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Abstrakt

Hardvérova penazenka je zariadenie na ukladanie sikromnych klacov. V tejto praci
sa zameriavame na hardvérovi penazenku Ledger Nano S, ktora je pouzivana najméa
na bezpecné podpisovanie transakcii s kryptomenami. Tato hardvérova penazenka méa
obmedzené zdroje. Niektoré existujice aplikacie pre Ledger Nano S podporujt iba mala
¢ast funkcionality danej kryptomeny. Pridédvanie novej funkcionality do existujtce;j
aplikdcie moze az prilis zvacsit jej velkost. Chceeli by sme vyskusat experimentalny
pristup pre overovanie integrity transakcii. Pridanie podpory pre novy typy transakcie
by pomocou tohto pristupu malo znamenat iba pridanie jedného hesu do zoznamu
povolenych hesov. Vécsina zlozitosti pridavania podpory pre novy typ transakcie je
presununa na stranu klienta bez zniZenia bezpec¢nosti. Nas pristup demonstrujeme na

aplikacii pre FIO protokol.

Krlacéové slova: hardvérova penazenka, kryptomena, transakcia
) b



Abstract

A hardware wallet is a device for storing secret keys. This thesis focuses on the Ledger
Nano S hardware wallet, mainly used for the secure signing of cryptocurrency trans-
actions. This hardware wallet has limited resources available. Some applications for
Ledger Nano S only support a small subset of capabilities of the respective cryptocur-
rency. Adding new features to existing applications might increase the application’s
size too much. We want to test an experimental approach for validating the integrity
of transactions. Using this approach, adding support for a new transaction type should
be a matter of adding a single hash into a list of allowed hashes. Most of the complex-
ity of adding support for new transaction types would be transferred to the client-side
without compromising security. We demonstrate our approach on an application for
FIO protocol.

Keywords: hardware wallet, cryptocurrency, transaction
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Introduction

As cryptocurrencies are getting into the mainstream more and more, tricking people
into signing transactions that they do not agree with is becoming more lucrative for bad
actors. A person that stores their digital tokens in a software wallet, such as browser
extension ones, is vulnerable to attacks. In these wallets, funds are only protected by
a password that the user must type when signing a transaction.

Signing a transaction means hashing transaction data and signing this transaction
hash afterward. This hash is signed using the user’s secret key.

A user who is worried about their funds’ security can get a hardware wallet. Secret
keys are stored inside it, and the whole transaction signing happens inside the device.
During the signing process, essential parts of the transaction are displayed to the user.
The user has an option to reject the transaction if they disagree with it.

Hardware wallets are quite popular among holders of cryptocurrencies. The model
of a hardware wallet that we will focus on in this thesis is called Ledger Nano S.
There are many applications for Ledger Nano S. Ledger Nano S has a limited amount
of memory. The way that typical applications are written is not suitable for adding
too many new features, as it would bloat the application’s size beyond available limits.
Adding a new feature using the traditional approach means adding a non-trivial amount
of code. Due to this, some applications only support features most required by users
and do not support more complex ones.

In this thesis, we propose a solution to this problem. It does not change the device
in any way. We describe an approach to writing applications where adding features only
means adding a single hash into the application’s code. More responsibility is moved
to the client-side while maintaining security guarantees. We want to test whether our
experimental approach is usable by demonstrating it on a proof-of-concept application
for a specific cryptocurrency. We are interested in whether our proposed application
can fit into the available memory and if it can, how will the user experience be affected.

In chapter 1, we go through what hardware wallets are and how typical applications
work in more detail. In chapter 2, we describe a higher-level overview of our proposed
solution. Next, in chapter 3 we describe how our application is designed. In chapter
4, we look at implementation details, and we also describe what tools we used and

what problems we encountered. Lastly, in chapter 5, we describe how we made adding
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support for new features on the client-side easier. We started working on a more formal
proof of security of our experimental approach, but we did not manage to finalize the
proof in time. Therefore, we only provide a non-formal reasoning about why our

application is secure in chapter 6.



Chapter 1
Hardware wallets

In this chapter, we will go through what hardware wallets are, what limitations they

have and how most of the currently used applications work.

1.1 What is a hardware wallet

A hardware wallet is a device for storing secret keys. At first usage, the master key is
either generated by the wallet or restored from a mnemonic phrase provided by the user.
Other keys are then derived from the master key. In the case of the wallet generating
a new master key, it is also encoded as a mnemonic phrase that is announced to the
user. The length of a mnemonic phrase is usually 24 words. In case of a device loss, all
keys could be restored from the mnemonic. A PIN also protects the device, so when a
bad actor gains access to it, they would not be able to do any harm.

Hardware wallets are often used to store secret keys to access various cryptocur-
rencies on their respective blockchains and also to safely sign transactions with those
cryptocurrencies. A hardware wallet mitigates the risk of falling victim to a corrupted
client, as the signing happens inside the device, and all critical data from the transac-
tion is first displayed to the user for confirmation. As different cryptocurrencies have
different transaction structures, a specific hardware wallet application is usually used
for each of them.

There are many manufacturers offering devices with various parameters. This thesis
focuses on the Ledger Nano S cryptocurrency hardware wallet. It has 160 kB of flash
memory and 4 kB of RAM. Therefore, due to the lack of storage space, applications

have to be rather small.
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1.2 Communication protocol

To be able to sign a transaction, a hardware wallet needs to receive it first. The
client communicates with the device using an APDU! protocol. Each APDU is of the

following format [3]:

field CLA |INS | P1 | P2 | Lc| Data | Le
size (B) 1 1 1 | 1 | 1 |variable | 0

Table 1.1: The structure of APDU

The maximum supported length of a single APDU is 256 bytes.

1.3 Current applications

A typical application remembers some allowed transaction structures in the respective
cryptocurrency. When the application receives part of the transaction data, it vali-
dates whether the format is as expected, displays the received data to the user for
confirmation if required, adds the data to the transaction rolling hash, and moves its
internal state to the next step. After all steps have passed as expected, the transaction
hash is signed using the secret key stored in the device. After that, the signed hash is
returned from the device so that the transaction could be submitted by the client to

the network successfully.

