the same move-pruning benefits, the
different search order caused it to perform slightly worse at the small and medium
exploration constant settings. However, it actually performed significantly worse than
the MCTS player with the my_shuffle heuristic at the highest exploration constant
setting.

The smallest_tuple outperformed the biggest_tuple at every exploration constant
and iteration count setting, suggesting that the order in which moves are explored is
important. However, the difference was more pronounced at the lower iteration count,
showing that order is more important with fewer iterations.

Overall, in the small deck matches the previous best setting of exploration constant
equal to 0.4 seems to be the best for all tested move-pruning heuristics and the best
heuristic seems to be smallest_tuple.

Large deck

The results from the large deck are quite different for the biggest_tuple heuristic, as
can be seen in Figure 5.5 on page 25. The previous best setting of the exploration
constant of 0.29 is actually the worst setting for it. The MCTS variant with the
biggest_tuple heuristic actually outperforms smallest_tuple with the small exploration
constant setting. Nevertheless, the smallest_tuple heuristic with exploration constant
0.29 has the best win rate of all variants with 32 iterations, and it is a 6% improvement
in win rate over the variant with my_shuffle and exploration constant of 0.29.

The smallest_tuple heuristic is also the best performing heuristic with 243 itera-
tions, but the best exploration constant setting is only 0.14, which is only a quarter
of the value that was best for the my_shuffle heuristic. It achieves an additional 16%
improvement in win rate. Initially, we only ran matches with exploration constants of
0.29, 0.57 and 2.29, but after seeing the negative inverse trend of the smallest_tuple
heuristic variant, we decided to run additional matches for it with exploration con-
stant of 0.07 and 0.14. The biggest_tuple heuristic performs similarly to the small
deck, with the best exploration constant setting being 0.57. Surprisingly, both smal-
lest_tuple and biggest_tuple perform worse than the my_shuffle variant when the
exploration constant is high.

To sum up, the best move-pruning heuristic seems to be smallest_tuple. In our
tests the best value of the exploration constant for smallest_tuple heuristic was 0.29
for small number of iterations and 0.14 for large number of iterations.

24

Figure 5.5: Wins with different heuristics in a game with large deck

Width and limit

The results of our experiments with BMCTS (Beam Search Monte Carlo Tree Search)
were disappointing. Despite our initial expectations and efforts to optimise the width
and limit parameters, the inclusion of BMCTS did not improve the performance of the
algorithm. The BMCTS variant consistently underperformed compared to the baseline
algorithm without BMCTS.

We first tried BMCTS in a small deck game. We tested against the variant used in
the previous phase - mcts_expl_s. The BMCTS variants used the smallest_tuple
heuristic and an exploration constant of 0.4, which gave the best results in the previous
phase. We tried widths of 1, 2, 4 and 8. We combined them with limits of 4, 8, 16.
The values for limit were chosen strategically, because with a limit of 4 the search tree
should be pruned 8 times, while with a limit of 16 the tree should be pruned only once.
We only tested combinations where the limit was greater than the width, otherwise
the prune tree method would be called earlier than all the nodes at prune depth were
visited.

As can be seen in Figure 5.6, the algorithm performs better with the largest values
of both width and limit. The best win rate is only 0.265 and was achieved with a width
of 8 and a limit of 16. It seems that it would be best not to prune the tree at all, as
the variant from the previous section (without Beam Search) with the smallest_tuple

25

heuristic and an exploration constant of 0.4 achieved a win rate of 0.298.

Figure 5.6: Wins with different for different values of width and limit in a game with
small deck using 32 iterations

For 243 iterations we used 2,4,8,16 for width and 4,8,16,32,64,128 for limit. The
performance is even worse with 243 iterations, as can be seen in Figure 5.7. None of
the tested combinations achieved a win rate above 0.5. The best result - a win rate of
0.4975 - was achieved with a combination of width 4 and limit 128. This variant pruned
the search tree twice. In comparison, the best variant from the previous phase, which
did not use beam search, achieved a win rate of 0.55 (using the my_shuffle heuristic
and an exploration constant of 0.4).

In the matches with the large deck, we compared the BMCTS variants with the
mcts_expl_l variant. We tried width and limit values similar to the small deck and
the performance was similarly disappointing. The results with 32 can be seen in Figure
5.8. The win rates are more chaotic compared to small deck, which could be partly
caused by simulating on 200 matches with large deck and 400 matches with small deck.
Still, the best win rate of 0.235 was achieved by the variant with the largest width and
limit of 8 and 16 respectively, which is not as good as the win rate of 0.26 achieved in
the previous phase under the same conditions without using the BMCTS improvement.

