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Abstrakt

Problém dláždenia polyominami je typickým príkladom problému založeného na pre-
hľadávaní. V tejto práci preskúmame niekoľko vhodných prístupov k riešeniu problému
dláždenia: jednoduché prehľadávanie s návratom, použitie Algoritmu X navrhnutého
Donaldom Knuthom, redukciu problému dláždenia na problém splniteľnosti booleovskej
formuly, redukciu na celočíselné lineárne programovanie či použitie constraint satisfac-
tion solvera. Popíšeme užitočné implementačné techniky pre tieto prístupy a vytvoríme
nástroj Tiler, v ktorom spojíme popísané algoritmy so špičkovými solvermi. Na záver
detailne porovnáme ich výkon na zbierke inštancií problému dláždenia a identifikujeme
triedy inštancií, ktoré sú vhodné pre jednotlivé algoritmy.

Kľúčové slová: dláždenie polyominami, SAT, lineárne programovanie, ofarbovacie
invarianty
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Abstract

The problem of tiling a board by polyominoes is a typical example of a search-based
problem. Our work explores several suitable approaches to solving the tiling problem:
simple backtracking, using Algorithm X proposed by Donald Knuth, translating the
tiling problem to the boolean satisfiability problem, translating it to integer linear
programming, and using a constraint satisfaction solver. We describe useful imple-
mentation techniques for these approaches and create a command-line tool Tiler that
integrates the solving algorithms with state-of-the-art solvers. Finally, we prepare a
detailed comparison of their performance on a collection of problem instances and
identify classes of tiling instances that are better suited for one algorithm or another.

Keywords: polyomino tiling, SAT, linear programming, coloring invariants
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Introduction

Tiling problems have been studied extensively in past decades [1, 2, 3]. The difficulty of
a specific problem class highly depends on restrictions that are in place. For instance,
the tileability of a simply connected board by an unlimited number of bars of length 2
or 3 can be decided in linear time [4]. On the other hand, there are tiling problems on
infinite boards which are undecidable [5].

In this thesis, we will focus on the tileability of finite boards with a set of polyominoes,
given their shapes and counts. We can easily see that this problem is decidable and NP.
Furthermore, it can be shown that this problem is NP-complete [3]. Because of this, all
our algorithms will inherently have exponential worst-case time complexity.

Since tiling problems are popular in recreational mathematics and mathematical
competitions, there are user-friendly web applications capable of solving them [6, 7].

Among scientific and professional software, the SageMath [8] system is probably
the most notable framework that features a dedicated polyomino tiling solver [9]. The
solver provides a rich API to define a board and polyominoes of arbitrary shape and
dimension and specify whether rotations and reflections are allowed when solving. The
solver is capable of finding the number of all solutions as well as displaying the solutions.
There are other convenient functionalities, such as animations of the solving process.

Another project that aims to solve tiling instances is the polyomino Python pack-
age [10]. It is best suited for command line usage—it supports visualizing solutions
textually (using ASCII characters).

All previously mentioned solvers have a common trait: They employ Algorithm X
proposed by Donald Knuth [11] 1. Algorithm X is a general algorithm for solving the
exact cover problem. It is natural to formulate a polyomino tiling instance as an exact
cover instance—we will explore this algorithm further in section 2.3.

Compared to the described tools, in our work we aim to examine many more different
approaches to solving, see chapter 2. Our main focus will be on conversions to other
problems (such as SAT or ILP) where we can utilize efficient solvers. We will also briefly
explore the usability of coloring invariants for proving the impossibility of tiling. This
method is often used when solving tiling problems in mathematical competitions.

1Although one of them supports conversion to a SAT instance as an alternative [7].
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Chapter 1

Terminology

In this chapter, we will establish basic terminology and precisely define the problem of
our interest.

The most fundamental entities in this work are unit squares in a square lattice. Two
unit squares are adjacent if they share a common edge. The underlying square lattice
can be considered infinite in all directions, even though we will examine only finite
tiling problems.

Definition 1 (Region). A finite geometric shape consisting of unit squares arranged in
a square lattice is called a region.

The size |r| of a region r is the number of unit squares it occupies.
A region is connected if every pair of its squares is connected by a path composed

of consecutively adjacent squares contained in the region; otherwise, the region is
disconnected and its maximal connected subregions are called components.

A connected region is simply connected (i.e. without holes) if its complement in the
infinite square lattice is connected.

Two regions in a square lattice differing in translation (shifting in any direction),
rotation or reflection (flipping over) are considered different.

Definition 2 (Top-left unit square). The region’s leftmost unit square in its topmost
row is the region’s top-left unit square.

The relative position of two regions can be unambiguously expressed as the pair
(dx, dy): offsets of their top-left unit squares along the x-axis and y-axis.

Definition 3 (Tile). A polyomino tile, or simply a tile, is an equivalence class on the
set of all connected regions. Two regions are considered equivalent (thus being the same
tile) if they differ only in translation, rotation, and optionally, reflection as well.

A tile’s rotations and reflections are called tile variants—an example of those is
shown in fig. 1.1.

The only polyomino tile consisting of a single unit square is called monomino; the
one consisting of two unit squares is called domino. Subsequently, there are trominoes,

3



4 CHAPTER 1. TERMINOLOGY

Figure 1.1: An example of tile variants

tetrominoes, pentominoes, and so forth. All polyominoes with size up to 5 are listed
in fig. 1.2. We assigned them names consisting of a number and a letter representing
the tile’s size and shape. Notice that if we allow reflections, some names correspond
to a single tile, such as 4J and 4L. A different naming scheme for pentominoes was
introduced by Golomb [12], but it does not distinguish between reflected shapes (e.g.
4J and 4L), therefore prompting us to suggest our own naming convention.

There has been substantial research done on the topic of polyomino enumeration
and counting polyominoes of a fixed size [12, 13, 14], although this is out of the scope
of this work.

Now we can formally define the concept of a polyomino tiling problem instance.

Definition 4 (Tiling problem instance). A polyomino tiling problem instance is a triple
(b, T, r), where:

• Board b is a connected region.
• Set T is a finite set of pairs (ti, ci), where ti is a tile and ci is the maximum count

of its available instances (either a positive integer or infinity). No two tiles ti, tj

are the same for any i ̸= j.
• Boolean value r determines whether tiles differing in reflection are considered

equivalent (that is, whether we are allowed to flip individual tile instances during
the tiling process).

Definition 5 (Solution). The solution of a tiling instance is a perfect partitioning of
board b into subregions. Each subregion has to correspond to a tile from T (taking the
value of r into account) and for each tile ti, the number of the corresponding subregions
may not exceed ci.

If a solution exists, we say that b is tileable by T .

Example 1 (Tiling problem instance). Is it possible to tile a 10× 10 checkerboard by
25 instances of the 4× 1 tetromino? (In this case, it is irrelevant whether reflections
are allowed, the result will be the same.)

Some tiling instances may have multiple different solutions; we will however focus
solely on the solvability. There are good reasons for this decision: tiling problems are
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1: 2: 3I: 3L:

4I: 4J: 4L: 4O: 4S: 4T: 4Z:

5A: 5F: 5G: 5J: 5P: 5S:

5Y: 5R: 5N: 5L: 5Q: 5Z:

5I: 5T: 5U: 5V: 5W: 5X:

Figure 1.2: Monomino, domino, trominoes, tetrominoes, pentominoes

diverse enough by themselves, adding another aspect to consider might be counter-
productive. Furthermore, some instances may have an immense number of solutions
and searching for all of them would greatly prolong the computation, making it even
infeasible, and thus effectively discard said instances in our performance comparisons.