1.4 FIO protocol

FIO is a cryptocurrency with simple transaction structures. Also, a FIO application
for Ledger Nano S already exists. Therefore, we will only need to modify some parts
of this existing application to demonstrate our experimental approach. Creating a new
application from scratch includes much work that is unrelated to this thesis [2|. Use
cases of FI1O protocol are also unrelated to our work, as we will only modify transaction
signing.

The transaction structure in FIO is as follows [5]:

{

expiration: time_point_sec
ref_block_num: uintlé6_t
ref_block_prefix: uint32_t
context_ free_actions: [action]

actions: [action]

I Application protocol data unit
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transaction_extensions: extensions_type

There are more than 30 different possible actions [1], each of them having a specific
structure. The only action supported by the current version of the FIO application is
Transfer FIO tokens. The current FIO application only supports signing a transaction
that contains a single instance of this action in the list of actions. Therefore, usage of
the current application is limited, although it covers the most needed use case. The

structure of Transfer FIO tokens action is as follows [6]:

{
payee_public_key: string
amount : integer
max_fee: integer
tpid: string

actor: string

This is a simple action for transferring ownership of FIO tokens to another address.
Besides information about the payee and the number of tokens that are being sent,
other data, such as information about transaction fee, are present. From all of these
data, only payee_public_key, amount and max_fee are displayed to the user
for confirmation. If a user does not agree with either of these, the signing process is

terminated and no signature is produced.

1.4.1 Typical transaction signing example

We will demonstrate how the current FIO application signs a transaction. A client
communicates with the wallet using modified application protocol data unit (APDU)
exchanges. The transaction signing part of the current version of the FIO application
defines several allowed APDU exchanges. Their purpose is to safely deliver transaction
data into the wallet such that the wallet can serialize them and add them to the
transaction rolling hash. Fach of the allowed APDUs is responsible for a specific stage
of the signing process. The type of the APDU is uniquely determined by its p1 value.
There are 6 allowed APDUs in the signing process [4]:

1. INIT — Initializes the transaction rolling hash. Sets the application’s internal
state such that it expects HEADER next.

2. HEADER — Adds ref_block_prefix, ref_block_num and expiration,

which form a transaction header, into the transaction rolling hash. These are the
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first 3 values from FIO transaction schema. The internal state is advanced such
that the ACTION_HEADER is expected next.

3. ACTION_HEADER — Adds the number of actions (always 1), action account (al-
ways fio.token) and action name (always t rnsfiopubky) into the transac-
tion rolling hash. Sets the internal state such that the ACTTON_AUTHORIZATION

is expected next.

4. ACTION_AUTHORIZATION — Adds the number of authorizations, actor and
permission into the transaction rolling hash. These are the values that the
authorization consists of. After that, the application’s internal state is advanced
such that it expects ACTION_DATA next.

5. ACTION_DATA — Adds action data into the transaction rolling hash. This trans-
action data consists of data_length, pubkey_length, pubkey, amount,
max_fee, actor, tpidand tpid_length. The user has to confirm pubkey,
amount and max_fee on the screen of the device in order for the signing process
to continue. The internal state is advanced such that the WITNESS is expected

next.

6. WITNESS — Adds the number of transaction_extensions (always 0) into
the transaction rolling hash, finalizes the transaction hash, and prompts the
user whether they agree with signing this transaction. If the user agrees, the
transaction is signed by the device, and the hash and the signature are returned
to the client.

Throughout the run of the signing process, various checks are performed by the appli-
cation. These checks include validating the received data format, the length of received
data, and checking whether the current internal state is expected. The application’s
internal context variables are used to track the current application’s state.

Using this typical approach, the transaction signing process looks as follows. The
application is started on the hardware wallet. Upon start, the initial internal state is
set, such that the INIT stage APDU from the client is expected next. The client sends
an INIT stage APDU with respective data. The application performs the INIT stage
steps and returns a success message to the client if no problems are encountered. After
that, the client proceeds to send the HEADER stage APDU. The application performs
HEADER stage steps and returns a status message to the client. All remaining stages
are similarly executed in order. The WITNESS stage also returns the transaction hash
and the signature to the client, which allows the client to submit the signed transaction

to the network.
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1.5 Other cryptocurrencies

The typical approach is widely used across various applications for Ledger Nano S.
The issue with it is that each transaction structure needs to have its own finite-state
automaton. This leads to applications taking much space because each automaton
state needs to have its own code. Adding support for a new transaction structure to
an existing application means adding a non-trivial amount of code to it. Because of
the limited flash memory in the Ledger Nano S hardware wallet, creating an applica-
tion supporting many different transaction structures using this approach is a rather
tricky task. On average, only two to three different applications could be loaded into
the device simultaneously. However, sometimes it is a problem to fit even a single
application into the flash memory. For example, the current application for Cardano
takes up a majority of the available space. Adding more features to the Cardano ap-
plication is planned, and therefore, we expect its size to slowly increase over time as
new updates are released. As the development version of the Cardano application with
debug symbols and logs might take up more space than available, developers might
sometimes be forced to comment out code segments that are not needed for the part
they are currently working on. Commenting out some parts of code decreases the ap-
plication’s size, so developers can test and debug the feature that is being developed.
Using Ledger Nano S with multiple cryptocurrencies is inconvenient, as there often is

a need to uninstall one application to free up some space for another one.
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Chapter 2
Experimental architecture

In this chapter, we will discuss how the need for remembering transaction structure
could be removed from an application. We will discuss possible problems and propose

their solutions.

2.1 High-level overview

The goal of our application is to sign a transaction. The transaction is hashed first
and only the hash is signed afterward. While receiving serialized transaction data and
calculating a transaction rolling hash inside a wallet, the integrity of the transaction
has to be validated. Most of the currently used hardware wallet applications validate
integrity by remembering allowed transaction structures and checking whether the
received data conform to one of the remembered formats on the go.

Part of the assignment of this thesis is to replace this way of integrity checking by
calculating a hash of the transaction format besides a transaction hash and validating
whether the resulting hash of the transaction format is allowed only after the whole
transaction has been received by the wallet. We call this hash of the transaction format
an integrity hash.