Finally, the best result of 0.495 in a game with a big deck using 243 iterations was
achieved by the variant with a width of 8 and a limit of 128. In comparison, the best
variant with 243 iterations from the previous phase achieved a win rate of 0.66 using
the my_shuffle heuristic and an exploration constant of 0.14. The results are plotted

26

Figure 5.7: Wins with different for different values of width and limit in a game with
small deck using 243 iterations

in Figure 5.9
Further analysis and investigation is required to understand the underlying factors

contributing to the poor performance of BMCTS in our specific scenario. This result
highlights the complexity and variability of algorithmic performance, and the need for
careful evaluation and comparison of different approaches.

27

Figure 5.8: Wins with different for different values of width and limit in a game with
large deck using 32 iterations

Figure 5.9: Wins with different for different values of width and limit in a game with
large deck using 243 iterations

28

5.3 The great tournament

In this section we make a big comparison of the players and variants we implemented
in our work. We also analyse and compare actual times which each algorithm used in
simulated matches.

List of Players

In this subsection we list and explain all the players which we used in the tournament.

The simplest players are random player, biggest tuple player, smallest tuple player
and annoying player which were already mentioned in Section 4.3 about computer
opponents. In our tournament the random player is called random, the biggest tuple
player is called biggest, the smallest tuple player is called smallest and the annoying
player is called annoying. Apart from annoying player there are no parameters to set
to change the behaviour of these players and the same players are used for both small
and large deck games.

However, the behaviour of the annoying player can be further specified by what
it chooses to do if there are multiple annoying moves (moves that prevent the other
player from playing a card). In this case we chose a behaviour similar to the smallest
tuple player.

We compare two slightly different backtracking players for each size - the bt_small

and btsh_s are used in matches with small deck and bt_large and btsh_l are
their counterparts in large deck matches. Backtracking players with the btsh prefix
use my_shuffle heuristic, the other variants use the smallest_tuple heuristic. Each
player has a different search depth limit, because we tried to even out the search times
by adjusting the search depth limit. bt_small has a limit 13, btsh_s has a limit of
9, bt_large has a limit of 9 and btsh_s has a limit of 7.

We have four variants of MCTS for each size - vanilla, expl_s, heur_s and
heur_s32 are used in matches with small deck and mcts_va-nilla, mcts_expl_l,

heur_l and heur_l32 are compared in matches with large deck.

The vanilla variant has the same settings for both sizes, as we used it as a starting
point, when we were optimising the parameters. Then each variant should represent
further optimised settings from the previous chapter. The only two variants that use 32
iterations are heur_s32 and heur_l32, as we wanted to see how much we achieved by
tuning MCTS with this lower number of iterations. We decided not to use any variants
with Beam Search, because this improvement did not improve the performance.

For the sake of clarity, we decided to list the parameter values of each MCTS variant
in the following Table 5.1.

29

iterations width limit heuristic expl_const

VANILLA 243 100000000 100000000 my_shuffle 2.0

EXPL_S 243 100000000 100000000 my_shuffle 0.4

EXPL_L 243 100000000 100000000 my_shuffle 0.571429

HEUR_S32 32 100000000 100000000 smallest_tuple 0.4

HEUR_S 243 100000000 100000000 smallest_tuple 0.4

HEUR_L32 32 100000000 100000000 smallest_tuple 0.285714

HEUR_L 243 100000000 100000000 smallest_tuple 0.142857

Table 5.1: Overview of MCTS variants

Small deck

We simulated 400 matches for each pair of players and recorded the results in table 5.2.
Each row represents one player/algorithm participating in the tournament. The values
represent the win rate of the player/algorithm in the row against the player/algorithm
in the column (e.g. if in the row annoying and in the column random the value
is 0.94, this means that annoying won 94% of the matches against random). The
diagonal of the table (values where the row and column names are the same) represents
the performance of each player/algorithm against themselves, resulting in ” - ” values
since it doesn’t make sense to compare a player/algorithm against itself.

name A
N

N
O

Y
IN

G

B
IG

G
E

ST

B
T

_
SM

A
L
L

B
T

SH
_

S

E
X

P
L
_

S

H
E
U

R
_

S

H
E
U

R
_

S
32

V
A

N
IL

L
A

R
A

N
D

O
M

SM
A

L
L
E

ST

m
ea

n

ANNOYING - 0.70 0.44 0.58 0.18 0.15 0.37 0.22 0.94 0.55 0.46

BIGGEST 0.30 - 0.35 0.53 0.04 0.03 0.12 0.04 0.86 0.40 0.30

BT_SMALL 0.56 0.65 - 0.64 0.32 0.37 0.54 0.32 0.88 0.66 0.55

BTSH_S 0.42 0.47 0.36 - 0.22 0.19 0.36 0.27 0.72 0.41 0.38

EXPL_S 0.82 0.96 0.68 0.78 - 0.40 0.66 0.59 0.98 0.80 0.74

HEUR_S 0.85 0.97 0.63 0.81 0.60 - 0.78 0.60 0.99 0.84 0.78

HEUR_S32 0.63 0.88 0.46 0.64 0.34 0.22 - 0.30 0.96 0.65 0.56

VANILLA 0.78 0.96 0.68 0.73 0.41 0.40 0.70 - 0.99 0.77 0.71

RANDOM 0.06 0.14 0.12 0.28 0.02 0.01 0.04 0.01 - 0.11 0.09

SMALLEST 0.45 0.60 0.34 0.59 0.20 0.16 0.35 0.23 0.89 - 0.42

Table 5.2: Win rates in matches with small deck

30

If we were to award one point for each win rate above 50%, we would get the
following leaderboard:

