Applications of Superposition in Graph Thery

MARTIN KOCHOL

Slovak Academy of Sciences, Bratislava



Nowhere-zero flows in graphs
5-flow conjecture
3-flow conjecture

snarks

Cycles in graphs
cycle double covering
dominating circuit conjecture

compatibility conjecture



Nowhere-zero flows

Graph G has a nowhere-zero k-flow if its edges can be ori-
ented and assigned numbers 1, ..., £(k—1) so that the sum
of the incoming values equals the sum of the outcoming ones

for every vertex of the graph.
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nowhere-zero 4-flow

G has a n.-z. k-flow = G has a n.-z. (k + 1)-flow



If A is an additive Abelian group, then G has a nowhere-zero
A-flow if its edges can be oriented and assigned elements of
A —{0} so that the sum of the incoming values equals the sum

of the outcoming ones for every vertex of G.

Theorem (Tutte 1950, 1954): Let G be a graph. Then the
following statements are pairwise equivalent.

(1) G has a nowhere-zero k-flow.

(2) G has a nowhere-zero Z-flow.

(3) G has a nowhere-zero A-flow for any |A| = k.



Theorem (Tutte 1954): A planar graph is k-colorable <= its

dual has a nowhere-zero k-flow.

A cubic graph G has a n.-z. 4-flow <= G is 3-edge-colorable

Theorem (Tait 1880, Tutte 1954): The following statements
are equivalent.

(1) Every planar graph is 4-colorable.

(2) Every bridgeless planar cubic graph is 3-edge-colorable.

(3) Every bridgeless planar graph has a nowhere-zero 4-flow.



Petersen graph has no 3-edge-coloring and no n.-z. 4-flow.

4-Flow Conjecture (Tutte 1966): Every bridgeless graph

without a Petersen minor has a nowhere-zero 4-flow.

Theorem (Robertson, Sanders, Seymour, Thomas): V bridge-

less cubic graphs without a Petersen minor has a n.-z. 4-flow.



Theorem (Heawood 1890): Every planar graph is 5-colorable.

5-Flow Conjecture (Tutte 1954): Every bridgeless graph has

a nowhere-zero b-flow.

Theorem (Jaeger 1976, Kilpatrick 1975): Every bridgeless

graph has a nowhere-zero 8-flow.

Theorem (Seymour 1981): Every bridgeless graph has a nowhere-

zero 6-flow.



k-snarks = graphs without nowhere-zero k-flows

A graph with a bridge is a k-snark Vk > 2.

snarks = cubic graphs - without nowhere-zero 4-flows
- cyclical edge-connectivity > 4

- girth > 5

A graph is cyclically k-edge-connected if deleting fewer
than k£ edges does not disconnect the graph into two compo-

nents having circuits.



CDC Conjecture (Seymour 1978, Szekeres 1973): FEvery
bridgeless graph has a family of circuits which together cover

each edge twice.

Proposition: Smallest counterexamples to the 5-flow and

CDC conjectures must be snarks.



History of constructions of snarks:

Petersen graph (19th century) - 10 vertices
Blanusa (1946) - 18 vertices
Descartes [Tutte] (1948) - 210 vertices

Szekeres (1972) - 50 vertices

Infinite families:
BDS class: Isaacs (1975), Adelson-Velskij, Titov (1974)

Flower snarks: Isaacs (1975), Grinberg

Theorem (Holyer 1981): It is an NP-complete problem

to decide whether a cubic graph is 3-edge-colorable.



vertex superposition: replace v € V(G) by S(v)
v

edge superposition: replace e € E(G) by S(e)

an edge superposition is k-proper if S(e) is a k-snark



G’ is a (k-proper) superposition of G if it arise after apply-

ing finitely many vertex and (k-proper) edge superpositions.

Theorem (K. 2002): Every k-proper superposition of a k-

snark is a k-snark

Proposition: If graphs H and G are homeomorphic, then

H is a k-snark <= G is a k-snark.



