Matroid intersection and 2-walks in tough graphs

Tomáš Kaiser

Department of Mathematics and Institute for Theoretical Computer Science (ITI) University of West Bohemia Pilsen, Czech Republic

www.kma.zcu.cz/Kaiser

We overview the following concepts:

- toughness and its relation to hamiltonicity,
- matroids and simplicial complexes,
- the matroid intersection theorem, and
- results on independent systems of representatives.

We then interlink these topics by sketching a proof of a result on 2walks in tough graphs.

Toughness and hamiltonicity

A graph G is *t*-tough (t > 0 real) if for all $X \subset V(G)$, G - X has $\leq |X| / t$ components

(whenever it is disconnected)

Toughness $\tau(G)$ of G: maximum t such that G is t-tough (∞ if G is complete)

Observe: t-tough graphs are 2t-connected

And: Every 1-tough graph has a 1-factor (directly from Tutte's 1-factor theorem)

Theorem 1 (Enomoto et al., 1985) Every k-tough graph has a k-factor.

G hamiltonian \implies G is 1-tough

Conjecture 2 (Chvátal) There is t_0 such that any t_0 -tough graph is hamiltonian.

Chvátal conjectured $t_0 = 2$ would do, but non-hamiltonian graphs of toughness $\approx 9/4$ were found by Bauer et al. (2000)

There are positive results for chordal graphs:

- 18-tough chordal graphs are hamiltonian (Chen et al. 1998)
- there are $(7/4 \varepsilon)$ -tough chordal non-hamiltonian graphs (Bauer et al. 2000)
- $(1+\varepsilon)$ -tough chordal planar graphs are hamiltonian (Böhme, Harant and Tkáč 1999), 1-tough is not enough

k-walks and k-trees generalize Hamilton cycles and paths, respectively: k-walk: a closed spanning walk visiting every vertex at most k times k-tree: a spanning tree of maximum degree at most kOne easily has

$$(k-1)$$
-walk \implies k-tree \implies k-walk

Theorem 3 (Win, 1989) For $k \ge 3$, every $\frac{1}{k-2}$ -tough graph has a k-tree.

Conjecture 4 (Jackson and Wormald) For $k \ge 2$, every $\frac{1}{k-1}$ -tough graph has a k-walk.

For k = 2, Jackson and Wormald's conjecture states that every 1-tough graph has a 2-walk.

There are nearly $\frac{17}{24}$ -tough graphs with no 2-walk; a finite upper bound is available:

Theorem 5 (Ellingham and Zha) Every 4-tough graph has a 2walk.

Method:

- find a 2-factor F (possible as k-tough graphs have k-factors)
- \bullet then show that there is a matching interconnecting all the components of F

 ${\cal G}$ is a graph, ${\cal F}$ a disconnected spanning subgraph

A matching $T \subset E(G)$ is an $\ensuremath{\textit{F-connecting matching}}$ if $T \cup F$ is connected

When does an F-connecting matching exist in G?

Idea:

- \bullet contract each component of F to obtain G^\prime
- \bullet look for a spanning tree T in G^\prime
- but the pairs of edges incident in G are *incompatible* (T must correspond to a matching in G)

So we need a spanning tree in G' with *local constraints*

This is reminiscent of *colorful spanning trees*:

G is a graph; edges partitioned into E_1, \ldots, E_k (colors)

A spanning tree T of G is **colorful** if it intersects each color in ≤ 1 edge

Theorem 6 G has a colorful spanning tree if and only if the removal of any t colors leaves a graph with at most t + 1 components.

A proof uses the matroid intersection theorem...

Matroids and complexes

(Simplicial) complex K on a set V: a set system on V that is *hereditary*:

if
$$A \subset B \in K$$
, then $A \in K$.

a complex K has an associated topological space |K| (the **polyhedron** of K)

Example: if K consists of $\{1, 2, 3\}$, $\{1, 3, 4\}$, $\{4, 5\}$ and all their subsets, then |K| is:

Face of K = set from K

The **induced subcomplex** K[W] on $W \subset V$ consists of all the $A \in K$ with $A \subset W$

Matroids

Matroid: a complex M such that for each X, all the maximal faces of M[X] have the same dimension, the **rank** $r_M(X)$ of X

```
Independent set of M = face
```

The maximal faces of M are its **bases**; their dimension is r(M)

Common classes of matroids include:

- graphic matroids
- representable matroids
- transversal matroids

G = (V, E) is a graph

The **cycle matroid** of G: matroid M(G) on E, the independent sets are edge sets of forests

Example: $G = K_3$ with edges a, b, c: the bases are $\{a, b\}$, $\{a, c\}$ and $\{b, c\}$

If G is connected, then the bases of M(G) are exactly spanning trees

 $S = (A_1, \ldots, A_k)$ is a set system on V

Transversal (system of distinct representatives) of S: a set $\{a_1, \ldots, a_k\}$ with $a_i \in A_i$ (and the a_i 's distinct)

Partial transversal of S = transversal of some $\{A_i : i \in I\}$ where $I \subset \{1, \ldots, k\}$

All partial transversals of S form a matroid on V — a transversal matroid

Matroid intersection

The Matroid intersection theorem is this celebrated result of Edmonds:

Theorem 7 Let M, N be matroids on the same ground set E. If, for every $X \subseteq E$,

$$r_M(X) + r_N(E - X) \ge k,$$

then M and N have a common k-element independent set.

