
Comenius University in Bratislava

Faculty of mathematics, physics and informatics

Comovement between cryptocurrencies
Bachelor thesis

2019
Michal Porubský

ii

Comenius University in Bratislava

Faculty of mathematics, physics and informatics

Comovement between cryptocurrencies
Bachelor thesis

Study programme: Computer science
Field of study: Computer science
Training work place: Department of computer science
Supervisor: RNDr. Ing. Peter Molnár PhD.

Bratislava, 2019
Michal Porubský

iv

14463702

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Michal Porubský
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Comovement between cryptocurrencies
Podobný pohyb kryptomien

Anotácia: Skúmať podobný pohyb kryptomien, odhadnúť možné dôvody a využiť túto
informáciu v implementácii obchodnej stratégie.

Vedúci: Ing. RNDr. Peter Molnár, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Dátum zadania: 08.11.2018

Dátum schválenia: 08.11.2018 doc. RNDr. Daniel Olejár, PhD.
garant študijného programu

študent vedúci práce

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Michal Porubský
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: Computer Science, Informatics
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Comovement between cryptocurrencies

Annotation: Searching for patterns of comovement between cryptocurrencies, assessing
possible reasons behind it and implementing trading strategy based on this
comovement.

Supervisor: Ing. RNDr. Peter Molnár, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 08.11.2018

Approved: 08.11.2018 doc. RNDr. Daniel Olejár, PhD.
Guarantor of Study Programme

Student Supervisor

iii

iv

Abstrakt

V tomto texte sa zaoberáme štúdiom podobného pohybu medzi kryptomenami. Krypto
trh je zaujímavý tým, že je nový, nepredvídateľný a neprebádaný. V úvode sa poz-
eráme na kryptomeny ako také a vysvetľujeme si špecifiká ich trhu. Ďalej popisujeme
dostupné zdroje dát - cien kryptomien a opisujeme implementáciu aplikácie, ktorá sti-
ahne všetky ceny v čase tých kryptomien, ktoré spĺňajú naše požiadavky. Bližšie sa
pozeráme na analýzu dvojročného cenového vývinu tridsiatich deviatich kryptomien a
pomocou euklidovskej vzdialenosti a kointegrácie určujeme dvojice kryptomien, ktoré
preukázali spoločný pohyb. Využívajúc spomínané informácie navrhneme a implemen-
tujeme obchodnú stratégiu neutrálnu voči vývoju trhu a predostrieme výsledky, ktoré
naša stratégia vynesie. Pozrieme sa aj na obmeny obchodnej stratégie a ich výsledky.
Na záver si ukážeme, ako sa naša obchodná stratégia správa na pätnásť minútových a
jednodňových dátach.

Kľúčové slová: spoločný pohyb, kryptomeny, párové obchodovanie, vysokofrekvenčné
dáta

v

Abstract

In this text we study comovement between cryptocurrencies, a new and unusually
volatile market. We start by discussing cryptocurrencies and the nature of its market.
Then we describe the available sources of price data and implement an application that
fetches all the available data relevant to our needs. We look closer at two years of price
data of one hour frequency for thirty-nine cryptocurrencies and use euclidean distance
and cointegration algorithms for analyzing comovement between the cryptocurrencies.
Using the information about comovement pairs, we implement a market neutral trad-
ing algorithm and discuss the out-of-sample results considering modifications of the
algorithm. Lastly, we discuss how our trading algorithm performs on data of fifteen
minute and one day frequencies.

Keywords: comovement, cryptocurrencies, cointegration, pairs trading, high fre-
quency

vi

Contents

Introduction 1

1 Cryptocurrencies 3
1.1 Definition . 3
1.2 Purpose . 3
1.3 Volatility . 5

1.3.1 The price of an asset . 5
1.3.2 Implications . 5

2 Comovement 7
2.1 Strategies . 8

2.1.1 The Distance approach . 8
2.1.2 The Cointegration approach . 8

3 Data 9
3.1 Data we need . 9
3.2 Price data . 9

3.2.1 Fiat tradable cryptocurrencies 10
3.2.2 Cryptocurrency tradable cryptocurrencies 10

3.3 Source of data . 10
3.3.1 Amount of data . 11
3.3.2 Frequency . 11
3.3.3 Available API . 11

4 Data crawler 13
4.1 Requirements . 13
4.2 Stack, architecture . 13
4.3 Implementation . 14
4.4 Problems . 15

5 Analysis 19
5.1 Requirements . 19

vii

viii CONTENTS

5.1.1 Stack . 20
5.2 Data . 20

5.2.1 Gaps . 22
5.2.2 Normalizing prices . 23

5.3 Comovement . 26
5.3.1 Distance approach . 26
5.3.2 Cointegration approach . 26

6 Trading 29
6.1 Methodology . 29

6.1.1 Pairs trading . 30
6.1.2 Margin trading . 30
6.1.3 When to buy . 31

6.2 Data split . 31
6.3 Algorithm . 31

7 Results and discussion 35
7.1 Algorithm modifications . 35
7.2 Change of frequency . 37

Conclusion 41

List of Figures

5.1 Raw fetched data . 21
5.2 All data with dropped outliers . 22
5.3 Filled in gaps in the data . 24
5.4 All data normalized to range between 1 and 2, with dropped outliers . 25
5.5 Sample distance correlated pairs . 26
5.6 Sample cointegrated pairs . 26

6.1 Sample trading of two comovement pairs 33

7.1 Influence of the number of chunks and max. number of pairs to trade
on profit . 36

7.2 Influence of the thresholds used for trading on profit 37
7.3 Influence of the number of chunks and max. number of pairs to trade

on profit considering 15min data frequency 38
7.4 Influence of the number of chunks and max. number of pairs to trade

on profit considering 1 day data frequency 38
7.5 Influence of the thresholds used for trading on profit considering 15min

data frequency . 39
7.6 Influence of the thresholds used for trading on profit considering 1 day

data frequency . 39

ix

x LIST OF FIGURES

List of Tables

5.1 Statistics of no trade in our data . 23

xi

xii LIST OF TABLES

Introduction

The aim of this study is to study comovement between cryptocurrencies, analyze it
and implement a trading strategy based on the findings. Comovement relationship
between the assets of various markets is well studied. Let us mention comovement in
the commodity market [29], brent crude futures market [23] and international stock
markets [27].

There is not enough research considering the crypto market, though. In [25], the
author discussed the volatility comovement of Bitcoin relative to Ether, the two major
cryptocurrencies. However, a more generic approach considering bigger number of
cryptocurrencies with a practical implication is still missing.

Since cryptocurrencies are becoming increasingly popular and this market is un-
usual and new, studying comovement in this market is an interesting field for research.
Therefore we chose to look deeper into it and implement a trading strategy that uses
the information.

We start by introducing cryptocurrencies in chapter 1. We discuss what cryptocur-
rencies actually are, what their purpose is, why they are so important for the future
world, what determines their price and why their market is so volatile.

In chapter 2 we define what we understand by comovement of cryptocurrencies,
show that it’s not just similar movement, but rather any relationship between the
price development. We then review some of the well known statistical methods for
studying comovement.

In the next chapter, 3, we look into details on what data we base our study on. We
review the factors of choosing the right data source, remove a slight market trend and
choose a source of data for data used in this text.

In the following chapter 4, we introduce our solution for fetching the data, given
certain constants such as price frequency and minimal wanted data length. The ac-
tual implementation is included on the DVD included with this thesis. We discuss
requirements we expect from the application, the stack we chose to help with that,
architecture and exact implementation. We also describe problems we faced together
with their solutions.