A solution does not necessarily have to utilize all available tile instances. On the
other hand, a sufficient number of tile instances needs to be available to cover the entire
board—specifically, the following equation has to be satisfied for a problem instance to
possibly be solvable:

|b| ≤
∑

(ti,ci)∈T
|ti| · ci (1.1)





Chapter 2

Algorithms

In this chapter, we will analyze the selected approaches to solving the polyomino tiling
problem and briefly describe their implementation.

2.1 Tiler CLI tool

In order to simplify the experimentation with the presented tiling algorithms, we decided
to develop a user-friendly command line tool called Tiler. We selected C++ as the
programming language for this task, motivated by its execution speed and the fact that
virtually all libraries and toolkits utilized by our algorithms (such as the state-of-the-art
SAT and ILP solvers) provide a C/C++ interface.

Tiler is capable of reading the problem instance definition—board shape and tile
shapes and counts—either from command line arguments or from an input file. It
accepts several shape input formats, including shapes given by name (see fig. 1.2) or
specifying the shape by a grid of “x” and space characters.

On top of that, Tiler supports several optional parameters which enable the user to
allow tile reflections, select the solving algorithm of their choice, set a time limit for
solving, and control logging verbosity.

When the solving algorithm halts, Tiler prints “SOLVABLE” or “UNSOLVABLE”,
and if a solution exists, Tiler optionally enumerates the tile instance positions or
generates an SVG image depicting one of the solutions.

The entire Tiler source code is attached in appendix A. Tiler’s dependencies, input
formats, and other similar topics are described in README.md.

In the following sections, we will focus on the solving algorithms as well as some of
the important implementation aspects.

7



8 CHAPTER 2. ALGORITHMS

2.2 Simple backtracking

The main goal of this algorithm is simplicity so that we have an easy-to-understand
reference point for other solvers when comparing their performances. The central idea
is as follows: In one step, we will place a tile to the top-left corner of the board and fill
the entire board in several steps of this kind.

More precisely, we define a procedure place_tile which takes a problem (b, T, r)

and a variant v of tile ti, where (ti, ci) ∈ T . The procedure aligns the top-left unit
square of b with the top-left unit square of v. If v placed this way is a subregion of b,
place_tile removes this subregion from b, creating a smaller board b′. Correspondingly,
it creates T ′ by replacing (ti, ci) with (ti, ci − 1) in T (or dropping this tile from T if
ci = 1). Finally, place_tile returns the new problem (b′, T ′, r).

If v placed this way is not a subregion of b (i.e. there is at least one unit square that
belongs to the placed v but not to b), place_tile fails.

At this point, the tiling algorithm is rather straightforward. We iterate over all
variants v of all tiles from T and for each of them, we call place_tile on (b, T, r) and v.
If it succeeds, we recursively perform this same procedure with the obtained subproblem
(b′, T ′, r).

If all of the recursive sub-calls fail, so fails the current call and the algorithm
backtracks to the parent call. If at least one recursive call returns a valid solution of the
respective subproblem, the current call can construct a solution of the current problem
as a combination of tile variant placement realized by place_tile and the solution of
the corresponding subproblem.

Ultimately, we need to describe the trivial case of the recursion: A recursive call is
trivially successful if b is empty. In this case, b is clearly tileable by T regardless of the
actual T .

In the end, we either obtain a complete solution, or the algorithm fails (no branch
reaches the trivial case). If the algorithm returns a solution, we can see that it will
indeed be correct. On the other hand, if a solution exists, we can gradually remove tile
instances from its top-left corner. This sequence of tile variants uniquely determines a
successful branch of recursive calls, which proves that the algorithm will find a solution
in this case.

The exponential time complexity is evident from the execution flow—we are recur-
sively traversing a virtual tree of subproblems with depth proportional to the size of
the board and branching factor dependent on the number of tiles and their variants.



2.3. ALGORITHM X 9

2.2.1 Tile variant selection strategies

In the algorithm above, we stated that we iterate over all variants of all tiles in each
recursive call. However, the order in which we enumerate the available tile variants may
affect the execution time for some solvable problem instances. Apart from the default
ordering, which respects the input tile order, we implemented three other selection
strategies: frequent first, which prefers tiles with the highest number of remaining tile
instances (thus preserving flexibility for later); rare first, which favors a lower number
of remaining tile instances instead; and the fill top row ordering, which selects the tile
variant that can cover as many top row unit squares as possible.

It should be emphasized that these strategies will make no difference for many
problem instances. For example, all strategies perform equally well on problem instances
with a single tile shape or problem instances with all tile counts equal to one (the only
exception is the fill top row strategy).

2.3 Algorithm X

The core idea of this approach is a conversion of the polyomino tiling problem to the
NP-complete [15] problem of finding an exact cover.

Definition 6 (Exact cover). Given a set X and a collection S of subsets of X, an exact
cover C of X is a subcollection of S that partitions X.

Put differently, X is exactly covered by C if each element of X is contained in
exactly one set included in C.

Donald Knuth formulated a relatively simple algorithm that enumerates the solutions
of an exact cover instance [11, 16]. In his work, Knuth calls the elements of X primary
items and the elements of S (i.e. sets of items) options. Furthermore, he introduces
secondary items—elements that should be covered by at most one set included in C

each (we can consider them optional). It is not difficult to see that this extension does
not change the problem hardness.

We can construct a matrix A of 0s and 1s with items as columns and options as
rows, where the value 1 means that the row’s option contains the column’s item and
the value 0 means the opposite. Knuth then provides [11] the search procedure listed in
algorithm 1. It is a simplified version of the algorithm which does not keep track of the
removed rows—if it did, we could return the successful row sets as solutions.

The nondeterministic choice of row r represents trying all the available options
sequentially, always with a fresh copy of the current matrix A (i.e. not affected by the
sibling nondeterministic branches). If column c contains only 0s, this branch of the
search yields no solutions.
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Algorithm 1 Knuth’s Algorithm X
If A is empty, the problem is solved.
Otherwise, choose a primary column c (deterministically).
Choose a row r such that A[r, c] = 1 (nondeterministically).
for column j in A such that A[r, j] = 1 do

Delete column j from A.
for row i in A such that A[i, j] = 1 do

Delete row i from A.
end for

end for
Repeat this algorithm recursively on the reduced matrix A.

The deterministic choice of c can be performed according to a heuristic function.
For example, Knuth suggests choosing the column with the fewest 1s in the current
matrix since such column can be viewed as “hard to cover” and requires only a small
number of rows r to be examined.

The main accomplishment of Knuth’s paper [11] is the concept of dancing links:
An elegant implementation of the (usually sparse) matrix A using doubly linked links,
which supports instant removing and reinserting of columns and rows.

2.3.1 Tiling problem translation

The translation of a tiling instance (b, T, r) to an exact cover instance is straightforward.
We introduce a primary item for each unit square of board b and a secondary item
for each instance of each tile. Subsequently, we add a single option for each possible
position of each variant of each tile instance: The option shall include all unit square
items covered by the instance’s board placement and the corresponding secondary item
of the tile instance.

If the Algorithm X identifies a correct exact cover, we have a tiling solution: Each
primary item is covered by exactly one option, which translates to each unit square
of the board being covered by exactly one tile instance; and each secondary item is
covered by at most one option, which implies that each tile instance is placed on the
board at most once. The other direction of the equivalence is analogous.

