Applications of Superposition in Graph Thery

Martin Kochol

Slovak Academy of Sciences, Bratislava

Nowhere-zero flows in graphs
5-flow conjecture
3-flow conjecture
snarks

Cycles in graphs

cycle double covering
dominating circuit conjecture compatibility conjecture

Nowhere-zero flows

Graph G has a nowhere-zero k-flow if its edges can be oriented and assigned numbers $\pm 1, \ldots, \pm(k-1)$ so that the sum of the incoming values equals the sum of the outcoming ones for every vertex of the graph.

nowhere-zero 4-flow
G has a n.-z. k-flow $\Longrightarrow G$ has a n.-z. $(k+1)$-flow

If A is an additive Abelian group, then G has a nowhere-zero A-flow if its edges can be oriented and assigned elements of $A-\{0\}$ so that the sum of the incoming values equals the sum of the outcoming ones for every vertex of G.

Theorem (Tutte 1950, 1954): Let G be a graph. Then the following statements are pairwise equivalent.
(1) G has a nowhere-zero k-flow.
(2) G has a nowhere-zero \mathbb{Z}_{k}-flow.
(3) G has a nowhere-zero A-flow for any $|A|=k$.

Theorem (Tutte 1954): A planar graph is k-colorable \Longleftrightarrow its dual has a nowhere-zero k-flow.

A cubic graph G has a n.-z. 4-flow $\Longleftrightarrow G$ is 3-edge-colorable Theorem (Tait 1880, Tutte 1954): The following statements are equivalent.
(1) Every planar graph is 4-colorable.
(2) Every bridgeless planar cubic graph is 3 -edge-colorable.
(3) Every bridgeless planar graph has a nowhere-zero 4 -flow.

Petersen graph has no 3-edge-coloring and no n.-z. 4-flow.

4-Flow Conjecture (Tutte 1966): Every bridgeless graph without a Petersen minor has a nowhere-zero 4 -flow.

Theorem (Robertson, Sanders, Seymour, Thomas): \forall bridgeless cubic graphs without a Petersen minor has a n.-z. 4-flow.

Theorem (Heawood 1890): Every planar graph is 5-colorable.

5-Flow Conjecture (Tutte 1954): Every bridgeless graph has a nowhere-zero 5 -flow.

Theorem (Jaeger 1976, Kilpatrick 1975): Every bridgeless graph has a nowhere-zero 8 -flow.

Theorem (Seymour 1981): Every bridgeless graph has a nowherezero 6-flow.
k-snarks $=$ graphs without nowhere-zero k-flows

A graph with a bridge is a k-snark $\forall k \geq 2$.
snarks $=$ cubic graphs - without nowhere-zero 4-flows

- cyclical edge-connectivity ≥ 4
- girth ≥ 5

A graph is cyclically k-edge-connected if deleting fewer than k edges does not disconnect the graph into two components having circuits.

CDC Conjecture (Seymour 1978, Szekeres 1973): Every bridgeless graph has a family of circuits which together cover each edge twice.

Proposition: Smallest counterexamples to the 5 -flow and CDC conjectures must be snarks.

History of constructions of snarks:

Petersen graph (19th century) - 10 vertices
Blanuša (1946) - 18 vertices
Descartes [Tutte] (1948) - 210 vertices
Szekeres (1972) - 50 vertices

Infinite families:
BDS class: Isaacs (1975), Adelson-Velskij, Titov (1974)
Flower snarks: Isaacs (1975), Grinberg

Theorem (Holyer 1981): It is an NP-complete problem to decide whether a cubic graph is 3-edge-colorable.
vertex superposition: replace $v \in V(G)$ by $\mathcal{S}(v)$

edge superposition: replace $e \in E(G)$ by $\mathcal{S}(e)$

an edge superposition is k-proper if $\mathcal{S}(e)$ is a k-snark
G^{\prime} is a (k-proper) superposition of G if it arise after applying finitely many vertex and (k-proper) edge superpositions.

Theorem (K. 2002): Every k-proper superposition of a k snark is a k-snark

Proposition: If graphs H and G are homeomorphic, then H is a k-snark $\Longleftrightarrow G$ is a k-snark.

