Consistency and Fault-Tolerance in Data Warehouses

Konzistentné dátové sklady a ich odolnosť voči chybám

Radka Ďurčová supervisor: Mgr. András Varga, PhD.

Big data

computer clusters, distributed systems increased risk of failure

Objectives of a recovery strategy maintain data consistency performance

This thesis

ETL process failures Dependency Analysis vs non-optimized approach

Data Warehouse analytic database

ETL process Extract, Transform, Load

Cluster

Data storage Hive Hadoop DFS

Data transformations Spark

Source system

Fictional client music streaming service

Source system CSV files

Dimensional model

Star schema fact tables - measurements dimensions - context

Methods

Naive approach

Dependency Analysis

3 stages: extract, transform-load, swap auxiliary tables execution conditions, storing intermediate results

	etl_cmd :	🖩 prev_step	1.00
1	user_dim_tl	user_dim_ext	
2	user_dim_swap	user_dim_tl	
3	track_dim_tl	track_dim_ext	
4	track_dim_swap	track_dim_tl	
5	<pre>streams_fact_tl</pre>	<pre>streams_fact_ext</pre>	
6	<pre>streams_fact_tl</pre>	user_dim_tl	
7	<pre>streams_fact_tl</pre>	track_dim_tl	
8	streams_fact_swap	<pre>streams_fact_tl</pre>	

Results

Dependency Analysis performance improvement minimal deceleration of a regular ETL run