Position Name Points

1 HEUR_S 9

2 EXPL_S 8

3 VANILLA 7

4 BT_SMALL 6

5 HEUR_S32 5

6 ANNOYING 4

7 SMALLEST 3

8 BIGGEST 2

9 BTSH_S 1

10 RANDOM 0

We can see that the best variant was heur_s, as we expected, as it was the best
tuned variant. What is surprising, however, is the low ranking of btsh_s, which came
second to last. The only MCTS variant with 32 iterations - heur_s32 - managed to
win 5 matches, enough for 5th place. It did not manage to beat any other MCTS
variant, nor the backtracking player bt_small.

If we compare the means, we get slightly different order - heur_s32 and bt_small

swap positions. The heur_s32 has an mean win rate of 0.56, which puts it just ahead
of bt_small, which has a mean win rate of 0.55. These two players are in fact very
close to each other. In their duel, bt_small wins only 54% of the matches. However,
this is quite a disappointing result as we achieved the same win rate in Section 5.2 for
the baseline MCTS variant with 32 iterations.

Similarly, btsh_s and biggest swap places when comparing means. This brings
us to the comparison of the backtracking players. As can be seen in table 5.3, the
shuffle player uses more time on average, but its mean win rate is much worse than
that of the smallest_tuple variant. In head-to-head matches, the shuffle variant won
only 36% of the matches, while spending on average 1.26s per move, which is 37% more
than the smallest_tuple variant.

It is also worth noting that although heur_s managed to beat all opponents (i.e.
win more than 50% of matches against them), including other MCTS variants, it did
not have the best win rate against bt_small player. Both vanilla and expl_s won
68% of the matches, while heur_s won only 63%.

Regarding the time needed to calculate the next move, the vanilla variant takes the
most time of all variants, the second is expl_s with slightly less time, followed by
heur_s which is 38% more efficient than vanilla, and finally the fastest variant is
heur_s32 as it needs only 32 iterations.

31

name A
N

N
O

Y
IN

G

B
IG

G
E

ST

B
T

_
SM

A
L
L

B
T

SH
_

S

E
X

P
L
_

S

H
E
U

R
_

S

H
E
U

R
_

S
32

V
A

N
IL

L
A

R
A

N
D

O
M

SM
A

L
L
E

ST

m
ea

n

ANNOYING - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BIGGEST 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BT_SMALL 0.73 0.73 - 0.92 0.66 0.74 0.68 0.77 0.89 0.83 0.77

BTSH_S 1.26 0.96 1.26 - 1.11 1.25 1.15 1.18 1.10 1.37 1.18

EXPL_S 0.76 0.73 0.70 0.74 - 0.73 0.72 0.66 0.82 0.84 0.74

HEUR_S 0.53 0.53 0.54 0.56 0.49 - 0.51 0.48 0.62 0.58 0.54

HEUR_S32 0.13 0.13 0.12 0.12 0.13 0.12 - 0.13 0.13 0.14 0.13

VANILLA 0.87 0.89 0.80 0.88 0.80 0.81 0.83 - 0.95 0.97 0.87

RANDOM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00

SMALLEST 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00

Table 5.3: Average time per move in matches with small deck (in seconds)

The MCTS variants with 243 iterations are very close to bt_small in terms of
time. bt_small is on average faster than the vanilla variant, but slower than the
other two variants.

A negligible amount of time, rounded to zero, is used by random, biggest, smal-

lest and annoying.

Large deck

In the large deck tournament we played 100 matches for each pair of algorithms and
we recorded the results in table 5.4. In the large deck matches we see two interesting
trends.

Firstly, backtracking players perform much worse compared to MCTS variants and
simple heuristic players (e.g. annoying). The most likely explanation is that lowering
their search depth limit made them less effective. However, it was necessary to keep
their time within practical limits. It should be noted, however, that we did not manage
to balance this as well as we did balance the small deck matches. The reason for this
imbalance is that we wanted to use same iteration count for both small and large deck
games. On average, vanilla spent 2.3 times more time per move than bt_large.
In comparison, vanilla takes on average only 1.13 times more time per move than
bt_small (in small deck matches). The average time per move for each algorithm is
recorded in table 5.5.