Dot product

Isaacs (1975), Adelson-Velskij, Titov (1974) \rightarrow BDS class

G_{1}

G_{2}

$G_{1} \cdot G_{2}$

G_{2}^{\prime}

G

$G^{\prime \prime}$

Cyclically 6-edge-connected snarks

Isaacs (1975), Grinberg \rightarrow flower snarks of orders

$$
8 k+28, k \geq 0
$$

I_{3}

I_{5}

I_{7}

a symbolic representation of I_{5}

Theorem (K. 1996): There exists a cyclically 6-edge-connected snark of any even order ≥ 118.

Theorem (K. 2005): It is an NP-complete problem to decide whether a cyclically 6 -edge-connected cubic graph is 3 -edgecolorable.

Snarks with large girths

girth $=$ length of the shortest circuit in a graph

Conjecture (Jaeger, Swart 1980): \forall snark has girth ≤ 6.

Theorem (Celmins 1984): The smallest counterexample to the 5 -flow conjecture is a snark with girth ≥ 7.

Theorem (Goddyn 1985): The smallest counterexample to the $C D C$ conjecture is a snark with girth ≥ 8.

Theorem (K. 1996): For any $c \geq 7$, there exists an infinite family of cyclically 5 -edge-connected snarks of girth c.

\rightarrow 局
a symbolic representation of B

$w, w^{\prime} \rightarrow$ a $s y m b o l i c$ representation of

Conjecture (Jaeger, Swart 1980): Every cyclically 7-edgeconnected cubic graph is 3-edge-colorable.

Theorem (K. 2004, 2005): The smallest counterexample to the 5-flow conjecture must be a cyclically 6-edge-connected snark with girth at least 9 .

Theorem (Huck 2000): The smallest counterexample to the CDC conjecture must be a snark with girth at least 12 .

- H is 3 -colorable;
- by any 3-edge-coloring, edges from $E(F)$ have colors 1, 2, 3;
- any two surjective mappings $E \rightarrow\{1,2,3\}$ and $F \rightarrow\{1,2,3\}$
can be extended to a 3 -edge-coloring of H.

Srongly uncolorable snarks

$G=$ cubic graph
$\rho(G)=\min \{|U|: U \subseteq V(G), G-U$ is 3-edge colorable $\}$

Theorem (Vizing 1964): G is 4-edge-colorable.
$\sigma(G)=\operatorname{minimum} k$ such that G has a 4-edge coloring with k edges colored by the fourth color.
$\omega(G)=$ minimum k such that G can be covered by vertexdisjoint circuits so that among them are k of odd order.

Theorem (Huck, K. 1995): If $\omega(G)=2$, then G has a cycle double covering.

Theorem (Huck 2001, Häggkvist, McGuinness 2005): If $\omega(G)=4$, then G has a cycle double covering.

Theorem (Jaeger 1988): If $\omega(G)=2$, then G has nowherezero 5-flow.

Theorem (K. 2002): For every integer $r>0$, there exists a cyclically 6 -edge-connected snark of order $118 r$ satisfying $\rho(G), \sigma(G), \omega(G) \geq r$.

Vizing's theorem indicates a polynomial algorithm for 4-edgecoloring of a cubic graph G.

Doest there exists a polynomial algorithm giving a 4-edgecoloring of G so that the number of edges colored by the fourth color is at most $\sigma(G)+O\left(n^{1-\epsilon}\right)$? No if $P \neq N P$.

Theorem (K. 2005): It is an NP-complete problem to decide whether $\rho(G), \sigma(G), \omega(G) \in\left[0, n^{1-\epsilon}\right]$.
$\rho_{5}(G)=\min \{|U|: U \subseteq V(G), G-U$ has a n.-z. 5 -flow $\}$

Theorem (K. 1998, 2005): If there exists a bridgeless graph without a nowhere-zero 5 -flow, then:
(1) the problem to decide whether a graph has a nowhere-zero 5 -flow is NP-complete;
(2) $\forall r>0$ there exists a bridgeless graph G_{r} such that $\rho_{5}\left(G_{r}\right) \geq r ;$
(3) the problem to decide whether $\rho_{5}(G) \in\left[0, n^{1-\epsilon}\right]$ is NP-complete.

3-flows

Theorem (Grötzsch 1959): Every planar graph without triangles is 3-colorable.

3-Flow Conjecture (Tutte 1972): Every graph without 1 - and 3-edge-cuts has a nowhere-zero 3 -flow. \Longleftrightarrow Every 4-edge-connected graph has a nowhere-zero 3-flow.

Theorem (Jaeger 1976): Every 4-edge-connected graph has a nowhere-zero 4-flow.

