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Abstrakt

Táto práca sa zaoberá modifikáciou kódu bežiaceho procesu bez nutnosti reštartovania,
nazývaným aj ako aplikovanie záplat. Analyzujeme a opíšeme možné prístupy apliko-
vania záplat s využitím nástroja GDB, pričom sa zameriame na operačný systém Linux
a procesorovú architektúru x86-64. Vychádzame z existujúcich navrhnutých postupov,
pričom navrhneme možné vylepšenia a rozšírime funkcionalitu. Popíšeme navrhnuté
a implementované rozšírenie pre nástroj GDB umožňujúce vykonávať záplaty kódu
programu počas jeho behu. Rozšírenie zároveň obsahuje mechanizmus umožňujúci sle-
dovať vykonané zmeny počas života procesu ako aj vrátenie procesu do jeho pôvodného
stavu. Vyhodnotíme funkčnosť tohto rozšírenia a navrhneme jeho možné vylepšenia.

Kľúčové slová: aplikovanie záplat, GDB, Linux, metadáta
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Abstract

This thesis deals with modification of a process code without the need to restart the
process which is also known as applying live patches. We analyze and describe ways to
perform live patching using GDB debugging tool targeting Linux operating system and
x86-64 architecture. We base our work on existing approaches and propose potential
improvements and additional features. We implement an extension for GDB allow-
ing to perform process code modification at runtime including function replacement,
tracking patching activity throughout the process lifetime and restoring the process to
its original state. We evaluate the functionality of the extension and propose potential
future improvements.

Keywords: process live patching, GDB, Linux, patch metadata
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Introduction

Once a process has started, it is usually unwanted to modify its code since it may lead
to a crash or an undefined behavior. However, in some cases the code modification at
runtime might be useful. Imagine a program containing a bug that has been running
for a long period of time. Fortunately, the bug has not caused any damage yet but it
might in case it is left unsolved. In order to deal with this issue, one could recompile
the debugged source code and restart the program. This way, the whole process would
start over and the entire progress would be lost. This is when live patching comes into
play allowing to inject the fixed function code into the process, while retaining the
process’s state.

In terms of live patching, we usually have to make some assumptions, the most
obvious ones being the target architecture and the operating system. For example, not
all architectures allow to modify the code which is being executed. We focus on x86-64
platform which uses von Neumann architecture, meaning that code and data occupy
the same address space. Therefore, the code can be accessed in the same way as the
program data.

We base our research on existing solutions, most notably Modification of process
code at runtime [12]. Our thesis deals with design and implementation of a tool on the
top of existing GDB tool for x86-64 Linux, capable of live patching process code.
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2 Introduction



Chapter 1

Linux processes and dynamic linking

1.1 Linux processes

Every time a programmer writes a piece of code and wants to run it, a compiler or an
assembler is used to generate a binary file containing executable machine code. Once
compiled, the executable can be mapped into memory address space in order to run. A
process is a running instance of a program. In UNIX systems, a new process is created
using a pair of system calls. Firstly, fork creates a copy of the calling process and exec

replaces the image of the newly created process with the executable which is passed
as a parameter. Linux kernel stores data necessary to manage process resources. This
data is stored in a structure located inside the kernel space. The structure’s name is
PCB which stands for process control block. It contains contents of registers, page
tables, a process file descriptor table, and so on.

Process virtual address space is split into so called virtual memory areas. These
areas then map directly to physical memory. Since x86-64 implements memory paging,
a continuous region in virtual memory address space does not necessarily map to a
continuous region in physical memory. Since x86-64 platform belongs to von Neumann
architecture family, code and data share the same address space. Moreover, every
memory page comes with read, write and execute permissions. Operating systems
usually allow to set these permissions via system calls. On Linux, this can be achieved
by executing mprotect system call. Linux offers yet another system call named ptrace

which provides a means by which one process (the "tracer") may observe and control
the execution of another process (the "tracee"), and examine and change the tracee’s
memory and registers [7]. Not to mention, ptrace can bypass the lack of write or read
page permissions provided the calling process has appropriate privileges. This means
that we do not need to bother with setting page access permissions when using ptrace

to access memory of another process.
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1.2 Dynamic linking

The output of a compiler is an object file. This binary file contains machine code,
program data and other metadata. Object file format used in UNIX systems is ELF.
Programs usually consist of multiple object files called modules, with each containing
its own code and data. The modules need to be eventually linked together into one
executable file. A program called linker, used for this purpose, is usually packed with
the operating system. GNU linker can be invoked using ld command on Linux. Most
compilers such as gcc directly invoke it after creating object files, unless explicitly
specified not to do so by the user. Modules that are often reused in different programs
are called libraries. An example is standard libc library available on Linux. There
are two main approaches when it comes to linking libraries to the main program.

The first one is called static linking. All relocations of symbol addresses are resolved
at compile-time without further need of any modifications. The output file represents
the full program image. This, however, results in a larger size of the final executable
since all library data and code are packed into the executable file. This approach
consumes more disk space since many copies of the same code are stored in the file
system if the same library is used by different programs. Fortunately, there is a more
sophisticated solution used more frequently in modern operating systems.

Dynamic linking is a technique which links libraries to the executable at runtime.
This procedure is carried out by the dynamic linker. The dynamic linker is the first
program to be loaded into memory address space working as an interpreter for the
main program. It is loaded by a program called loader. Its tasks include determining
and loading dependencies, relocate the application and all dependencies and initial-
ize the application and dependencies in the correct order [4]. This approach allows
to perform lazy binding. Rather than linking libraries at compile-time, the compiler
generates a special section named .plt. This section contains code used to invoke
the dynamic linker and is executed once a function from a shared library has been
called for the first time. Table .got.plt, stored in a special section, contains an entry
for each dynamically linked function referenced in the program. The dynamic linker
loads the corresponding object file into process’s memory address space and fills in
the .got.plt table entry with the real address of the newly loaded function. This
ensures that the newly loaded function is executed the next time it is called in the
program. This approach, however, puts restrictions on the dynamic libraries. They
must be compiled as position-independent so that the dynamic linker can place them
on any address without the need to perform any relocations except for global variables.
Rather than using instructions with absolute address mode, a compiler generates code
using instructions using relative address mode. This means that a memory address of
operands is computed relatively from the current value stored in the instruction pointer
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register (RIP) while executing the instruction. Platform x86-64 encourages use of this
mechanism because both jmp and call instructions use relative address mode.

ELF format contains several sections which are mapped into memory address space
once the module gets loaded. These are .text, .bss, .got to name a few. Moreover,
gcc allows to define custom sections with the variable attribute [8]:

__attribute__((section("section_name")))

This attribute orders gcc to place the variable in the specified section.
Library glibc provides dlopen function which loads the object file whose path is

specified as an argument. Obviously, the object must be a shared library. A handle for
the library is returned or NULL in case of an error. The dynamic linker tracks a reference
count for each opened library. This value is incremented every time dlopen is called
for the same library path. On the other hand, once dlclose is called with the handle
returned by dlopen, the reference count is decremented. As soon as the reference count
reaches 0, the library gets unmapped from the process address space. Function dlopen

takes an additional integer parameter containing flag values. Operation OR can be used
to combine several flags and pass it to dlopen. Flag RTLD_NOLOAD might be useful since
it can be used to test whether a library is loaded. If it is loaded, its handle is returned,
otherwise the return value is NULL. This could be used to obtain the library handle of
an already opened shared object. The problem is, even if the library is already opened,
after calling dlopen with RTLD_NOLOAD flag, the library reference count is incremented
nevertheless. Therefore, this approach is not optimal for testing if libraries are opened.

The set of functions for dynamic libraries manipulation contains yet another useful
function called dlsym. It can be used to retrieve the address of a symbol from the
dynamic library once it gets loaded. The arguments are the handle for the library
returned from dlopen and a pointer to a string representing the symbol name. The
return value is either the address of the symbol or NULL when the symbol cannot be
found or an error occurs.

The last function to mention from dl family is dlerror. It takes no arguments and
is used for diagnostic purposes. This function returns a string specifying the error type
of the last operation performed by the above-mentioned functions.

