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Nowhere-zero flows

Graph G has a nowhere-zero k-flow if its edges can be ori-

ented and assigned numbers ±1, . . . , ±(k−1) so that the sum

of the incoming values equals the sum of the outcoming ones

for every vertex of the graph.
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nowhere-zero 4-flow

G has a n.-z. k-flow =⇒ G has a n.-z. (k + 1)-flow



If A is an additive Abelian group, then G has a nowhere-zero

A-flow if its edges can be oriented and assigned elements of

A−{0} so that the sum of the incoming values equals the sum

of the outcoming ones for every vertex of G.

Theorem (Tutte 1950, 1954): Let G be a graph. Then the

following statements are pairwise equivalent.

(1) G has a nowhere-zero k-flow.

(2) G has a nowhere-zero Zk-flow.

(3) G has a nowhere-zero A-flow for any |A| = k.



Theorem (Tutte 1954): A planar graph is k-colorable ⇐⇒ its

dual has a nowhere-zero k-flow.

A cubic graph G has a n.-z. 4-flow ⇐⇒ G is 3-edge-colorable

Theorem (Tait 1880, Tutte 1954): The following statements

are equivalent.

(1) Every planar graph is 4-colorable.

(2) Every bridgeless planar cubic graph is 3-edge-colorable.

(3) Every bridgeless planar graph has a nowhere-zero 4-flow.



Petersen graph has no 3-edge-coloring and no n.-z. 4-flow.

4-Flow Conjecture (Tutte 1966): Every bridgeless graph

without a Petersen minor has a nowhere-zero 4-flow.

Theorem (Robertson, Sanders, Seymour, Thomas): ∀ bridge-

less cubic graphs without a Petersen minor has a n.-z. 4-flow.



Theorem (Heawood 1890): Every planar graph is 5-colorable.

5-Flow Conjecture (Tutte 1954): Every bridgeless graph has

a nowhere-zero 5-flow.

Theorem (Jaeger 1976, Kilpatrick 1975): Every bridgeless

graph has a nowhere-zero 8-flow.

Theorem (Seymour 1981): Every bridgeless graph has a nowhere-

zero 6-flow.



k-snarks = graphs without nowhere-zero k-flows

A graph with a bridge is a k-snark ∀ k ≥ 2.

snarks = cubic graphs - without nowhere-zero 4-flows

- cyclical edge-connectivity ≥ 4

- girth ≥ 5

A graph is cyclically k-edge-connected if deleting fewer

than k edges does not disconnect the graph into two compo-

nents having circuits.



CDC Conjecture (Seymour 1978, Szekeres 1973): Every

bridgeless graph has a family of circuits which together cover

each edge twice.

Proposition: Smallest counterexamples to the 5-flow and

CDC conjectures must be snarks.



History of constructions of snarks:

Petersen graph (19th century) - 10 vertices

Blanuša (1946) - 18 vertices

Descartes [Tutte] (1948) - 210 vertices

Szekeres (1972) - 50 vertices

Infinite families:

BDS class: Isaacs (1975), Adelson-Velskij, Titov (1974)

Flower snarks: Isaacs (1975), Grinberg

Theorem (Holyer 1981): It is an NP-complete problem

to decide whether a cubic graph is 3-edge-colorable.



vertex superposition: replace v ∈ V (G) by S(v)
v

edge superposition: replace e ∈ E(G) by S(e)

e

an edge superposition is k-proper if S(e) is a k-snark



G′ is a (k-proper) superposition of G if it arise after apply-

ing finitely many vertex and (k-proper) edge superpositions.

Theorem (K. 2002): Every k-proper superposition of a k-

snark is a k-snark

Proposition: If graphs H and G are homeomorphic, then

H is a k-snark ⇐⇒ G is a k-snark.



Dot product

Isaacs (1975), Adelson-Velskij, Titov (1974) → BDS class
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Cyclically 6-edge-connected snarks

Isaacs (1975), Grinberg → flower snarks of orders

8k + 28, k ≥ 0
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Theorem (K. 1996): There exists a cyclically 6-edge-connected

snark of any even order ≥ 118.