Moreover, we identified the following independent optimizations. Note that none of
these optimizations affects the problem solvability.

Optimization 1 (Omitting initial tile instance positions). The exact cover problem
statement size as well as the according search space can be reduced by enforcing that
the j-th instance of the tile ti can appear only on the j-th position on board or further
(with regards to a sensible position ordering, such as left-to-right and top-to-bottom),
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for each j ∈ {1, . . . , ci}. This can be achieved by omitting the relevant primary items
in the options.

Optimization 2 (Many tile instances). If there is a tile (ti, ci) for which the equation
|b| ≤ |ti| · ci holds (the tile has enough instances to cover the entire board area), we
can ignore the notion of tile instances. There is no need to encode that at most ci

instances can be utilized since no solution could possibly require more than ci instances.
In practice, this means we can act as if ci was one and skip the creation of the secondary
item. Since ci is usually large if the condition holds, this optimization eliminates a
considerable number of secondary items and redundant options.

Optimization 3 (Exact tile set). If |b| =
∑

i |ti| · ci (indicating that all instances of
all tiles must be used), we can replace all secondary items with primary items, hinting
that all items must indeed be covered exactly once rather than at most once. This
allows the solving algorithm to conclude that some branches lead to no solution sooner
(because of a primary column containing no 1s—such column would be ignored if it
was secondary).

2.3.2 Implementation

We implemented the translation algorithm with all the optimizations listed above.
To solve the exact cover problem, we decided to employ Knuth’s implementation

of Algorithm X [17] in order to minimize the possibility of implementing it incorrectly
or inefficiently ourselves (though several other implementations are available [18, 19]).
It was necessary to modify the code slightly, mainly to facilitate using it as a callable
function instead of as a command line tool. Even though the original implementation
searches for all solutions by default, it accepts a parameter specifying the solution count
limit (set to one by us).

It should be noted that Knuth lists several problems that can be reduced to the
exact cover problem in his work [11, 16], one of them being the problem of tiling 3× 20

rectangular board by the twelve distinct pentominoes (each used exactly once) with
reflections allowed. His translation matches our translation with opt. 3 applied; the
other two optimizations are not applicable to this tiling instance. Knuth adds a few
symmetry-breaking optimizations specific to the tiling instance (e.g. he fixes the rotation
of the 5V pentomino).

The exact cover solving approach is similar to our simple backtracking (described in
section 2.2) in the search structure, but there are a few differences: When choosing the
next unit square to cover, Algorithm X picks the unit square with the fewest possible tile
instance placements that can cover it, whereas simple backtracking covers the top-left
corner of the remaining portion of the board. Also, Algorithm X should have another
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performance advantage—the optimized data structures and procedures, thanks to the
dancing links technique. On the other hand, the encoding of tile counts larger than
one is rather cumbersome because of severe option duplication. Simple backtracking
handles these cases much more smoothly.

2.4 Conversion to the SAT problem

The boolean satisfiability problem, abbreviated as SAT, is the problem of deciding
whether a given boolean formula is satisfiable, in other words, whether there exists
an assignment of true and false values to the formula’s boolean variables (so-called
interpretation) resulting in the entire formula being true.

There are several high-quality solvers designed for solving SAT instances, such
as CaDiCaL [20, 21] or CryptoMiniSat [22, 23]. In practice, they are often very
powerful [24, 25] for solving a great range of constraint-based problems converted to
SAT instances. Likewise, we will design an algorithm to translate a tiling instance to a
SAT instance.

A literal is either a boolean variable or its negation. A clause is a disjunction
of literals. We say that a formula F is in conjunctive normal form (CNF) if it is a
conjunction of clauses:

F =
n∧

i=1

mi∨
j=1

li,j, (2.1)

where n ∈ N is the number of clauses, mi ∈ N is the length of the i-th clause and li,j is
the j-th literal in this clause.

SAT solvers usually require the input to be in CNF, hence we aim to produce a
formula in this form.

2.4.1 AMO translation

In the simplest translation approach, we will heavily use constraints of the form “at
most one of n literals should be true” and “exactly one of n literals should be true”.
Let us suppose that we have a way to express these constraints as sets of clauses (we
will explore the available implementations below). We will refer to the encodings as
AMO({x1, . . . , xn}) and EO({x1, . . . , xn}).

The translation is very similar to the exact cover translation described in section 2.3.
Let v be a variant of a tile ti. For each j ∈ {1, . . . , ci} and each possible position (dx, dy)

on the board b, let r(v, dx, dy, j) be the subregion of b occupied by the j-th instance of
v, where (dx, dy) are the relative offsets of top-left unit squares of b and the subregion.

Moreover, let x(v, dx, dy, j) be a boolean variable representing the statement “the
j-th instance of tile variant v is placed on the position (dx, dy) of the board b”.
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Now we can express all the tiling constraints as sets of boolean clauses:

1. “Each unit square is covered by exactly one tile instance.” Let s be a unit square
of b and let cover(s) be the set of all variables x(v, dx, dy, j) for which r(v, dx, dy, j)

covers the unit square s. The desired set of clauses is as follows:

F1 =
∧
s∈b

EO(cover(s)) (2.2)

2. “Each tile instance is placed on the board at most once.” Let placements(ti, j) be
the set of all variables x(v, dx, dy, j) where v is a variant of ti. The constraint is
then equivalent to the following set of clauses:

F2 =
∧

(ti,ci)∈T

ci∧
j=1

AMO(placements(ti, j)) (2.3)

The final formula in CNF is F = F1∧F2. We can see that if this formula is satisfiable,
then the tiling instance is solvable because all requirements in the definition 5 are fulfilled
(F1 implies the perfect partitioning of b; F2 ensures that for each tile ti, ci is not exceeded).
Conversely, if the tiling instance has a solution, the corresponding interpretation of
variables satisfies all the clauses.

Most SAT solvers can determine not only the satisfiability of a formula, but in case
it is satisfiable, they return a successful interpretation, too. It is straightforward to
transform such interpretation to a tiling instance solution—each variable x(v, dx, dy, j)

which is evaluated as true precisely identifies a placed tile in the solution.
Thanks to the resemblance between the AMO translation and the exact cover

translation, we can employ all opts. 1 to 3. Opts. 1 and 2 directly reduce the search
space, whereas opt. 3 provides additional information to the SAT solver that it cannot
easily deduce by itself. It should be noted that one could take the opposite approach—
instead of using the stricter EO constraint to express the second condition, the first
condition could be relaxed by using an at least one constraint. This change preserves
the translation correctness (if the assumption of opt. 3 is met) and shortens the
boolean formula, but it prolongs the execution time, presumably because of the missing
information that could otherwise be harnessed during the search process.

AMO and EO constraint encoding

A natural way how to express the AMO constraint is to state that for any pair of literals,
at least one of them is false:

AMO({x1, . . . , xn}) =
∧

1≤i<j≤n

¬xi ∨ ¬xj (2.4)
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Encoding the EO constraint is as easy as adding a clause requiring at least one of
the literals to be true:

EO({x1, . . . , xn}) = AMO({x1, . . . , xn}) ∧
n∨

i=1

xi (2.5)

We can see that this is indeed a set of clauses under conjunction and that it is true

if and only if exactly one of x1, . . . , xn is true.
However, a significant drawback of this encoding is the size of its output—there are

O(n2) clauses. Since we intend to use this encoding many times in our tiling problem
reduction, this could seriously harm the performance of SAT solvers.

