Matroid intersection and 2-walks in tough graphs

Tomáš Kaiser

Department of Mathematics and
Institute for Theoretical Computer Science (ITI)
University of West Bohemia
Pilsen, Czech Republic
www.kma.zcu.cz/Kaiser

Outline

We overview the following concepts:

- toughness and its relation to hamiltonicity,
- matroids and simplicial complexes,
- the matroid intersection theorem, and
- results on independent systems of representatives.

We then interlink these topics by sketching a proof of a result on 2walks in tough graphs.

Part 1

Toughness and hamiltonicity

A graph G is t-tough ($t>0$ real) if for all $X \subset V(G)$,

$$
G-X \text { has } \leq|X| / t \text { components }
$$

(whenever it is disconnected)
Toughness $\tau(G)$ of G : maximum t such that G is t-tough (∞ if G is complete)

Observe: t-tough graphs are $2 t$-connected
And: Every 1-tough graph has a 1-factor (directly from Tutte's 1-factor theorem)

Theorem 1 (Enomoto et al., 1985) Every k-tough graph has a k factor.
G hamiltonian $\Longrightarrow G$ is 1-tough
Conjecture 2 (Chvátal) There is t_{0} such that any t_{0}-tough graph is hamiltonian.

Chvátal conjectured $t_{0}=2$ would do, but non-hamiltonian graphs of toughness $\approx 9 / 4$ were found by Bauer et al. (2000)

There are positive results for chordal graphs:

- 18-tough chordal graphs are hamiltonian (Chen et al. 1998)
- there are $(7 / 4-\varepsilon)$-tough chordal non-hamiltonian graphs (Bauer et al. 2000)
- (1+)-tough chordal planar graphs are hamiltonian (Böhme, Harant and Tkáč 1999), 1-tough is not enough
k-walks and k-trees generalize Hamilton cycles and paths, respectively: k-walk: a closed spanning walk visiting every vertex at most k times k-tree: a spanning tree of maximum degree at most k
One easily has

$$
(k-1) \text {-walk } \Longrightarrow k \text {-tree } \Longrightarrow k \text {-walk }
$$

Theorem 3 (Win, 1989) For $k \geq 3$, every $\frac{1}{k-2}$-tough graph has a k-tree.

Conjecture 4 (Jackson and Wormald) For $k \geq 2$, every $\frac{1}{k-1}$ tough graph has a k-walk.

For $k=2$, Jackson and Wormald's conjecture states that every 1-tough graph has a 2-walk.
There are nearly $\frac{17}{24}$-tough graphs with no 2 -walk; a finite upper bound is available:

Theorem 5 (Ellingham and Zha) Every 4-tough graph has a 2walk.

Method:

- find a 2 -factor F (possible as k-tough graphs have k-factors)
- then show that there is a matching interconnecting all the components of F

F-connecting matchings

G is a graph, F a disconnected spanning subgraph
A matching $T \subset E(G)$ is an F-connecting matching if $T \cup F$ is connected

When does an F-connecting matching exist in G ?
Idea:

- contract each component of F to obtain G^{\prime}
- look for a spanning tree T in G^{\prime}
- but the pairs of edges incident in G are incompatible (T must correspond to a matching in G)

So we need a spanning tree in G^{\prime} with local constraints

Colorful spanning trees

This is reminiscent of colorful spanning trees:
G is a a graph; edges partitioned into E_{1}, \ldots, E_{k} (colors)
A spanning tree T of G is colorful if it intersects each color in ≤ 1 edge

Theorem $6 G$ has a colorful spanning tree if and only if the removal of any t colors leaves a graph with at most $t+1$ components.

A proof uses the matroid intersection theorem...

Part 2

Matroids and complexes

(Simplicial) complex K on a set V : a set system on V that is hereditary:

$$
\text { if } A \subset B \in K, \quad \text { then } \quad A \in K \text {. }
$$

a complex K has an associated topological space $|K|$ (the polyhedron of K)
Example: if K consists of $\{1,2,3\},\{1,3,4\},\{4,5\}$ and all their subsets, then $|K|$ is:

Face of $K=$ set from K
The induced subcomplex $K[W]$ on $W \subset V$ consists of all the $A \in K$ with $A \subset W$

Matroids

Matroid: a complex M such that for each X, all the maximal faces of $M[X]$ have the same dimension, the rank $r_{M}(X)$ of X
Independent set of $M=$ face
The maximal faces of M are its bases; their dimension is $r(M)$
Common classes of matroids include:

- graphic matroids
- representable matroids
- transversal matroids

Graphic matroids

$G=(V, E)$ is a graph
The cycle matroid of G : matroid $M(G)$ on E, the independent sets are edge sets of forests

Example: $G=K_{3}$ with edges a, b, c : the bases are $\{a, b\},\{a, c\}$ and $\{b, c\}$
If G is connected, then the bases of $M(G)$ are exactly spanning trees

Transversal matroids

$S=\left(A_{1}, \ldots, A_{k}\right)$ is a set system on V
Transversal (system of distinct representatives) of S : a set $\left\{a_{1}, \ldots, a_{k}\right\}$ with $a_{i} \in A_{i}$ (and the a_{i} 's distinct)

Partial transversal of $S=$ transversal of some $\left\{A_{i}: i \in I\right\}$ where $I \subset\{1, \ldots, k\}$
All partial transversals of S form a matroid on $V-$ a transversal matroid

Part 3

Matroid intersection

The Matroid intersection theorem

The Matroid intersection theorem is this celebrated result of Edmonds:
Theorem 7 Let M, N be matroids on the same ground set E. If, for every $X \subseteq E$,

$$
r_{M}(X)+r_{N}(E-X) \geq k
$$

then M and N have a common k-element independent set.