Theorem (K. 2005): It is an NP-complete problem to decide

whether a cyclically 6-edge-connected cubic graph is 3-edge-

colorable.



G’26

1v 2v

G26



Snarks with large girths

girth = length of the shortest circuit in a graph

Conjecture (Jaeger, Swart 1980): ∀ snark has girth ≤ 6.

Theorem (Celmins 1984): The smallest counterexample to

the 5-flow conjecture is a snark with girth ≥ 7.

Theorem (Goddyn 1985): The smallest counterexample to

the CDC conjecture is a snark with girth ≥ 8.

Theorem (K. 1996): For any c ≥ 7, there exists an infinite

family of cyclically 5-edge-connected snarks of girth c.
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Conjecture (Jaeger, Swart 1980): Every cyclically 7-edge-

connected cubic graph is 3-edge-colorable.

Theorem (K. 2004, 2005): The smallest counterexample to

the 5-flow conjecture must be a cyclically 6-edge-connected

snark with girth at least 9.

Theorem (Huck 2000): The smallest counterexample to the

CDC conjecture must be a snark with girth at least 12.



”Gluing” snarks
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- H is 3-colorable;

- by any 3-edge-coloring, edges from E (F ) have colors 1, 2, 3;

- any two surjective mappings E → {1, 2, 3} and F → {1, 2, 3}
can be extended to a 3-edge-coloring of H.
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Srongly uncolorable snarks

G = cubic graph

ρ(G) = min{|U | : U ⊆ V (G), G− U is 3-edge colorable}

Theorem (Vizing 1964): G is 4-edge-colorable.

σ(G) = minimum k such that G has a 4-edge coloring with k

edges colored by the fourth color.

ω(G) = minimum k such that G can be covered by vertex-

disjoint circuits so that among them are k of odd order.



Theorem (Huck, K. 1995): If ω(G) = 2, then G has a cycle

double covering.

Theorem (Huck 2001, Häggkvist, McGuinness 2005): If

ω(G) = 4, then G has a cycle double covering.

Theorem (Jaeger 1988): If ω(G) = 2, then G has nowhere-

zero 5-flow.



Theorem (K. 2002): For every integer r > 0, there exists

a cyclically 6-edge-connected snark of order 118r satisfying

ρ(G), σ(G), ω(G) ≥ r.

100 18 100 18 100 18. . .



Vizing’s theorem indicates a polynomial algorithm for 4-edge-

coloring of a cubic graph G.

Doest there exists a polynomial algorithm giving a 4-edge-

coloring of G so that the number of edges colored by the fourth

color is at most σ(G) + O(n1−ε)? No if P 6= NP .

Theorem (K. 2005): It is an NP-complete problem to decide

whether ρ(G), σ(G), ω(G) ∈ [0, n1−ε].



ρ5(G) = min{|U | : U ⊆ V (G), G− U has a n.-z. 5-flow}

Theorem (K. 1998, 2005): If there exists a bridgeless graph

without a nowhere-zero 5-flow, then:

(1) the problem to decide whether a graph has a nowhere-zero

5-flow is NP-complete;

(2) ∀ r > 0 there exists a bridgeless graph Gr such that

ρ5(Gr) ≥ r;

(3) the problem to decide whether ρ5(G) ∈ [0, n1−ε] is

NP-complete.



3-flows

Theorem (Grötzsch 1959): Every planar graph without

triangles is 3-colorable.

3-Flow Conjecture (Tutte 1972): Every graph without

1- and 3-edge-cuts has a nowhere-zero 3-flow. ⇐⇒
Every 4-edge-connected graph has a nowhere-zero 3-flow.

Theorem (Jaeger 1976): Every 4-edge-connected graph

has a nowhere-zero 4-flow.

Weak 3-Flow Conjecture (Jaeger 1988): There exists

k ≥ 4 such that every k-edge-connected graph has a

nowhere-zero 3-flow.



