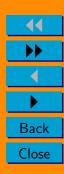
Ring's maps $\mathbf{M}_{n}(\mathbf{p},\mathbf{q})$

Róbert Hajduk

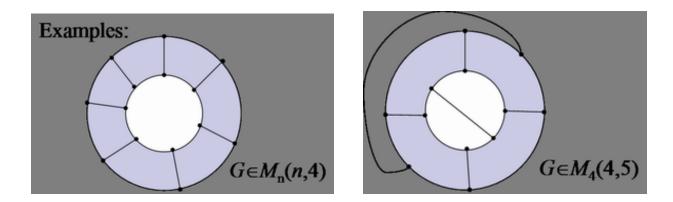
join work with Roman Soták

Institute of Mathematics, Faculty of Science, P. J. Šafárik University, Košice

Budmerice 2005



Definition 1 $M_n(p,q)$ - set of all 3-regular plane graphs having only p-gonal and q-gonal faces such that q-gonal faces form a ring R_n of n q-gons. $(p \ge 3, q \ge 4)$ (Deza, Grishukhin 02)



Problem

To find all values n with $M_n(7,5) \neq \emptyset$.

For finding this maps we used duals of this maps. Duals of this maps are graphs with vertices of degree 7 and 5.

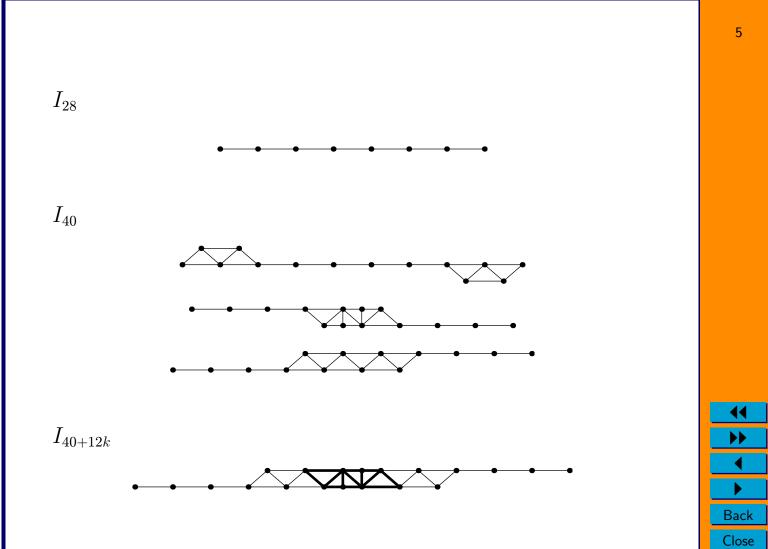
This maps have in chemistry special name - azzulenoids.

Theorem 1 The set $M_n(7,5)$ is nonempty for following particular values:

a) $n \in \{30, 36, 42\}$ b) n = 28 + 12k, k > 0c) n = 32 + 8k, k > 0d) n = 32 + 20k, k > 0e) n = 28 + 28k, k > 0