Dot product
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Cyclically 6-edge-connected snarks

[saacs (1975), Grinberg — flower snarks of orders

8k +28, k>0
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Theorem (K. 1996): There exists a cyclically 6-edge-connected

snark of any even order > 118.

Theorem (K. 2005): It is an NP-complete problem to decide
whether a cyclically 6-edge-connected cubic graph is 3-edge-

colorable.






Snarks with large girths

girth = length of the shortest circuit in a graph

Conjecture (Jaeger, Swart 1980): V snark has girth < 6.

Theorem (Celmins 1984): The smallest counterexample to

the 5-flow conjecture is a snark with girth > 7.

Theorem (Goddyn 1985): The smallest counterexample to

the CDC conjecture is a snark with girth > 8.

Theorem (K. 1996): For any ¢ > 7, there exists an infinite

family of cyclically 5-edge-connected snarks of girth c.



G B :@V a symbolic representation of
7 A

S :ﬁt a symbolic representation of
G = B




Conjecture (Jaeger, Swart 1980): Every cyclically 7-edge-

connected cubic graph is 3-edge-colorable.

Theorem (K. 2004, 2005): The smallest counterexample to
the 5-flow conjecture must be a cyclically 6-edge-connected

snark with girth at least 9.

Theorem (Huck 2000): The smallest counterexample to the

CDC conjecture must be a snark with girth at least 12.



”(zluing” snarks

{7 ) () < () (1) (m) -

a symbolic representation of
H
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- H is 3-colorable;
- by any 3-edge-coloring, edges from E (F') have colors 1, 2, 3;
- any two surjective mappings F — {1,2,3} and F — {1,2,3}

can be extended to a 3-edge-coloring of H.






Srongly uncolorable snarks

(G = cubic graph
p(G) =min{|U|: U C V(G), G — U is 3-edge colorable}

Theorem (Vizing 1964): G is 4-edge-colorable.

0(G) = minimum k such that G has a 4-edge coloring with &

edges colored by the fourth color.

w(G) = minimum k such that G can be covered by vertex-

disjoint circuits so that among them are k£ of odd order.



Theorem (Huck, K. 1995): If w(G) = 2, then G has a cycle

double covering.

Theorem (Huck 2001, Héggkvist, McGuinness 2005): If

w(G) =4, then G has a cycle double covering.

Theorem (Jaeger 1988): If w(G) = 2, then G has nowhere-

zero b-flow.



Theorem (K. 2002): For every integer r > 0, there exists

a cyclically 6-edge-connected snark of order 118r satisfying
p(G),0(G),w(G) > r.




Vizing’s theorem indicates a polynomial algorithm for 4-edge-

coloring of a cubic graph G.

Doest there exists a polynomial algorithm giving a 4-edge-
coloring of G so that the number of edges colored by the fourth
color is at most o(G) + O(n'=¢)? Noif P # NP.

Theorem (K. 2005): It is an NP-complete problem to decide
whether p(G),o(G),w(G) € [0,n~¢].



p5(G) = min{|U|: U C V(G), G — U has a n.-z. 5-flow}

Theorem (K. 1998, 2005): If there exists a bridgeless graph

without a nowhere-zero 5-flow, then:

(1) the problem to decide whether a graph has a nowhere-zero
5-flow is NP-complete;

(2) V r > 0 there exists a bridgeless graph G, such that
ps(Gr) > 1;

(3) the problem to decide whether p5(G) € [0,n'~€] is

NP-complete.



3-flows

Theorem (Grotzsch 1959): Every planar graph without

triangles is 3-colorable.

3-Flow Conjecture (Tutte 1972): Every graph without
1- and 3-edge-cuts has a nowhere-zero 3-flow. <=

Every 4-edge-connected graph has a nowhere-zero 3-flow.

Theorem (Jaeger 1976): Every 4-edge-connected graph

has a nowhere-zero 4-flow.