1

2 Introduction

In chapter 5 we describe stack we used to analyse the fetched data and look deep into
it. We preprocess the data, explain how and why and discuss the actual implementation
of comovement tests suggested in chapter 2. We also include many examples and
graphs. Runnable code of the analysis described is located on the DVD included with
this text.

Finally in chapter 6 we go step by step on how we built our trading algorithm
that uses the comovement relationship of cryptocurrency prices. We discuss possible
approaches, explain what advantages they include and choose a trading strategy that
is market neutral and bets only on the actual comovement relationship and nothing
else. We also explain what parameters are customizable and prepare the ground for
the finale chapter.

In chapter 7, we reveal our findings and results we had experimenting with different
input parameters into the trading algorithm, with different data frequency and more.
We also try to guess possible reasons behind such results.

Chapter 1

Cryptocurrencies

In this chapter we cover basic information about cryptocurrencies and the specifics
that make them interesting to analyze.

1.1 Definition

According to [21]:

A cryptocurrency is a digital or virtual currency that uses cryptography
for security. A cryptocurrency is difficult to counterfeit because of this
security feature. Many cryptocurrencies are decentralized systems based
on blockchain technology, a distributed ledger enforced by a disparate net-
work of computers. A defining feature of a cryptocurrency, and arguably
its biggest allure, is its organic nature; it is not issued by any central au-
thority, rendering it theoretically immune to government interference or
manipulation.

1.2 Purpose

There is a number of cryptocurrencies in the world (2104 as of the 2019/02/04 [4]), each
serving a different primary purpose and hence running on different technology and using
different schema for security, validation of transactions, mining of the cryptocurrency,
and other. Mining refers to the ability of exchanging computational power for a fraction
of the asset. Mining is usually crucial for the cryptocurrency network to work. For a
brief overview we offer following categorization of cryptocurrencies based on their inner
purpose:

• Alternative currency, with focus on:

– Digital money

3

4 CHAPTER 1. CRYPTOCURRENCIES

∗ Bitcoin (BTC) - The first cryptocurrency ever that introduces a dis-
tributed money system the other cryptoassets are building on top of.
Mining is done by the computation of a problem that is computation-
ally hard, even though the solution to the problem itself is not of any
value. The problem is adjusted in such a way that the speed of it being
solved is regulated and thus predetermines the increase of the flowing
cryptocurrencies in the system over time. It relies on some of the well
known mathematically hard problems.

– Privacy

∗ Monero (XMR) - In most cases, cryptocurrencies have transparent
transactions with the only problem identifying the real-world person
being behind the account. Monero uses cryptography that enables ob-
fuscating both addresses (accounts’ identification) and the amount of
money included in the transaction, thus it proves as a way more private
way for sending money [22].

∗ ZCash (ZCH) - Similar to Monero in terms of purpose, with difference
being the ability to choose what to share with others, hence theoretically
making the system a little less private as it is possible for an authority
to force you into revealing your secrets.

– International (thanks to the distributed nature) fast transactions

∗ Ripple (XRP) - Blockchain technology used as a means of banks send-
ing money fast to each other. It doesn’t offer to make your own wallet.

∗ Stellar (XLM) - Super fast sending of money across any two users. It
was once based on a system similar to Ripple, but diverged some time
ago and came with a new one.

• Distributed computing

– Ethereum (ETH) - A blockchain app platform that provides the compu-
tational power for applications developed on the network by making the
mining process designed exactly for that - mining basically means solving a
problem an app is willing to pay for. In other words, mining earns the miner
money the app provides for solving a problem the app wants to be solved.
This makes the mining process more meaningful in contrast to Bitcoin.

Since most of the coins are open source and there is usually no authority to regulate
them, there are often moments in time when developers have different opinions about
the future development and fork coins are created. Since they build on common ex-
isting codebase, it is quite a strong technical correlation and may prove in comovement
of the prices as well. For an illustration we provide some examples:

1.3. VOLATILITY 5

• Ethereum classic (ETC) - Forked from Ethereum after the hacker attack steal-
ing milions-worth of the currency from Ethereum’s website for funding start-ups.
Ethereum as we know it updated the code of its system in order to devalue the
stolen asset. Ethereum classic argued that such an intervention from the system
should not be possible and makes the currency not trusted. It was more of an
ethical question that resulted in Ethereum classic fork that did not modify the
code and kept accepting the stolen money and commonly-used Ethereum that
modified the code.

• Bitcoin cash (BCH) - Forked from Bitcoin after the majority behind Bitcoin
turned down the idea to scale the platform by modifying the size of transaction
block (group of transactions to be verified and agreed upon by the network)
resulting mostly in speed performance.

1.3 Volatility

1.3.1 The price of an asset

The most of cryptocurrencies are not backed by any money at all. It is just a system
that gives the value to itself, starting from zero. There are some exceptions, though.
For example Ethereum based cryptocurrencies buy some initial amount of Ethereum
to run on and divide the value among the new coins. The price of a cryptoasset is
relative. Cryptoasset is given its value by sentiment only. The official way to get some
of the currency is to mine the currency.

However, there is an unofficial way of getting the asset called trading on exchanges.
The idea is simple: Someone owns the asset and offers it for some money or a portion
of a different asset per unit. You agree and you two exchange your possessions, usually
for a trading fee taken by the exchange.

1.3.2 Implications

The fact that cryptocurrencies’ price is determined by sentiment of the people trading
imply that the price is highly volatile and unpredictable. It is not unusual for the prices
to increase or drop even by 10% on a daily or hourly basis. Thanks to the high means
of price deviations it proves attractive for speculative traders that aim to maximize
profit by buying and selling the asset in the right time. Thus, means of predicting the
price prove highly valuable. One of the aims of this study is to try different strategies
that can be used to predict future development of prices of a group of related assets.

6 CHAPTER 1. CRYPTOCURRENCIES

Chapter 2

Comovement

In this chapter we discuss comovement and go through some of the well known methods
for analyzing it. We then pick some of them for later use in the study and justify our
selection.

By comovement between two or more cryptocurrencies we understand any high
enough correlated or by any means similar development of the relative trading prices
of the currencies.

It is important to note that all the cryptocurrencies are correlated to some extent,
given that the crypto market is new and that it is often used as a means of investing
money. As a result, it falls victim to many panic buy and sells, so called pumpings and
fluctuations of the price on a few minute basis. Pumpings represent sudden investment
of money to a cryptocurrency with low volume. Even a little money can cause a sudden
spike of 1000%, fooling many people and trading bots looking for the best investment
pair and quickly sells the security back for a much higher price.

The knowledge of which cryptocurrencies form a firm comovement groups could
provide a trading advantage. Let’s illustrate that on an example:

Let assets A, B, C form a firm comovement group. Imagine a sudden spike
of the price of A. Since A, B and C are correlated, we believe that B and
C follow the spike. So we buy more of B and C to sell for a higher price.
Analogically, for a price drop, we sell B and C in order to re-buy for a
smaller price.

7

8 CHAPTER 2. COMOVEMENT

2.1 Strategies

2.1.1 The Distance approach

For a pair of cryptocurrencies, the Euclidean distance approach computes the sum of
squared Euclidean distances between the two corresponding normalized price series.

The Euclidean distance is the length of a straight line in the Euclidean space be-
tween the two points in time. By price series, we mean the series of price development
over time, so the Euclidean distance would be equivalent to the difference of price for a
given time point. The normalization of the prices is required in order for our analysis
to be relative to the prices of the two assets and to not overlook perfectly correlated
pairs whose prices are just far away from each other.

This method is a very simple one. It is easy to implement and advocated in many
studies performed on futures trading [26]. However, the crypto market is different. It
is not unusual for the crypto market to gain 10% and fall back in a matter of minutes.
Therefore we suppose that using this approach would not prove very profitable. For
its simplicity, however, we chose to implement this method as well in order to have
something to compare the results to.