The set $M_n(7,5)$ is empty for $n \in \{29, 31, 33, 34, 35, 37\}$

↓
↓
Back
Close

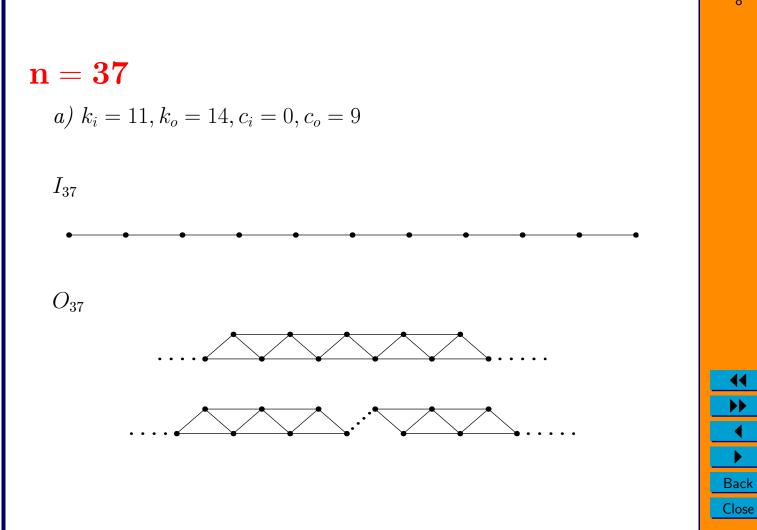


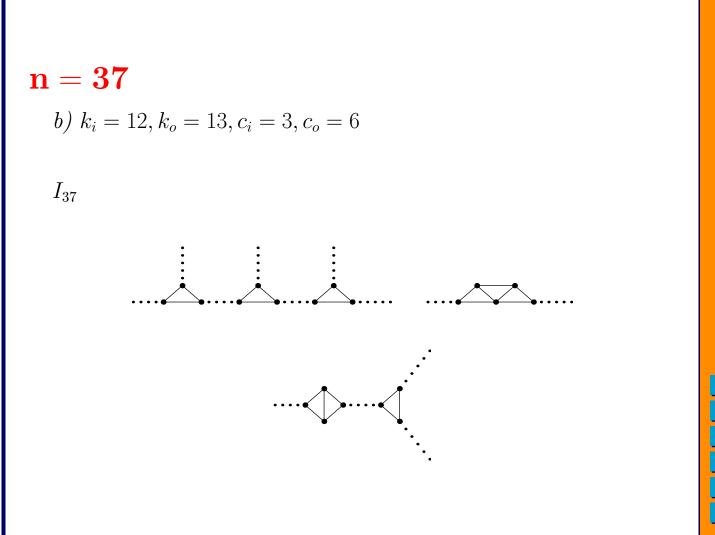
Some relations

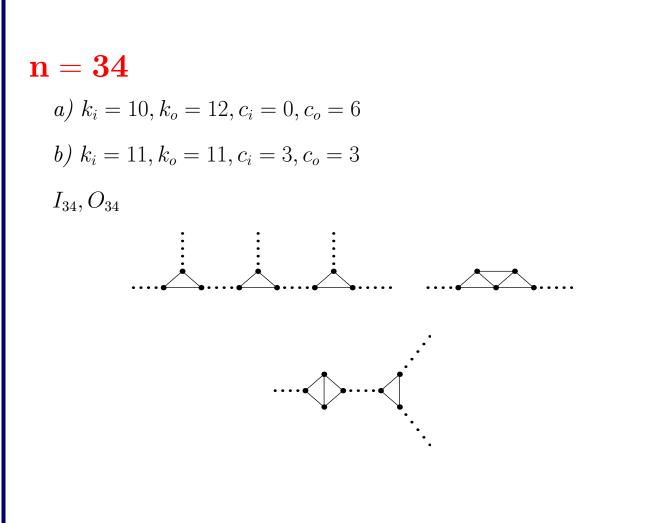
- $\left\lceil \frac{n-4}{3} \right\rceil \le k_i \le \left\lfloor \frac{n-12}{2} \right\rfloor$ k_i - number of vertices of degree 7 in I $\left\lceil \frac{n-12}{2} \right\rceil \le k_o \le \left\lfloor \frac{2n-32}{3} \right\rfloor$ k_o - number of vertices of degree 7 in O $k_i + k_o = n - 12$ $c_i = 3k_i - n + 4$ c_i - number of faces incident only with inner vertices $c_{0} = 3k_{0} - n + 4$ c_{o} - number of faces incident only with outer vertices
- $c_i + c_o = n 28$

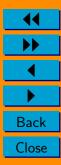
n	k_i	k_o	c_i	C_o
29	8	9	-1	2
31	9	10	0	3
33	10	11	1	4
34	10	12	0	6
34	11	11	3	3
35	11	12	2	5
37	11	14	0	9
37	12	13	3	6
:	:	•	•	:

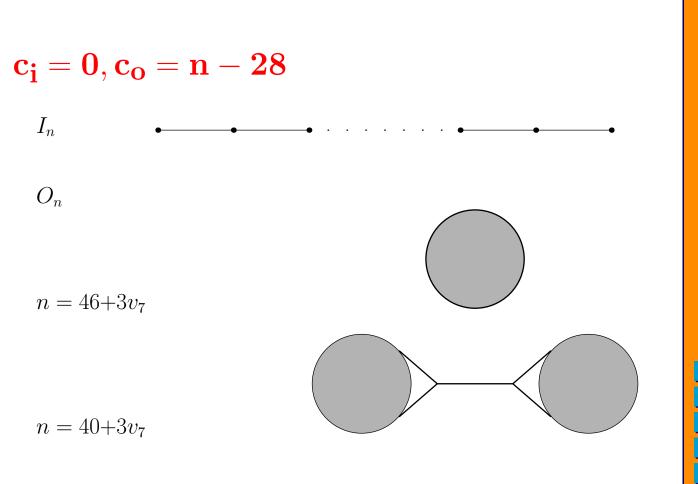












11

↓
↓
Back
Close

♦ open for some n ≡ 0 (mod 4)
♦ open for all n ≡ 2 (mod 4) (except 30, 34 and 42)
♦ open for all n ≡ 1 (mod 2) (except 29, 31, 33, 35 and 37)
♦ we don't determine |M_n(7,5)|

 \blacklozenge in all positive cases we have I and O isomorphics

Thanks for your attention