Weak 3-Flow Conjecture (Jaeger 1988): There exists
k > 4 such that every k-edge-connected graph has a

nowhere-zero 3-flow.



p3(G) =min{|U|: U C V(G), G — U has a n.-z. 3-flow}

Theorem (K. 1998, 2005): If there exists a k-edge-connected

graph without a nowhere-zero 3-flow, then:

(1) the problem to decide whether a k-edge-connected graph
has a nowhere-zero 3-flow is NP-complete;

(2) V r > 0 there exists a k-edge-connected graph G, such
that p3(Gy) > r;

(3) the problem to decide whether p3(G) € [0,n'~€] is

NP-complete for k-edge-connected graphs.

for k = 3, the statement holds for planar graphs



Theorem (K. 2002): The following statements are equivalent

(1) Every 4-edge-connected graph has a nowhere-zero 3-flow.

(2) Every bridgeless graph with at most three edge cuts of
cardinality 3 has a nowhere-zero 3-flow.

(3) Every bridgeless graph G with vertices vy, v, v3 such that
there is no 3-edge-cut C of G where G —(C' has a component

containing all vy, vo,v3 has a nowhere-zero 3-flow.

(1) holds for planar graphs (Grotzsch 1959)

(2) holds for planar graphs (Griinbaum 1963, Aksionov 1974,
Borodin 1997)



Proof: (3) = (2) = (1) - trivial
(1) = (3) - nontrivial

G - a counterexample to (3) = G” - a counterexample to (1)




Theorem (K. 2002): There exists and infinite family of planar
graphs with exactly four 3-edge-cuts not admitting nowhere-

zero 3-flows.




Theorem (K. 2001): The following statements are equivalent
(1) Every 4-edge-connected graph has a nowhere-zero 3-flow.

(2) Every 5-edge-connected graph has a nowhere-zero 3-flow.



A graph G is called A-connected if V orientation of G and

Vb:V(G) — Asuchthat >  bv)=0
v e V(G)

Jp: E(G) — A—{0} such that V v € V(G)

Y. wle) = > ple) = blv).

e enters v e leaves v

If G is A-connected = (G has a nowhere-zero A-flow

Conjecture (Jaeger, Linial, Payan, Tarsi 1992):

Every 5-edge-connected graph is Zs-connected.



Circular flow numbers

Graph G has a circular low number 7 if r is the smallest
real such that the edges of G can be oriented and assigned real
numbers from [1, 7 — 1] so that the sum of the incoming values
equals the sum of the outcoming ones for every vertex of the

graph.

Conjecture (Mohar): Every snark different from Petersen

graph has circular flow number < 5.

Theorem (Ma&acajova, Raspaud 2005): There are infinitely

many snarks with circular flow number = 5.



Circuits in graphs

A cycle double covering (CDC) of a graph G is a family
of circuits £ = {C1,...,C,} in G such that each edge of G is

contained in exactly two circuits from L.

CDC Conjecture (Seymour 1978, Szekeres 1973): Every
bridgeless graph has a CDC.

If a cubic graph G has a 3-edge-coloring —> G has a CDC.

A circuit C' in a graph G is called dominating if each edge of

(G is incident with a vertex from C.



(1) Conjecture (Fleischner 1984): Every cyclically 4-edge-
connected cubic graph has — either a dominating circuit,

— or a 3-edge-coloring.

(2) Conjecture (Sabidussi 1985): Given an eulerian trail T
in an eulerian graph G without 2-valent vertices, there exists
a decomposition § of GG into circuits so that consecutive edges

in T" belongs to different circuits in S.

(3) Conjecture (Fleischner 1984): If C' is a dominating cir-
cuit in a cyclically 4-edge-connected cubic graph G, then there

exists a cycle double cover of G which includes C.

(2) <= (3) — Fleischner 1984
(1) & (3) = CDC conjecture — Jaeger 1985



Theorem (Seymour 1979): IfC is a circuit in a 3-edge-colorable
cubic graph G, then GG has a CDC which includes C.