Last but not least, gcc is able to recognize a constructor function which is called
right after the object file gets loaded. This can be achieved by prefacing the constructor
function name with attribute __attribute__((constructor)). It should be noted
that this feature is gcc specific.
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Chapter 2

Related work

Application of live patches was explored in thesis Modification of process code at run-
time [12] resulting in an implementation of a tool named bakatsugi that can replace
both user-defined and library functions with newly defined ones. The project was
mainly written in Rust programming language with x86-64 assembly and C modules.
This work focused on GNU/Linux operating system running on x86-64 platform. Let
us take a look at a brief overview of the implementation of this tool. To stop and
seize control of the running process, bakatsugi uses ptrace system call. It uses shared
memory and a set of protocols to communicate with the target process via UNIX sock-
ets. Function dlopen mentioned in section Dynamic linking is used to load libraries
containing newly defined functions. The tool searches the target process’s memory
mappings to find this function. When it comes to the function replacement, the whole
function’s code cannot simply be overwritten by the replacement one. The original
function has a certain length and the replacement function may not fit in the space
allocated for the original function. Restrictions on a function’s length are undesirable
which means that this solution is unacceptable. Therefore, a more promising solution
is used in bakatsugi - trampolines. The idea behind a trampoline is that we only need
to overwrite the first few bytes of the beginning of the original function to pass on the
control flow to the replacement function. The x86-64 jump instruction is used for this
purpose.

Of course, patching functions in dynamically linked libraries is a very different task.
The compiler generates a procedure which allows shared libraries to be linked to the
executing binary on the fly described in section Dynamic linking. All that needs to
be done is to write the address of the replacement function into the corresponding
entry of the .got.plt table. Additionally, this solution comes with no time penalty as
opposed to patching own functions as no additional instructions are needed to redirect
the control flow. The mechanisms proposed inModification of a process code at runtime
[12] will be described in detail later on since our research is based on the thesis.

7



8 CHAPTER 2. RELATED WORK

Another tool we would like to mention is a tool by SUSE called Libpulp [11]. This
framework enables process live-patching by using trampolines. Unlike the previously
mentioned toolkit, this one requires the code of the process to have a special format.
A special library must be preloaded in the target process and the source code must be
compiled with gcc -fpatchable-function-entry flag for functions to become patch-
able. This option basically orders gcc to generate multiple nop instructions at the
beginning of a function to create space for a trampoline. This solves the problem with
functions that are shorter than the trampoline. Before applying a patch, Libpulp per-
forms several checks on whether the target function is patchable. Libpulp is also able
to revert patches, in other words, to restore functions to their original states. Further-
more, Libpulp uses a special description file format used to store metadata such as
names of replaced and replacement functions.

Intel Pin is a dynamic binary instrumentation framework for the IA-32, x86-64
and MIC instruction-set architectures that enables the creation of dynamic program
analysis tools [2]. Pin allows a tool to insert arbitrary code (written in C or C++) in
arbitrary places in the executable. The code is added dynamically while the executable
is running. This also makes it possible to attach Pin to an already running process
[3]. Intel Pin provides an API function capable of replacing whole functions in the
attached process using a similar approach as the previously mentioned tools. The
framework writes a jump instruction at the beginning of the target function. The
instruction points to the replacement function. Intel Pin is robust tool which could
be used to design a live patching framework. This was accomplished in article Hot
Patching C/C++ Functions with Intel Pin [10]. As we can observe, the program using
Intel Pin is relatively simple and the article demonstrates its functionality.



Chapter 3

GDB tool

GDB stands for GNU debugger. It is a standard debugging tool for Linux operating
system. GDB implements a mechanism using ptrace system call allowing to attach
to a running process and stop its execution. This can be achieved by running a shell
command:

gdb -p $process_pid

GDB provides a command line interface and a scripting language featuring various
commands. These commands can either show diagnostic information or manipulate
directly with process’s resources, e.g. registers or memory. We can also define so called
convenience variables which can store a string, a variable’s value or an address. Alterna-
tively, GDB offers a built-in python interpreter and API allowing to write scripts which
can be imported into GDB. It even enables us to create user-defined command. All we
have to do is implement a subclass derived from API-defined python class gdb.Command
as the documentation specifies [6]. We need to import a gdb package in the script to
include API functions and launch GDB with option --command=path/to/my/script.

One of the most useful things in GDB is a symbol lookup. Every ELF binary by
default contains a symbol table which basically consists of key-value pairs of symbol
name and its offset from the beginning of the corresponding section. Once the sections
get mapped into virtual memory address space, GDB can calculate a symbol’s address
in memory. We use print &symbol command for this purpose. In python, the anal-
ogous approach is to call API function gdb.parse_and_eval("&symbol"). It returns
an instance of gdb.Value object which works as a wrapper for the underlying value in
the inferior process. On the other hand, there is a GNU utility called strip which can
be used to compress the binary. As the name implies, all redundant information gets
stripped off including string names of functions and global variables. The mentioned
commands will, therefore, result in an error for a stripped process.

Moreover, GDB allows to type cast the internal value of gdb.Value object just
as we can do in C. The API defines gdb.Type object representing an inferior’s type.

9
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Function gdb.lookup_type can be used to query the inferior’s types. For instance, a
query for 8-byte integer would be:

gdb.lookup_type("uint64_t")

Therefore, a type cast of gdb.Value instance to this type might look like:

value.cast(gdb.lookup_type("uint64_t"))

When debugging symbols for the process code are provided, we take full advantage
of GDB ability to look up symbols. We can make use of command info address

which maps a global symbol to its address. Command info symbol might be useful as
well as it does the exact opposite of info address, in other words, maps an address
to the corresponding symbol. It should be noted that these commands cannot be used
on locally defined symbols, e.g. local variables. In python API, we can achieve the
same results by using function gdb.lookup_global_symbol.

A problem regarding symbols arises when two loaded object files use the same
symbol name for their respective symbols. When requesting a lookup for one of these
symbols, GDB searches all present object files for the symbol. The tricky part is that
in case it finds more than one match, only the first one found gets printed. Fortunately,
python API offers the following method:

gdb.lookup_object_file("objfile_name")

This orders GDB to iterate through loaded object files and returns a gdb.ObjFile

object representing object file if the name matches. Class gdb.ObjFile contains various
methods. The most important is lookup_global_symbol which only searches the
corresponding object file for the specified symbol.

GDB represents the inferior process with object gdb.Inferior. This object offers
several methods, the most important being read_memory and write_memory. As the
names imply, we can read or write into the process’s memory using these methods.
These functions take a buffer and an address as arguments. The buffer can be of
python types representing arrays of bytes, e.g. bytearray or bytes while the address
can either be int or gdb.Value instance cast to a pointer to the corresponding type.
Additionally, amount of bytes to be read or written is passed as an integer. Function
gdb.Inferior.read_memory returns a memoryview object containing inferior’s mem-
ory content.

Command info proc mappings prints memory mappings of the inferior process
in the same way they are stored in /proc/process_pid/maps file. One can use this
command to inspect the memory address space and keep track of which object files are
mapped and which pages are allocated. For this reason, the operation prints the same
output as the following shell command:
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cat /proc/$process_pid/maps

GDB python API comes with function

gdb.execute("gdb command", to_string)

which executes the GDB command and allows to pass an additional boolean param-
eter. If this parameter is True, the output of the command will be returned as a
python string. Memory mappings can then be inspected by using this function with
info proc mapping and parsing its output in python.

Lastly, we can use the previously mentioned commands to manipulate with registers
of the inferior process. To read a value stored in register register_name, we can simply
execute the following command:

gdb.parse_and_eval("$register_name")

The return value is a gdb.Value instance representing the value stored in the register.
To load a value to register register_name, we can run the following command:

gdb.execute("set $register_name = %d" % new_value)
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Chapter 4

Design and implementation

Both Libpulp and bakatsugi described in chapter Related work perform live patching
and implement it from scratch. We explored ways how to perform live patching on the
top of GDB. We designed and implemented a tool capable of replacing entire functions
similarly to what bakatsugi does. Moreover, we added a mechanism allowing to reapply
or revert a patch. We extended GDB tool by using standard commands along with
python API and wrote a script declaring a new set of commands which can be imported
into GDB sessions. These commands perform operations needed to apply and maintain
patches.

To patch functions of the target process, the user creates a shared library containing
the implementation of new functions that will replace the old ones in the process.
Additionally, the user must specify pairs that identify the functions to be replaced and
replacement functions along with the strategy of patch procedure, e.g. if the target
function is native or dynamically linked from a library. This information is encoded and
embedded in the library itself. The user passes the path of this library to our command
and the patch procedure is executed. In case no error occurs, after detaching GDB
from the process, the behavior of the target process should be changed as desired.

