Martin Knor: Radially maximal graphs

Graph G is selfcentric if diam(G) = rad(G), and it is radially maximal if $rad(G \cup e) < rad(G)$ for every edge e from the complement of G. My problem is related to radially maximal graphs of radius r with the minimum possible number of vertices. Well, if we admit selfcentric graphs, then the minimum number is 2r and it is attained by the even cycle C_{2r} . For non-selfcentric graphs we have the following conjecture.

Conjecture: Let G be a non-selfcentric radially maximal graph of radius $r \geq 3$ on the minimum possible number of vertices. Then |V(G)| = 3r - 1. Moreover $\Delta(G) = 3$, $\delta(G) = 1$ and G is planar.

The conjecture was verified for r = 3, and it was proved that there are only 2 graphs of this form. For r > 3 nothing is known.

To show you some examples of these graphs, consider cartesian product $P_{2r-1} \times P_2$, and contract r-1 copies of P_2 (each copy into one point) at one end of the ledder. Another example is C_8 with vertices v_0, v_1, \ldots, v_7 with 6 extra vertices as follows. Two paths of length 2 are glued, by their endpoints, one to v_0 and the other to v_4 ; and two paths of length 1 are glued by their endpoints one to v_2 and the other to v_6 .