Fortunately, there are more efficient encodings, such as the sequential encoding [26],
which produces only O(n) additional clauses, at the expense of n − 1 new auxiliary
variables.

When encoding AMO({x1, . . . , xn}) using the sequential encoding, we add auxiliary
variables y1, . . . , yn−1 and add binary clauses that force the following two properties to
be satisfied:

1. “There is j ∈ {0, . . . , n − 1} such that y1 = y2 = · · · = yj = false and yj+1 =

yj+2 = · · · = yn−1 = true.” We can secure this by adding implications of the form
yi =⇒ yi+1, which can be rewritten as clauses:

S1 =
∧

i∈{1,...,n−2}
¬yi ∨ yi+1 (2.6)

2. “If xi = true, then yi−1 = false and yi = true.” This can be expressed by adding
implications of the form xi =⇒ ¬yi−1 and xi =⇒ yi, which we can reformulate
as:

S2 = (¬xn ∨ ¬yn−1) ∧ (¬x1 ∨ y1) ∧
∧

i∈{2,...,n−1}
(¬xi ∨ ¬yi−1) ∧ (¬xi ∨ yi) (2.7)

We can now observe that the formula S1∧S2 does indeed enforce the AMO constraint
as a natural consequence of the fact that the false-true boundary among the auxiliary
variables can be present at most once. The first requirement secures the boundary
existence and the second requirement ties its position to the xi with the value true.

An example of the sequential encoding for n = 7 is provided in fig. 2.1. The gray
circles represent the input literals, the white circles represent the auxiliary literals and
the lines represent the binary clauses. A black square at the end of a line stands for a
negation of the adjacent literal. The boolean values inside the circles show one of the
satisfying interpretations.

There are several other AMO (and EO) encodings, such as the commander [27],
bimander [28], k-product [29], and binary [30] encodings, as well as articles comparing
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Figure 2.1: An example of the sequential AMO encoding

their properties [28]. Regarding the implementation in Tiler, the PBLib library [31, 32]
for encoding pseudo-boolean constraints (including AMO and EO) allows exploring
multiple encodings inexpensively in terms of our programming effort. It provides ready-
to-use implementations of all the AMO and EO constraint encodings mentioned above,
as well as the auto encoding that attempts to select the best encoding for the given
number of literals.

2.4.2 AMO-ordered translation

If a tile has only one tile instance available or if opt. 2 is in place, we do not need to
worry about the tile instance encoding overhead. However, if we encounter a tile with
several tile instances, the AMO encoding treats the tile instances as different pieces
(except for opt. 1), whereas in reality, the order of the tile instances does not matter. If
we enforce the order of their positions on the board, we can further reduce the search
space. Breaking the order symmetry is explicitly advised by some authors [33].

Fortunately, the sequential encoding of the AMO constraint can be extended effort-
lessly to enforce such ordering.

If we arrange the boolean variables xj,1, . . . , xj,n and yj,1, . . . , yj,n−1 representing the
placements of the j-th tile instance into a row for each j ∈ {1, . . . , ci} (similarly to
the arrangement in fig. 2.1), we can make two observations: Each row is shorter than
the previous row by one variable, because of opt. 1. Subsequently, adding implications
of the form yj,i =⇒ yj−1,i+1 enforces a condition similar to the first condition of the
sequential encoding. For each column in the auxiliary variable matrix, there are a few
true values followed by false values, which translates to “if a tile instance occupies
a position on the board, all the previous instances reside on previous positions on
the board”. This clause structure is orthogonal to the structure that encodes the first
sequential constraint.

We will call this tiling-to-SAT translation AMO-ordered. The boolean variables and
clauses encoding a single tile with four instances and seven possible board placements
are displayed in fig. 2.2. The scheme uses the same notation as fig. 2.1.
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Figure 2.2: An example of the AMO-ordered encoding

2.4.3 AMK translation

Despite the AMO-ordered translation being arguably elegant, it has a massive flaw: The
number of boolean variables required to encode all possible tile placements is multiplied
by the tile instance count ci, when in fact we only want to express that “the tile ti

is placed on the board at most ci times”. To encode such condition without a direct
introduction of tile instances on the level of non-auxiliary variables, we need to use a
more advanced encoding than AMO: the at most k encoding, which we will denote as
AMK({x1, . . . , xn}, k).

With this new weapon in our arsenal, the tiling constraints described in section 2.4.1
can be encoded as follows (with the obvious modification of x(v, dx, dy) and r(v, dx, dy)

which drops the concept of tile instances):

1. “Each unit square is covered by exactly one tile.” Let s be a unit square of b and
let cover(s) be the set of all variables x(v, dx, dy) for which r(v, dx, dy) covers the
unit square s. The desired set of clauses is as follows:

F1 =
∧
s∈b

EO(cover(s)) (2.8)

2. “Tile ti is placed on the board at most ci times.” Let placements(ti) be the set of
all variables x(v, dx, dy) where v is a variant of ti. The constraint is then equivalent
to the following set of clauses:

F2 =
∧

(ti,ci)∈T
AMK(placements(ti), ci) (2.9)

PBLib delivers three AMK encodings: BDD [34], cardinality networks [35] and auto
encoding (which tries to select the better of the former two for each input).
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This approach supersedes opt. 1, so it is no longer needed (or even possible to
encode). Opts. 2 and 3 are still in place.

2.4.4 Automated CNF symmetry breaking

Another potential improvement is breaking CNF symmetries generally. A CNF can be
symmetric under permutation or negation of some variables. Breaking such symmetries
can reduce the search space significantly, as we outlined in section 2.4.2.

One approach to breaking CNF symmetries in general is static preprocessing—
analyzing the CNF formula before solving and adding a few clauses that break some
or all CNF symmetries. One of the state-of-the-art symmetry breaking libraries is
BreakID [36, 37, 38].

BreakID converts the formula to a graph, attempts to search for graph automorphisms
and generates clauses that break them. This process induces some time overhead and
eventually expands the CNF by the added clauses, but the SAT solving time can be
greatly reduced for some input formulas thanks to this.

2.4.5 Implementation

Tiler’s SAT approach implementation includes all the options examined in this section.
This means that the user can select the SAT solver (either CaDiCaL or CryptoMiniSat),
the symmetry breaking provider (either BreakID or none) and the translation type
(either one of PBLib’s AMO encodings, or the AMO-ordered translation, or one of
PBLib’s AMK encodings). This exposes 40 configuration combinations, all of them
being available in Tiler.

2.5 Conversion to the ILP problem

Another famous problem that we will cover is linear programming, LP. A linear program
is a set of real-valued variables, a set of linear equalities and inequalities which act
as constraints that must be satisfied, and a linear objective function that is to be
minimized or maximized. The linear program can either be infeasible (in that case, the
objective function is of no importance), or the objective function is not bounded, or
there is an assignment of values to the variables that achieves the optimal objective
function value.

Additionally, if the variables are further limited to integer values, we call the problem
integer linear programming, ILP. Terms mixed integer programming (only some variables
are integers) and binary integer programming (the variables can only have values zero
or one) are sometimes used, too.
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Many optimization problems are linear in their nature and can thus be expressed as
a linear program. Even though weakly polynomial algorithms such as the interior-point
method have been developed, the simplex method is more efficient on some real-world
problems, despite its exponential worst-case time complexity [39].