2.1.2 The Cointegration approach

A pair of cryptocurrencies is said to be cointegrated if all of its price series are integrated
to order one and their linear combination is integrated to order zero and mostly noise.
Since it is a well-known and studied method, we won’t go into much details regarding
the method itself in this text. Rather we encourage readers keen to know more about
the statistical and mathematical background to look into [12], [26], [23] or [24].

The intuition behind is that the cryptocurrencies are cointegrated if their linear
combination tends to move around a constant. Let X1, · · · , Xn be price series of n
distinct cryptocurrencies. Let ci ∈ R, i ∈ {0, · · · , n− 1}. If they are cointegrated, the
following holds:

Y =
n−1∑
i=0

ciXi

Y is a new price series that is mostly noise. As such, it moves around its mean a lot.
This property is known as mean reverting [24]. In comparison to distance approach,
this method allows for a more complex price correlation and is not influenced by sudden
exponential spikes. Hence we suppose it may prove far more profitable.

Chapter 3

Data

In this chapter we explain what data we need, go through the available sources of it,
explain its nature and select one our study is based on.

3.1 Data we need

Our study is based on price data only. There are other factors that could possibly
say something about the comovement relationship, however, that is out of scope of this
study. We encourage other studies to take on and research more with the inclusion of
other aspects, such as:

• Actual volume of trading of the currency.

• Time of active trading on the exchange.

• Means of measure of active development behind the cryptocurrency. CryptoMiso
[5] measures that in terms of new github commits over time and shows the data
in handy graphs.

• And many more..

3.2 Price data

In 1.3 we explained what determines the value of a cryptoasset and showed that it’s
the people that trade it. However, there is one complication:

Trading is by definition exchanging some of the asset A for some of the asset B.
Let A be a cryptocurrency we want to get the price for. It is tradable to B. B can be
either fiat currency (any government accepted standard currency, for example EUR or
USD) or another cryptocurrency. We can obtain just the price of A relative to the
price of B from exchanges. Let’s dig deeper into the problematics:

9

10 CHAPTER 3. DATA

3.2.1 Fiat tradable cryptocurrencies

This is probably the most convenient for people trading manually, the reason being the
simplicity of thinking about the cryptocurrency’s value being equal to some amount of
money. There are not many currencies that are tradable to fiat, though.

3.2.2 Cryptocurrency tradable cryptocurrencies

This is much more common in the world of exchanges. Even if just one cryptoasset is
tradable to fiat, on most exchanges there is a possibility to converge from any cryp-
tocurrency by a finite number of trades to it. There is a trade fee for every trade,
though.

There are two special cryptocurrencies in the trading world:

• Tether (USDT) - Formerly it claimed that every one Tether was backed by one
American dolar. It is not that way now [28], but its price relative to USD still
stays pretty much identical. More often than not, it’s possible to encounter an
exchange that does not support a fiat currency at all. It uses Tether for that.

• Bitcoin (BTC) - In 1.2 we mentioned that it is the oldest cryptocurrency. As
such, it has the biggest trading volume and hence is the most stable among the
currencies in the crypto market. As such, trading relative to Bitcoin gives us
these advantages:

– It is used as the major trading currency in most exchanges, yielding the
biggest number of both pairs and data per pair we can get.

– Looking at the prices relative to the price of Bitcoin removes the aforemen-
tioned similar movement between all of the crypto market (2).

Because of the mentioned benefits of choosing Bitcoin as the quote currency (trading
assets to Bitcoin and vice versa), we chose to reference to the price of an asset for a
given time as the price of the asset relative to Bitcoin at that time.

3.3 Source of data

There are 256 exchanges as of the 9th of May, 2019 [4] that provide trading.

There is a popular trading strategy called arbitrage that makes the price across
different exchanges as well as the computed price between the same asset across dif-
ferent tradable pairs pretty much the same. It basically stands for a simultaneous,
risk-free buying and selling of the same asset on different platforms or the same asset

3.3. SOURCE OF DATA 11

in different forms (via different chains of tradable pairs) on the same platform that
benefits from the imbalance of prices and corrects the prices by doing so.

However, different exchanges provide different user experience, fees for buying and
selling, security of the assets and more, making them unequal in the terms of amount of
people using the product. The less people that use an exchange, the lower the trading
volume and the less the probability for a fair price, making the exchanges with high
volume the best choice for our research. Please note, that if the volume is practically
non existent, there is no chance for even arbitrage behaviour - there’s no one to sell
and no one to buy on such an exchange.

3.3.1 Amount of data

For our methods to perform best, we need the biggest amount of data we can possibly
get our hands on. This is a big problem, since cryptocurrencies as such are relatively
new to the market and hence they lack a big enough history picture for us to analyze
and build our theory upon.

3.3.2 Frequency

Since the price of cryptocurrencies is so highly volatile and there is an increasing trend
for the use of trading bots (a computer program that, based on any strategy, buys and
sells assets automatically, without the need of interference from a human), the prices
fluctuate on an hour, 30 minute or even a minute basis. We consider multiple possible
frequencies, ranging from a minute-based frequency of price data up to one day-based
frequency.

3.3.3 Available API

Many exchanges provide good enough API for both trading and getting the history
prices from. It is used by trading bots and statistics mainly. In order for us to con-
veniently collect data to base the research upon, the available API quality is a valid
criterion.

There are multiple commonly used and old enough exchanges that accomodate our
needs. After thorough consideration and analytics of the points above, thanks to statis-
tics done on [4], we chose HitBTC as the means of getting our price data from.

In the following text we refer to currency prices as their prices relative to Bitcoin.
For a better demonstration, we do not refer to the currency itself, but rather to its

12 CHAPTER 3. DATA

currency pair with Bitcoin. For example, instead of writing XMR for the Monero
currency, we write XMRBTC for the currency pair.

Chapter 4

Data crawler

In this chapter we discuss the implementation details behind the crawler we imple-
mented for getting the prices and normalizing them into a nice readable format suitable
for subsequent research. The runnable code is located on the DVD included with this
thesis. See instructions in the README.md file.

4.1 Requirements

We want to analyze price data. For being able to do that, firstly we need to get the data.
The crawler part of the implementation should do exactly that by using the available
HitBTC API [8]. It should fetch all history prices for all relevant cryptocurrencies on
the HitBTC market, given:

• Quote currency - We chose BTC as the quote currency for our study in 3.2.2.
However, we want to build easily modifiable crawler, so we want to generalize it.

• Data frequency - Frequency of the data to fetch. One of M1 (one minute), M3,
M5, M15, M30, H1 (one hour), H4, D1 (a day), D7, 1M (a month).

• Minimal data length - Length of the price development in months we want
to analyze for the cryptocurrencies. Fetch prices just for cryptocurrencies that
allow for such a long development and leave out those that are on the market for
a shorter period of time.

Afterwards it should convert the fetched data into a format easily readable by
subsequent analysis program and save it.

4.2 Stack, architecture

For the purposes of fulfilling the requirements we did not need to implement a com-
plex system, nor we needed to implement a frontend for displaying and manipulating

13

14 CHAPTER 4. DATA CRAWLER

with the arguments. Hence we chose to write simple scripts that would import input
arguments (quote currency, data frequency and minimal data length), call each other
and together do the job.

For that, we found useful the use of Node.js [1]. Since Javascript is the main fron-
tend language used across the world wide web, fetching requests and manipulating
the data is native to the language. It has a nice library ecosystem [11] and together
with ES6 syntax sugar [3] compiled by Babel [2] it proves as a nice, easy and readable
language to use.

We chose the combination of eslint [6] with prettier [13] as linters to make the code
readable and unified and git [7] as a version control system, to easily track changes,
revert back if needed and allow for multiple features development at once.