Secondly, the MCTS variants perform better overall against backtracking players

32

name A
N

N
O

Y
IN

G

B
IG

G
E

ST

B
T

_
L
A

R
G

E

B
T

SH
_

L

E
X

P
L
_

L

H
E
U

R
_

L

H
E
U

R
_

L
32

V
A

N
IL

L
A

R
A

N
D

O
M

SM
A

L
L
E

ST

m
ea

n

ANNOYING - 0.71 0.50 0.76 0.06 0.03 0.15 0.14 0.97 0.59 0.43

BIGGEST 0.29 - 0.45 0.71 0.00 0.00 0.03 0.01 0.80 0.38 0.30

BT_LARGE 0.50 0.55 - 0.72 0.25 0.26 0.31 0.32 0.86 0.60 0.49

BTSH_L 0.24 0.29 0.28 - 0.14 0.14 0.21 0.13 0.57 0.26 0.25

EXPL_L 0.94 1.00 0.75 0.86 - 0.40 0.75 0.64 0.99 0.83 0.80

HEUR_L 0.97 1.00 0.74 0.86 0.60 - 0.86 0.66 0.97 0.95 0.85

HEUR_L32 0.85 0.97 0.69 0.79 0.25 0.14 - 0.36 0.94 0.84 0.65

VANILLA 0.86 0.99 0.68 0.87 0.36 0.34 0.64 - 0.99 0.80 0.73

RANDOM 0.03 0.20 0.14 0.43 0.01 0.03 0.06 0.01 - 0.07 0.11

SMALLEST 0.41 0.62 0.40 0.74 0.17 0.05 0.16 0.20 0.93 - 0.41

r

Table 5.4: Win rates in matches with large deck

as well as simple heuristic players. We think that the main reason for the better
performance against backtracking players is the imbalance in time spent (compared
to the small deck tournament). We also think that the larger game gives the better
algorithm a greater advantage, which explains the improvement in performance against
simple heuristic players.

If we were to award one point for each win rate above 50%, as in the small deck
matches, we would get the following leaderboard:

Position Name Points

1 HEUR_L 9

2 EXPL_L 8

3 VANILLA 7

4 HEUR_L32 6

5 BT_LARGE 4

ANNOYING 4

7 SMALLEST 3

8 BIGGEST 2

9 BTSH_L 1

10 RANDOM 0

The leaderboard is basically the same as in the small deck matches, except bt_large

goes backwards. While bt_small managed to place 4th, bt_large was addition-

33

name A
N

N
O

Y
IN

G

B
IG

G
E

ST

B
T

_
L
A

R
G

E

B
T

SH
_

L

E
X

P
L
_

L

H
E
U

R
_

L

H
E
U

R
_

L
32

V
A

N
IL

L
A

R
A

N
D

O
M

SM
A

L
L
E

ST

m
ea

n

ANNOYING - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BIGGEST 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BT_LARGE 6.08 7.86 - 7.51 6.80 6.61 6.69 6.51 7.59 6.47 6.90

BTSH_L 8.16 7.92 6.23 - 5.95 6.49 7.20 6.52 6.09 6.58 6.79

EXPL_L 13.76 15.14 15.00 16.10 - 12.42 13.40 13.89 16.11 15.98 14.64

HEUR_L 10.20 10.94 11.24 12.39 9.49 - 10.18 10.34 13.73 11.67 11.13

HEUR_L32 1.95 2.08 1.97 2.15 1.86 1.94 - 1.84 2.11 1.99 1.99

VANILLA 15.49 15.88 15.52 16.65 14.37 14.11 14.27 - 17.06 17.58 15.66

RANDOM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00

SMALLEST 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00

Table 5.5: Average time per move in matches with large deck (in seconds)

ally beaten by heur_l32 and placed 5th next to annoying. However, bt_large

beats annoying when comparing mean win rates. bt_large has a mean win rate
of 0.49 and annoying has a mean win rate of 0.43. Unlike in the small deck matches,
heur_l32 is quite an improvement over the baseline MCTS with 32 iterations from
subsection 5.2.In that subsection, the MCTS variant only managed to win 51% of the
matches, whereas the heur_l32 variant wins 69% of the matches against the same
opponent - bt_large.

In the battle of the backtracking players it is clear that the smallest_tuple heuristic
helps bt_large a lot. While btsh_l could only beat random and had an average
win rate of only 0.25, bt_large could also beat biggest, smallest and came close
to beating annoying. In their duel, bt_large won 72% of the matches, using on
average an extra second per move. In conclusion, backtracking players struggle with
the more possibilities offered by the larger deck, but their performance in head-to-head
matches is only slightly in favour of the smallest_tuple variant compared to small deck.

Similar to the small deck tournament, heur_l beats all other players, but does
not achieve the best score against all of them. The gap to the best score is in the
range of 1% to 3%, with the largest gap being against random, which is probably
just a matter of chance. This suggests that we managed to tune heur_l better (i.e.
less specifically) than heur_s, as heur_s had a 5% deficit to best win rate against
bt_small in small deck matches.

The comparison of the times of the different MCTS variants is basically the same

34

as in the small deck matches. The vanilla variant takes the most time of all variants,
second is expl_l, followed by heur_l which is 29% more efficient, and finally the
fastest variant is heur_l32 because it takes only 32 iterations and only 13% of the
time of vanilla.