On the other hand, integer linear programming is NP-hard. For example, SAT can
be converted to ILP by assigning a binary integer variable xi to each boolean variable,
constructing its boolean negation as 1 − xi and representing each CNF clause by a
linear inequality that sets the sum of the respective variables to be greater or equal to
one (forcing at least one variable to have the value one). The resulting linear program
is feasible if and only if the original boolean formula is satisfiable.

A commonly used ILP solving paradigm in practice is the branch and bound technique.
Suppose we are solving a minimization problem. The search for a minimal solution is
performed in recursive calls, traversing a virtual search tree. In each call, the integrality
requirement is relaxed and the obtained LP instance is efficiently solved. This provides
a lower bound for the objective function value in this branch, since no solution that
obeys the integrality requirement can yield a better objective function value. If the
lower bound is worse than a value achieved by a previously-known integer solution
(or the LP is entirely infeasible), we can safely backtrack to the parent call. If the
solution has integer values for all variables, we have a new minimal solution candidate.
Otherwise, we select a variable and create new child branches by adding opposite linear
inequalities, splitting the variable’s available interval into two. When the search is
completed, we either have a minimal solution, or we found no integer solution and
the ILP instance is infeasible. The procedure can be fine-tuned in many ways (e.g. by
careful selection of variables to branch on).

There are many advanced LP and ILP solvers on the market, such as an open-source
solver Cbc [40] (developed under the auspices of the non-profit COIN-OR Foundation),
or a commercial solver Gurobi [41].

2.5.1 Tiling problem translation

In section 2.4.3, we encoded the at most k constraints as boolean formulas. Such
constraints are trivial to express as linear equalities and inequalities, so we can easily
reformulate the AMK translation approach without the overhead caused by translating
the constraints into boolean formulas.

Namely, each placement of each tile variant v is assigned a binary integer variable
x(v, dx, dy). Each constraint of the form EO(cover(s)) from eq. (2.8) can then be
represented by the following linear equality:∑

xj∈cover(s)
xj = 1 (2.10)
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Similarly, each constraint of the form AMK(placements(ti), ci) from eq. (2.9) can
be rewritten as the following linear inequality:∑

xj∈placements(ti)

xj ≤ ci (2.11)

In this case, the objective function is irrelevant, we are concerned solely by the
feasibility of the resulting ILP instance. On the other hand, providing a meaningful
objective function might help the ILP solver when computing the bound of the current
branch. We suggest using the measure of board covering—the cumulative area of all
tile variants placed on the board:∑

v,dx,dy

|v| · x(v, dx, dy) (2.12)

If we task the ILP solver to minimize this value and the LP relaxation results in
this value being larger than the board size, the solver can stop exploring the branch
since it contains no solution.

Moreover, one can notice that when minimizing this value, the equality in eq. (2.10)
can be replaced by inequality

∑
xj∈cover(s) xj ≥ 1. When the solver deems the ILP

instance feasible and returns the minimal value, we need to verify that the returned
objective function value is equal to the board size. This value is equal to the sum of
the left-hand sides of eq. (2.10), which guarantees that the other inequality direction in
eq. (2.10) holds as well. In other words, if each unit square is covered by at least one
tile instance and all the tile instances cover precisely the area of the board, then no
unit square is covered by more than one tile instance.

All in all, we implemented the following tiling translation variants:

• eq-ign This is the original translation, with “= 1” in eq. (2.10) and no objective
function.

• eq-min Equation (2.10) contains “= 1”, but we also provide the objective function
from eq. (2.12) for the solver to minimize.

• geq-min Equation (2.10) is weakened to “≥ 1” and we minimize the objective
function from eq. (2.12).

• leq-max Being the opposite of geq-min, eq. (2.10) includes “≤ 1” and we task
the solver to maximize the objective function from eq. (2.12).

As in the AMK translation, we can apply opts. 2 and 3 (opt. 1 is not relevant, since
the tile instances are not encoded explicitly).
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2.5.2 Implementation

We interfaced Tiler with both Cbc and Gurobi. Due to Gurobi being proprietary
software (although free for academic use), building and using Tiler with Gurobi support
requires Gurobi to be installed on the hosting operating system.

Both Cbc and Gurobi provide many configuration options. Tiler supports running
the ILP solvers either with the default settings, or with a set of options determined
empirically by us on a few tiling problems. For the purpose of tuning the solver
settings, Gurobi features a convenient tool grbtune that tries several configurations and
recommends the best ones.

To sum up, the user of Tiler is able to select the desired ILP solver, the default or
adjusted solver settings and one of the tiling translation variants listed above.

2.6 Conversion to the CSP problem

The last domain we will examine is the realm of constraint satisfaction problems, CSP.
This term encapsulates many kinds of satisfaction problems over a set of variables and
constraints. The available constraint types vary in different contexts, but in general,
they are more diverse than boolean and linear constraints that define the SAT and ILP
problems discussed in previous sections.

Since the wider constraint palette provides greater flexibility and enables elegant
expressing of many problems, as a consequence, there are many ready-to-use CSP
modeling and solving tools. Arguably one of the most advanced toolkits is the MiniZinc
modeling language and solver interface [42, 43]. The MiniZinc language allows defining
boolean, integer and floating-point constants and variables, as well as arrays and sets
of constants and variables. It also offers many high-level constraints, ranging from
simple counting constraints to high-level scheduling and graph constraints. It supports
expressions with universal or existential quantifiers, too.

The MiniZinc executable’s input comprises a model file, which declares constants,
variables and constraints, and a data file, which defines the constant values (alternatively,
they can be inlined in the model file). After model and data validation, MiniZinc
performs a step called flattening—compiling the model into a low-level language FlatZinc.
The FlatZinc file is then passed to a CSP solver that supports the FlatZinc format. The
MiniZinc binary package bundles several such solvers, e.g. Gecode [44], Chuffed [45] and
Cbc [40], or the user can pass the file to a third-party FlatZinc-capable solver. When
the solver manages to assign values to all variables, the values are returned to MiniZinc
and subsequently presented to the user in an output format that can be specified in the
model file.

The main advantage of this approach is the possibility to add new MiniZinc constraint
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definitions without the need to update the underlying CSP solvers. Conversely, adding
a new solver requires only implementing the limited number of FlatZinc features instead
of the entire MiniZinc interface.

2.6.1 Tiling problem translation

Thankfully, MiniZinc exposes the geost constraint proposed by Beldiceanu et al. [46],
which receives object shape definitions and ensures that no two objects overlap. It is
designed to work in any number of dimensions; however, we are interested only in its
two-dimensional form.

The geost constraint can be used to encode a variety of packing problems and
polyomino tiling surely belongs among them. When using it, we must provide the
following input data:

• Rectangle sizes. We define the shapes by decomposing them into rectangles, so
this array holds the rectangle sizes. To simplify the translation, we will decompose
the shapes into unit squares, so all sizes will be 1× 1.

• Rectangle positions. The offsets of the rectangles (or in our case, unit squares)
from the origin of the coordinate system. We list all unit squares of the board’s
bounding box—if there is a tile variant that would require more unit squares in
some direction, it would not fit inside the board, and therefore can be ignored.
Some of the unit squares may be unused, but it should not affect the solving
performance noticeably.

• Shape definitions. Each shape is defined as a set of rectangles (specified as indices
of rectangles in the previous two arrays). In our translation, we create a shape
for each tile variant.

Besides the input data, geost takes two arrays of variables describing the geometric
objects, which are then restricted by geost to forbid overlaps (so they serve as a ‘return
value’):

• Object shapes. An array of integer variables, where each variable represents a
tile instance and is assigned a shape (index of a shape in the array of shape
definitions).

