Martin Knor: Radially maximal graphs

Graph G is selfcentric if $\operatorname{diam}(G)=\operatorname{rad}(G)$, and it is radially maximal if $\operatorname{rad}(G \cup e)<\operatorname{rad}(G)$ for every edge e from the complement of G. My problem is related to radially maximal graphs of radius r with the minimum posssible number of vertices. Well, if we admit selfcentric graphs, then the minimum number is $2 r$ and it is attained by the even cycle $C_{2 r}$. For non-selfcentric graphs we have the following conjecture.

Conjecture: Let G be a non-selfcentric radially maximal graph of radius $r \geq 3$ on the minimum possible number of vertices. Then $|V(G)|=3 r-1$. Moreover $\Delta(G)=3, \delta(G)=1$ and G is planar.

The conjecture was verified for $r=3$, and it was proved that there are only 2 graphs of this form. For $r>3$ nothing is known.

To show you some examples of these graphs, consider cartesian product $P_{2 r-1} \times P_{2}$, and contract r-1 copies of P_{2} (each copy into one point) at one end of the ledder. Another example is C_{8} with vertices $v_{0}, v_{1}, \ldots v_{7}$ with 6 extra vertices as follows. Two paths of length 2 are glued, by their endpoints, one to v_{0} and the other to v_{4}; and two paths of length 1 are glued by their endpoints one to v_{2} and the other to v_{6}.