We define a set of allowed APDUs that are able to cover all use cases of the current
FIO application while making adding more functionality easy on the applications side.
We call these APDUs instructions.

As the wallet receives instructions from the client, it adds constant parts of them
into the integrity hash and variable parts into the transaction hash. For example, if
there was a SEND_DATA ("Amount to send", 6) instruction used, we would add
the numerical code of this instruction and the "Amount to send" string to the integrity
hash. Then, we would add the number 6 to the transaction hash.

Each allowed transaction format would have its own integrity hash. After the

transaction is received by the application, the calculated integrity hash is compared
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against a hardcoded list of allowed integrity hashes. If the calculated integrity hash
is contained in this list, we consider the transaction structure to be valid and allow

creating the signature.

2.2 Limitations

Multiple challenges need to be solved to make this approach usable in practice. Ex-
ploring such challenges and limitations is a part of the assignment of this thesis.

One of the potential problems is the amount of RAM we have access to, which is 4
kB. Approximately 2 kB of RAM are used to store the operating system, leaving 2 kB
of usable RAM left.

At least two rolling hashes need to be calculated at the same time. The first is
the transaction hash that we need to sign at the end. The second one is an integrity
hash. Let us consider the space implications, assuming that a hash function we use is
sha256. A rolling hash that is being calculated takes up 512 B of RAM. Therefore,
those two hashes together use another 1 kB of space. We can use the remaining 1 kB
of RAM to store variables. On the other hand, the finalized sha256 hash only takes
up 32 B of space. Due to this, we can afford to calculate multiple hashes during the
signing process, but only two to three unfinished rolling hashes could be calculated

simultaneously to leave us with enough RAM for context variables.

Receiving transaction data is not difficult if the structure only consists of simple
key-value pairs, where the value is of a relatively simple type. However, values may
also be arrays.

Adding an element to an array would change the integrity hash if we calculated it
naively, but the number of elements of an array inside a transaction could be unlimited.
Therefore, a more sophisticated way of calculating an integrity hash is needed, as we
could only remember a limited number of allowed integrity hashes inside an application.
Ideally, if a transaction structure allows an array, the integrity hash of each transaction
of this type should be the same regardless of the exact number of elements of this
array in a specific transaction. This should be solvable by defining a for loop. A for
loop remembers a set of allowed iteration hashes. Fach time a single iteration is being
processed, a hash of its structure is calculated. After the iteration processing is finished,
it is checked whether the hash of the structure of this iteration is conatined in the list of
allowed iteration hashes that the for loop remembers. After all iterations are finished,
calculating the integrity hash of the transaction is restored. The new integrity rolling
hash starts from the value of the integrity hash as it was before the for loop was started

and from the hash of allowed iteration hashes. This way, the exact number of iterations
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does not affect the final integrity hash of the transaction, but it is validated that all
iterations are allowed. At the same time, the integrity hash calculated after the for
loop depends on possible iterations of the for loop and on everything that happened
before the for loop. As there could be multiple allowed iteration hashes, there can
be multiple different iterations processed in a single for loop. This adds switch-like

capabilities to this for loop.

2.3 Goals

We aim to create an application where adding a new allowed transaction structure
would be a matter of adding a single allowed integrity hash into the source code. The
application should not be dependent on the specifics of the transaction structures of
any cryptocurrency. However, it could depend on the specifics of FIO protocol, such
as the hash function and signature algorithm. The complexity of adding support for
a new transaction type would be transferred to the client-side. Because of that, we
also aim to create a JavaScript infrastructure for sending instructions to the hardware
wallet based on the transaction format description in JSON format and data provided
by the user. Thanks to this, adding support for a new transaction type on the client
side would only mean creating a JSON file that describes the new allowed transaction
format. Our interpreter would combine this JSON with transaction data and send

correct instructions to the hardware wallet.

2.4 Instructions

Our APDUs need to be more general than those in the current version of the FIO
application. They need to support receiving data of arbitrary transactions, possibly
including arrays of objects.

We define a set of instructions that is capable of receiving an arbitrary serialized
transaction, calculating a transaction hash, validating that such transaction is allowed
and returning a signature at the end.

Each instruction adds some specific set of constants to the integrity hash at the
beginning. This set of constants always includes the numerical code of the respective
instruction. Besides that, other constants might be added depending on the instruction.

Instructions are described in more detail in chapter 3.

The application needs to ensure that the received sequence of instructions is valid.
The application explicitly validates some conditions. These include validating the
number of bytes received during a specified section and validating that the number of

bytes in the instruction’s data conforms to the application’s expectations. Other than
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that, it is checked whether a previous for loop iteration has ended before the next one
is started and whether there is a for loop to end in case the client is trying to end a for
loop using an instruction. This ensures that only some formats of instruction sequences
will be processed by the application successfully, which can help us formulate the proof
more easily. A formal proof is not a part of this thesis, but thanks to this, proving

security should be easier.



Chapter 3
Design

In this chapter, we will focus on the design of our experimental application. We will

describe a set of instructions we use.

3.1 Instructions

In the current version of FIO application, instructions such as INIT, HEADER and
ACTION_HEADER are used. We replace the entire set of current instructions with a
set of experimental ones. To keep the description of experimental instructions simple
and more readable, we leave some of the details out. We describe more details in

chapter 4.

3.1.1 Initializing a transaction

The first instruction we define is called INIT_HASH, and it does not take any parame-
ters. It is responsible for initializing a transaction hash, an integrity hash, and context
variables that will be used by other instructions later. This instruction has to be used

at the beginning of the signing process.

3.1.2 Finalizing a transaction

After all transaction data has been sent, the END_HASH instruction has to be used.
The first step it performs is finalizing the transaction hash and the integrity hash. After
that, it validates whether the resulting integrity hash is contained in a hardcoded list of
allowed integrity hashes. In case the integrity hash is not allowed, it returns an error.
Otherwise, the transaction hash is signed, and the transaction hash with the signature

are returned to the client.

13
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3.1.3 Sending data

The most used instruction is SEND_DATA (header: string, body: uint8[],
display: Dbool, encoding: uint8, storage_ins: uint8), where all
of header, display, encoding and storage_ins are added to the integrity hash.
The body is added into the transaction hash. In case display is set to true, both
header and body are displayed on the screen and the user has to confirm them in
order to continue the signing process. The encoding parameter holds information
about encoding of body, which could be different types of integers or a string. The
storage_ins parameter is for working with storage, which will be described in later

chapters.