4.3 Implementation

All the main logic - scripts are conveniently located in the fetchAPI object of the app.
Constants, input parameters, request builders and other utils are separated. In the
following text, symbol stands for a trading pair. Let’s go over the scripts:

• Fetch symbols. There is a convenient HitBTC API for getting all tradable
symbols (currency pairs). We fetch that and filter them based on the quote
currency input parameter.

• Fetch data length. Every tradable currency was announced to the market at
a different point in time. The aim of this script is to get for each symbol the
number of months the pair is tradable. We do that by fetching all its prices with
a month frequency and counting the length of the fetched data.

• Get relevant symbols. This script goes through the list of tradable cryptocur-
rencies along with its tradable length (the output of the previous script) and
filters them in such a way that it returns just those that are tradable for strictly
greater number of months than our minimal data length input variable. We use
strictly greater for ensuring that we select just those which are present on the
market for a full number of required months.

• Fetch prices for a symbol. Given a symbol, the purpose of this script is to
fetch all the available prices for it. There is a HitBTC API endpoint for getting
the prices, but the maximum limit of prices per request is 1000. Since there is
much more data for most cryptocurrencies, we need to paginate the requests.

4.4. PROBLEMS 15

We know the time the symbol entered the market, so this script generates all
the timestamps of the given input frequency parameter from the start till the
end with the step of 1000 (the max limit of prices per request) and maps the
timestamp to request. Consequently when it has all the data, it just joins it
into a handy hash map, the key being the timestamp of the price and the value
representing the price.

• Transform prices to an array. Given a symbol, this script generates an array
of a common size of the minimum data length’s input parameter mapped to the
wanted frequency and leaves either the price of the symbol at the given timestamp
or null. Nulls happen to occur on such timestamps when no trade happened for
the symbol. In that case we do not get that price from the API - we have to handle
that appropriately in the above script by mapping the prices not to indexes but
rather to the timestamps (since we may get the same timestamp with price more
than once - that way we would just overwrite the value).

• Fetch all. Fetches relevant symbols (the 3rd script) and for each it gets the
uniformed common size array of its prices or of nulls by calling the transform
prices’ script.

4.4 Problems

During the implementation, many problems arose. Some of them:

• Long running time. There are many requests going on. As of the 9th May
2019, there are 888 tradable currency pairs on the market, out of that 331 are
tradable to BTC. That’s 1 request to get that info. Plus 331 requests to get the
info about the available data length of the corresponding currencies, plus many
many more for getting the actual prices for all the timestamps of the given fre-
quency. Imagine getting a minute frequency data for a duration of 2 years of one
currency. The app would need to make

⌈
2×365×24×60

1000

⌉
= 1052 requests. That’s

just too many for it to run fast.

Solution: Asynchronicity. When making a request, we do not need to block
computing and wait for the response but rather we can continue and do com-
putations in parallel. It is not a good phrase to use, since Javascript does not
actually support running in multiple threads, but it is a good example of what I
mean. The code is not blocked by waiting for the response and we can perform
faster. We can even perform multiple requests at once and wait for them together.

16 CHAPTER 4. DATA CRAWLER

• Too much heap memory consumed. Since all of the data is really much (the
minute frequency data for 40 cryptoassets consumed over 900MB of memory),
we want to have it in memory for as short as possible. Asynchronically getting of
all the currencies may not be the best idea, since we have all the data in memory
at once.

Solution: Differentiate between synchronous and asynchronous computing and
use asynchronicity only where it makes sense.

• Too many requests. The API has a security mechanism to prevent being too
slow or even irresponsive by controlling how fast and how often we can request
certain endpoint from the same IP address. Due to the above inclusion of a cer-
tain non trivial degree of asynchronicity into our system, we needed to build a
mechanism to prevent the API from blocking our requests.

Solution: By trial and error we found out that 10 simultaneous requests waiting
for 100 miliseconds after each successful response is enough for the API to never
block us. We implemented that behaviour by overriding the request function for
fetching an endpoint to be controlled by a semaphore of a size of 10, waiting
for 100 miliseconds right before releasing the lock.

• Getting the data all over again. The data is a history data. It does not
change. However, during the development of either the crawler of subsequent
analysis we were changing the mind a lot, trying all possible input variable com-
binations and so on. Since it’s so many requests, we did not want to wait for
the functions to get all the data all over again every time something was modified.

Solution: Caching middleware. Each slow enough function can be wrapped by
the caching middleware and each time the function runs, first the middleware
checks whether we have the data already computed and saved and only if we do
not have it does it run the function with given parameters and then saves the
result. If we have it, it just reads the output from the file where it is saved and
returns. The important thing here is the caching key. We decided that a function
call is considered identical to the same function call if and only if the input
parameters of the app are the same (minimal data length, quote currency and
data frequency) and the function is called with the same parameters. Naturally it
is also differentiated based on the function called. Finally, the cache is not enough
to be present in-memory, we need to actually store it on the hard storage, since
the scripts does not handle errors and do not provide any user interface. They

4.4. PROBLEMS 17

just attempt to fetch everything and exit. In-memory gets wiped between the
runs.

18 CHAPTER 4. DATA CRAWLER

Chapter 5

Analysis

In this chapter we describe stack we used to analyse data. We plot the data to visually
inspect it, discover some crypto specifics and prepare the ground for the upcoming
trading algorithm. Runnable code is once again located on the DVD included with
this thesis. See instructions in the README.md file.

5.1 Requirements

Once we got the data (see 4), we want to analyze it and make use of some of the
comovement statistical strategies (see 2) in order to implement a successful trading
algorithm. To do that effectively and to minimize our effort, we want to choose tools
designed exactly for that. Our needs include:

• Data transformation Our data needs preprocessing for the methods to work.
For example, there are gaps (4.3) in the data when no trade happened. Even
the trading as such needs a lot of data transformation and computation. The
point is, we are doing a lot of that. We need a tool that allows for as easy data
transforming as possible, without compromising performance (we have a lot of
data!).

• Statistical methods Implementing well-known statistical methods is not the
aim of this thesis. It has been done already. With a bit luck, we would make use
of existing libraries to make care of the statistics.

• Plotting and describing Aside from relying purely on our logic and having
absolute faith in the algorithms we produce, we see a crucial role in plotting the
data and trades into graphs. It showed to be of a great value. It enables us
to actually visually see what’s happening inside. A nice and simple way to plot
data into multiple different graphs depending on the occasion is crucial for data
analysis. As John Tukey mentioned in his famous book about data analysis [30]:

19

20 CHAPTER 5. ANALYSIS

The greatest value of a picture is when it forces us to notice what we
never expected to see.

5.1.1 Stack

We found the use of Python [20] especially useful for meeting the requirements. It pro-
vides us with some very powerful and useful libraries for data manipulation, processing
and statistics, making it one of the best choices for data science as such. To highlight
just a few of them:

Pandas [15] provides very useful data structures similar to those of SQL tables called
DataFrames. It is possible to store all the prices of all our assets into one DataFrame
and work with that. It also provides data transformation, statistical description of the
data and computation of some very basic statistical means of measure for each row
or column (think of it as different cryptocurrencies) such as mean, quotient, median,
standard deviation, etc. All of that is very easily achieved by that.

SciPy [16] and StatsModels [17] include some of the more advanced statistical meth-
ods, such as euclidean distance between all pairs of currencies, linear regression or
testing for cointegration.

Scikit-learn [18] is suitable for more complex data transformation and algorithms
usage.

Matplotlib [10] is a unique and easy to use library for plotting DataFrames into
custom graphs.