35

36

Chapter 6

Evolution of a play

In this chapter we describe and analyse how the MC tree evolves during a game. First
we define and explain the metrics we used, and then we present the results.

6.1 Metrics

We wanted to better understand how the algorithm works. To gain more insight into
how it works, we thought it might be useful to observe and describe the shape, balance
and other properties of the MC tree. We let the algorithm find the next move in a
given computational budget, and then we analyse the MC tree built during the search
process. We call this type of data a tree metric.

Definition 16. Maximum depth is a tree metric that records the length of the longest
path from the root to any leaf in the MC tree.

Definition 17. Average depth is a tree metric that records the average length of all
paths from root to leaves in the MC tree.

Definition 18. Maximum degree is a tree metric that records the maximum degree
(or the maximum number of children of a node) in the MC tree.

Definition 19. Average degree is a tree metric, that records the average degree in the
MC tree.

When the MCTS algorithm runs, it records in each node how many playouts have
been simulated in the subtree of each node and how many of them have been won by
the player who was on the move in the parent of the given node. If we record the
number of visits in the root after each move, we get the following tree metric.

Definition 20. Root visits is a tree metric that records how many playouts have been
simulated in the MC tree, i.e. how many iterations the algorithm has run.

37

Definition 21. Size is a tree metric that measures the size of the MC tree, i.e. the
number of nodes in it.

Definition 22. Number of terminal leaf nodes is a tree metric that records how many
leaves in the MC tree are terminal, i.e. leaves that store terminal game state and
therefore cannot have children in the future.

We also wanted to analyse and describe the balance of the MC tree. In our work
we use imbalance indices taken from the paper on tree balance indices [7]. However,
these indices are not defined for trees that have nodes with only one child, which
naturally occurs in the MC tree when there is only one move available. To overcome
this discrepancy, we decided to ignore such nodes in the MC tree. This is equivalent to
’smoothing’ paths in the MC tree that have all inner vertices with only one child, i.e.
the child c of a node n with parent p is hung directly under the parent p if n has only
one child c and so on recursively, or if root has only one child it is replaced by its child.
We believe that calculating the value of the index for this altered tree gives us a good
insight into the balance of the tree, as the MCTS algorithm does not need to branch
when there is only one move available and therefore does not make any interesting
changes to the shape of the MC tree.

Definition 23. (Imbalance index). A tree shape statistic t is called an imbalance index
if and only if:

1. the caterpillar tree with n leaves is the unique tree maximizing t on any tree with
n leaves for all n ≥ 1

2. the fully balanced tree (a rooted binary tree with n leaves in which all inner
vertices are balanced) is the unique tree minimizing t on binary trees with n

leaves for all n = 2h with h ∈ N ≥ 0.

Definition 24. Sackin index is sum of the depths of the leaves of MC tree. Sackin
index is an imbalance index.

Definition 25. Cophenetic index is sum of the cophenetic values of all different pairs
of leaves of MC tree. It adds up the depths of the lowest common ancestor of every
pair of different leaves. Cophenetic index is an imbalance index.

Let t be a balance or imbalance index, let T be a tree with n leaves, let min(t, n) be
the minimum value of index t on any tree with n leaves and max(t, n) the maximum
value. Then we define

t̃(T) =
t(T)−min(t, n)

max(t, n)−min(t, n)

and we call t̃ normalised t.

38

As the MC trees are not the same size, but we wanted to compare them, we decided
to normalise them using the usual affine transformation, as suggested in the paper on
tree balance indices. We therefore use the normalised Sackin index and the normalised
Cophenetic index, but we will simply refer to them as the Sackin or Cophenetic index.

Definition 26. Win expectation is a tree metric that records the ratio of won to total
playouts and should therefore describe how likely the MCTS algorithm is to win.

6.2 Results

We played 100 matches with a large deck of the three variants - vanilla, expl_l,
heur - against another vanilla. Because in this chapter there is no need to differ-
entiate between small and large variant (e.g heur_l vs heur_s) we will call them
simply expl and heur. We chose these variants because they represent different steps
in the tuning process. We decided not to include variants with 32 iterations, as the
MC tree of such variants is small and often produces very spiky tree metrics.

Due to the different lengths of the matches, we decided to normalise the data by
interpolating it to an average length (which was 13.13) rounded up. This allows us to
plot and compare the tree metrics together between matches of different lengths.

The first metric we describe is the maximum depth. We have plotted the maximum
depths from each variant in Figure 6.1. In each plot there are lines for each match and
the median with the bold red line. The blue dashed cross indicates the maximum of
the median. We observe that all variants reach the highest value of maximum depth
in the middle of the match. The vanilla variant has the smallest median with a peak
just below 10. The expl variant has a higher median of maximum depth - slightly
above 10 - reflecting the lower value of the exploration constant. The move-pruning
heuristic of heur allows it to search the game tree much deeper, resulting in a peak
median of over 15. We can also see that the maximum depth of the MC tree of heur

has higher extrema and reaches peaks earlier than the other two.

