Ring's maps $\mathbf{M}_{\mathbf{n}}(\mathbf{p}, \mathbf{q})$

Róbert Hajduk

join work with Roman Soták

Institute of Mathematics,
Faculty of Science, P. J. Šafárik University, Košice

Budmerice 2005

Definition $1 M_{n}(p, q)$ - set of all 3-regular plane graphs having only p-gonal and q-gonal faces such that q-gonal faces form a ring R_{n} of n-gons. $(p \geq 3, q \geq 4)$
(Deza, Grishukhin 02)

Problem

To find all values n with $M_{n}(7,5) \neq \emptyset$.

For finding this maps we used duals of this maps. Duals of this maps are graphs with vertices of degree 7 and 5.

This maps have in chemistry special name - azzulenoids.

Theorem 1 The set $M_{n}(7,5)$ is nonempty for following particular values:
a) $n \in\{30,36,42\}$
b) $n=28+12 k, k>0$
c) $n=32+8 k, k>0$
d) $n=32+20 k, k>0$
e) $n=28+28 k, k>0$

The set $M_{n}(7,5)$ is empty for $n \in\{29,31,33,34,35,37\}$
I_{28}
I_{40}

$I_{40+12 k}$

Some relations

$$
\begin{array}{lc}
\left\lceil\frac{n-4}{3}\right\rceil \leq k_{i} \leq\left\lfloor\frac{n-12}{2}\right\rfloor & k_{i}-\begin{array}{c}
\text { number of vertices of degree } 7 \\
\text { in } I
\end{array} \\
\left\lceil\frac{n-12}{2}\right\rceil \leq k_{o} \leq\left\lfloor\frac{2 n-32}{3}\right\rfloor & \begin{array}{c}
k_{o}-\begin{array}{c}
\text { number of vertices of degree } 7 \\
\text { in } O
\end{array} \\
k_{i}+k_{o}=n-12
\end{array} \\
c_{i}=3 k_{i}-n+4 & \begin{array}{c}
c_{i}-\begin{array}{c}
\text { number of faces incident } \\
\text { only with inner vertices }
\end{array} \\
c_{o}=3 k_{o}-n+4
\end{array} \\
c_{o}-\begin{array}{c}
\text { number of faces incident } \\
\text { only with outer vertices }
\end{array} \\
c_{i}+c_{o}=n-28 &
\end{array}
$$

n	k_{i}	k_{o}	c_{i}	c_{o}
29	8	9	-1	2
31	9	10	0	3
33	10	11	1	4
34	10	12	0	6
34	11	11	3	3
35	11	12	2	5
37	11	14	0	9
37	12	13	3	6
\vdots	\vdots	\vdots	\vdots	\vdots

$\mathbf{n}=\mathbf{3 7}$

a) $k_{i}=11, k_{o}=14, c_{i}=0, c_{o}=9$
I_{37}
O_{37}

$\mathrm{n}=37$

b) $k_{i}=12, k_{o}=13, c_{i}=3, c_{o}=6$
I_{37}

$\mathbf{n}=34$

a) $k_{i}=10, k_{o}=12, c_{i}=0, c_{o}=6$
b) $k_{i}=11, k_{o}=11, c_{i}=3, c_{o}=3$
I_{34}, O_{34}

$\mathrm{c}_{\mathbf{i}}=\mathbf{0}, \mathrm{c}_{\mathrm{o}}=\mathbf{n}-28$
I_{n}
O_{n}
$n=46+3 v_{7}$

- open for some $n \equiv 0(\bmod 4)$
- open for all $n \equiv 2$ (mod 4) (except 30, 34 and 42)
- open for all $n \equiv 1$ (mod 2) (except 29, 31, 33, 35 and 37)
- we don't determine $\left|M_{n}(7,5)\right|$
- in all positive cases we have I and O isomorphics

Thanks for your attention