We implemented a tracking mechanism which allows the user to print and inspect
the process patch history. This is useful for debugging so that the user is able to figure
out what patches have been carried out and monitor the active ones. Moreover, the
user is able to reactivate logged patches overridden by new ones.

On top of the logging mechanism, we designed and implemented a plugin enabling
patch reversion. This means that the user is able to revert the impact of a patch and
restore the behavior of the function and ultimately the whole process to the original
state. The logging mechanism is turned off by default, but it can be activated by the
user. The overview of the extension’s architecture is illustrated in Figure 4.1.

We implemented the GDB extension as a python script containing classes that
define commands as we explained in GDB tool. In the early stages of the development,

13



14 CHAPTER 4. DESIGN AND IMPLEMENTATION

we used GDB scripting language. However, it turned out to lack expressiveness and
some basic and important constructs were tricky to implement. Among many, the most
obvious ones were loops, string concatenation and exceptions. Python simplified a lot
of things, namely error handling by providing API exceptions gdb.GdbError which
notify the user by printing an error message.

To sum up, the GDB extension provides the following functionality:

1. replacing entire user-defined or library functions (i.e. functions from shared li-
braries)

2. logging the applied patches, tracking the active patches and loaded patch objects
and providing an interface to print the log and dump it into a file

3. reactivating an inactive patch (e.g. a function was patched again by another
patch and the user wishes to activate the previous patch) whose entry is stored
in the log

4. reverting a patch whose entry is stored in the log (restoring the original state of
the specified function)
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Figure 4.1: Diagram of the architecture of the GDB extension
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4.1 Patch objects

A patch object is a dynamic (shared) library which contains replacement functions.
Each patch object contains a special section named gdbpatch, which stores patch
instructions (i.e. the name of the function to be replaced, the replacement function
name and the patching strategy) and structures for patch metadata which are basically
arrays of bytes with their respective sizes. The constructor function initializes these
structures with predefined values. It is called when the dynamic linker has loaded the
object. We explained how to define these components in section Dynamic linking.

We provide a C header file which contains macros that generate the special section,
the constructor function, the patch instructions and declares metadata structures and
other constants such as sizes of the structures and so on. The user must use these
macros in the source code of the patch library, otherwise the tool will not be able to
locate the metadata. To learn how to build a patch library, see Appendix B: the user
manual.

4.2 Injecting system calls

When we have seized control of a running process, we can manipulate with its code
and registers to achieve a system call execution. The instruction pointer register (rip
on x86-64) points to the next instruction to be executed. We can obtain its value in
GDB python as we described at the end of chapter GDB tool. We need to overwrite
the memory region pointed to by rip with the instruction that triggers a system call
execution and make the process execute it. For this purpose, we can use syscall

instruction available on x86-64 platform. The instruction is encoded as [0x0f, 0x05].
The instruction pointer (rip) might theoretically point to a 1-byte long instruction (for
instance ret, encoded as 0xc3) located at a page boundary. If such an instruction was
overwritten, the syscall instruction would be split in half between two neighboring
pages, see Figure 4.2. The problem would arise, if the page containing the second byte
of the syscall did not have read or execute permissions. Provided the syscall must
be executed by the target process, this situation would cause a segmentation violation
if the process tried to execute the instruction from a non-readable or non-executable
memory page. We decided to solve this issue by simply aligning the syscall instruction
destination address (the address where the syscall will be written) to the beginning
of the page to which rip points, so that we do not need to worry about the lack of
space in the page. The value in rip is then aligned in the same way to point to the
syscall. We described how to load a register value of the target process in python at
the end of chapter GDB tool. This simple solution prevents any segmentation violation
issues. The solution is also illustrated in Figure 4.2.
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Figure 4.2: System call injection
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To execute the system call, the arguments must be set correctly. Register rax is
used to store the system call number. Depending on the system call, up to 6 arguments
can be passed to it using rdi, rsi, rdx, r10, r8 and r9 in this order [1]. Firstly, values
stored in rip and the registers which are used to pass parameters to the system call
must be backed up before any modification since the process execution must be resumed
after the system call execution. Keep in mind, that rip register must also be set to
point to the beginning of the page because of the potential issues described above.

To execute the single syscall instruction, we make use of GDB command si

which only executes the next instruction and then returns the control to GDB. With
the system call executed, the memory overwritten by syscall instruction, rip and the
registers used for passing the system call number and arguments are restored to their
original state. We can now safely resume the process as if nothing happened.

To sum up the procedure, the following algorithm written in python pseudocode is
used to inject a system call (functions backup_registers, restore_registers and
set_arguments_and_syscall_number are not implemented in the snippet):

PAGE_MASK = 0xfffffffffffff000

rip = gdb.parse_and_eval("$rip")

rip_aligned = rip & PAGE_MASK

membackup_bytearray = inferior.read_memory(rip_aligned, 2)

inferior.write_memory(rip_aligned, bytearray.fromhex("0f 05"), 2)

# back up registers

backup_registers()

gdb.execute("set $rip % d" % rip_aligned)

set_arguments_and_syscall_number()

# execute si

gdb.execute("si")

ret = gdb.parse_and_eval("$rax")

# restore registers

restore_registers()

inferior.write_memory(rip_aligned, membackup_bytearray, 2)

Our tool contains a function which takes a system call number and 6 system call
arguments (or fewer depending on the system call) as parameters and performs the
above-mentioned operations to execute system call in the inferior process.
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4.3 Patch application

The first command we implemented is named patch. It takes a library path as an
argument and performs replacement of functions specified inside the patch library.
This information is embedded in the patch object and will be described in subsection
Patch instructions. This command can be invoked inside GDB shell by running

patch path/to/patch/library

Either an absolute or a relative path might be passed. However, in case of a relative
path, dlopen might produce an error stating that the patch library file couldn’t be
found. This occurs when the patch library file is not in the standard library search
path such as /usr/local/bin. A directory to be searched for dynamic libraries can
be added using LD_LIBRARY_PATH environment variable.

To apply a patch, GDB must be attached to a running target process, otherwise the
patching procedure will throw an exception. We first need to locate dlopen, dlclose
and dlsym functions inside the target process. This can be accomplished by running
the following commands:

set $DLOPEN_PTR = &dlopen

set $DLCLOSE_PTR = &dlclose

set $DLSYM_PTR = &dlsym

In python, the same result can be achieved by running commands:

dlopen = gdb.parse_and_eval("dlopen")

dlclose = gdb.parse_and_eval("dlclose")

dlsym = gdb.parse_and_eval("dlsym")

These API functions return a gdb.Value instance which was described in GDB tool.
The instance represents a function pointer type in this context. Our mechanism relies
on the presence of the above-mentioned functions. They are part of standard libc

library which is mapped in almost every Linux process. However, if a process happens
to lack these functions or the tool fails to locate them, the patching procedure is
terminated and the process is detached. This is detected by handling an exception
thrown by GDB, stating that the symbol is not defined.

The next step is to use dlopen to open the patch library. The function can directly
be invoked in GDB by using commands (GDB language and python):

print dlopen("$PATH_TO_LIBRARY", $FLAGS)

dlopen(path_to_lib, flags)
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The function is executed in the context of the target process. There is, however, a slight
complication with passing arguments to the functions from python. The user passes
a string representing an absolute path of the patch library to patch command. The
console argument is parsed and the path is stored as a python string. Since API allows
to execute the inferior’s function, we can simply call dlopen and pass the python string
representing the path as an argument. As the documentation specifies, any arguments
provided to the call must match the function’s prototype, and must be provided in the
order specified by that prototype [6]. This means that gdb.Value instance passed as
an argument must be cast to a type matching the signature of the function. Python’s
representation of strings is different than that of C, specifically missing the notorious
null terminating byte. If we pass the python string without any conversion to dlopen,
it might lead to an undefined behavior which may ultimately result in a crash of the
process. We solved this problem by wrapping the string by gdb.Value object and
appending a null terminating byte to it. Additionally, this instance needs to be type
cast to char[] to match the C string representation. We can now safely call dlopen
function inside the target process to load the patch library. We save the handle returned
by dlopen for later use.

With the module and the patch functions loaded, we now have to redirect control
flow from the target function to the patch function. This is done in two ways depending
on the fact if the target function is present in the main program or dynamically linked
to it.