The plots of average depth have a very similar shape to maximum depth, so we
decided not to include them. The maximum of medians of average depth for vanilla

is 5.85 and occurs after the 9th move, the maximum of medians for heur is 6.81 and
the maximum of medians for heur is 8.95 and occurs after the 7th move.

Next we compare the metric maximum degree of the MC tree. The results are
plotted in Figure 6.2, where the bold red line is the median and the blue dashed cross
marks the median of the maximum degree. All plots show a downward trend. While the
plots of vanilla and expl are very similar, the plot of heur is different in that it has
no match with a maximum degree above 15 and the median also has a slightly smaller

39

(a) VANILLA

(b) EXPL_L

(c) HEUR

Figure 6.1: Maximum depth

40

value. It seems that the move-pruning heuristic is more effective at the beginning of
the match, as the slope is less steep for heur than for the other two.

The situation with the average degree is similar to that with the maximum degree
and is shown in Figure 6.3. The only interesting thing is the flat part or even the
upward trend of the average degree a few moves before the end, especially visible in
the plot of heur, but also for the other two. Our hypothesis is that this behaviour
occurs because the losing player has to draw cards, which increases the number of
moves available to him and thus the average degree of the MC tree.

The root visits tree metric is interesting because we naturally expect the root visits
to be the number of iterations we set for each variant - in our case 243 - or be very
slightly above that, but as part of the MC tree is often recycled this is not always
the case as can be seen in Figure 6.4. All variants start at 243, but expl and heur

have an upward sloping median. So the slopes are different and even more different
are the high extrema. After a few moves, the line of medians of the vanilla variant
is flat and its maximum is 273.73. The expl variant has a plot with an upward slope
and a higher maximum of medians at 386.19. Finally, the heur variant has a similar
upward slope and its maximum median is 425.5. It is also interesting to look at specific
matches. While vanilla has no match with more than 1000 root visits, expl has three
and heur several. It is very interesting that such an event occurs at all, because the
algorithm is only allowed to make 243 iterations per move, and having so many root
visits means that it must have acquired them in previous moves. If all the playouts
were simulated under a node (which becomes a root in the future), it would take more
than 6 matches to get 1600 visits in such a node. We think that the algorithm gains
an additional advantage as it builds up more root visits. It is also interesting that
expl is closer to heur in root visits, but closer to vanilla in maximum depth. We
therefore think that it becomes progressively more difficult to recycle more of the tree
as it becomes necessary to correctly guess the future moves.

Unlike the root visits, the size of the MCTS tree does not continue to grow through-
out the match, as shown in Figure 6.5. Our explanation is as follows: As the match
progresses towards the end, the paths in the MCTS tree reach terminal states and the
tree stops growing. It seems that this happens earlier for the heur variant and for
expl.

To confirm the hypothesis from the previous paragraph, we analysed the number
of terminal leaf nodes. We plotted the medians of the number of terminal leaves in
Figure 6.6. We decided not to plot all the matches as we did with the previous metrics
because the medians became too flat (the number of terminal leaves goes up to 90).
heur has the most terminal leaves in the beginning and middle of the match out of all
variants. At the end of the matches, expl overtakes heur in the number of terminal
leaves. Except for vanilla, it seems that the decrease in size starts a bit before the

41

(a) VANILLA

(b) EXPL_L

(c) HEUR

Figure 6.2: Maximum degree

42

(a) VANILLA

(b) EXPL_L

(c) HEUR

Figure 6.3: Average degree

43

(a) VANILLA

(b) EXPL_L

(c) HEUR

Figure 6.4: Root visits

44

(a) VANILLA

(b) EXPL_L

(c) HEUR

Figure 6.5: Tree size

45

Figure 6.6: Number of terminal leaves

number of terminal leaves peaks. Even though the number of terminal leaves does not
keep increasing as the size decreases, we still think that our hypothesis - that the size
decreases as the match reaches the last few moves because the game tree is smaller -
holds, but it also affects the number of terminal leaves

The MC tree is usually very well balanced, as can be seen in Figure 6.7 and Figure
6.8 which record Sackin and Cophenetic indices. Both indices are normalised, so their
values range from 0 to 1, where 0 means a perfectly balanced tree and 1 means a
completely imbalanced one. We decided to plot only medians for the Cophenetic index,
as opposed to plotting all matches for the Sackin index, because the values are mostly
very small. For both indices the imbalance increases towards the end of the match.
However, it is interesting to note that the imbalance of heur actually decreases in the
last move. We can also observe that heur (and to some extent expl) has a higher
imbalance throughout the match until the final dip according to the Sackin index.
But if we zoom in on the first part of the plot of Cophenetic index, this behaviour is
not replicated . The final observation is that the variance for both indices increases
towards the end. We conclude that it is not obvious whether the move-pruning heuristic
increases or decreases the balance of the MC tree and that the tree is relatively well
balanced.