3.1.4 Counted section

In some cases, the length of the data that will be sent has to be announced before
that data is sent. Sending such data may span multiple instruction calls. We call
such a series of instructions a counted section, and the instruction that initializes it is
STRT_SEC (length: int). This instruction sets an appropriate context variable
to length. After that, each call to SEND_DATA decrements this context variable by
the length of the data received. In order to validate that the counted section was valid,
we need another instruction called

END_SEC. It validates whether the value of the respective context variable is 0, and if
it is not, the transaction signing process fails. Counted sections can be nested. Details

of how this is accomplished are described in chapter 4.

3.1.5 For loops and switches

In order to receive arrays, we need loops. Also, elements of an array do not have to be
of the same type. Therefore, we also need a mechanism to emulate switch-blocks. We
define a for loop that also possesses switch capabilities, and it works the following way.
Before a for loop is started, the integrity hash that was calculated up to this point is
finalized and stored in a context variable. Let us call this variable parent.

Then, a series of iterations happens. Instructions that have to be used here are
STRT_FOR, STRT_IT, END_IT and END_FOR. Each loop iteration is started by a
STRT_IT instruction and ended using an END_TIT instruction. Between STRT_FOR
and END_FOR instructions, an arbitrary number of iterations could happen. We will
describe how the number of iterations could be limited in the following paragraphs.

With each iteration, we start a new integrity hash that will only be used to validate

that single iteration. We call this hash an iteration integrity hash. The integrity of
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each iteration will be validated separately. The value of parent is added to the
newly started iteration integrity hash at the beginning of an iteration. Therefore, each
iteration integrity hash starts from the same value, which is parent. After that, many
instructions can be called, each of them modifying the iteration integrity hash.

We use a STRT_IT instruction to start an iteration. At the end of each iteration, an
END_IT (validIterHs: uint8([][]) instruction has to be called. Its purpose
is to validate whether the resulting iteration integrity hash is contained in the list
of allowed iteration hashes for this for loop. The list of allowed iteration integrity
hashes itself is not hardcoded. Instead, it is sent as a validIterHs parameter to the
END_IT instruction.

Because the list of allowed iteration integrity hashes only depends on the client,
there is a need to validate it too. The first property that needs to be validated is the
consistency of the list of allowed iteration integrity hashes across multiple iterations
inside a single for loop. The same list has to be sent with each END_IT instruction
call. In order to check this, the hash of this list is sent at the beginning of a for loop
as a parameter to STRT_FOR instruction.

A STRT_FOR (mnIt: int, mxIt: int, validIterHsH: uint8[]) in-
struction is defined. The number of iterations of for loop has to be between mnIt and
mx It inclusive. The validIterHsH parameter is a hash of allowed iteration hashes
and is stored in a context variable and used later to validate that each END_IT in-
struction has sent the same list of allowed iteration integrity hashes. This way, the
application does not need to remember the whole list of allowed iteration integrity
hashes. Calculation of integrity hash of entire transaction has to continue after the for
loop ends. This new integrity hash is started in an END_FOR instruction. It consists
of the value of validIterHsH, mnIt, mxIt and parent. An END_FOR instruction
also validates that the correct amount of iterations was performed.

This way, the integrity hash that we continue with after the loop does not depend
on an array’s exact number of elements. Instead, it depends on the structure of allowed
iterations, the range of the iterations that could have happened and on everything that

happened before the loop was started, because the parent value is included in it.

3.2 Summary of instructions

All instructions we define are included in the following table together with their pa-
rameters. Parameters are not simplified and are same as in an actual implementation.
Therefore, there are minor differences between this table and descriptions we provided

in this chapter.
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Instruction

Parameters

INIT_HASH

END_HASH

derivation_path

SEND_DATA

display
encoding
header_len
header
storage_ins
body_1len
body

STRT_SEC

section_len

END_SEC

STRT_FOR

min_iters

max_iters

allowed_iter hashes hash

END_FOR

STRT_IT

END_IT

num_allowed_iter_ha

allowed_iter hashes

shes

Table 3.1: Instructions and their parameters

3.3 Integrity hash calculation

There are multiple options on how the integrity hash could be calculated.

The first option is to have a rolling hash that is only finalized before a for loop is

started, or in the END_HASH instruction. This is simple to implement, but having a

rolling hash might be non-trivial for reasoning about the application’s security.

The second option is more viable for writing a proof and not difficult to implement

either. This option involves finalizing the integrity hash at the end of every instruction.

The next instruction will always start calculating a new hash containing the hash

produced by the previous instruction. This way, all instructions will stay connected,

and the final integrity hash will depend on all previous instructions. This is the option

we chose to use.



Chapter 4
Implementation

In this chapter, we will describe how we implemented the proposed application and

what problems we had to overcome while implementing it.

4.1 Tools used

As a traditional FIO protocol application for Ledger Nano S exists already, we used
it as a base for implementing our experimental approach. The only parts we were
concerned about were transaction signing and JavaScript infrastructure. Applications
for Ledger Nano S are written in C. As we had most of the needed helper functions
and macros prepared from the existing application, we did not need to get a deeper
understanding of their implementation, and we were using them as black boxes. The

code for signing a transaction hash is also taken from the traditional FIO application.

4.2 Debugging

While implementing the experimental version of the application, we had to overcome
several problems. The first one was debugging. At the time of implementing our
approach, an emulator for Ledger Nano S existed already. However, setting it up was
not easy, and using an actual device was more convenient. At the time of writing this
thesis, the emulator is in much better shape and is much more usable. However, we
used an actual device the whole time.

Luckily, a tool for printing debugging logs exists. It is called usbtool, and we can
use it to make PRINTF macros print logs to a terminal. This makes debugging much
more manageable than if we did not have an option of logging.