Weak 3-Flow Conjecture (Jaeger 1988): There exists $k \geq 4$ such that every k-edge-connected graph has a nowhere-zero 3 -flow.
$\rho_{3}(G)=\min \{|U|: U \subseteq V(G), G-U$ has a n.-z. 3-flow $\}$

Theorem (K. 1998, 2005): If there exists a k-edge-connected graph without a nowhere-zero 3-flow, then:
(1) the problem to decide whether a k-edge-connected graph has a nowhere-zero 3-flow is NP-complete;
(2) $\forall r>0$ there exists a k-edge-connected graph G_{r} such that $\rho_{3}\left(G_{r}\right) \geq r$;
(3) the problem to decide whether $\rho_{3}(G) \in\left[0, n^{1-\epsilon}\right]$ is NP-complete for k-edge-connected graphs.
for $k=3$, the statement holds for planar graphs

Theorem (K. 2002): The following statements are equivalent
(1) Every 4-edge-connected graph has a nowhere-zero 3 -flow.
(2) Every bridgeless graph with at most three edge cuts of cardinality 3 has a nowhere-zero 3 -flow.
(3) Every bridgeless graph G with vertices v_{1}, v_{2}, v_{3} such that there is no 3 -edge-cut C of G where $G-C$ has a component containing all v_{1}, v_{2}, v_{3} has a nowhere-zero 3 -flow.
(1) holds for planar graphs (Grötzsch 1959)
(2) holds for planar graphs (Grünbaum 1963, Aksionov 1974, Borodin 1997)

Proof: $(3) \Longrightarrow(2) \Longrightarrow(1)$ - trivial
$(1) \Longrightarrow(3)$ - nontrivial
G - a counterexample to $(3) \Longrightarrow G^{\prime \prime}$ - a counterexample to

Theorem (K. 2002): There exists and infinite family of planar graphs with exactly four 3 -edge-cuts not admitting nowherezero 3-flows.

Theorem (K. 2001): The following statements are equivalent (1) Every 4-edge-connected graph has a nowhere-zero 3 -flow.
(2) Every 5 -edge-connected graph has a nowhere-zero 3 -flow.

A graph G is called A-connected if \forall orientation of G and $\forall b: V(G) \rightarrow A$ such that $\quad \sum_{V(G)} b(v)=0$

$$
v \in V(G) \quad \delta(v)=0
$$

$\exists \varphi: E(G) \rightarrow A-\{0\}$ such that $\forall v \in V(G)$

$$
\sum_{e \text { enters } v} \varphi(e)-\sum_{e \text { leaves } v} \varphi(e)=b(v)
$$

If G is A-connected $\Longrightarrow G$ has a nowhere-zero A-flow

Conjecture (Jaeger, Linial, Payan, Tarsi 1992):
Every 5 -edge-connected graph is \mathbb{Z}_{3}-connected.

Circular flow numbers

Graph G has a circular flow number r if r is the smallest real such that the edges of G can be oriented and assigned real numbers from $[1, r-1]$ so that the sum of the incoming values equals the sum of the outcoming ones for every vertex of the graph.

Conjecture (Mohar): Every snark different from Petersen graph has circular flow number <5.

Theorem (Máčajová, Raspaud 2005): There are infinitely many snarks with circular flow number $=5$.

Circuits in graphs

A cycle double covering (CDC) of a graph G is a family of circuits $\mathcal{L}=\left\{C_{1}, \ldots, C_{n}\right\}$ in G such that each edge of G is contained in exactly two circuits from \mathcal{L}.

CDC Conjecture (Seymour 1978, Szekeres 1973): Every bridgeless graph has a CDC.

If a cubic graph G has a 3 -edge-coloring $\Longrightarrow G$ has a CDC.

A circuit C in a graph G is called dominating if each edge of G is incident with a vertex from C.
(1) Conjecture (Fleischner 1984): Every cyclically 4-edgeconnected cubic graph has - either a dominating circuit, - or a 3 -edge-coloring.
(2) Conjecture (Sabidussi 1985): Given an eulerian trail T in an eulerian graph G without 2-valent vertices, there exists a decomposition \mathcal{S} of G into circuits so that consecutive edges in T belongs to different circuits in \mathcal{S}.
(3) Conjecture (Fleischner 1984): If C is a dominating circuit in a cyclically 4-edge-connected cubic graph G, then there exists a cycle double cover of G which includes C.
$(2) \Longleftrightarrow(3)$ - Fleischner 1984
(1) \& $(3) \Longrightarrow$ CDC conjecture - Jaeger 1985

Theorem (Seymour 1979): If C is a circuit in a 3-edge-colorable cubic graph G, then G has a CDC which includes C.