Moreover, we decided to wrap all of our Python analysis into Jupyter notebook [14].
The advantages include inline plotting functionality of graphs, ability to save outputs of
notebook cells (chunks of Python code), easy sharing and many more. Similarly to 4, we
used git for version controlling. Together with Jupyter notebook usage, it allowed us to
run and save outputs for multiple slight modifications of constants without computing
over again and again and thus saving a lot of time.

5.2 Data

Importing data is simple. We define data constants (exactly the same as of the crawler
- data length, quote currency and data frequency) and load the data fetched by our
crawler and saved by the caching middleware. The array output of prices of the com-
mon size is perfect for importing all of our prices into one Pandas DataFrame. Let’s
look at the actual data and see what they look like. If not specified otherwise, we will
be using 24 months of data of one hour frequency data and use Bitcoin as the quote
currency in the upcoming text. That makes for 39 cryptocurrencies for our analysis

5.2. DATA 21

Figure 5.1: Raw fetched data. 24 months of 1 hour frequency data of all 39 cryptocur-
rencies we are about to analyze.

(no more currencies were available for so long on the HitBTC market, as of the date of
writing this text). For easy plotting purposes we made our custom plotting function
that would plot all of the cryptocurrencies’ price development near each other. You
can see the output in Figure 5.1.

First of all, there are graphs where we can see really little. Those are those similar
to cryptocurrency 1STBTC on the Figure 5.1. We can see that it’s price was really
high in the beginning when the market opened, but lowered right after. We are not
really concerned about such anomalities. We want to see how the price developed and
don’t want to be affected by abnormally big or low values, so called outliers. To get a
little better understanding, let’s look into a slightly different picture, Figure 5.2. The
data in the picture are the same, however, we left outliers out of the plots by limiting
the view to zoom to only prices from the 5th to the 95th percentile. That way we would
still see the movement of the price but neglect one or two time anomalities. Here we
see that really 1STBTC is turning down as the time progresses and not just because of
the outlier in the beginning. In contrast, ZRCBTC seems to move quite normally, even

22 CHAPTER 5. ANALYSIS

Figure 5.2: All data zoomed to the 5th till the 95th percentile of prices for each currency
separately.

though we couldn’t see much in the Figure 5.1. Note that we are not removing outliers
from the data. We removed them just in order to better see the price development.

5.2.1 Gaps

Let’s look at the Figure 5.1 for the currency pair PLUBTC. We can see that there is
a lot of gaps indeed. As we mentioned in 4.3, gaps are left when no trade happened.
We can see the statistics of how many trades happened on average in Table 5.1. For as
much as half of the cryptocurrencies no trade happened for a 30% of the time. There
are even currencies that recorded a trade on average for as little as 10% of the time.
Now we have to choose what to do with no trade times for further analysis. Some of
the standard methods include:

• Front filling. It stands for propagating the price from a known trade price
timestamp on, until we know that another trade happened that overwrites the
price. This seems natural, because the exchange actually states the value of the
asset to be the price of the last trade, however, it may not be possible to buy or

5.2. DATA 23

Table 5.1: Statistics of no trade in our data. Trade ratio values represent the ratio of
number of trades that happened relative to the length of the time frame. The 50%

column represents the median value.

sell for that price any longer. There is a chance that the trade happened by one-
time selling off a big volume of asset for whatever price came to be the bid. That
manipulated the price. It is normal for such events to quickly return to normal
price, once the bids are restocked. However, for the purposes of this thesis we
chose to ignore that and front fill the prices in order not to leave blanks that
would make comovement strategies produce weird results because of the inability
to correctly compute euclidean distance and other metrics.

• Back filling. Analogically to front filling, back filling means propagating the
price backwards. This does not really make sense since the trade of that price
did not happen at that time yet. Yet it may have been possible to do the trade
at that price. We chose to back fill the starting prices (the only ones left blank
after the front fill).

• Ignoring. It may be possible to ignore the timestamps when no trade happened.
However if we ignore timestamps when any currency lacks price, we may get too
little data. On the other hand, if we choose to ignore the timestamps lacking price
pairwise, we risk exposing ourselves to many inconsistences in the comovement
results. We choose rather to not ignore prices and fill them in.

In Figure 5.3 we see front filled and then back filled prices for each asset.

5.2.2 Normalizing prices

In 2.1 we described distance approach of measuring comovement and how it uses eu-
clidean distance as its measure. However, we also mentioned that computing euclidean
distance between two assets that move perfectly together, but their prices are far away
from each other results into too big a distance. We suggested that our algorithm should
normalize the prices first.

In short, we want to disregard the actual price the cryptocurrency has, but to keep
information about the relative development of the price. In other words, we want
to scale the price into a common range such that the ratio between the normalized
prices of one asset to the actual prices of the asset would be constant. To do that we

24 CHAPTER 5. ANALYSIS

Figure 5.3: Front fill followed by back fill filled the gaps. Graphs are presented with
dropped outliers.

5.2. DATA 25

Figure 5.4: All data normalized to common range between 1 and 2, with dropped
outliers.

found useful the use of Scikit-learn’s MinMaxScaler [18] function that uses the following
equation to normalize prices of time series (price development) of cryptocurrency X:

Xstd =
X −X.min

X.max−X.min
(5.1)

Xnormalized = Xstd × (max−min) +min (5.2)

Where the Xstd stands for time series of X normalized to range [0, 1]. It’s minimum
is given value of 0, it’s maximum gets value of 1 and other values are located in between
by the same constant division. Xnormalized is just [0, 1] normalized prices moved values
to custom [min,max] range. In our case, we choose [1, 2] range for our normalization.
We benefit from not having zero price in 6. Lastly, let’s look at the normalized prices
(with dropped outliers) in Figure 5.4. We see that it’s the same as the graphs in Figure
5.2. The actual prices just moved to a different range.

26 CHAPTER 5. ANALYSIS

Figure 5.5: Two randomly chosen pairs from the top 20 pairs ranked by the lowest
euclidean distance.

Figure 5.6: Two randomly chosen cointegrated pairs. Shown normalized, even though
the cointegration test was not performed on the normalized prices.

5.3 Comovement

Now that we have data prepared, we are ready for the analysis of comovement between
the currencies. For each method mentioned in 2 we explain how we computed the
correlation and see some example outputs.

5.3.1 Distance approach

In 2.1 we explained how to compute the distance between two cryptocurrencies. Our
implementation used existing solution by SciPy’s [16] function pdist (pair distance)
that computes pairwise euclidean distance between all pairs of currencies. We sort
them by the computed distance and return. You can see two randomly chosen distance
correlated pairs (in the top 20 pairs with the lowest distance) on Figure 5.5.

5.3.2 Cointegration approach

In 2.1.1 we explained what it means for a pair of cryptocurrencies to be cointegrated.
For the cointegration test we used the StatsModels’ [17] implementation of augmented
Engle Granger statistical method included in the coint function call. We chose our
confidence level (max pvalue) to be equal to 0.001. That means that on average 0.1%

of pairs submitted for cointegration test would falsely pass. The function call returns

5.3. COMOVEMENT 27

the pvalue. For the pair to be considered cointegrated we check whether its computed
pvalue ≤ 0.001. There is no better estimate. Pvalue is not a measure of the cointegra-
tion itself. As mentioned in [12], it may not be true that a pair with a lower pvalue is
more cointegrated than a pair with a higher pvalue. For that reason we chose not to
compare the pvalue, but rather to select a truly random selection of the cointegrated
pairs to represent the approach. To compare results to the distance approach, once
again you can see two randomly chosen cointegrated pairs on Figure 5.6. Note that the
first cointegrated pair would have a really big euclidean distance (even normalized).
Cointegration allows for a more sophisticated correlated movement.