The process of debugging using a device is slow. The application needs to be
recompiled after a change to the code is made. After it is recompiled, it needs to

be loaded into the device. Several confirmations need to be manually performed on
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the Ledger during the loading process. Usually, the developer has to type the PIN
two times while loading a new application. The first time is while connecting the
Ledger, and the second time is when they have to confirm loading the new application.
Therefore, loading a new application can take few tens of seconds.

Testing an application also takes some time. The application is much slower in
debug mode with PRINTF macros. A single run of the application can also take few
tens of seconds. During this run, there are multiple confirmations required from the
user. However, the application can be started in a headless mode. In this mode,
confirmations do not need to be performed manually but are performed automatically

instead. This saves some time.

4.3 Main application

The important part is the C application. It receives APDUs from client and performs
logic based on these APDUs. Important parts of an APDU are p1, p2, 1c and data.
The first value, p1 is used for specifying appropriate handler for this APDU. The p2
field can be used to send any 1-byte value. The 1c is a 1-byte value specifying the
number of bytes of data. Lastly, data is a seqence of 1c bytes.

There is the main handler for handling forwarding APDUs to correct subhandlers.
Each subhandler implements the logic of one instruction. Subhandlers perform multiple
validations to ensure that the sequence of instructions the application received is a
good sequence. Let us look at what specific validations individual instruction handlers
perform.

In the following parts, | x| will be used as the number of bytes of x.

INIT HASH Checks that p2 is unused. Besides that, this instruction initializes a

transaction rolling hash and gets the first intermediate value of the integrity hash.

END_HASH Checks that p2 is unused and that a provided derivation path is valid.
This is needed for creating a signature, which is part of the responsibility of this
instruction. All addresses are derived from the master key. A derivation path marks

the address that should be derived and used for signing the transaction. For more
details, see BIP44[7].

SEND_DATA Expected data received by this instruction are data = encoding ||
headerLength || header || storageIns || bodyLength || body. The p2 field
is used to store display. The value of display says whether header and body
should be displayed to the user for confirmation. Next, encoding is used to determine

how body is encoded. This is used to distinguish between 1, 2, 4 and 8-byte integers in
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body and string and hex-encoded bytes in body. In case of encoding being string
or hex-encoded bytes, body has to be null-terminated. The application validates this
too.

Values from data are used to calculate expected length of data. It is validated
that |data| conforms to this expected value.

Besides that, the application checks whether individual values are from allowed
ranges.

It might be required to have an option to store body into the application’s state for
later use. For this, storageIns is used. It can have 4 values which encode following

storage actions:
1. No storage action.
2. Save body to storage.
3. Compare body to storage and fail in case there is a mismatch.

4. Compare body to storage and fail in case there is a mismatch and save body to

storage afterward.

STRT_SEC Validates that p2 is unused and 1c = |data|. Besides that, it is val-
idated whether the next counted section can be started. In case there are already
MAX_NESTED_SECTIONS nested sections, starting a new one is prohibited. This check
is introduced due to memory limitations. The value of MAX_NESTED_SECTIONS is

set to 8, which should be enough for most use cases.

END_SEC Checks that p2 is unused and that there is a counted section to end.
This is accomplished by looking at sectionLevel variable in the application’s state.
This variable is always incremented when a new section is started and decremented
when a section ends. The most crucial validation performed by this instruction is
that the expected number of bytes were received during this counted section. This is
accomplished by comparing the current section counter with the expected value. Both
of these values are kept in the application’s state.

In the case of nesting, inner sections also affect outer sections. This means that
if an inner section receives x bytes, then also the counter for all its ancestor sections
have to be increased by z. It would be inefficient to always change counters for all
nested sections immediately after receiving data. Therefore, when a counted section
that received x bytes ends, it increments the counter of its parent section by x. This

way, the number of received bytes is lazily propagated to all ancestor counted sections.
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STRT_FOR The p2 field has to be unused. Similarly to STRT_SEC, a limit on the
maximum number of nested for loops is introduced here. This handler does not al-
low starting a new for loop if there are too many nested for loops already. The
limit is set to 5 nested for loops, which should usually be enough. This validation
can be performed thanks to the forLevel variable that is part of the application’s
state. Data received by this handler are minNumIterations, maxNumIterations
and allowedIterationHashesHash. In order for this instruction to succeed,
minNumIterations have to be less than or equal to maxNumIterations. The
application will allow any number of iterations of this for loop as long as their amount
is between minNumIterations and maxNumIterations. Both of these values are
added into the integrity hash. Starting a for loop where only 0 iterations is allowed is
also possible. This handler also saves the current integrity hash into the application’s
state. All iterations will use this saved value to start their iteration integrity hash. It
will also be included in the integrity hash that will be started after this for loop ends
by the END_FOR instruction. The value of allowedIterationHashesHash is also
saved to the state as it will later be required by END_TIT instruction. This is simplified

part of the code of this handler. The application’s state is saved in ctx.

uint8_t constants[] = {0x30, 0xOb}; // id of STRT_FOR
sha256_init (&ctx—>iHash);

sha256_append (&ctx—>1iHash, constants);

// Add iHash as it was after the previous instruction
sha256_append (&ctx—->iHash, ctx->prevHash);
sha256_append (&ctx—->iHash, minNumIterations);
sha256_append (&ctx—>iHash, maxNumIterations);

// Save the final iHash into the state

sha256_final (&ctx—>iHash, ctx->iHashes[ctx—->forLevell);

ctx—>forLevel++;

STRT_IT This is a handler for starting an iteration of a for loop. A validation of
p2 being unused is performed. This instruction can only be used after a for loop is
started, which is validated by checking whether the current forLevel variable in the
state is greater than 0. This variable is incremented when a for loop is started and
decremented when it is ended. In order to avoid overflows, it is also checked whether
starting this iteration would not exceed a maximum allowed number of iterations of

the current for loop.

END_IT This handler handles ending an iteration inside a for loop. The p2 field

has to be unused. Data received by this instruction are numAllowedItHashes



© 00 N O Tt = W N =

10
11
12
13
14
15
16

4.3. MAIN APPLICATION 21

and allowedItHashes. A hard limit is set on the maximum number of allowed
iteration hashes. Therefore the application checks that this amount is not exceeded by
numAllowedItHashes.