• Object positions. An array of coordinate variable pairs, where each pair is assigned
offsets from the origin of the coordinate system.

Apart from utilizing geost to prohibit object overlaps, we need to enforce two more
restrictions. Firstly, we must ensure that the tile instance count ci is obeyed for each
tile (since geost could assign e.g. the same shape to all objects). This can be easily
achieved by providing the allowed shapes for each object (i.e. tile instance) and adding
a forall constraint to state that for each object, its shape must be one of the allowed
ones.
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Secondly, we need to encode the board shape somehow, since the geost constraint
by itself could scatter the objects anywhere over the virtually infinite plane. For this
purpose, we can employ the geost_bb modification of geost, which also forces all
objects to be placed inside of a bounding box with the specified width w and height h.
If our board has a rectangular shape, using geost_bb by itself is enough. If the board
is not a rectangle, we need to ensure that the w · h− |b| unit squares missing from the
board’s bounding box will remain empty. We can achieve this by adding w · h− |b| new
objects and fixing their shape to a single unit square and their positions to match the
empty unit square positions.

This trick allows us to express that all unit squares are covered implicitly by simply
enforcing that all tile instances are placed on the board. Unfortunately, it brings a
disadvantage—this approach is applicable only to tiling problems with no redundant
tile instances.

Regarding optimizations, the translation could be enhanced by adding constraints
to encode opt. 1 (or even stronger, by enforcing the order of all instances for each
tile); opt. 2 is not applicable to this approach; and opt. 3 is included in the fact that
this approach supports only problems where all tile instances are used. Additionally,
decomposing the shapes into rectangles instead of unit squares could improve the
performance, too.

Alternative translations

The world of constraint solving is vast and therefore, it is no surprise that there are
other ways to model polyomino tiling problems. Apart from models that essentially
recreate the approaches we used in the previous section, there is at least one unique
strategy worth mentioning, proposed by Lagerkvist and Pesant [47, 48]. They present a
clever encoding of tiling problems as regular expressions, which can be solved by many
CSP solvers, including MiniZinc. We believe that this approach deserves a closer look
in future approach comparisons.

2.6.2 Implementation

We implemented the MiniZinc model described in section 2.6.1, utilizing the geost_bb

constraint and decomposing shapes into unit squares. The model file can be found
in appendix A in the solvers/csp/minizinc_models.hpp file. Although MiniZinc is
intended to be used as a standalone command line tool, its authors made some effort to
enable utilizing it as a callable library in C++ programs [49]. However, the library still
requires reading many files with MiniZinc constraint definitions as the first step when
solving, which adds a constant time overhead in the order of fractions of a second.

As the underlying CSP solver, Tiler currently supports Gecode, Chuffed and Gurobi.
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Results

In this chapter, we will present a hand-picked set of tiling problem instances and use
them as a benchmark for measuring the speed of execution of our algorithms. Based on
the results, we will select one solver configuration for each solving approach to represent
the entire group of approach configurations. Finally, in sections 3.3 and 3.4, we will
compare the performance of the representants on two interesting groups of problem
instances—instances with many unique tile shapes and instances that can be proved to
be unsolvable by coloring invariants.

3.1 Benchmarking problem instances

There are many tiling instance classes: Trivial ones, such as tiling a small board by
the monomino; bigger instances with a compact board and many different tile shapes;
intricate boards with ad-hoc tiles; instances with an elegant proof of the tiling non-
existence; non-tileable instances where no such proof is known; and so on. When
selecting problems, we strived to capture a wide range of problem types, but also
to provide a problem instance in several sizes where possible (usually by scaling the
board size). We included some instances published by Golomb [12] and Martin [50] (a
detailed list of these instances can be found in README.md in appendix A). Altogether,
we collected more than 200 problem instances. Each instance is stored in a file under
the problems directory. The instances are grouped into subdirectories by their tile set
characteristics and their file names hint at the board shape or other instance attributes.
In the following text, we will identify problem instances by their file paths. As a visual
aid, each file name ends with either _s if the instance is solvable or _u if it is unsolvable.

To streamline the benchmarking process, we used the Benchmark library created
by Google [51]. It handles measuring the execution time for each problem/solver
combination (that can be filtered conveniently by a regular expression) and repeats the
measurement several times for enhanced accuracy if the execution time is too short. It

23
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saves all the measurement data to a JSON file and continuously prints the results to
the console.

We also created a Python script to either visualize the measured data as interactive
plots or save the plots as image files. The JSON data file and several plots are attached
in appendix B. Due to the exponential nature of tiling problems, the y-axis with
execution durations uses a logarithmic scale.

3.2 Selecting approach representants

In order to compare the approaches efficiently, we will review each solving approach
and select a solver configuration to represent it. We will discuss the differences between
configurations in each group briefly. Appendix B provides the plots corresponding to
each of the following subsections.

3.2.1 Simple backtracking and Algorithm X

Currently, Tiler implements four backtracking configurations, differing in the tile
selection strategy: the default, which follows the input tile order, and the frequent first,
rare first and fill top row strategies. On most problem instances in our collection, the
non-default strategies bring no benefit—for example, if each tile has only one available
instance, all the strategies except for fill top row behave the same. In fact, the non-
default strategies are almost always slower than default by some factor, because they
waste a portion of their execution time on selecting the next tile (essentially, sorting
the tiles in each recursive call), whereas the default strategy omits this step entirely.
Even though there are problems where a non-default strategy helps significantly (e.g.
mixed/1-3I-11x11_s), we decided to select the simple_default solver configuration
that implements the default strategy as the representant of our simple backtracking
approach, since it has the best performance on almost all instances that we examined.

The Algorithm X approach (labeled as dlx based on Knuth’s DLX abbreviation
of the dancing links technique) usually performs similarly to simple_default. There
are, however, problem instances where one or the other performs much better: Most
notably, dlx always tries to cover the unit square with the fewest possible tile instance
placements that can cover it, which enables dlx to solve the instances in the 3L/L-02

family easily, whereas simple_default examines many more unviable placements. To
the contrary, tiles with higher tile instance counts are unnatural for dlx and introduce
unnecessary symmetry, so problem instances such as mixed/4Os-4T-06x06_u are better
suited for simple_default.

Because of the differences, we will not collapse simple_default and dlx into a
single representant, we will evaluate them separately instead.
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3.2.2 Conversion to the SAT problem

Before we dive into comparing the configurations, it should be noted that on the
instances with a single tile shape and different board sizes, the execution times of an
individual configuration always form a smooth, increasing curve, so it is easy to compare
the configurations with each other. However, on problem instances with no size scaling,
the performances are rather unstable and there is usually no clear winner among the
configurations. We will try to select an overall good configuration to represent the SAT
approach.

As described in section 2.4.5, we implemented 10 different translation types: AMO
translations (amo-auto, amo-seq, amo-bimander, amo-commander, amo-kproduct and
amo-binary), the AMO-ordered translation, and the AMK translations (amk-auto,
amk-bdd and amk-card). In general, AMO translations perform worse then AMK
translations on problem instances with tile counts bigger than one (as expected). This
difference is wiped by opt. 2 on problem instances where it is applicable. Even though
there are a few cases where an AMO translation performs exceptionally well (such as
the sat_cms_no-breaker_amo-commander solver on many-unique/4r-5r-04x20’_s),
they are rather inferior on other problem instances, therefore we believe that amk-card
is a “safe bet” when selecting the SAT representant.

Regarding the underlying SAT solver selection, CaDiCaL and CryptoMiniSat perform
comparably on most problem instances.