The last tree metric that we monitored is the win expectancy, which can be seen
in Figure 6.9a. We can see that the win expectancy starts at around 0.5 and then has
either an upward trajectory, suggesting that the algorithm is winning, or a downward
trajectory, suggesting that the algorithm is losing. To highlight this behaviour, we also
present the plot 6.9b where we have replaced values below 10 percentile or above 90
with their interpolation.

But what we really wanted to analyse, and unfortunately it is not quite clear from
the plots shown, is whether the move-pruning heuristic causes surprising or unexpected
losses - losses where the algorithm has a high win expectation but ends up losing. We

46

(a) VANILLA

(b) EXPL_L

(c) HEUR

Figure 6.7: Sackin index

47

(a) Entire length

(b) First two halves

Figure 6.8: Cophenetic index

48

1/2 2/3 3/4

name losses surprising ratio surprising ratio surprising ratio

VANILLA 50 1 2% 3 6% 4 8%

EXPL 31 1 3.23% 0 - 2 6.45%

HEUR 29 4 13.79% 8 27.59% 5 17.24%

Table 6.1: Comparison of surprising losses

therefore analysed how many matches had a high win expectancy (above 0.8), but
the algorithm ended up losing. We measured the win expectancy at half, two-thirds
and three-quarters of the match. To be able to compare the variants with different
numbers of wins and losses, we divided the number of surprising losses by all losses
and recorded the data in table 6.1. It is clearly visible that the heur variant has the
highest proportion of surprising losses, especially when we measure the win expectancy
in two thirds of the match. It is as high as 27.59% of all losses. On the other hand,
when we measure in two thirds and three quarters, expl has the lowest number of
surprising losses and it has only a slightly higher ratio than vanilla when we measure
in half the match.

We also counted the number of surprising wins, but they are rather rare - no more
than one in 100 matches - so we do not present them in any table.

We conclude that a move-pruning heuristic can increase the number of surprising
losses. This is the case in our example. However, in the case of the smallest_tuple
heuristic in the Pharaoh game, the total number of surprising losses is still low and
therefore worth using.

49

(a) VANILLA

(b) VANILLA - filtered data

(c) HEUR

Figure 6.9: Win expectancy

50

Conclusions and future work

This work focused on exploring and analysing the application of the Monte Carlo Tree
Search (MCTS) algorithm in the game Pharaoh.

We started by including a formal definition of a card game, followed by a specific
definition of the Pharaoh game. By establishing a clear understanding of the char-
acteristics and rules of card games in general, we were able to delve into the unique
aspects and mechanics of the Pharaoh game.

The formal definition of a card game of Pharaoh served as a foundation which
ensured a clear understanding of the game’s mechanics. This definition encompassed
essential elements such as the deck of cards, rules for dealing and playing cards, win
conditions, and any specific mechanics or variations relevant to card games.

Afterwards we provided a description of the MCTS (Monte Carlo Tree Search)
algorithm and its variants, namely heuristic move-pruning and beam search.

The MCTS algorithm, known for its ability to make informed decisions in uncertain
and complex environments, was thoroughly explained in this work. Its underlying prin-
ciples, such as selection, expansion, simulation, and backpropagation, were elaborated
upon to provide a clear understanding of its mechanics and functionality. Additionally,
the advantages and limitations of the MCTS algorithm were discussed, highlighting its
effectiveness in situations where extensive exploration and exploitation are required.

Furthermore, two specific variants of the MCTS algorithm were explored: heuristic
move-pruning and beam search. Heuristic move-pruning involves the use of domain-
specific heuristics to guide the tree traversal process, aiming to prioritize more prom-
ising moves and reduce computational overhead. On the other hand, beam search
focuses on restricting the number of considered paths during simulation, allowing for
a more focused exploration and potentially improving the efficiency of the MCTS al-
gorithm.

Furthermore, an important aspect of this work was the optimization of the al-
gorithm’s parameters. The performance of the MCTS algorithm and its variants heav-
ily relies on carefully selecting and fine-tuning these parameters to achieve optimal
results.

Through systematic experimentation and analysis, various parameter configurations
were tested and evaluated. Metrics such as win rates or computational efficiency were

51

considered to assess the effectiveness of different parameter settings. By conducting
rigorous experiments and analysing the obtained results, the optimal parameter values
for the MCTS algorithm and its variants in the context of the game of Pharaoh were
determined.

Throughout the research, we conducted a tournament in which different variants
of the MCTS algorithm, as well as other algorithms (for example, backtracking or
simple heuristic players inspired by strategies commonly used by human players but
not studied in other research), played the game Pharaoh. The objective was to compare
the results to assess the performance of these algorithms in the gaming environment.
Additionally, a significant aspect of this work involved analyzing the development of
the tree constructed by the MCTS algorithm.