28 CHAPTER 5. ANALYSIS

Chapter 6

Trading

In this chapter we go into detail on how exactly we built our trading algorithm, what
it’s dependent on and how it responds to some market specifics.

This thesis focuses on studying comovement between cryptocurrencies. Having
list of pairs of currencies whose price development is correlated, we want to use this
information and suggest a trading strategy that bets on the comovement.

6.1 Methodology

We mentioned that cryptocurrency market is highly volatile in 1.3. This has both
its advantages and disadvantages. The advantages include bigger profits if one knows
what to do, but the disadvantages include a very high risk of losing everything. That’s
because the price can be manipulated by those who own a big share of the market and
the whole market can crash out of a sudden in a matter of hours. However, it can
spike in a matter of minutes as well. Since this movement is mostly random and hardly
predictable, we aim for a strategy that is market neutral.

We already lowered our exposure to the market by choosing to trade relatively to
BTC in 3.2.2. However, the above risk is still relevant. It may happen that a corre-
lated pair is correlated because of a common vulnerable system they are built on top of.
Once a vulnarability of the system is found, both currencies lose value. Bitcoin price
doesn’t have to decrease. It may even benefit from that. Hence we see that trading
relative to BTC does not really solve our problem. It helps, though.

Ideally we would not want to bet on the actual currency prices. Rather we would
like to bet on the relationship between the prices itself. That’s possible with a trading
method called pairs trading [12].

29

30 CHAPTER 6. TRADING

6.1.1 Pairs trading

Pairs trading is basically betting on a relationship between the prices of two currencies.
To pairs trade, one opens two positions at the same time. One short and one long.
In other words, pairs trading is about selling one currency and buying the other one.
Let’s illustrate that on an example:

Let X and Y be price series of two distinct cryptocurrencies and our betting
relationship equivalent to their difference 2 = Y −X (we aim for the price
difference to be equivalent to 2). Let’s create a new price series as Y −X.
Whenever this price series spikes high enough above the threshold of 2, we
expect it to revert to the mean. Hence we sell Y and buy X and wait for
the relationship to revert back to normal. When it does we buy back Y and
sell X back. We proceed analogically when the relationship lowers enough
below the 2 threshold (buy Y and sell X).

Since we have either no or two opposite positions open at every time, we don’t
depend on the market. As long as the currency pairs return back to their normal
relationship, we make money.

We can make money on both positions. That happens when we are lucky enough
for the market to move in a direction that is good for both positions and the prices
still move in order for the relationship to revert back to normal. We can lose money
on X position and make money on Y or the other way around, but in that case we
know that the profit would be greater. That’s because the relationship returns back
to normal. That means that one position had to move more than the other (they are
opposite). We don’t mind which one that is. We don’t have to. We can even change
the method used in the example to buy Y and sell X when the relationship goes up
and vice versa. That’s because we are not sure about which option of the mentioned
happens. As long as we have zero or two opposite positions open at every moment, we
are about to make money each time the relationship returns back to normal.

6.1.2 Margin trading

We mentioned that each trade consists of selling one currency and buying another one
above. We are referring to the margin trading concept. That is, we can sell even
without having the amount of currency. Either the exchange provides it for a fee or
the exchange allows for users to offer it. It is common for the smaller cryptocurrencies
to not be able to margin trade, but we are neglecting this for the purpose of this study.
In margin trading, selling a currency and rebuying back for a lower price is called going
short. Analogically, buying a currency and reselling for a higher price is called going
long. We use the words later on.

6.2. DATA SPLIT 31

6.1.3 When to buy

In the previous text we explained that we want to start a trade whenever a pair
relationship gets far enough from the normal state. Next, let’s look into how we can
decide what exactly is far enough.

Let S be the spread of the correlated relationship. For the example used in 6.1.1,
S = Y − X. We want to normalize that and compute what relative term far enough
means for that corresponding spread. We followed approach that was used in [24] and
[12]. They transformed the spread into standard score (also called z-score). We can
get that by subtracting the spread’s mean from the price and dividing that by the
standard deviation. The spread’s mean is used as the normal value around which the
spread is moving up and down. The standard score then says how far the current price
is from the mean, together with the direction - negative z-score means that the price
is lower than the mean. On the other hand, positive z-score means higher price.

For a conservative approach, we can choose z-score thresholds ±1.0 for initializing
positions and thresholds ±0.2 for reverting them. These values are suggested by [12].

6.2 Data split

In order for us to be able to find out how our trading algorithm actually performs with
only historical data available, we decided to split the available historical data into two
disjoint periods: the train and the test period. The length of the train period is twice
the length of test period and it is the period which acts as an input to the methods
for analyzing comovement. From that we get correlated pairs. Based on that, we try
to trade during the test period. Since we do not train on the data we test on, we can
get a good idea of how our algorithm performs that is useful for comparing different
approaches as well as adjusting constants.

In order to not limit ourselves and to allow for a shorter term comovement trends,
we added the possibility of splitting the historical dataset into multiple disjoint dataset
chunks that is each split into train and test periods separately.

6.3 Algorithm

Trading itself consists of trading on several different levels:

1. Trading the whole dataset. To trade the whole dataset, we need to split the
dataset into the desired number of chunks first. Then we perform trading on
each chunk separately and sum the net profits. Since the chunks are set one after

32 CHAPTER 6. TRADING

another in time, we invest 100% of the initial capital money into each chunk
trading. If we profit from one chunk, we do not reinvest the profit into the next
chunk trading. We always invest the initial amount of money only. Even if we go
below the capital, we invest the full capital every time. Hence the net profit from
trading the whole dataset is the sum of net profits from trading the respective
chunks.

2. Trading a chunk. To trade a chunk we need to split it into the train and test
periods. Given train data only, we need to find comovement pairs based on a
chosen comovement strategy from 2. We then take some comovement pairs, split
the capital money in between them and simulate trading on the test dataset for
each comovement pair separately. Since the capital money invested into chunk
trading is divided in between the simultaneous trading of the comovement pairs,
the net profit of chunk trading is determined as the average of the net profits
from the corresponding comovement pairs tradings.

3. Trading a comovement pair. To trade a comovement pair on a given test
dataset, we need to compute the pair relationship spread (based on the train
dataset) and transform the spread into z-score spread (still based on train dataset
only). Then we simulate trading, having at most two positions open at all times
(two opposite positions, see 6.1.1). We go through the z-score spread of the test
period (computed with train dataset’s mean and standard deviation). If we have
a position opened, we check the corresponding revert position threshold to revert
the positions and take profit. If we don’t, we are waiting for exceeding a placing
position threshold. Based on the nature of threshold exceeded we then open or
close positions. If closing a position, we collect the profit and continue trading.
If we happen to be in the end of our test period and yet we have positions still
open, we close them no matter the loss. Once again, we open one spread position
at a time, so we compute the net profit from trading a comovement pair as the
sum of net profits of the closing positions’ trades. We can see sample trading of
two comovement pairs on Figure 6.1. Notice the thresholds. We make money
whenever it goes far away from the mean and returns back.

4. Opening and closing spread positions. When opening positions we just
remember the actual raw prices for both currencies. When closing a position we
compute the profit of the two opposite positions. We invest half of the money
into one position and half into the other. Hence the net profit of the spread
position is computed as the average of net profits of the respective positions. For
a long position, we compute the profit as the quotient of the closing (selling)
price to the opening (buying) price. For a short position, we compute the profit

6.3. ALGORITHM 33

Figure 6.1: Sample trading of two comovement pairs with thresholds and periods
highlighted. On the first one only one trade happened with 2.3% of net profit. On the
second one five trades happened. In the end we had to perform a forced trade (the
price didn’t reach the revert spread position threshold) which resulted in 2.3% loss.
Altogether, the pair trading was a big success, though. It made 19.6% net profit.

as the quotient of the opening (selling) price to the opening (buying) price. We
compute the net profit as the profit minus one (minus the initial capital). We
suppose no trading fees.