Getting allowedIterationHashesHash from its data and saving it into the
application’s state is one of the responsibilities of STRT_FOR. This value is used by
END_TIT to validate whether allowedItHashes are as expected. To validate this,
a sha2b6 hash of concatenated allowedItHashes is computed and compared with
the value of allowedIterationHashesHash from corresponding STRT_FOR in-
struction.

After the received list of allowed iteration hashes is validated, an iteration in-
tegrity hash of the current iteration is finalized, and a check whether it is present

in allowedItHashes is performed.

END_FOR The p2 field has to be unused. Besides that, there has to be a for loop
that could be ended. In case forLevel variable in the application’s state is 0 already;,
there is no for loop currently, and thus no for loop could be ended.

In case there is a for loop to end, the application validates that the number of
iterations of this for was allowed. It uses an iteration counter from the state and
compares it against minNumIterations and maxNumIterations that were saved
into the state by STRT_FOR instruction. This code snippet is a simplified section of

END_FOR handler. Some validations are not included in the snippet.

uint8_ t constants[] = {0x30, 0xOc}; // id of END_FOR
sha256_init (&ctx—->iHash);
sha256_append (&ctx—->iHash, constants);
// Add iHash from before the for was started
sha256_append (
&ctx—>iHash,
ctx->iHashes[ctx->forLevel - 17,
) i
// Reflect allowed iterations in integrity hash
sha256_append (
&ctx—>1iHash,
ctx—>allowedIterationHashesHash[ctx->forLevel],
)i
// Save the integrity hash for next instruction
sha256_finalize (&ctx—->iHash, ctx->prevHash);

ctx—>forLevel——;
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4.4 Generality

The application we implemented is not universal. However, it is relatively general. In
this section, we will describe what would need to be changed in order for this application
to be usable for multiple cryptocurrencies.

On the application’s side, adding support for a new type of transaction from the
FIO protocol is very simple already. It only means adding a hash into the list of allowed
integrity hashes. However, as different cryptocurrencies use different approaches, our
application is not suitable for many of them.

The first reason for this is that we only support sha256 hash function for calculating
transaction hashes, and we only support a single signature algorithm. This might not
be sufficient for other cryptocurrencies that use different cryptographic tools. The
solution to this is generalizing the INIT_HASH instruction. Currently, it does not take
any parameters. It should be possible to add two parameters to it. One of them being
the hash function to be used. The second one would be the needed signature algorithm.
Both of these parameters would affect the application’s state. The correct hash function
and signature algorithm would be used based on the state in all instructions.

Another reason is that our supported set of instructions might not be enough for
some more complex validations. A solution to this might be generalizing our set of
instructions, but that would add complexity, and our code would be less readable
and thus more prone to bugs. Our application supports multiple features for ensur-
ing safety. One of them are counted sections. They do not affect transaction hash but
might be needed for security. Another one is called a storage action. Each SEND_DATA
instruction has an option to store some data into the state for later use. These two
features are probably not enought to cover all security checks that other cryptocurren-
cies might possibly require. In order to create an application that is usable for many
cryptocurrencies, more such features might be required.

Our application is more general than the current FIO application. There is a list
of actions as a part of a transaction in the FIO protocol. The current application only
supports transactions with a single action. Our experimental application supports
multiple actions in a single transaction. As actions is an array in a transaction,
actions are sent using a for loop one by one. The STRT_FOR instruction also sends
minNumIterations and maxNumIterations. We can limit the number of actions
using these two parameters in an appropriate for loop. However, this for loop is only
driven by the client. As minNumIterations and maxNumIteration are included
in the integrity hash, changing these values on the client-side would result in the
calculated integrity hash being different from the one hardcoded in the application.

Another aspect where our application is more general than the current one is the

capability to process multiple different actions. The current application only supports
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trnsfiopubky action. Our application should be able to also process others. This
is because there is a switch-like behavior included in the for loop. The for loop has a
list of allowed iteration integrity hashes. Each of these hashes is an integrity hash of a
different iteration. Therefore, in order to have an option to include multiple different
actions in a transaction, we only need to pass multiple allowed iteration integrity hashes
to the for loop that is responsible for the processing of actions array. Of course,
this would also change the resulting integrity hash of such transaction and we would
need to add this new allowed hash to the application’s code. We did not test the
application on multiple different actions. We only tried to sign a transaction with

multiple trnsfiopubky actions.
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Chapter 5
JavaScript infrastructure

In this chapter, we describe how support for new types of transactions could be added
on the client-side easily using our JavaScript instruction interpreter and JSON tem-
plates.

Our client-side code is written in TypeScript. Its purpose is to build valid APDUs
and send them to the device. Each application’s instruction has a corresponding piece
of TypeScript code for this. This part is also copied from the traditional version of the
FIO protocol application. We added support for our new instructions by copying and
slight modifications to an already existing code. This part is not too interesting. A

more critical and more innovative part is how support for new transaction type can be

added.

5.1 Templates

A typical client needs to assemble a transaction and send its data to the application
in a specific way. This is doable by directly sending a sequence of instructions to the
device. However, writing a sequence of general instructions can be quite unconvenient.
For example, having to start a for loop, then start and end each iteration, and then end
the for loop might be less readable than just having a for loop block with few iteration
blocks in it. This is where our templates come in.

Each transaction structure can be described using a JSON file. Such a file will rep-
resent a transaction template. This template consists of a list called instructions.
Each element of this list is a block with a name and constant data. For example, a
template consisting of a single SEND_DATA instruction and a for loop with a single

allowed iteration type can look like this:

{

instructions: |

{
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name: "INIT_HASH",

name: "SEND_DATA",

params: {

header: "ref_block_prefix",

encoding: ENCODING_UINT32,

by

name: "FOR",
id: "actions",

params: {

min_iterations: 6,
max_iterations: 10,
by
iterations: [
{
name: "trnsfiopubky",
instructions: |

{

name: "START_COUNTED_SECTION",

id: m1iv,
I
{

name: "SEND_DATA",

params: {

header:

encoding: ENCODING_STRING,

by
by
{

"pubkey",

name: "SEND_DATA",

params: {

header:

encoding: ENCODING_UINT64,

display:
b
Yy

"max_fee",

true,
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name: "END_ COUNTED_SECTION",
by

by
i

name: "END_HASH",

This template is reasonably readable, and writing one should not take developers
too much time. Actual templates will be longer. This one is very short, and it is just
an example. Thanks to how templates are structured, it is simple to compose multiple
templates into one. For example, it should be simple to use a template as an iteration

of a for loop in another template.