Based on the findings, we observed that the MCTS algorithm demonstrates signi-
ficant potential in solving games like Pharaoh and achieves superior results compared
to other algorithms. The research provided valuable insights into the application of
MCTS in the game Pharaoh, opening up new perspectives for further development in
this field.

Throughout the project, we utilized various techniques and tools, including data
processing, visualization, and analysis. The use of Python libraries such as NumPy,
Pandas, and Matplotlib facilitated the efficient handling and visualization of the data.

There are a number of areas that need to be explored further. First, there is a need
for a deeper understanding of why our experiments with Beam Search have not yielded
significant improvements. An examination of the specific challenges and limitations of
beam search in the context of the game Pharaoh would be a valuable source of insight.

Secondly, it would be beneficial to explore the use of comprehensive backtracking
techniques to determine the theoretical maximum win rate achievable in the game. This
analysis could serve as a benchmark for evaluating the performance of the implemented
algorithms.

Thirdly, extending the study to evaluate the performance of the algorithm in mul-
tiplayer games would be an exciting direction for future research. Investigating the
dynamics, strategies and potential challenges that arise in games with more than two
players could provide valuable insights. Furthermore, broadening the scope of the study
by implementing and evaluating the algorithm in other card games would provide a
broader perspective on its effectiveness. We have considered games such as President,
Sedma or Pharaoh with some modifications of the rules, but have not explored them
for various reasons (e.g. because there are many variants of the rules, some of them
are difficult to implement, many are not suitable for analysis due to limited computa-
tional resources, because backtracking is too slow, etc.). Comparing its performance
in different game domains would provide valuable insights into the versatility and gen-

52

eralisability of the algorithm.
By addressing these areas in future work, we can improve our understanding of the

algorithm’s performance, explore its applicability in different game scenarios, and pave
the way for advances in the field of game playing algorithms.

53

54

Bibliography

[1] Introduction to Monte Carlo Tree Search: The Game-Changing Algorithm behind
DeepMind’s AlphaGo. https://www.analyticsvidhya.com/blog/2019/01/

monte-carlo-tree-search-introduction-algorithm-deepmind-alphago/.
Accessed: 2023-03-13. 4.4

[2] Monte Carlo Tree Search for tic-tac-toe game in java. https://www.baeldung.

com/java-monte-carlo-tree-search. Accessed: 2023-03-13. 4.4

[3] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47(2):235–256, May 2002. 2.2

[4] Aijun Bai, Feng Wu, and Xiaoping Chen. Bayesian mixture modelling and in-
ference based thompson sampling in monte-carlo tree search. In C.J. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems, volume 26. Curran Associates, Inc.,
2013. 2.2

[5] Hendrik Baier and Mark Winands. Beam monte-carlo tree search. pages 227–233,
09 2012. 2.3

[6] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I
Cowling, Philipp Rohlfshagen, Steve Tavener, Diego Perez, Spyridon Samothra-
kis, and Simon Colton. A survey of monte carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in Games, 4(1):1–43, 2012.
5.2

[7] Mareike Fischer, Lina Herbst, Sophie Kersting, Luise Kühn, and Kristina Wicke.
Tree balance indices: a comprehensive survey, 2021. 6.1

[8] Sylvain Gelly and Yizao Wang. Exploration exploitation in Go: UCT for Monte-
Carlo Go. In NIPS: Neural Information Processing Systems Conference On-line
trading of Exploration and Exploitation Workshop, Canada, December 2006. (doc-
ument), 2.2

55

https://www.analyticsvidhya.com/blog/2019/01/monte-carlo-tree-search-introduction-algorithm-deepmind-alphago/
https://www.analyticsvidhya.com/blog/2019/01/monte-carlo-tree-search-introduction-algorithm-deepmind-alphago/
https://www.baeldung.com/java-monte-carlo-tree-search
https://www.baeldung.com/java-monte-carlo-tree-search

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org. 5.2

[10] Akihiro Kishimoto and Jonathan Schaeffer. Distributed game-tree search using
transposition table driven work scheduling. pages 323–330, 05 2002. 2.3

[11] Kocsis L and Szepesvári C. Bandit based monte carlo planning. In Proceedings
of the 17th European conference on machine learning, page 282–293. ECML’06.
Springer, Berlin, 2006. 2.2

[12] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1998. 5.2

[13] Sephton N, Cowling PI, Powley E, and Slaven NH. Heuristic move pruning in
monte carlo tree search for the strategic card game lords of war. In IEEE conference
on computational intelligence and games, pages 1–7, 2014. 2.3

[14] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando
de Freitas. Taking the human out of the loop: A review of bayesian optimiza-
tion. Proceedings of the IEEE, 104(1):148–175, 2016. 5.2

[15] David Silver, Richard S. Sutton, and Martin Müller. Temporal-difference search
in computer go. Machine Learning, 87(2):183–219, May 2012. (document)

56

http://www.deeplearningbook.org