To our surprise, adding the BreakID symmetry breaker harmed the performance of
all configurations. Some translation types were more affected than others, but based
on a few manual experiments conducted by us, the pattern seems to be always the
same: BreakID spends some time searching for symmetries, then it either adds a few
symmetry-breaking clauses or not, and then SAT solving occurs, with no performance
benefit when compared to the alternative without BreakID. It is not clear to us what is
the culprit of this issue (e.g. whether tiling problems are not a good fit for BreakID in
general, or some other reason), but without further investigation, using configurations
without BreakID is always a better idea.

Given the observations above, we selected sat_cadical_no-breaker_amk-card as
the SAT representant.

3.2.3 Conversion to the ILP problem

Like the SAT configurations, the ILP configurations tend to have unstable performance
on some problem instances; for example, setting a different seed for the solver’s random
number generator can affect the execution time massively. However, the Gurobi solver
appears to suffer from this instability less than Cbc, which can be seen mainly on the
instances from the many-unique class. Additionally, Gurobi’s execution durations are
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almost always lower than Cbc’s, in line with Gurobi’s better expected performance due
to its commercial funding. Both solvers have a constant time overhead of approximately
one millisecond on all problem instances (including trivial ones).

From the four translation variants we implemented—eq-ign, eq-min, geq-min, and
leq-max—the variants with equality perform better most of the time, so providing
more information to the solver turns out to be helpful once again. The eq-ign and
eq-min variants are almost identical in their performance.

The last attribute of the ILP configurations is whether to keep the default solver
parameters or choose the adjusted ones. Using the adjusted parameters with Cbc helps
on some problem instances but does the opposite on other instances. Searching for the
ideal parameter adjustments is therefore a tedious and tricky task. On the other hand,
Gurobi provides the grbtune tool to automate the process, so using the parameters
recommended by this tool either preserves or improves the execution times consistently,
but only by a relatively small factor (this may however mean that the Gurobi’s default
parameters are already excellent for our problem).

The ilp_gurobi_adjusted_eq-ign now seems to be a solid representant of the
ILP approach.

3.2.4 Conversion to the CSP problem

As we discussed in section 2.6, MiniZinc’s design allows for great flexibility on both
sides: Its users can utilize the expressive MiniZinc modeling language and the broad
palette of available constraints, and the CSP solver developers need only to support
the primitive FlatZinc input language. The central step performed by MiniZinc is the
translation between the MiniZinc and FlatZinc languages.

Unfortunately, this approach turned out to be unfit for our tiling model. For many
problem instances, the MiniZinc-FlatZinc translation took an unreasonable amount of
time and the generated FlatZinc model was immense. To illustrate the scale of this
issue, appendix A provides the csp-demo directory with a set of example files. The
example problem instance is a 3× 12 board with 10 small tiles, which is solved by all
other solving approaches in tens of milliseconds. Sadly, the flattening process lasts
tens of seconds instead, and the produced FlatZinc file contains tens of thousands of
variables and constraints.

Even if we decompose the tiles into rectangles instead of unit squares (as mentioned
in section 2.6.1; the revised model is attached in csp-demo/rectangles.mzn), the
terrible execution time improves only by a factor of two. We did not discover an easy
way how to improve the model significantly. The geost constraint implementation uses
nested forall statements heavily to ensure no overlaps, which could explain the size of
the generated FlatZinc file and possibly the long flattening duration.
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Even though some CSP solvers are able to solve the massive FlatZinc model
reasonably quickly (e.g. Chuffed can solve the example problem instance in approximately
two seconds), the slow flattening step effectively disqualifies this approach from our
benchmarks. Further investigation would be necessary to evaluate whether it is possible
to make MiniZinc viable when solving polyomino tiling problems.

3.3 Case study: Many unique tiles

Perhaps the most commonly presented polyomino instances are the ones we will focus
on in this section: Their tiles have many different polyomino shapes, each of them being
available as a single tile instance. Furthermore, the boards of these problem instances
are typically rectangles, skewed rectangles, or other visually appealing shapes, and the
instances are usually solvable. A solution of one such instance is pictured in fig. 3.1.

Figure 3.1: A solution of many-unique/2-3-4-5-06x21_s by the dlx solver

In section 3.2, we selected the four approach representants: simple_default, dlx,
sat_cadical_no-breaker_amk-card, and ilp_gurobi_adjusted_eq-ign. Figure 3.2
displays their execution times on the problem instances selected for this comparison.
It is easy to notice that simple_default and dlx are visibly correlated and on the
same performance level, making them almost interchangeable in this context. On the
other hand, the SAT and ILP solvers are slower roughly by a factor of 100 on most
instances. This difference can be explained by a few speculations. Most likely, the
reason for the slowdown is the fact that simple_default and dlx carry out the search
quite efficiently, so SAT and ILP can perform a similar search at best, but they bear an
approach-specific overhead. For instance, a unit square being covered by exactly one
tile is intrinsic to simple_default and dlx, but the SAT solver has to work through
many clauses that encode the EO constraint.

Interestingly, the three unsolvable problem instances were considerably harder for
simple_default and dlx (since there was no way for them to quickly find one of
the solutions), but posed no particular obstacle to the SAT and ILP solvers, so the
performances of the four approach representants were closer to each other on these
problem instances.



28 CHAPTER 3. RESULTS

m
a
n
y
-
u
n
i
q
u
e
/
2
-
3
-
4
-
5
-
0
3
x
4
2
_
s

m
a
n
y
-
u
n
i
q
u
e
/
2
-
3
-
4
-
5
-
0
6
x
2
1
_
s

m
a
n
y
-
u
n
i
q
u
e
/
2
-
3
-
4
-
5
-
0
7
x
1
8
_
s

m
a
n
y
-
u
n
i
q
u
e
/
2
-
3
-
4
-
5
-
0
9
x
1
4
_
s

m
a
n
y
-
u
n
i
q
u
e
/
4
r
-
5
r
-
0
4
x
2
0
’
_
s

m
a
n
y
-
u
n
i
q
u
e
/
4
r
-
5
r
-
0
5
x
1
6
’
_
s

m
a
n
y
-
u
n
i
q
u
e
/
4
r
-
5
r
-
0
8
x
1
0
’
_
s

m
a
n
y
-
u
n
i
q
u
e
/
5
-
0
3
x
3
0
_
s

m
a
n
y
-
u
n
i
q
u
e
/
5
-
0
5
x
1
8
_
s

m
a
n
y
-
u
n
i
q
u
e
/
5
-
0
6
x
1
5
_
s

m
a
n
y
-
u
n
i
q
u
e
/
5
-
0
9
x
1
0
_
s

m
a
n
y
-
u
n
i
q
u
e
/
5
r
-
0
3
x
2
0
’
_
s

m
a
n
y
-
u
n
i
q
u
e
/
5
r
-
0
4
x
1
5
’
_
s

m
a
n
y
-
u
n
i
q
u
e
/
5
r
-
0
5
x
1
2
’
_
s

m
a
n
y
-
u
n
i
q
u
e
/
5
r
-
0
6
x
1
0
’
_
s

m
a
n
y
-
u
n
i
q
u
e
/
5
r
-
H
-
0
8
x
0
9
’
_
s

m
a
n
y
-
u
n
i
q
u
e
/
5
r
-
d
i
a
m
o
n
d
’
_
u

m
a
n
y
-
u
n
i
q
u
e
/
5
r
-
f
c
r
’
_
s

m
a
n
y
-
u
n
i
q
u
e
/
5
r
-
h
s
k
e
w
-
0
6
x
1
0
’
_
u

m
a
n
y
-
u
n
i
q
u
e
/
5
r
-
p
l
u
s
’
_
u

m
a
n
y
-
u
n
i
q
u
e
/
5
r
-
s
i
d
e
w
a
y
s
’
_
u

m
a
n
y
-
u
n
i
q
u
e
/
5
r
-
s
k
e
w
-
0
3
x
2
0
’
_
s

m
a
n
y
-
u
n
i
q
u
e
/
5
r
-
s
k
e
w
-
0
4
x
1
5
’
_
s

m
a
n
y
-
u
n
i
q
u
e
/
5
r
-
s
k
e
w
-
0
5
x
1
2
’
_
s

m
a
n
y
-
u
n
i
q
u
e
/
5
r
-
s
k
e
w
-
0
6
x
1
0
’
_
s

problem

100

101

102

103

104

105

ti
m

e
(m

s)