A circuit C in a graph G is stable if there does not exist another circuit D so that $V(C) \subseteq V(D)$.

If \nexists snark with a stable circuit $\Longrightarrow \mathrm{CDC}$ conjecture If \nexists snark with a stable dominating circuit $\Longrightarrow(2),(3)$

Lemma (K. 2000): If a cubic graph G contains the graph H as an induced subgraph, then G is not 3-edge-colorable.

Theorem (K. 2001): For any nonnegative integers k, m there exists a snark of order $34+8 k+18 m$ having a stable dominating circuit of length $30+7 k+16 m$.

(1) Conjecture (Fleischner 1984): Every cyclically 4-edgeconnected cubic graph has - either a dominating circuit, - or a 3 -edge-coloring.
(4) Conjecture (Ash, Jackson 1984): Every cyclically 4-edgeconnected cubic graph has a dominating circuit.
(5) Conjecture (Thomassen 1985): Every 4-connected line graph is hamiltonian.
(6) Conjecture (Matthews, Sumner 1984): Every 4-connected claw-free graph is hamiltonian.
$(4) \Longleftrightarrow(5)$ - Fleischner, Jackson 1989
$(5) \Longleftrightarrow(6)$ - Ryjáček 1997
$(1) \Longleftrightarrow(4)-$ K. 2000
(4) an (5) hold for planar graphs (Tutte 1956)

Theorem (K. 2000): If there exists a 4 -edge-connected cubic graph G with no dominating circuit \Longrightarrow there exists a 4-edgeconnected cubic graph G^{\prime} without an edge-3-coloring and with no dominating circuit.

Theorem (Fleischner, K. 2002, Kužel, Xiong): Every cyclically 4-edge-connected cubic graph has a dominating circuit \Longleftrightarrow any two edges in a 4-edge-connected cubic graph are contained in a dominating circuit.

Theorem (Kužel, Xiong 2005): Every 4-connected line graph is hamiltonian \Longleftrightarrow every 4-connected line graph is hamiltonian connected.

Theorem(K. 2002): The following statements are equivalent.
(a) Every 4-connected claw-free graph is hamiltonian.
(b) Vertices of every 4-connected claw-free graph of order n can be covered by o(n) vertex-disjoint paths.
(c) Every 4-connected line graph is hamiltonian.
(d) Vertices of every 4-connected line graph of order n can be covered by $o(n)$ vertex-disjoint paths.
(e) Every cyclically 4-edge-connected cubic graph has a dominating circuit.
(f) Every cyclically 4-edge-connected cubic graph of order $2 n$ has a dominating subgraph consisting of $o(n)$ paths.
(g) Every cyclically 4-edge-connected non 3-edge-colorable cubic graph has a dominating circuit.
(e) Every cyclically 4-edge-connected non 3-edge-colorable cubic graph has a dominating subgraph consisting of $o(n)$ paths.

Conjecture (Barnette 1969): Every 3-connected cubic planar graph is hamiltonian.

Theorem (Kelmans 1986, K. 2002): The following statements are equivalent.
(a) Every 3-connected cubic planar graph is hamiltonian.
(b) Every cylically 4-edge-connected cubic planar graph is hamiltonian.
(c) Any two edges in a cylically 4-edge-connected cubic planar graph are contained in a hamiltonian circuit.
(d) Vertices of every cylically 4-edge-connected cubic planar graph of order $2 n$ can be covered by o(n) vertex-disjoint paths.

Conjecture (Jackson 1993): K_{5} is the only 4-connected eulerian graph with an even number of edges but no even circuit decomposition.

Theorem (Rizzi 2001): There exists an infinite family of 4-connected eulerian graphs with an even number of edges but no even circuit decomposition.

Some open problems

Every bridgeless graph has a nowhere-zero 5-flow.

Every 5 -edge-connected graph has a nowhere-zero 3 -flow.

Every bridgeless graph has a CDC.

Every 4-connected line graph is hamiltonian.

For an eulerian trail T in an eulerian graph G without 2-valent vertices, there exists a decomposition \mathcal{S} of G into circuits so that consecutive edges in T belongs to different circuits in \mathcal{S}.