ρ3(G) = min{|U | : U ⊆ V (G), G− U has a n.-z. 3-flow}

Theorem (K. 1998, 2005): If there exists a k-edge-connected

graph without a nowhere-zero 3-flow, then:

(1) the problem to decide whether a k-edge-connected graph

has a nowhere-zero 3-flow is NP-complete;

(2) ∀ r > 0 there exists a k-edge-connected graph Gr such

that ρ3(Gr) ≥ r;

(3) the problem to decide whether ρ3(G) ∈ [0, n1−ε] is

NP-complete for k-edge-connected graphs.

for k = 3, the statement holds for planar graphs



Theorem (K. 2002): The following statements are equivalent

(1) Every 4-edge-connected graph has a nowhere-zero 3-flow.

(2) Every bridgeless graph with at most three edge cuts of

cardinality 3 has a nowhere-zero 3-flow.

(3) Every bridgeless graph G with vertices v1, v2, v3 such that

there is no 3-edge-cut C of G where G−C has a component

containing all v1, v2, v3 has a nowhere-zero 3-flow.

(1) holds for planar graphs (Grötzsch 1959)

(2) holds for planar graphs (Grünbaum 1963, Aksionov 1974,

Borodin 1997)



Proof: (3) =⇒ (2) =⇒ (1) - trivial

(1) =⇒ (3) - nontrivial

G - a counterexample to (3) =⇒ G′′ - a counterexample to (1)

K4

1v
2v

3v

G

1v’1v

G’

G"



Theorem (K. 2002): There exists and infinite family of planar

graphs with exactly four 3-edge-cuts not admitting nowhere-

zero 3-flows.

.. . .



Theorem (K. 2001): The following statements are equivalent

(1) Every 4-edge-connected graph has a nowhere-zero 3-flow.

(2) Every 5-edge-connected graph has a nowhere-zero 3-flow.



A graph G is called A-connected if ∀ orientation of G and

∀ b : V (G) → A such that
∑

v ∈ V (G)
b(v) = 0

∃ ϕ : E(G) → A− {0} such that ∀ v ∈ V (G)

∑

e enters v

ϕ(e) −
∑

e leaves v

ϕ(e) = b(v).

If G is A-connected =⇒ G has a nowhere-zero A-flow

Conjecture (Jaeger, Linial, Payan, Tarsi 1992):

Every 5-edge-connected graph is Z3-connected.



Circular flow numbers

Graph G has a circular flow number r if r is the smallest

real such that the edges of G can be oriented and assigned real

numbers from [1, r− 1] so that the sum of the incoming values

equals the sum of the outcoming ones for every vertex of the

graph.

Conjecture (Mohar): Every snark different from Petersen

graph has circular flow number < 5.

Theorem (Máčajová, Raspaud 2005): There are infinitely

many snarks with circular flow number = 5.



Circuits in graphs

A cycle double covering (CDC) of a graph G is a family

of circuits L = {C1, . . . , Cn} in G such that each edge of G is

contained in exactly two circuits from L.

CDC Conjecture (Seymour 1978, Szekeres 1973): Every

bridgeless graph has a CDC.

If a cubic graph G has a 3-edge-coloring =⇒ G has a CDC.

A circuit C in a graph G is called dominating if each edge of

G is incident with a vertex from C.



(1) Conjecture (Fleischner 1984): Every cyclically 4-edge-

connected cubic graph has – either a dominating circuit,

– or a 3-edge-coloring.

(2) Conjecture (Sabidussi 1985): Given an eulerian trail T

in an eulerian graph G without 2-valent vertices, there exists

a decomposition S of G into circuits so that consecutive edges

in T belongs to different circuits in S.

(3) Conjecture (Fleischner 1984): If C is a dominating cir-

cuit in a cyclically 4-edge-connected cubic graph G, then there

exists a cycle double cover of G which includes C.

(2) ⇐⇒ (3) – Fleischner 1984

(1) & (3) =⇒ CDC conjecture – Jaeger 1985



Theorem (Seymour 1979): If C is a circuit in a 3-edge-colorable

cubic graph G, then G has a CDC which includes C.