5.2 Interpreter

A template itself is not enough. An interpreter that will translate this template into
a sequence of instructions that will be sent to the device is needed. Depending on
a specific transaction, this interpreter will also need to send variable data into the
device. Constant data present in the template are only needed for transaction structure
validation and are the same in every transaction of this respective type. From these
constant data, none are added to the transaction hash. Data going into the transaction
hash will mostly differ between individual transactions. Therefore, for the interpreter
to assemble and send a correct sequence of instructions to the device, it needs to get
an object with variable data on input besides an interaction template. This object
with variable data needs to have a structure such that the interpreter can manage to
combine these data with a template correctly.

An object with data for the template we listed above can look like this:

{
ref_block_prefix: "860116326",
"iterations#actions": {
allowed_iter_hashes: [
"e12d8d890913a219f...",
I
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trnsfiopubky: {
pubkey: "FIO8PRe4WRZJjSmkembqg...",
max_fee: "287454020",

The interpreter is a function that takes a template and variable data object on
input and assembles and sends correct APDUs in the correct order to the device. Let
us call the object with variable data varDat. The interpreter function iterates through
instructions written in the template. Let the currently evaluated block be b.

For INIT_HASH instruction, the interpreter only sends a single APDU that is
always the same to the device. The INIT_HASH is not sent automatically at the
beginning, and it needs to be explicitly present at the beginning of the template. This
is because it leaves room for adding support for multiple hash functions and signature
algorithms in the future. In case this is supported, the hash function and a signature
algorithm will be selected using INIT_HASH instruction at the beginning, and the
corresponding template block will not be constant across all possible templates.

In case of SEND_DATA instruction, the interpreter reads needed values from params
from b. In case some field is not present there, a default value is used. The body part
of SEND_DATA instruction is present in varDat under a key that is listed under a
header key in params of b.

If the evaluated block is for STRT_SEC instruction, the expected section length
should be read from params of b. However, in our implementation, this value has
to be present in varDat and we did not manage to move it to the template on time.
This is enough information to assemble a correct APDU for STRT_SEC instruction.

The END_SEC instruction is even simpler than STRT_SEC, as it does not need any
parameters, and it only sends a constant APDU to the device.

The most complicated template block is called FOR. Its constant data, such as min-
imal and maximal allowed number of iterations, are listed under params in b. Besides
params, b also contains a list called iterations. The interpreter iterates through
iterations. At the beginning of each iteration, it sends a STRT_IT APDU, and
at the end of each iteration, it sends an END_IT APDU. Each allowed iteration has
its name specified in b. This name is used to access correct data in varDat. Be-
sides the name, a list of instructions that the iteration consists of is present. Thanks
to instructions of iteration being under instructions key, it is possible to recur-
sively use interpreter on instructions. Due to such recursive evaluation, the in-
terpreter is a short recursive function. Note that in varDat we provided, there is

an allowed_iter_hashes key present. Allowed iteration hashes can be computed
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from the template, as they only depend on constant data. However, we did not manage
to implement the hashing system in TypeScript on time. As this was not a high prior-
ity task, we leave this improvement for future work. This feature would make adding
support for a new transaction type on the client-side simpler. In this form, a developer
needs to print iteration hashes from the C application to determine them.

After all template blocks are processed, a single APDU for END_HASH instruction
needs to be sent. To be consistent with INIT_HASH instruction at the beginning, an
END_HASH block has to be present at the end of the template, even though it does not

carry any additional information.
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Chapter 6
Safety considerations

In this chapter, we will reason about the safety of our application. We will try to
show that our application could not be tricked into signing a transaction with data not
allowed by the user. This will not be a formal proof. Instead, we will only non-formally

and intuitively describe what the security of our used hashing system stands on.

6.1 Allowed sequences of instructions

We want to reason about the safety of using integrity hashes and show that it is
infeasible to trick this mechanism. However, we do not need to show this for all
possible sequences of instructions that the application can receive. There are multiple
validations spread across the application’s code. These ensure that only sequences
of instructions conforming to our chosen format will be allowed. Some examples of

sequences that the application does not allow are listed here:
e A sequence where a for loop is ended, but not started.

e A sequence, where the amount of data received during a counted section is dif-

ferent than the expected amount.
e A sequence where an iteration is ended but not started.
e A sequence with a for loop with number of iterations that is not allowed.
e A sequence with more nested for loops than allowed.

The application can easily detect all of these cases and others. We call sequences
of instructions that have a valid format good sequences. All other sequences are bad
sequences. 'To check that an instruction that is being processed by the application
does not make the current sequence bad, multiple variables in the application’s state

and constants are used. These include a hardcoded limit for the maximum number of
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nested for loops and a limit for the maximum number of nested counted sections. The
current number of nested for loops and counted sections is stored in the applications

state too.

6.2 Templates

We would like to show that our application only signs the transaction if it conforms to
one of the allowed JSON templates that we described in chapter 5. A hash could be
calculated for each such template because each template only contains constant data.
There can be hashes of multiple different templates hardcoded in the application. When
the application processes a good sequence of instructions, it calculates its integrity
hash. In case the integrity hash is contained in the list of allowed template hashes, the
transaction signature is produced. Therefore, for our hashing system to be secure, we
need to show that if a good sequence of instructions has an integrity hash equal to a
hash of an allowed template, then this sequence conforms to this template. As we work
with hashes, there may be many good sequences with the same integrity hash as some
template. However, we would like to show that computing a sequence of instructions
that does not conform to a specific template while having the same integrity hash
as that template is infeasible. This infeasibility should be a result of sha256 being
collision-resistant.

As we do not have the mathematical model ready, we only describe everything

intuitively here.

6.3 Security of integrity hashes

As validating that the sequence of instructions is a good sequence is a responsibility of
the application, we can only focus on the security of the hashing mechanism we use. As
reasoning about rolling hashes that span through multiple instructions can be difficult,
we finalize the integrity hash at the end of each instruction and start a new integrity
hash from it at the beginning of the next instruction.