4.3.1 Function replacement

When dealing with patching user-defined functions, we first need to determine the
address of the target function (the one being replaced). We use the same procedure as
we did with library handling functions (GDB language and python):

set $TARGET_FUNCTION_PTR = print &target_function

target_function_ptr = gdb.parse_and_eval("target_function")

Another component is the patch (replacement) function address since we do not know
beforehand where the dynamic linker maps the patch library. Initially, we intended to
use gdb.Objfile.lookup_global_symbolmethod which we described in chapter GDB
tool. We could search the corresponding object file for the global symbol (non-static
function symbol names are global by default). This way, we could avoid symbol name
collisions across multiple patch libraries since GDB would only search the specified
object file. Yet, this method did not work as intended since we encountered a bug
during the development. If more object files contain the same symbol name, only
one of them is returned every time regardless of the searched object file. So instead,
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we use dlsym to search for a symbol in a patch library. We pass the library handle
and the symbol name to it and invoke the function the same way we explained with
dlopen. The symbol name must again be converted to the C string representation.
If the symbol is defined in the library, its address in the process memory is returned.
Otherwise, NULL value is returned. The trampoline which redirects the control flow
to the replacement function can now be constructed and written inside the process’s
memory with gdb.Inferior.write_memory() method mentioned in GDB tool.

The first type of trampoline is the absolute trampoline:

movabs $patch_func_ptr, %r11

jmp *(%r11)

This piece of code is written at the beginning of the original function which ensures
that the control flow is passed to the replacement function once the original function
is called. We decided to use r11 register for this purpose because it does not have to
be preserved across functions calls [12]. When encoded into machine code, the above
code snippet is 13 bytes long. We cannot directly use x86-64 relative jmp instruction
for trampolines since it uses 32-bit relative address mode which means that the jump
is performed relatively from the next instruction pointed to by the instruction pointer
(rip). We rely on dlopen and the dynamic linker, therefore, we cannot make any
assumptions about the replacement function’s address. In other words, the distance
between the original function and the replacement function could theoretically be larger
than 231 − 1 which would not fit into 32-bit relative offset. Moreover, x86-64 does not
provide any absolute jump instruction which would effectively solve the problem. We
have no other option than to use the above code.

The second type is the relative trampoline. As mentioned, the dynamic linker might
place the replacement function too far from the replaced one. This rules out the direct
use of relative jmp instruction. To overcome this, we use the same approach introduced
in bakatsugi [12]. We first search the process address space for the closest free page
to the trampoline destination (the beginning of the original function). This can be
achieved by parsing the output of GDB command

info proc mappings

explained in GDB tool. We need to allocate this memory page inside the target process.
We use mmap system call which is injected into the target process. System call injection
was explained in subsection Injecting system calls. The allocated memory page puts
no restrictions on trampoline’s length, which means an intermediary absolute tram-
poline can be written there. A short relative trampoline pointing to the beginning of
the corresponding intermediary trampoline is then constructed. We must ensure the
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allocated page is close enough to the target function since we use jmp which uses 32-bit
relative address. In other words, a free page is searched for in the following range:

[target_function_address− 231 + 1, target_function_address+ 231 − 1]

It is highly likely that we will always be able to find a free page in the search range. Even
if no free page in the range is found, the script falls back to the absolute trampoline.
This approach comes with its drawback, the most obvious being the jump overhead
since an additional instruction must be executed as opposed to the absolute trampoline.
On the other hand, the most notable advantage is the relative jump instruction length
which is only 5 bytes long as opposed to the absolute trampoline which is 13 byte
long. Moreover, most functions use function prologue and epilogue demonstrated by
the following code snippet:

#function prologue

push %rbp

mov %rsp, %rbp

#function body

...

#function epilogue

leave

ret

This code itself without a function body is 6 byte long. This means that there is no
need to worry that code of a function located right beyond this one will overlap with
the written trampoline.

As we explained, a short trampoline jumps to the beginning of the corresponding
intermediary trampoline which finally jumps to the replacement function. As sug-
gested, to store these intermediary trampolines, we allocate a memory page inside the
target process. From now on, we will call this page the trampoline page. A memory
page allows to accommodate 315 absolute trampolines. We decided to align the ab-
solute trampoline structure to 16 bytes padding them with 3 nop instructions (these
will never be executed nevertheless). Hence, the trampoline page can fit 256 aligned
absolute trampolines. For the reasons which we will explain later in chapter Repeated
patching, the tool implements intermediary trampoline allocation and freeing. This is
done by placing a 32-byte long bitmap in the beginning of the trampoline page. The
bitmap indicates whether a trampoline entry is allocated or free. The final trampoline
count the page can accommodate is 254 which is highly sufficient. The short trampoline
mechanism is illustrated in Figure 4.3.
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Figure 4.3: Redirection using intermediary trampolines
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In terms of replacing library functions, we need to overwrite the corresponding
.got.plt entry (see section Dynamic linking). A .got.plt entry address is encoded
inside the indirect jump instruction used to invoke the dynamic linker when the li-
brary function is called for the first time. To introduce an example, see the following
instruction:

jmp *0x2fe2(%rip)

This instruction is encoded as ff 25 e2 2f 00 00 in hexadecimal. When executing
this instruction, the rip register always points to the next instruction which is located
right beyond this one. We can now calculate the address of the corresponding .got.plt
entry (which is [rip + 0x2fe2] in this example) and edit it accordingly. This strategy
is less error prone when compared to the trampoline approach since we do not modify
any code. This means that even if the function was on the call stack, the patching
procedure would not cause any error.

4.3.2 Patch instructions

Patch objects (libraries) contain section gdbpatch which stores instructions for the
patch procedure. They specify the type of operation to be performed, the function to
be replaced, the replacement function and what type of trampoline to use. The format
is based on the one used in bakatsugi [12] with slight modifications. To introduce an
example, to replace function f_old with f_new, the user must declare and implement
f_new function and specify the following macro in their patch library source code (de-
pending on whether f_old is a native or library function and what type of trampoline
is to be used):

PATCH(PATCH_OWN_SHORT(f_old, f_new))

PATCH(PATCH_OWN_LONG(f_old, f_new))

PATCH(PATCH_LIB(f_old, f_new))

The inner macro represents the patch instructions and is expanded as follows:

O:S:f_old:f_new;

O:L:f_old:f_new:

L:N:f_old:f_new;

Option Omeans an own function is about to be patched while L represents a library one.
Option S stands for short trampoline, L for a long trampoline and N for no trampoline
which can only be used with library function patching. These instructions are extracted
and parsed when the patch object is opened. Before any patch application, a check
is performed on whether the patch instructions are valid, e.g. if the original and
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replacement functions can be located or whether it contains valid options. If any error
occurs, the library is closed and the patching process is terminated.

The PATCH() macro declares the gdbpatch section, the constructor function for the
patch library and places the patch instructions into the gdbpatch section.

Project directory examples contains several patch libraries demonstrating use of
patch instructions. See Appendix B: the user manual to learn how to compile and
build patch libraries.

4.4 Repeated patching

This section deals with tracking and maintaining patches, in other words tracking states
of applied patches (e.g. whether they are active), loaded patch objects and logging the
patch history throughout the process lifetime. We will explain how patches can be
reverted and how the tool implements this feature. Additionally, we will describe how
to store metadata which is necessary to provide the aforementioned features. The
biggest challenge of repeated patching was to come up with a mechanism that would
be consistent. The following questions had to be answered. What happens if an already
patched function gets patched once again? What to do with the libraries when they
become unused? How could the user inspect the current state of the process? Where to
store metadata? How to perform patch reversion and free used resources? We decided
to come up a following workflow.

Each time a new function patch is applied and the user wishes to log it, we mark
an entry to a so called patch log which contains various items such as the patch time
stamp, the original function address and the replacement function address. The user
can print the log using GDB command which we will describe in Patch log. When
a patch of a function is applied, we linearly search the log to fetch the active entry
representing the patch of the same function. The entry is set as inactive and changes
are written to the log.

Furthermore, every shared library holds a value representing its reference count.
In other words, how many functions from the target process are currently patched by
functions from the library. Whenever a function gets patched again by another library,
the former library reference count is decremented. The library is then kept open until
its reference count reaches zero. The user might wish not to close the library even
despite the library not being used, i.e. its reference count is equal to zero. In other
words, a future improvement might enable the user to specify that a certain library
remains in the process’s memory despite not being used. Additionally, an option to
explicitly close a library could be added.