We implemented the trading algorithm open for modification and adjustments. The
input parameters are as followed:

• The whole dataset. DataFrame containing all the currencies with prices.

• Number of chunks. The number of disjoint chunks for the whole dataset to be
split into.

• Test period size ratio. The ratio of test period to the whole dataset size.
Defaults to 1/3 (train period is twice the length).

• Max. number of trading pairs for one chunk trading. It may happen that
so much comovement pairs are not found. This provides just an upper bound
limit.

• Function of getting the comovement pairs. Generally one of the functions
mentioned in 5.2.2. We also supply the maximum number of comovement pairs
into the function, in order to select the best ones in distance approach or to halt
the computation process if that much is found in cointegration approach (since
we can’t decide which pairs are better, we can halt as soon as we have enough
pairs).

• Function for computing the relationship spread. In 2 we mentioned the
different relationships we are betting for in different approaches. Let X and Y be

34 CHAPTER 6. TRADING

the price series. For distance approach, we just compute Y −X. For cointegration
approach, the spread is Y −bX, for some b ∈ R. We can compute that by running
linear regression. Linear regression is conveniently included with the StatsModels
[17] library.

Chapter 7

Results and discussion

In this chapter we experiment with input parameters for our trading algorithm and
compare the results. We also run the algorithm on prices of different frequency. All
our testing results can be found on the DVD included with this text.

Unless said otherwise, we suppose one hour data frequency of 39 currency pairs for
a time frame of 24 months.

We use cumulative profit computed out-of-sample as the means of comparing results
from modifications of the input parameters. We discuss input parameters for our
trading algorithm in 6.3. Let’s see how exactly they influence the profit. The plots
come in pairs: we plot profit obtained from trading using the distance strategy with
the adjusted combination of parameters on the left and the profit from trading using
the cointegration strategy on the right.

7.1 Algorithm modifications

• Risk exposure. By risk exposure we understand the degree of trust we put into
the pairs we trade. The lower the number of maximum pairs we allow to trade
per chunk of dataset, the bigger our trust. If we choose to trade one comovement
pair only, we put all our capital into this comovement and thus risk everything if
the pair diverges. On the other hand, splitting the capital money into multiple
comovement pairs eliminates the risk of a single fail. Rather it tests whether the
strategy makes profit on average.

We use statistical strategies for analyzing price comovement in the past and sup-
pose that the same comovement holds in the future. That may and may not be
true. In the cointegration comovement strategy we don’t use a specific measure
of how good cryptocurrencies move together. We chose a specific number of pairs
that pass the comovement test. In contrast, when using the distance strategy, we

35

36 CHAPTER 7. RESULTS AND DISCUSSION

Figure 7.1: Influence of the number of chunks and max. number of pairs to trade on
profit.

know exactly how far the prices are from each other and thus we have a measure
of determining pairs that move better together than others and we select those.
We can see the profit we get by limiting the maximum number of comovement
pairs we trade on Figure 7.1 (the y axis). On the x axis we adjust the number of
chunks, thus modifying the amount of data we train on before we trade.

If we look on the Figure column-wise, we can see that as for the cointegration
approach, the results are mostly random. We suppose that’s because of the
random nature of selection of the comovement pairs that seem to be cointegrated.
Interestingly, for the distance approach we get significantly better results when
choosing to distribute the risk even though we have a way to measure the more
correlated pairs. However, as [26] suggests, such results may also be the result of
a too strong comovement that just seldom allows for opening positions.

• Length of training period. Due to the nature of crypto market, we suppose
that the length of trading period proves to be a very significant parameter for
the trading algorithm. There is a continuous development behind the majority
of cryptocurrencies and people are increasingly familiar with the technologies
behind the system. There is also a large amount of new cryptocurrencies using
new technologies built on the existing ones, improving on the security, speed or
any other aspect. Therefore we expect the comovement between cryptocurrencies
to be rather shorter-term. We can examine that by modifying the number of
chunks we split the dataset into. The profits can be seen row-wise in the same
figure as before, Figure 7.1. Please note, that splitting the dataset into multiple
chunks preserves the ratio of train / test timestamps, making it a valid parameter
to analyze.

We may indeed see a rather rapid increase of the earned profit. Looking at

7.2. CHANGE OF FREQUENCY 37

Figure 7.2: Influence of the thresholds for opening and closing positions on profit.

the distance strategy, we even do not earn anything considering the whole two
years’ long dataset. Splitting the dataset into chunks of a month long training
period and a half a month of trading period increases the profit by 28%. For
a comparison, the profit earned using the cointegration strategy goes as far as
610% of the capital investment, with the mean of 315%.

• Trading thresholds. In 6.1.3 we chose trading thresholds based on the sug-
gestion by [12] that focuses on stock market trading. However, crypto market
is different and as such, the used z-score thresholds of 1.0 for opening and 0.2

for closing comovement positions may prove not optimal. We considered more
benevolent thresholds of 0.1, 0.2 and 0.5 for closing (y axis) and 0.5, 1.0 and 1.5

for opening positions (x axis). Results obtained from trading 16 comovement
pairs on a dataset split into 8 chunks can be seen in Figure 7.2.

We can see, that the smaller the difference between the opening and closing
threshold, the bigger the profit. We suppose that we got this result mostly
because of ignoring the trading fees. As such, the smaller the difference, the
bigger the number of possible trades of little profit. We suggest to address and
rethink this correlation in future research.

7.2 Change of frequency

In this section we are about to question the validity of presented results in terms of
change of supposed frequency of data. All performed analysis so far supposed one hour
price frequency. For demonstration of both lower and higher frequency, in the following
text we examine fifteen minute and one day price data frequency of the same currency
pairs for the same length of 24 months.

After closely looking at Figure 7.3 and Figure 7.4, we see, that our risk exposure

38 CHAPTER 7. RESULTS AND DISCUSSION

Figure 7.3: Influence of the number of chunks and max. number of pairs to trade on
profit considering fifteen minute data frequency.

Figure 7.4: Influence of the number of chunks and max. number of pairs to trade on
profit considering one day data frequency.

trend holds on average and so does the trend regarding the length of trading period.
The profit tends to increase with bigger number of trading pairs both using the distance
and cointegration strategy. Similarly, the profit tends to increase with bigger number
of chunks. Once again, quite rapidly.

There is a bigger number of abnormalities that go against the mentioned claims
in the 15 minute data compared to the hour data frequency analysis. We suppose
that those abnormalities are caused too low number of trading pairs and thus higher
randomness of the profit.

After looking at Figure 7.5 and Figure 7.6, we see that the overall trend is the same
with fifteen minute and day frequency as it was with hour frequency. Since we do not
consider trading fees, a strategy to make a higher number of smaller trades turns out
to be the winner.

Once again, there are more abnormalities in the fifteen minute frequency data. The
absolute winner of the cointegration strategy approach turns out to be the formerly
mentioned conservative approach of 1.0 for opening and 0.2 for closing positions. We

7.2. CHANGE OF FREQUENCY 39

Figure 7.5: Influence of the thresholds for opening and closing positions on profit
considering fifteen minute data frequency.

Figure 7.6: Influence of the thresholds for opening and closing positions on profit
considering one day data frequency.

think that it can be the cause of more fluctuations that happen in the market with
higher frequency as mentioned in 1.3.