solver

simple_default

dlx

sat_cadical_no-breaker_amk-card

ilp_gurobi_adjusted_eq-ign

Figure 3.2: Many unique tiles: the benchmarking results

3.4 Case study: Coloring invariants

Another fascinating group of polyomino tiling instances are the unsolvable instances with
coloring proofs. These instances usually include only one or two tile shapes. A generally
known instance is the mutilated chessboard problem (2/corners-10x10_u), which asks
whether dominoes can tile a 10 × 10 chessboard1 without two diagonally opposite
corner unit squares. The board is large enough to impair any kind of backtracking
search, but fortunately, there is another approach we can utilize: If we apply the classic
checkerboard pattern to the board, every domino placement will cover exactly one black
and one white unit square (this is the so-called coloring invariant), as shown in fig. 3.3a.
This implies that the number of black unit squares that are covered will always be

1Other even dimensions could be used instead.
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(a) 2/corners-10x10_u (b) 3I/L-square-05x10_u

(c) 4I/10x10_u (d) 4L/10x10_u

Figure 3.3: Coloring invariants of selected tiling instances

equal to the number of white unit squares that are covered. However, the number of
the board’s black and white unit squares is different (since the two removed corner unit
squares had the same color), which means that the board cannot be tiled by dominoes.

There are many other instances where coloring arguments are applicable. In our
comparison, we included three more instances, all of them being displayed in fig. 3.3.
The 3I/L-square-05x10_u instance can be proved unsolvable by using three colors in
a diagonal pattern. As before, each tile covers one unit square of each color regardless
of the tile’s position and rotation, but the board holds different numbers of unit squares
of each color (in fig. 3.3b, the unit square counts are 26, 25, and 24).

Another colorable instance is 4I/10x10_u, which can be solved by using a checker-
board pattern with squares of size 2× 2 unit squares. This coloring produces a different
number of black and white unit squares, while the tiles can still cover only the same
number of black and white unit squares.

The last instance we will consider is slightly different from the previous ones. The
4L/10x10_u instance uses a coloring consisting of black and white stripes, so the number
of black and white unit squares on the board is the same this time. The coloring is not
exactly an invariant with regards to the “L”-shaped tile: Each tile placement covers
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Figure 3.4: Coloring invariants: the benchmarking results

either three black and one white unit square, or the other way around. If we managed
to place half of the tiles such that they cover three black unit squares and the other
half of the tiles to cover three white unit squares each, there would be no contradiction
to harvest. However, the number of tile instances is odd (25 in the case of a 10× 10

board), which means that the tiles will necessarily cover a different number of black
and white unit squares, and the problem instance is indeed unsolvable.

For each of the four instance types, we included several board sizes. We could only
use the sizes 4× 8 and 5× 10 for the 3I/L-square family, because 6× 12 is trivially
solvable and 7 × 14 is too large for most solvers. The benchmarking results of the
approach representants are shown in fig. 3.4.

The performance of simple_default and dlx solvers matched our expectations:
Their execution times grew quickly with the increasing board size in an exponential
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manner.
The SAT approach had similar characteristics, although it had a less steep growth

asymptote (at least on the first and third instance family). While further investigation
would be needed to pinpoint the reason for this, it shows us that there are problem
instances better suited for SAT than for simple_default or dlx, in contrast with the
results in section 3.3.

Strikingly, the ILP solver exhibited fundamentally different results. Despite its
longer startup time, its performance on bigger board sizes of the first three instance
families was still in the order of milliseconds!

After inspecting Cbc and Gurobi solver logs, it turns out that they never execute
the branch and bound search procedure—they claim the problem instance infeasible
after solving the initial relaxed linear program.

This leads us to the explanation: The linear relaxation of our integer linear program
allows the tile instances to be placed partially on several different board positions (for
example, an instance could be placed on a position with the weight of 0.8 and on a
different position with the weight of 0.2). However, the coloring argument holds even
for this relaxed problem. Each tile instance still covers the same black area and white
area, which is in contradiction with the board having different numbers of black and
white unit squares. Since the relaxed problem is infeasible, the ILP solvers can detect
the infeasibility quickly and declare the entire problem unsolvable.

Thanks to this, even instances with a 100×100 board (which translates to thousands
of variables and constraints) can be solved in seconds or less.

Sadly, this impressive performance is not retained on the fourth problem instance
family. Indeed, if we allow non-integer placements, the odd number of tile instances is
of no use, since one tile could be equally much on two positions, one predominantly
black and one predominantly white. Because of this, the ILP solvers must perform the
branch and bound procedure, which results in their performance being comparable to
the other three solving approaches.





Conclusion

We implemented five solving approaches (simple backtracking, Algorithm X, and
conversions to SAT, ILP and CSP) in several configurations each. We created a
collection of tiling instances and used them to compare the performance of the solving
approaches.

Overall, the execution times depend strongly on the specific problem instance. The
CSP approach appears to be too inefficient due to the design of the MiniZinc toolkit that
we decided to use. The traditional approaches—simple backtracking and Algorithm X—
perform better than SAT and ILP on problem instances with many unique tile shapes.
On the other hand, translation to SAT often outperforms the traditional approaches on
unsolvable instances with a single tile shape, and ILP solvers even manage to discover
coloring invariants on some instances and thus solve them instantly.

Our work provides several opportunities for further research: One could focus on
any particular approach and explore the possible ways how to optimize it even more.
The CSP approach deserves special attention since the world of constraint solving offers
many other tools and methods that could perhaps result in a much better performance.

Ultimately, we identified at least one tiling instance with a coloring invariant that
cannot be exploited by an ILP solver. Such instances are easy to solve for a human
(thanks to the coloring invariants), but none of our solvers is capable enough to solve
them quickly. Therefore, crafting an algorithm that could recognize more coloring
invariants would be a great contribution to our portfolio of solving approaches.
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Appendix A

Tiler source code

The electronic attachment contains the source code of the Tiler polyomino tiling solver
and a collection of problem instances. Tiler’s dependencies are not included; the steps
how to obtain them and build Tiler are provided in README.md.

The same code is also published on https://github.com/davidmisiak/tiler.
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Appendix B

Benchmarking results

The electronic attachment contains the benchmarking measurements in the JSON
format produced by Google’s Benchmark library. We ran all solver configurations
(except for the CSP approach, see section 3.2.4 for explanation) against all problem
instances collected in appendix A. Furthermore, we visualized the measured execution
times (displaying a related group of solvers at a time) and attached the plots as PDF
files.
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