The logging may sometimes complicate and slow down the patching process, so it
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is turned off by default and only carried out when explicitly ordered by the user. It
should be noted that if a patch is not logged, it will not be possible to restore the
original state of the original function.

4.4.1 Patch log

We implemented GDB command patch-log which simply prints the log entries sorted
by date of their application and highlights the active patches. The following example
demonstrates what a log instance may look like:

$ gdb -p $pid --command=project_path/src/commands.py

(gdb) patch-log

[0] revert

[1] 2023-03-22 12:02:18: target_function -> /tmp/patch.so:dec

[2]* 2023-03-22 12:02:18: printf -> /tmp/patch.so:pretty_printer

[3]* 2023-03-22 12:02:47: target_function -> /tmp/mult.so:mult

The zeroth item is a special one used for patch reversion which will be described in
section Patch reapplication and reversion. The first item indicates that the function at
address target_function was patched at the specified time and replaced by function
dec from /tmp/dec.so library. The * character means that the entry represents an
active patch.

In addition, we implemented patch-dump command which can be used to dump the
patch log into a file. This may be useful when the user is about to restore the initial
process state and wants to keep track of changes made. The log is then written to the
file whose path is passed as a parameter to the command.

4.4.2 Storing patch metadata

The biggest challenge of storing metadata was persistence. In other words, how to
ensure that necessary metadata structures remain intact and persist in memory even
after detaching GDB from the process. Furthermore, GDB must be able to locate
these structures when attaching to to the process. The patch metadata must exist
throughout the whole life of the process in case another action were to be performed
later. The only exception is when the original process state is restored, e.g. by reverting
all patches. When we detach from the process and quit GDB, all data stored in GDB
will be lost. This means that we cannot store any metadata in GDB itself. One solution
that naturally springs to mind is storing the data in a separate file as Libpulp does [11].
This would mean that the user would always have to pass the path to the database
file as a parameter. In addition, error handling would have to be more complex if, for
instance, the file got deleted.
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A more promising approach is to allocate a memory page inside the inferior process
using mmap system call injection which was described in Injecting system calls. Unlike
the previous idea, this one does not require any external resources. Anyway, this
approach still does not meet the criterion of metadata persistence. We cannot assume
the page address beforehand since it is up to the operating system where the page will
be allocated. It is possible to specify the address to be allocated in mmap system call,
but it is only used as a hint to the kernel. Furthermore, this page might, of course,
already be occupied. In such a case, the kernel picks whatever address it finds suitable.
This means that the address of the metadata page cannot be assumed as the memory
address space layout varies depending on the process. This leads to the conclusion
that a pointer to the page must be stored somewhere as we need to ensure metadata
persistence. A good candidate that can be used as a storage for the pointers seems to
be the special section of a patch library. It is a memory region which is available to the
process as long as the corresponding patch library remains opened. Patch libraries store
patch instruction inside a special section as we explained in Patch instructions. This
space can be used to allocate structures for patch metadata besides patch instructions.
This is the approach we chose to implement in our tool.

Each loaded patch library has its own special section mapped to the target process
memory. Only one of them actually contains the patch metadata (or the pointers to
them) mentioned above. We call this library the master library. Every time we attach
to a process with GDB, we need to scan every loaded object and identify the master
library. When quitting GDB, we lose all the information about shared libraries such
as their handles returned from dlopen or path to the corresponding file. This data is
crucial for the subsequent process manipulation in case we reattach to the process. We
worked around it by using the following GDB API function:

gdb.objfiles()

This function returns a list of gdb.Objfile objects which represent loaded object files.
This allows to iterates through all loaded objects including the patch libraries. To sum
up, each time we attach to a process and the user invokes one of our commands, we
search the loaded shared objects for the master library. We filter out non-patch libraries
by checking if they contain the special section. If they do, we perform a further check
by reading the magic value from the beginning of the special section. These checks
increase the likelihood that the object file represents a patch library. In case none is
found, the process is in its original state and no patches are active. Furthermore, if
a special flag in the library header is set, it means that the master library has been
found. Not to mention, it is possible that the master library reference count reaches
zero which indicates that it should be closed. However, other patch objects may still
be loaded. If we simply closed the master library, the pointers to the metadata pages
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and other crucial metadata would be lost. Therefore, if the master library is to be
closed, we iterate through the loaded patch objects as described above, select a new
master library and copy the process-wide metadata (e.g. the log page pointer) from
the former master library to the new one.

4.4.3 Metadata Structure

Each patch library contains a patch header which is a simple data structure with size of
48 bytes holding information about the patch library itself. This is what the structure
declaration would look like in C:

struct patch_header{
uint32_t magic_const ;
void ∗ l i bhand l e ;
void ∗ trampoline_page_ptr ;
void ∗ log_page_ptr ;
void ∗patch_data_page_ptr ;
uint16_t r e f count ;
uint16_t is_master_l ib ;
uint16_t log_entr ies_count ;
uint16_t patch_data_array_len ;
uint32_t commands_len ;

} ;

• magic_const - contains a special randomly generated constant, which is used by
the python script to identify whether the shared object represents a patch library
or not

• libhandle - stores the handle to this library returned by dlopen and is passed
as a parameter to dlsym when requesting a lookup of the library symbol

• trampoline_page_ptr - a pointer to the trampoline page which we explained in
subsection Function replacement

• log_page_ptr - a pointer to the memory area containing the patch log

• patch_data_page_ptr - a pointer to the page containing the additional infor-
mation to the corresponding log entry, we will explain this in more detail in
subsection Patch log structure

• refcount - used to track references (how many functions are currently patched
by this library)
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• is_master_lib - a boolean value indicating whether the library is the master
library (the one containing pointers to the trampoline page, log page and other
patch data)

• log_entries_count - the count of the entries in the log

• patch_data_array_len - the length (in bytes) of the array of the additional
patch information

• commands_len - the length of the patch instruction string

We could use dlsym function to locate the header inside a patch library. There is,
however, a problem which we had to bypass. To use dlsym for a library, we need a
handle to it returned by dlopen. Since we have to take persistence into account, the
handle is lost every time we detach GDB from the process. The handle is stored inside
the header and we need the handle to locate the header. To locate the header, we
firstly intended to use the following method:

gdb.Objfile.lookup_global_symbol("patch_header")

As we mentioned earlier in Function replacement, this function contains a bug and we
kept receiving the address of the header from another library if more patch libraries
were loaded. We bypassed this error using similar function

objfile.lookup_static_symbol("symbol_name")

which worked but forced us to declare the header as a static symbol which was no
concern in our case since the inferior process does not use the header outside of the
library constructor function. Moreover, this function requires debugging symbol in
order to work. For this reason, patch libraries must be compiled with debugging
symbols.

4.4.4 Patch log structure

In the earlier stages of the development, we used master library’s special section to
store the whole log since it could easily be stored inside the patch library using dlsym

function. We declared an array of log entries in the special section of each patch library.
Only the master library contained the real log as long as any of its function was active.
This approach was valid and worked. There were two major drawbacks. Firstly, the
special section was larger, since we allocated three pages for the log. Because every
patch library contains the special section, three pages per every library were wasted.
This was not so much of a concern considering the fact that the average user would
only need to apply few patches. Secondly, in case the master library was to be closed,
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the log would have to be copied to the section of another page library. This lead
us to change the implementation and store the log in a separate memory area of the
inferior process just like the trampoline page. A pointer to it is stored in the header of
the master library. See log_page_ptr member in the header structure in subsection
Metadata Structure.