G is a graph

the **matching number** $\nu(G) =$ size of a largest matching

the vertex cover number $\tau(G) = \min \min$ number of vertices needed to *cover* all edges

Observe: $\nu(G) \leq \tau(G)$, inequality strict e.g. for K_3

Theorem 8 (König) If G is bipartite, then $\nu(G) = \tau(G)$.

G is a graph; edges partitioned into colors E_1, \ldots, E_k

A spanning tree T of G is $\fbox{colorful}$ if it intersects each color in ≤ 1 edge

Theorem 9 G has a colorful spanning tree if and only if the removal of any t colors leaves a graph with at most t + 1 components.

Theorem 10 (Rado) Let M be a matroid on E. A set system $\{A_i : i \in I\}$ on E has a transversal that is independent in M if and only if

$$r_M(\bigcup_{i\in X}A_i)\ge |X|$$

for all $X \subset E$.

Observe: Hall's theorem is a corollary

Another corollary is a theorem of Ford and Fulkerson saying when two set systems on the same ground set have a common transversal

Independent systems of representatives

Throughout: G is a graph, (P_1, \ldots, P_m) a partition of V(G)

Independent system of representatives (ISR): an independent set $S \subset V(G)$ with $|S \cap P_i| = 1$ for all i

When does G have an ISR?

 $D \subset V(G)$ is **totally dominating** if every vertex $v \in V(G)$ has a neighbor in D ($v \in D$ is not enough)

total domination number $\tilde{\gamma}(G)$: the size of a smallest totally dominating set

Theorem 11 (Haxell, 1995) *If, for each* $I \subseteq \{1, ..., m\}$ *,*

$$\tilde{\gamma}\left(G\left[\bigcup_{i\in I}P_i\right]\right) \ge 2\left|I\right| - 1,$$

then an ISR exists.

G = (V, E) is a graph

Independence complex I(G) of G: complex on V, faces = independent sets of vertices

Example: A graph and its independence complex (clearly not a matroid!):

Matching complex of G: on E, faces = matchings in G Observe: The matching complex is just I(L(G)) A topological space X is *n*-connected if every continuous map from the k-sphere S^k to X can be extended to a map from the (k+1)-ball B^{k+1} to X, for all $k \leq n$.

Connectivity $\kappa(X)$: maximum n such that X is n-connected

This space has connectivity 0:

Informally: n-connectedness means 'no holes up to dimension n'

(1) Colorful faces

independent transversal = transversal that is a face of I(G)

Meshulam: Replace ${\cal I}(G)$ by an arbitrary complex on ${\cal V}$

When does a set system have a transversal that is a face of a complex K?

(2) Faces independent in a matroid

transversal = basis of the transversal matroid T defined by the colors P_i

Aharoni and Berger: Replace ${\cal T}$ by an arbitrary matroid

When does a matroid have a basis that is a face of a complex K?

Given a graph G, any partition (P_1, \ldots, P_m) of V(G) induces a coloring of the points of I(G); an ISR is then just a **colorful face**

General problem Find a sufficient condition for the existence of a colorful face in a given complex with colored points.

Theorem 12 (Meshulam, 2001) A complex K with points partitioned into color sets P_1, \ldots, P_m contains a colorful face whenever for each $I \subseteq \{1, \ldots, m\}$, the complex

$$K\left[\bigcup_{i\in I}P_i\right]$$

is (|I| - 2)-connected.

The connectivity of I(G) is related to domination:

$$\kappa(|I(G)|) \geq \frac{\tilde{\gamma}(G)}{2} - 2$$

(+ other lower bounds of this sort)

Using the above, Meshulam's result specializes to Haxell's theorem.

This recent result of Aharoni and Berger generalizes

- the theorems on ISRs and colorful simplices,
- one direction of the Matroid intersection theorem:

Theorem 13 (Aharoni and Berger, 2004) Let M be a matroid and K a complex on the same ground set E. If, for every $X \subseteq E$,

$$r_M(X) + \kappa(|K[E - X]|) \ge r(M) - 2,$$

then M has a basis belonging to K.

The connection relies on the following fact: If M is a matroid, then the connectivity of |M| equals r(M) - 2.

Putting it together

 ${\cal F}$ is a spanning disconnected subgraph of G, we are looking for an ${\cal F}\text{-}{\rm connecting}$ matching

Let G' be obtained from G by contracting each component of FWe apply the theorem as follows:

- $\bullet~M$ is the cycle matroid of G^\prime
- K is the matching complex of G E(F)

The connectivity of K (and subcomplexes) is estimated using a variant of the domination number: $\gamma^{\vee}(H)$ is the minimum number of paths of length 2 dominating all edges of H

Notation:

 $\omega(H)={\rm the\ number\ of\ components\ of\ }H$

 H_X = the spanning subgraph of H with edge set X

Theorem 14 If for each $X \subseteq E(G)$, $\gamma^{\vee}(G_X) \ge \omega(G - X) - 1$,

then G contains an F-connecting matching.

For the 2-walk problem, this yields:

Corollary 15 Every $(3 + \frac{9}{k-3})$ -tough graph of girth $\geq k$ has a 2-walk.