40 CHAPTER 7. RESULTS AND DISCUSSION

Conclusion

We studied comovement between cryptocurrencies. Firstly, we took a look at a selection
of cryptocurrencies, their purpose and the specifics of the crypto market. Then we dis-
cussed the euclidean distance and cointegration approaches as some of the well-known
methods for comovement analysis commonly used in literature studying comovement
on markets of different type [29], [23], [27].

In order to analyze comovement, we needed to get the actual data. We discussed
various sources and removed a slight market trend by choosing to fetch prices relative
to Bitcoin. We chose HitBTC [8] as the data provider and implemented a data crawler
application that given the wanted data frequency, minimal data length and the quote
currency gets all the available prices and saves it into a convenient format perfect for
future needs. We also described the implementation details of the crawler and dis-
cussed problems we encountered.

We looked closely at two years of price data for thirty-nine cryptocurrencies of one
hour frequency, preprocessed the data and provided examples of cryptocurrency pairs
that move together based on the results of either euclidean distance or the cointegration
strategy.

We continued to further discuss the ways of using the information in implementing
a trading strategy. We ended up with a pairs trading strategy thanks to its market
neutrality and found a way how to bet on the pairs comovement and nothing else.
We implemented the trading strategy and described the implementation details and
decision process behind.

Having left the algorithm open for modification, we compared the out-of-sample
profit results of choosing the number of trading pairs, various data splits and adjusting
the threshold for opening and closing positions.

We found a strong negative correlation between the length of the period for finding
the comovement pairs and the consequent profit. We concluded that the comovement
in the cryptocurrency market is rather short-term.

In addition to that, we found the risk distribution between multiple pairs in contrast

41

42 Conclusion

to betting on just a few (even better correlated) pairs to have earned bigger profit.
Across the whole study, the cointegration approach performed significantly better,

earning 348% worth of net profit on average, compared to the 8% earned by the dis-
tance approach.

We supported the claims by running the trading algorithm on data of both fifteen
minute and one day frequency and having found similar trends.

For the future research we suggest introducing trading fees. We expect them to
influence the gains rapidly. Another interesting topic may be to convert prices to their
logarithms and run distance approach on such data. We suppose that doing so would
reduce rapid spikes in the prices and thus prove better for measuring comovement. For
the implementation of the trading algorithm itself we also suggest to try to implement
it in a rolling window fashion, re-examining the comovement-ness of the open positions
and opening positions for pairs that pass the up-to-date comovement criterion.

Bibliography

[1] About node.js, May 2019. https://nodejs.org/en/about/.

[2] Babel is a javascript compiler, May 2019. https://babeljs.io/.

[3] The best way to learn modern javascript, May 2019. https://es6.io/.

[4] Coin market cap, Feb 2019. https://coinmarketcap.com.

[5] Cryptomiso, May 2019. https://www.cryptomiso.com/.

[6] Eslint: The pluggable linting utility for javascript and jsx, May 2019. https:

//eslint.org/.

[7] git, May 2019. https://git-scm.com/.

[8] Hitbtc api, May 2019. https://api.hitbtc.com/.

[9] How to make money on arbitrage with cryp-
tocurrencies, Feb 2019. https://hackernoon.com/

how-to-make-money-on-arbitrage-with-cryptocurrencies-6618bdad3ce1.

[10] Matplotlib: Python plotting, May 2019. https://matplotlib.org/.

[11] npm.js, May 2019. https://www.npmjs.com/.

[12] Online lectures in statistical and financial topics, May 2019. https://www.

quantopian.com/lectures.

[13] Prettier: Opinionated code formatter, May 2019. https://prettier.io/.

[14] Project jupyter, May 2019. https://jupyter.org/.

[15] Python data analysis library, May 2019. https://pandas.pydata.org/.

[16] Scipy library, May 2019. https://www.scipy.org/scipylib/index.html.

[17] Statsmodels: Statistics in python, May 2019. https://www.statsmodels.org/

stable/index.html.

43

https://nodejs.org/en/about/
https://babeljs.io/
https://es6.io/
https://coinmarketcap.com
https://www.cryptomiso.com/
https://eslint.org/
https://eslint.org/
https://git-scm.com/
https://api.hitbtc.com/
https://hackernoon.com/how-to-make-money-on-arbitrage-with-cryptocurrencies-6618bdad3ce1
https://hackernoon.com/how-to-make-money-on-arbitrage-with-cryptocurrencies-6618bdad3ce1
https://matplotlib.org/
https://www.npmjs.com/
https://www.quantopian.com/lectures
https://www.quantopian.com/lectures
https://prettier.io/
https://jupyter.org/
https://pandas.pydata.org/
https://www.scipy.org/scipylib/index.html
https://www.statsmodels.org/stable/index.html
https://www.statsmodels.org/stable/index.html

44 BIBLIOGRAPHY

[18] Statsmodels: Statistics in python, May 2019. https://scikit-learn.org/

stable/.

[19] Top 100 cryptocurrency exchanges by trade volume, Feb 2019. https://

coinmarketcap.com/rankings/exchanges/.

[20] Welcome to python.org, May 2019. https://www.python.org/.

[21] What is a cryptocurrency, Feb 2019. https://www.investopedia.com/terms/c/
cryptocurrency.asp.

[22] What is monero, Feb 2019. https://ww.getmonero.org/get-started/

what-is-monero/.

[23] August Abelvik-Engmark and Daniel Vårdal Haugland. Spread trading in brent
crude futures. Norwegian University of Science and Technology, 120:1–120, 2018.

[24] João Caldeira and Guilherme V. Moura. Selection of a portfolio of pairs based on
cointegration: A statistical arbitrage strategy. SSRN, 28:1–28, 2013.

[25] Paraskevi Katsiampa. Volatility co-movement between bitcoin and ether. Finance
Research Letters, 2018.

[26] Fredrik Kirkestuen and Christian Thomassen. Statistical arbitrage using high
frequency pairs trading. Oslo Business School at Oslo Metropolitan University,
37:1–37, 2018.

[27] Claudio Morana and Andrea Beltratti. Comovements in international stock
markets. Journal of International Financial Markets, Institutions and Money,
18(1):31–45, 2008.

[28] David Z. Morris. Tether now admits it’s not fully backed
by dollars. BREAKERMAG, 2019. https://breakermag.com/

tether-now-admits-its-not-fully-backed-by-dollars/.

[29] Robert S Pindyck and Julio J Rotemberg. The excess co-movement of commodity
prices, 1988.

[30] John W. Tukey. Exploratory Data Analysis. 1977. First edition.

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://coinmarketcap.com/rankings/exchanges/
https://coinmarketcap.com/rankings/exchanges/
https://www.python.org/
https://www.investopedia.com/terms/c/cryptocurrency.asp
https://www.investopedia.com/terms/c/cryptocurrency.asp
https://ww.getmonero.org/get-started/what-is-monero/
https://ww.getmonero.org/get-started/what-is-monero/
https://breakermag.com/tether-now-admits-its-not-fully-backed-by-dollars/
https://breakermag.com/tether-now-admits-its-not-fully-backed-by-dollars/

	Introduction
	Cryptocurrencies
	Definition
	Purpose
	Volatility
	The price of an asset
	Implications

	Comovement
	Strategies
	The Distance approach
	The Cointegration approach

	Data
	Data we need
	Price data
	Fiat tradable cryptocurrencies
	Cryptocurrency tradable cryptocurrencies

	Source of data
	Amount of data
	Frequency
	Available API

	Data crawler
	Requirements
	Stack, architecture
	Implementation
	Problems

	Analysis
	Requirements
	Stack

	Data
	Gaps
	Normalizing prices

	Comovement
	Distance approach
	Cointegration approach

	Trading
	Methodology
	Pairs trading
	Margin trading
	When to buy

	Data split
	Algorithm

	Results and discussion
	Algorithm modifications
	Change of frequency

	Conclusion