The log page contains an array of log entry structures. This structure’s size is 32
bytes and is defined as follows:

struct log_entry {
void ∗ target_func_ptr ;
void ∗patch_func_ptr ;
char patch_type ;
uint32_t timestamp ;
uint8_t i s_ac t i v e ;
uint32_t path_of f se t ;
uint32_t membackup_offset ;
uint16_t path_len ;
uint16_t membackup_len ;

}

• target_func_ptr - a pointer to the original function

• patch_func_ptr - a pointer to the replacement function

• patch_type - indicates what patching strategy was used (whether the original
function is native or from dynamic library)

• timestamp - timestamp of the patch application

• is_active - indicates whether the patch is active

The log is stored in the log page and a pointer to it is stored in the master library
header, see log_page_ptr in the header structure which was described at the beginning
of subsection Metadata Structure. The patch metadata contains data with variable
sizes, namely the path of the patch library file and backup of memory overwritten by a
trampoline or the original .got.plt entry data (this memory content is stored so that
the patch reversion mechanism which will be described in section Patch reapplication
and reversion can be implemented). These data are stored separately from the rest
of the log entry items in a special page a pointer to which is stored in the header
of the master library, see patch_backup_page_ptr in the header structure. The log
entry contains two members path_offset and membackup_offset. These represent
the offset of path and memory backup respectively in the page. Members path_len
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and membackup_len represent the length of the path and the memory backup. This
design allows to share references. In other words, if two log entries represent patches
from the same library, they point to the same string representing their patch library
path. See Figure 4.4 for an illustration. Memory backup can be shared as well. This is
made use of when applying a new patch instance to a function that has already been
patched. The script searches the log for an old patch of the currently patched function
and copies the reference to its memory backup.
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Figure 4.4: Log structure
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4.5 Patch reapplication and reversion

Our tool enables users to reapply (reactivate) logged patches. After printing and
inspecting the log (see subsection Patch log), the user might wish to return to a previous
state of a function assuming it has been patched more than once. We implemented
patch-reapply command for this purpose. The usage is as follows:

$ gdb -p $pid --command=project_path/src/commands.py

(gdb) patch-log

[0] revert

[1] 2023-03-22 12:02:18: target_function -> /tmp/dec.so:decrement

[2]* 2023-03-22 12:02:37: target_function -> /tmp/mult.so:multiply

[3]* 2023-03-22 12:02:47: print_value -> /tmp/printer.so:pretty_print

(gdb) patch-reapply 1

(gdb) patch-log

[0] revert

[1]* 2023-03-22 12:02:18: target_function -> /tmp/dec.so:decrement

[2] 2023-03-22 12:02:37: target_function -> /tmp/mult.so:multiply

[3]* 2023-03-22 12:02:47: print_value -> /tmp/printer.so:pretty_print

The user specifies a number from the log list which is interpreted as an index of the
log entry to be reapplied. Internally, the patch script reads the metadata for the entry.
This includes the target and patch function addresses. All we have to do is recreate
the corresponding trampoline or .got.plt entry and trigger the patching procedure
described at the beginning of the chapter Design and implementation.

The zeroth item represents patch reversion. The user must specify 0 as a parameter
along with a list of functions to be reverted. If no function is specified, every patch is
reverted and the process is returned to the state it was before applying the first patch.
The following example demonstrates the command usage:

(gdb) patch-reapply 0 function1 function2 function3

The implementation is straightforward. Firstly, the active log entry patching the input
function is searched for. Next, the memory backup mentioned in subsection Patch
log structure is fetched. If the trampoline was used, it has to be detected whether
it was a short trampoline or a long one. This can easily be detected by reading the
memory occupied by the trampoline and read the instruction prefix (0xe9 is used in
the short and 0x49 in the long trampoline). If a short trampoline was used, the long
intermediary trampoline to which the short one jumps gets freed in the trampoline
page bitmap. It should be noted, each time the first patch of a function is applied, we
back up 13 bytes of the beginning of the function regardless of what type of trampoline
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is to be used. Imagine a situation that a short trampoline is used for the first patch.
The second patch of the same function is about to use a long trampoline. If we only
backed up the first 5 bytes of the function when applying the first patch, we would have
to make a longer backup storing 13 bytes overwritten by the long trampoline. Hence,
we always directly back up 13 bytes. Lastly, we restore the memory modified by the
patch execution (the trampoline or .got.plt entry overwriting), mark the log entry
as inactive, decrease the corresponding library’s reference count and detach from the
process.



Chapter 5

Verifying the results

We have tested our tool in several test cases. All examples can be found in examples

directory of the project, see appendix Appendix A: the source code. Each test case
contains a Makefile that builds the whole testing program. The tests have been
carried out for every component.

Firstly, we introduce a simple example similar to those used in bakatsugi [12] to test
patch application and repeated patching mechanisms. Attaching with GDB is required
and the python script must be imported as well. For further details, see Appendix B:
the user manual.
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5.1 Simple counter

The first simple demonstration is the following program:

#inc lude <s td i o . h>
#inc lude <s td i n t . h>
#inc lude <uni s td . h>

void ta rge t_funct ion ( uint64_t ∗x ){
∗x += 1 ;

}

int main (void ){
uint64_t x = 0 ;

while (1){
pr int_value (x ) ;
ta rge t_funct ion (&x ) ;
s l e e p ( 1 ) ;

}

return 0 ;
}

As we can see, the program increments a counter and prints it to the standard
output every second without any formatting. We created two separate patch libraries.
The first patches native target_function and printf from standard libc, while the
second only patches the target_function.
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The first patch library is as follows:

#inc lude "patch . h"
#inc lude <s td i n t . h>
#inc lude <s td i o . h>

void patch_function ( uint64_t ∗x ){
∗x −= 1 ;

}

void pre t ty_pr inte r (
const char ∗old_format_string ,
uint64_t x

){
p r i n t f ( "The␣ cur rent ␣ value ␣ i s : ␣%lu \n" , x ) ;

}

PATCH(
PATCH_OWN_SHORT( target_funct ion ,

patch_function )
PATCH_LIB( print_value , p re t ty_pr inte r )

)

This patch ensures that the counter is decremented in each iteration and is printed
using a different formatting. In pretty_printer function, the original formatting
string passed from the original printf call is ignored and the integer is printed using
a new formatting string. To sum up, we are patching a user-defined function with
a short trampoline and a function from a dynamic library. Since our patching tool
only replaces functions in the main executable and every loaded object has its own
.got.plt table, we can use ordinary printf function in our patch library.
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The second patch library is as follows:

#inc lude "patch . h"
#inc lude <s td i n t . h>

void mult ( uint64_t ∗x ){
∗x ∗= 2 ;

}

PATCH(
PATCH_OWN_SHORT( target_funct ion , mult )

)

This patch function multiplies the counter value by 2 in each iteration. The short
trampoline approach is to be used.

The output of the test program is shown in Figure 5.1. We attach to the process
with

gdb -p $pid --command=project_path/src/commands.py

We apply patches from the first library with logging turned on, print the log and detach
from the process:

(gdb) patch /tmp/patch.so --log

(gdb) patch-log

[0] revert

[1]* 2023-05-10 12:32:56: target_function ->

/tmp/patch.so:patch_function

[2]* 2023-05-10 12:32:56: printf -> /tmp/patch.so:pretty_printer

(gdb) detach

Lines 1-5 in Figure 5.1 were printed before the patch execution. The counter is now
decremented in each iteration and the printing format has also changed as we can see
in lines 6-10. Now, we apply the second patch with logging turned on.

(gdb) patch examples/more/mult.so --log

(gdb) patch-log

[0] revert

[1] 2023-05-10 12:32:56: target_function ->

/tmp/patch.so:patch_function

[2]* 2023-05-10 12:32:56: printf -> /tmp/patch.so:pretty_printer

[3]* 2023-05-10 12:35:07: target_function -> /tmp/mult.so:mult

(gdb) detach
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The mult function patches the same function as the patch_function. This resulted in
deactivation of the patch_function which can be seen in the changes in the printed
log. We can now see that the counter is multiplied by two in each iteration and the
printing function is preserved (Lines 10-19).

We can now print the log and reactivate patch_function:

(gdb) patch-log

[0] revert

[1] 2023-05-10 12:32:56: target_function ->

/tmp/patch.so:patch_function

[2]* 2023-05-10 12:32:56: printf -> /tmp/patch.so:pretty_printer

[3]* 2023-05-10 12:35:07: target_function -> /tmp/mult.so:mult

(gdb) patch-reapply 1

We can see that the counter is again decremented in every iteration in lines 19-25.
Lastly, to restore the process to its original state, we run:

(gdb) patch-reapply 0

(gdb) patch-log

Couldn’t find the log. No patch applied.

(gdb) detach

We can notice that all log data is deleted. This is due to the fact that all the patch
libraries became unused and were unmapped along with pages containing the patch
metadata. We can verify that the original process behavior is now restored based on
the program output in lines 26-30.