A circuit C in a graph G is stable if there does not exist
another circuit D so that V(C) C V(D).

If A snark with a stable circuit = CDC conjecture

If A snark with a stable dominating circuit = (2), (3)



Lemma (K. 2000): If a cubic graph G contains the graph H

as an induced subgraph, then G is not 3-edge-colorable.

A A




Theorem (K. 2001): For any nonnegative integers k, m there
exists a snark of order 34+8k+18m having a stable dominating

circuit of length 30 + 7k + 16m.

Al LA A0 L




(1) Conjecture (Fleischner 1984): Every cyclically 4-edge-
connected cubic graph has — either a dominating circuit,

— or a 3-edge-coloring.

(4) Conjecture (Ash, Jackson 1984): Every cyclically 4-edge-

connected cubic graph has a dominating circuit.

(5) Conjecture (Thomassen 1985): Every 4-connected line

graph is hamiltonian.

(6) Conjecture (Matthews, Sumner 1984): Every 4-connected

claw-free graph is hamiltonian.



(4) < (5) — Fleischner, Jackson 1989
<= (6) — Ryjacek 1997

= Ot
~— =

<— (4) — K. 2000

(4) an (5) hold for planar graphs (Tutte 1956)



Theorem (K. 2000): If there exists a 4-edge-connected cubic
graph G with no dominating circuit = there exists a 4-edge-
connected cubic graph G’ without an edge-3-coloring and with

no dominating circuit.




Theorem (Fleischner, K. 2002, Kuzel, Xiong): Every cycli-
cally 4-edge-connected cubic graph has a dominating circuit
<= any two edges in a 4-edge-connected cubic graph are con-

tained in a dominating circuit.

Theorem (Kuzel, Xiong 2005): Every 4-connected line graph
is hamiltonian <= every 4-connected line graph is hamiltonian

connected.



Theorem (K. 2002): The following statements are equivalent.

(a) Every 4-connected claw-free graph is hamiltonian.
(b) Vertices of every 4-connected claw-free graph of order n

can be covered by o(n) vertex-disjoint paths.

(c) Every 4-connected line graph is hamiltonian.
(d) Vertices of every 4-connected line graph of order n can be

covered by o(n) vertex-disjoint paths.

(e) Every cyclically 4-edge-connected cubic graph has a dom-
inating circuit.
(f) Every cyclically 4-edge-connected cubic graph of order 2n

has a dominating subgraph consisting of o(n) paths.

(g) Every cyclically 4-edge-connected non 3-edge-colorable cu-
bic graph has a dominating circuit.
(e) Every cyclically 4-edge-connected non 3-edge-colorable cu-

bic graph has a dominating subgraph consisting of o(n) paths.



Conjecture (Barnette 1969): Every 3-connected cubic planar

graph is hamiltonian.

Theorem (Kelmans 1986, K. 2002): The following statements
are equivalent.

(a) Every 3-connected cubic planar graph is hamiltonian.

(b) Every cylically 4-edge-connected cubic planar graph is
hamiltonian.

(c) Any two edges in a cylically 4-edge-connected cubic planar
graph are contained in a hamiltonian circuit.

(d) Vertices of every cylically 4-edge-connected cubic planar

graph of order 2n can be covered by o(n) vertex-disjoint paths.



Conjecture (Jackson 1993): Kj is the only 4-connected euler-
ian graph with an even number of edges but no even circuit

decomposition.

Theorem (Rizzi 2001): There exists an infinite family of
4-connected eulerian graphs with an even number of edges but

no even circuit decomposition.



Some open problems

Every bridgeless graph has a nowhere-zero 5-flow.

Every 5-edge-connected graph has a nowhere-zero 3-flow.

Every bridgeless graph has a CDC.

Every 4-connected line graph is hamiltonian.

For an eulerian trail 7" in an eulerian graph G without 2-valent
vertices, there exists a decomposition S of GG into circuits so

that consecutive edges in T belongs to different circuits in S.