The security of our approach is based on the assumption that all hash functions that
could be used are collision-resistant and preimage resistant. In our case, we assume
that sha256 has these properties.

The only instruction that can make the application return a signed transaction is
END_HASH. This instruction validates whether the sequence of instructions received
up to this point has an integrity hash that is included in the hardcoded list of allowed
integrity hashes. Therefore, we need to show that the only feasible way to calculate

an allowed integrity hash is to pass the application a good sequence that conforms to
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one of the allowed templates. If it was possible to find two good sequences yielding
the same integrity hash while conforming to different templates, then the used hash
function, in our case sha256, would not be collision-resistant.

We worked on creating the model for the proof and the proof itself for several weeks,
but we did not manage to finish it on time, as multiple complications occurred. We

want to finish the formal proof in the future.

6.3.1 Simple example

Let us consider the following template 7T

{

instructions: [
{
name: "INIT_HASH",
by

{
name: "SEND_DATA",

params: {
header: "ref_block_prefix",
encoding: ENCODING_UINT32,
by
by

{
name: "SEND_DATA",

params: {
header: "amount",
encoding: ENCODING_UINTG64,
by
by

{
name: "END_HASH",
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The simplified hash of this template could be obtained the following way:

hy = sha256(INIT_HASH)

hy = sha256(h; || SEND_DATA || ENCODING_UINT32 || "ref_block_prefix")
hs = sha256(hy || SEND_DATA || ENCODING_UINT64 || "amount")
(

hy = sha256(hs, END_HASH)

Here, hy4 is the final hash of the template. A simplified sequence conforming to this

template could look like the following one:

S1 = ((INIT_HASH),

(SEND_DATA, "ref_block_prefix",ENCODING_UINT32,2361),
(SEND_DATA, "amount ", ENCODING_UINT64,26),

END_HASH))

The integrity hash of sequence S; will also be hy. This sequence clearly intuitively
conforms to template T'. Let us consider a sequence S; with integrity hash h, that
does not conform to template T. As S does not conform to T, its integrity hash
had to be calculated in a different way than the integrity hash of S;. This would
be a collision in sha256. Therefore, if we assume that sha256 is collision resistant,
calculating such S5 has to be infeasible. For a formal proof, we would have to prove
multiple lemmas. The core of this proof would be a simple mathematical induction,
but many details and a mathematical model need to be handled well in order for the

proof to be readable.



Conclusion

We implemented an application for Ledger Nano S that does not remember exact
transaction structures while still being secure. While implementing it, we explored the
limitations and advantages of our approach.

At the beginning, we defined a set of general instructions that the application should
support. These instructions can be used to make the application process arbitrary data.
Besides a basic SEND_DATA instruction for sending data, for loops and counted sections
are supported.

Next, we defined how the integrity hash of a transaction will be calculated. Constant
parts of instructions affect the integrity hash, while their variable parts only affect the
transaction hash. The way how integrity hashes are calculated is not straightforward.
The approach we used for calculating integrity hashes of sequences of instructions that
include for loops works so that changing the number of iterations of a for loop does
not change the final integrity hash.

The application rejects sequences of instructions that do not conform to the allowed
format. We only described this format intuitively. Sequences, where there are more for
loops ended than started, are easily recognized and rejected by the application. Not
using the integrity hash, but using an internal state instead.

As sequences with an obviously wrong format are rejected by the application, we
can only focus on a specific subset of instruction sequences in the proof. However, the
proof was not part of this thesis. We worked on creating a mathematical model of
our application and writing a formal proof of security. We did not manage to finish
the model and the proof on time, and we plan to finish it in the future. As a part of
this thesis, we only explain the security of our application intuitively and non-formally,
which is not enough for using this approach in production code.

Adding support for a new transaction structure on the application’s side means
hardcoding a new integrity hash into the source code. We believe it would be more
convenient if the list of allowed integrity hashes was given as a parameter while com-
piling the application. This way, the code would not need to be changed while adding
a new feature. We leave this improvement for future work.

There are multiple FIO-specific snippets in the code of our application. Remov-

ing all of these and adding support for more hash functions and signature algorithms
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to make a single application for multiple cryptocurrencies would be difficult. How-
ever, we managed to show that this experimental approach could be used to create a
feature-rich application for a single cryptocurrency. It would be interesting to apply
the experimental approach to an application for a more complex cryptocurrency, such
as Cardano. We assume that it could make the development more manageable, and
the final application might be smaller than the current one.

The amount of flash memory is a big limitation. In the case of our experimental
application for the FIO protocol, there is around 1 kB of flash memory left. Assuming
one integrity hash takes up 32 B of memory, our application can remember up to
around 30 different integrity hashes. This means that our application can handle up to
around 30 different allowed transaction structures. If the experimental approach was
applied to Cardano, this number would probably be smaller because more code would
be required for more complex and additional instructions.

The number of needed APDUs increased by using this approach. The user experi-
ence is fine, even though the current non-experimental application is faster. We believe
that some APDUs can be merged to optimize our application. An overall impact on
the user experience is not too visible when using a production build of our application.

We are overall satisfied with the capabilities of our experimental application, but
we are interested in writing a formal proof of security in the future. Adding support for
a new transaction structure on the application’s side means hardcoding a new integrity
hash into the source code. We believe it would be more convenient if the list of allowed
integrity hashes was given as a parameter while compiling the application. This way,
the code would not need to be changed while adding a new feature. We leave this

improvement for future work.
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Appendix A: Source code

The source code of the experimental FIO application for Ledger Nano S is appended to
the thesis. Both the C application and the JavaScript client-side code are included in
the form of a zipped git repository. The final version is in the exp/devel branch. All
of the above mentioned code is also accessible in the following repository: https://
github.com/vacuumlabs/experimental-ledger—app/tree/exp/devel.
Setup instructions can be found in README files inside the repository. Most of the
provided code is taken from the current version of FIO application. We mainly mod-
ified transaction signing in signTransaction.c file and JavaScript infrastructure
in ledger js—fio folder. However, even in this folder, most of the code is taken from

the current version FIO application.
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