40 CHAPTER 5. VERIFYING THE RESULTS

1 0

2 1

3 2

4 3

5 4

6 The current value is: 5

7 The current value is: 4

8 The current value is: 3

9 The current value is: 2

10 The current value is: 1

11 The current value is: 2

12 The current value is: 4

13 The current value is: 8

14 The current value is: 16

15 The current value is: 32

16 The current value is: 64

17 The current value is: 128

18 The current value is: 256

19 The current value is: 512

20 The current value is: 511

21 The current value is: 510

22 The current value is: 509

23 The current value is: 508

24 The current value is: 507

25 The current value is: 506

26 507

27 508

28 509

29 510

30 511

Figure 5.1: The output of the testing program
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5.2 SSH daemon

SSH daemon is a system process running with root privileges. SSH, short for secure
shell, is a protocol allowing users to connect to a remote machine and execute com-
mands. UNIX systems use OpenSSH implementation [5]. SSH daemon is a service
that listens and waits for the incoming requests. An authentication is needed when a
user makes a request. This can be done via a user password. Once the user wishes
to establish a connection and makes a request, listening SSH daemon executes fork

system call to create a child process that takes care of the communication between the
user and the server. SSH daemon contains auth_password function which authenti-
cates users. It works with users’ passwords in plain text and simply returns a boolean
value indicating whether the user was authenticated. In this example, we use GDB
to replace the function. The replacement function receives a password in plain text
as an argument and writes it into a file with proper read permissions so that we can
later inspect it. Moreover, the function authenticates every user regardless of the pro-
vided passwords by always returning a non-zero value. An unaware user types in their
password and it gets written into the file and the user is authenticated as if nothing
happened. It should be noted that this example should rather be considered as an
anti-example of how to use this tool.

For security reasons, the newly forked process executes exec system call. This
means that even if we patch SSH daemon, its forked child will not preserve the changes
made during the patching procedure since exec replaces the process image with a new
one. We, therefore, have to initiate a connection which results in a new process creation
and then attach to it with GDB and perform the changes.

Furthermore, SSH daemon is protected by SELinux which is a security enhancement
to Linux which allows users and administrators to have more control over access to
processes or files [9]. To be able to patch the SSH daemon, we have to set SELinux
roles of the patch object file (compiled library) to match those of SSH daemon process.
This is performed in the Makefile in examples/ssh/ directory. Lastly, we need access
to a root account (or a sudoer account and run GDB with sudo command) to attach
to a running SSH daemon instance with GDB since it runs with root privileges. We
created a fake user account for the demonstration. The user name for this account is
user and the password is user as well.

In Linux distributions using systemd, SSH daemon can be started with one of the
following commands:

(debian) systemctl start ssh

(redhat) systemctl start sshd
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First, we send request from the local machine using:

ssh user@localhost

We are prompted to type in the password. This is the time to replace the authentication
function. We launch GDB from another terminal.

sudo gdb -p $sshd_child_pid --command=project_root/src/commands.py

(gdb) patch examples/ssh/evil_auth.so --log

(gdb) patch-log

[0] revert

[1]* 2023-05-14 10:38:21: auth_password ->

/tmp/evil_auth.so:evil_auth_password

(gdb) detach

With the function patched, we can now enter whatever password we want and
should get authenticated.

$ ssh user@localhost

user@localhost’s password: password

Last login: Wed May 10 13:23:38 2023 from ::1

[user ~]$ whoami

user

Lastly, we can print the content of the file where the passwords are saved. Path
/tmp/passwords.txt is hard-coded in the patch library.

$ cat /tmp/passwords.txt

password

This example including the patch library and the Makefile can be found in di-
rectory examples/ssh in the project repository. Further examples can be found in
examples directory, see Appendix A: the source code. The tool performed the patches
successfully on these examples. However, there are cases in which the tool might not
work correctly, therefore, it should not be used in critical applications. We will describe
the limitations of the tool in chapter Known problems.



Chapter 6

Known problems

6.1 Patch library name collision

There is one issue we encountered when working with dlopen. This function takes a file
path as an argument, loads the library and increases its reference count. This means
that even if the file gets unlinked in the file system, the file will remain on the disk.
If dlopen gets called with the same path which is now pointing to a new library, the
reference count of the old library gets increased and the new one does not get loaded at
all. This is not a bug but a feature of dlopen. A solution to this issue is introduced in
bakatsugi [12] where the injector (GDB in our case) opens the file and only passes the
corresponding file descriptor to the inferior process via a UNIX socket which is then
opened using /proc/self/fd path. This is hard to implement in GDB so we did not
include this feature in our tool. Therefore, it is up to the user to track names of used
libraries to avoid name collisions.

6.2 Symbol lookup

We decided to analyze possible ways to use GDB to implement a live patching tool.
The main reason was its ability to search the inferior process for symbols. The library
function we relied on such as dlopen, dlsym or dlclose can be looked up by running:

print &dlopen

gdb.parse_and_eval("dlopen")

This simple approach, however, requires the user to have glibc debugging symbols
downloaded. Moreover, the above commands search for the symbols locally, in other
words in the current program scope. This means that if a file other than libc.so

contained dlopen function declaration and the execution was inside this file, the address
of this user-defined function would be returned. Furthermore, if the main program was
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compiled with debugging symbols, even locally defined symbols (e.g. local variables in
the current scope) would be found first. For example, if someone defined a local variable
with name dlopen, its address would be returned instead of the desired function. These
scenarios are, however, not likely to happen. There is a possible improvement involving
using yet another API function:

gdb.lookup_global_symbol("symbol_name")

This function searches the entire process for a global symbol. Library libc.so exports
___dlopen, __dlclose and ___dlsym symbols which represent the corresponding func-
tions. These symbols can be passed as arguments to the aforementioned API function
which returns their address. This approach might be more reasonable since it avoids
collision with locally defined symbols, e.g. local variables. Our implementation allows
to easily change the way the dl functions are searched for.

Another problem arises, when the user declares a function in a patch library whose
symbol name is already declared in the main program. After loading the patch library
into the memory, GDB might return the address of the newly loaded function instead of
the one in the main program when doing a lookup. Hence, the user must guarantee that
every symbol name used in patch libraries must not be used in the main executable.
This limitation was no concern in bakatsugi [12] thanks to the fact that the main
program executable was parsed every time a symbol from the main binary was being
searched for. We could overcome the issue by using an ELF parser in our python
code. This approach would add complexity to our solution which is undesirable since
we chose to use GDB to simplify our work. Due to the issues mentioned above, we
strongly advise users to retain the name of the original functions and only preface it
with a prefix or append a suffix to it to create the name for the replacement function.
To introduce an example, a pair of functions could be named as follows using suffix
new:

find_shortest_path -> find_shortest_path_new

However, symbol names can be shared across the patch libraries since their addresses
are retrieved using dlsym function which is only restricted to the shared object scope.

6.3 Trampoline length

The absolute trampoline is 13 byte long. It is not hard to write such a function that
would be shorter than 13 bytes (the shortest function on x86-64 can theoretically be
just 1 byte long containing only a single ret instruction), although, compilers usually
align functions to 16 bytes. If the patched function happened to be shorter than the
critical value and its beginning got overwritten by a trampoline, the memory beyond the
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function would be modified as well. This might result in a crash if another function
located right beyond the patched one got called. The short trampoline mechanism
explained in section Patch application reduces the risk of the process crash due to the
shorter length of the short trampoline. Not to mention, detecting a function’s length
is a non-trivial task. Therefore, our tool does not perform any checks regarding this
problem.

The next issue is caused by the fact that we do not make any assumptions about
when the process execution is interrupted. If the function about to be patched was
being executed and we overwrote its memory region, it might lead to an undefined
behavior. If we overwrote a memory region with a trampoline and the instruction
pointer pointed to the region and we resumed the process, the executed instruction
would likely be corrupted and the process would get terminated. This can, however,
be checked with ease simply by reading the instruction pointer value and comparing it
to the trampoline destination address.

There is another issue which is non-trivial to detect. For this reason, we do not
implement any countermeasures. We use Figure 6.1 to demonstrate the potential prob-
lem. Imagine we stopped the process while executing the loop on lines 6-9. Even if we
applied the short trampoline, the process would likely crash. The function prologue
(lines 2-3) is 4 byte long and the trampoline would overwrite the first byte of test in-
struction. When the process is resumed and the next loop iteration is executed, CPU
will fetch a corrupted instruction.