A circuit C in a graph G is stable if there does not exist

another circuit D so that V (C) ⊆ V (D).

If 6 ∃ snark with a stable circuit =⇒ CDC conjecture

If 6 ∃ snark with a stable dominating circuit =⇒ (2), (3)



Lemma (K. 2000): If a cubic graph G contains the graph H

as an induced subgraph, then G is not 3-edge-colorable.

H



Theorem (K. 2001): For any nonnegative integers k, m there

exists a snark of order 34+8k+18m having a stable dominating

circuit of length 30 + 7k + 16m.



(1) Conjecture (Fleischner 1984): Every cyclically 4-edge-

connected cubic graph has – either a dominating circuit,

– or a 3-edge-coloring.

(4) Conjecture (Ash, Jackson 1984): Every cyclically 4-edge-

connected cubic graph has a dominating circuit.

(5) Conjecture (Thomassen 1985): Every 4-connected line

graph is hamiltonian.

(6) Conjecture (Matthews, Sumner 1984): Every 4-connected

claw-free graph is hamiltonian.



(4) ⇐⇒ (5) – Fleischner, Jackson 1989

(5) ⇐⇒ (6) – Ryjáček 1997

(1) ⇐⇒ (4) – K. 2000

(4) an (5) hold for planar graphs (Tutte 1956)



Theorem (K. 2000): If there exists a 4-edge-connected cubic

graph G with no dominating circuit =⇒ there exists a 4-edge-

connected cubic graph G′ without an edge-3-coloring and with

no dominating circuit.
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Theorem (Fleischner, K. 2002, Kužel, Xiong): Every cycli-

cally 4-edge-connected cubic graph has a dominating circuit

⇐⇒ any two edges in a 4-edge-connected cubic graph are con-

tained in a dominating circuit.

Theorem (Kužel, Xiong 2005): Every 4-connected line graph

is hamiltonian⇐⇒ every 4-connected line graph is hamiltonian

connected.



Theorem(K. 2002): The following statements are equivalent.

(a) Every 4-connected claw-free graph is hamiltonian.

(b) Vertices of every 4-connected claw-free graph of order n

can be covered by o(n) vertex-disjoint paths.

(c) Every 4-connected line graph is hamiltonian.

(d) Vertices of every 4-connected line graph of order n can be

covered by o(n) vertex-disjoint paths.

(e) Every cyclically 4-edge-connected cubic graph has a dom-

inating circuit.

(f) Every cyclically 4-edge-connected cubic graph of order 2n

has a dominating subgraph consisting of o(n) paths.

(g) Every cyclically 4-edge-connected non 3-edge-colorable cu-

bic graph has a dominating circuit.

(e) Every cyclically 4-edge-connected non 3-edge-colorable cu-

bic graph has a dominating subgraph consisting of o(n) paths.



Conjecture (Barnette 1969): Every 3-connected cubic planar

graph is hamiltonian.

Theorem (Kelmans 1986, K. 2002): The following statements

are equivalent.

(a) Every 3-connected cubic planar graph is hamiltonian.

(b) Every cylically 4-edge-connected cubic planar graph is

hamiltonian.

(c) Any two edges in a cylically 4-edge-connected cubic planar

graph are contained in a hamiltonian circuit.

(d) Vertices of every cylically 4-edge-connected cubic planar

graph of order 2n can be covered by o(n) vertex-disjoint paths.



Conjecture (Jackson 1993): K5 is the only 4-connected euler-

ian graph with an even number of edges but no even circuit

decomposition.

Theorem (Rizzi 2001): There exists an infinite family of

4-connected eulerian graphs with an even number of edges but

no even circuit decomposition.



Some open problems

Every bridgeless graph has a nowhere-zero 5-flow.

Every 5-edge-connected graph has a nowhere-zero 3-flow.

Every bridgeless graph has a CDC.

Every 4-connected line graph is hamiltonian.

For an eulerian trail T in an eulerian graph G without 2-valent

vertices, there exists a decomposition S of G into circuits so

that consecutive edges in T belongs to different circuits in S.