1 prologue:

2 push %rbp

3 mov %rsp, %rbp

4

5 loop:

6 test %rsi, %rsi

7 jz epilogue

8 inc %rdi

9 dec %rsi

10

11 epilogue:

12 mov %rbp, %rsp

13 pop %rbp

14 ret

Figure 6.1: An example of a problematic function
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6.4 Trampoline page distance

The trampoline page allocation is deferred for the first patch application. The script
tries to find the closest free page to the currently patched function as we explained
in subsection Function replacement. If found, the long intermediary trampolines are
always placed inside it. If all patched function were close to one another, this approach
would be valid. However, the process code might be very large and the distance between
the trampoline page and other functions to be patched may be higher and this distance
would not fit in the short trampoline 32-bit relative offset. We will introduce a following
solution which is not implemented in our tool. Every time a patch is about to be
applied, a check on whether the function is close enough to the trampoline page would
be performed. If not, a new trampoline page would be allocated. This would require to
store a list of pointers to trampoline pages instead of a single trampoline page pointer
which is not much of a complication. Currently, the check on distance is performed
and the script falls back to the absolute trampoline when the trampoline page is too
far from the function to be replaced. The user might wish not to perform the patch at
all if anything fails. A future improvement might be to make this option configurable.
In other words, the user could set that no operation will be performed in case of a
failure.

6.5 Global variables

As long as the target process lists its global variables in the dynamic symbol table,
these variables can be used by loaded shared objects. They simply need to be declared
as extern in the library source code. The dynamic linker performs needed relocations
when loading the object. Compiler gcc and linker ld do not export global variables
by default. This means that in such a case, the replacement functions will not be able
to access the global variables of the target process [12].



Conclusion

We explored and analyzed ways to perform live patching using GDB and built a tool
described in the thesis. We analyzed the existing solutions to live patching, proposed
improvements and added new functionalities. We based the thesis on Modification of a
process code at runtime [12] and implemented the functionality of bakatsugi as a GDB
extension and evaluated its performance and properties. Moreover, we designed and
implemented new features, most notably storing patch metadata and patch reactivation
and reversion mechanisms. We analyzed and described their properties and suggested
potential future improvements. The shortcomings of the tool were described in chapter
Known problems. The extension currently only supports x86-64 architecture and Linux
operating system.
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Appendix A: the source code

The source code of the GDB extension described in the thesis is attached electronically
as the archive of the git repository. The repository contains a readme file README.md

which is used as a project description and the user manual. Its content is copied into
Appendix B: the user manual. Directory src includes the extension script commands.py
and the C header file patch.h for patch libraries. Directory examples contains various
examples of programs and patch libraries. Moreover, a Makefile is provided for each
of them to simplify the building process. The root directory contains a bash wrapper
patch.sh which can be used to simplify the patching procedure. The wrapper is
described in more detail in Appendix B: the user manual.

The git repository is available at
https://github.com/filipkosecek/gdb-livepatch.
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Appendix B: the user manual

Linux process live patching using GDB

The project focuses on Linux process live patching using GNU debugger tool targeting
x86-64 architecture. It can be used to patch whole functions of the target process as
well tracking and logging changes made. This extension is also able to revert these
changes, i.e. restoring the original functions.

The extension has its limitations, therefore it is not recommended to use it for
critical software.

Repository structure

Directory src contains two main components:

• commands.py - the python script defining new GDB commands which perform
the patching

• patch.h - C header file containing macros and metadata structures definitions
which every patch library must use

Directory examples contains various examples of target processes as well as patch
libraries each in a separate subdirectory. Every example contains a Makefile which
builds the target process and libraries from the source code. The repository contains
a bash wrapper to simplify the patching process.

Installation

GDB

You must have at least GDB 7 installed in your system. GDB is often installed by
default in many Linux distributions. Even if it is not, you can always install it using a
package manager:

(Debian) apt install gdb

(Redhat) dnf install gdb
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Python

The extension is a python script which can be imported into GDB. GDB contains
embedded python interpreter. The extension is tested using GDB with python3 in-
terpreter. There are GDB versions that use Python 2 which is not supported by the
extension. To verify what version of python interpreter you are running, you can visit
this page to learn how to do it directly in python interpreter. Any version of Python
3 should be sufficient. In a GDB session, Python interpreter can be invoked using
python-interactive.

There are two ways to import the extension script. Firstly, you can launch GDB
with the path (either relative or absolute) to the script as a parameter.

gdb -p $pid --command=porject_path/src/commands.py

Alternatively, you can import the script directly from GDB shell using source com-
mand:

source src/commands.py

To automate this task, you can place the script at a fixed path and insert the above
command in your initialization GDB script .gdbinit in your home directory. This
will ensure the script will get loaded every time GDB is started.

Glibc debugging symbols

To make the extension usable, you must install debugging symbols for glibc. These
symbols are available in all Linux distributions. They can be installed via package
managers on most Linux distributions.

(Debian) apt install libc6-dbg

(Redhat) dnf debuginfo-install glibc

Alternatively, debuginfod service can be used on newer distributions to download
the debugging information on the fly from a debuginfod server during a GDB session.
Debuginfod can be enabled with the following command in GDB:

set debuginfod enabled on

This command can be added into .gdbinit script as well.

Visit this page for more details about debuginfod service.

https://www.w3resource.com/python-exercises/python-basic-exercise-2.php
https://ubuntu.com/server/docs/service-debuginfod
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User manual

Writing a patch library

Patches are represented as shared libraries with declared functions which are to replace
the old ones. The libraries must contain special instructions and metadata declared
in C header file. In examples directory, you can see various examples which use the
defined instructions and metadata definitions and contain Makefile files for building
the patches. Using this building process is strongly advised so we recommend to make
a copy of such a Makefile when writing a patch. The most important requirements
for the building process are:

• patch libraries must contain debugging symbols

• patch libraries must be compiled as shared libraries

The extension cannot handle symbol name collisions correctly. In other words,
if you declare a function in your patch library and its name is already used in the
target process, the patching will likely not work correctly and might crash the process.
Symbol names can be shared across the patch objects as the search scope is limited to
the patch object. For this reason, it is recommended to name replacement functions
after the functions they are going to replace with slight modifications, e.g. adding new_
prefix to the name of the original function.

Attaching to a process

To attach to a running process, you have to start with gdb -p $process_pid. Alter-
natively, you can start GDB with gdb and run attach $process_pid in GDB shell.

Executing a patch

To carry out a patch, you have to be attached to the target process and run command

patch /path/to/your/patchlib

We recommend to use the absolute path if the patch library is not in your standard
search path. This will invoke the patching procedure with logging and tracking turned
off. If you want to turn on logging, you have to specify --log switch as the second
parameter, i.e.

patch /path/to/your/patchlib --log

Error handling in the extension is not perfect so you might encounter errors during
the patching. The most common are the following:
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• relative path to the patch library

• the target process missing both the symbol table and debugging symbols

• missing glibc debugging symbols

• missing patch instruction definition, e.g. no definition of the function to be
replaced and the replacement function

• C macro file (src/patch.h) not included in your patch library

• macros for patch instructions not used in your patch library

• typographical errors in original or replacement function names

Printing patch history

When logging was turned on for a patch instance, an entry for it was created and
written to the log. You can print the log with

patch-log

taking no parameters. It contains patch information, most notably the original and
the replacement function and information whether the patch is active or not. The
output of the command should look something like this:

[0] revert

[1] 2023-05-11 20:00:00: old_function -> my/patch/lib:new_function

[2]* 2023-05-11 20:04:00 old_function -> my/patch/lib2:new_function

If the log cannot be found, an error message is printed stating that the log couldn’t
be found.

Dumping patch history

It is possible to dump the patch log into a specified file. This might be useful when
you are about to revert some patches and you would like to preserve all changes made.
The usage is as follows:

patch-dump /path/to/dest/file

Reapplying patches

It is possible to reapply a patch whose entry is marked in the log. The patch-log

outputs a sorted list of marked entries. You can reapply any patch from the log with
patch-reapply command which takes the index of the patch entry in the log. This
patch is then reapplied in case the library containing the replacement function has not
already been closed. A special parameter is 0 which represents patch reversion.
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Reverting patches

You can revert an active patch with patch-reapply command with parameter 0. If no
additional parameter is specified, all active patches are reverted. Otherwise, a list of
original functions to be restored is specified. The list can contain either a hex address
of the function or its name. A patch could be reverted like this:

patch-reapply 0 old_function

The bash wrapper

A bash script is provided which simplifies the patching procedure. GDB does not need
to be invoked manually. The script takes PID of the target process as the first argument
followed by the command to be executed in GDB. For example, to apply a patch with
logging turned on, one could use the following command:

./patch.sh $pid patch examples/more/patch.so --log
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