Application: König's theorem

G is a graph
the matching number $\nu(G)=$ size of a largest matching
the vertex cover number $\tau(G)=$ minimum number of vertices needed to cover all edges

Observe: $\nu(G) \leq \tau(G)$, inequality strict e.g. for K_{3}
Theorem 8 (König) If G is bipartite, then $\nu(G)=\tau(G)$.

Application: Colorful spanning trees

G is a a graph; edges partitioned into colors E_{1}, \ldots, E_{k}
A spanning tree T of G is colorful if it intersects each color in ≤ 1 edge

Theorem $9 G$ has a colorful spanning tree if and only if the removal of any t colors leaves a graph with at most $t+1$ components.

Other applications

Theorem 10 (Rado) Let M be a matroid on E. A set system $\left\{A_{i}: i \in I\right\}$ on E has a transversal that is independent in M if and only if

$$
r_{M}\left(\bigcup_{i \in X} A_{i}\right) \geq|X|
$$

for all $X \subset E$.
Observe: Hall's theorem is a corollary
Another corollary is a theorem of Ford and Fulkerson saying when two set systems on the same ground set have a common transversal

Part 4

Independent systems of representatives

Throughout: G is a graph, $\left(P_{1}, \ldots, P_{m}\right)$ a partition of $V(G)$
Independent system of representatives (ISR) : an independent set $S \subset V(G)$ with $\left|S \cap P_{i}\right|=1$ for all i

When does G have an ISR?
$D \subset V(G)$ is totally dominating if every vertex $v \in V(G)$ has a neighbor in $D(v \in D$ is not enough)
total domination number $\tilde{\gamma}(G)$: the size of a smallest totally dominating set

Theorem 11 (Haxell, 1995) If, for each $I \subseteq\{1, \ldots, m\}$,

$$
\tilde{\gamma}\left(G\left[\bigcup_{i \in I} P_{i}\right]\right) \geq 2|I|-1
$$

then an ISR exists.

Complexes of graphs

$G=(V, E)$ is a graph
Independence complex $I(G)$ of G : complex on V, faces $=$ independent sets of vertices

Example: A graph and its independence complex (clearly not a matroid!):

Matching complex of G : on E, faces $=$ matchings in G
Observe: The matching complex is just $I(L(G))$

Connectivity

A topological space X is n-connected if every continuous map from the k-sphere S^{k} to X can be extended to a map from the $(k+1)$-ball B^{k+1} to X, for all $k \leq n$.

Connectivity $\kappa(X)$: maximum n such that X is n-connected
This space has connectivity 0 :

Informally: n-connectedness means 'no holes up to dimension n '

Extensions of Haxell's theorem

(1) Colorful faces

independent transversal $=$ transversal that is a face of $I(G)$
Meshulam: Replace $I(G)$ by an arbitrary complex on V
When does a set system have a transversal that is a face of a complex K ?
(2) Faces independent in a matroid
transversal $=$ basis of the transversal matroid T defined by the colors P_{i}

Aharoni and Berger: Replace T by an arbitrary matroid
When does a matroid have a basis that is a face of a complex K ?

Given a graph G, any partition $\left(P_{1}, \ldots, P_{m}\right)$ of $V(G)$ induces a coloring of the points of $I(G)$; an ISR is then just a colorful face
General problem Find a sufficient condition for the existence of a colorful face in a given complex with colored points.

Theorem 12 (Meshulam, 2001) A complex K with points partitioned into color sets P_{1}, \ldots, P_{m} contains a colorful face whenever for each $I \subseteq\{1, \ldots, m\}$, the complex

$$
K\left[\bigcup_{i \in I} P_{i}\right]
$$

is $(|I|-2)$-connected.

Colorful faces and Haxell's theorem

The connectivity of $I(G)$ is related to domination:

$$
\kappa(|I(G)|) \geq \frac{\tilde{\gamma}(G)}{2}-2
$$

(+ other lower bounds of this sort)
Using the above, Meshulam's result specializes to Haxell's theorem.

Aharoni and Berger's theorem

This recent result of Aharoni and Berger generalizes

- the theorems on ISRs and colorful simplices,
- one direction of the Matroid intersection theorem:

Theorem 13 (Aharoni and Berger, 2004) Let M be a matroid and K a complex on the same ground set E. If, for every $X \subseteq E$,

$$
r_{M}(X)+\kappa(|K[E-X]|) \geq r(M)-2
$$

then M has a basis belonging to K.
The connection relies on the following fact: If M is a matroid, then the connectivity of $|M|$ equals $r(M)-2$.

Part 5

Putting it together

Back to F-connecting matchings

F is a spanning disconnected subgraph of G, we are looking for an F-connecting matching

Let G^{\prime} be obtained from G by contracting each component of F
We apply the theorem as follows:

- M is the cycle matroid of G^{\prime}
- K is the matching complex of $G-E(F)$

The connectivity of K (and subcomplexes) is estimated using a variant of the domination number: $\gamma^{\vee}(H)$ is the minimum number of paths of length 2 dominating all edges of H

Notation:
$\omega(H)=$ the number of components of H
$H_{X}=$ the spanning subgraph of H with edge set X

Results

Theorem 14 If for each $X \subseteq E(G)$,

$$
\gamma^{\vee}\left(G_{X}\right) \geq \omega(G-X)-1
$$

then G contains an F-connecting matching.
For the 2-walk problem, this yields:
Corollary 15 Every $\left(3+\frac{9}{k-3}\right)$-tough graph of girth $\geq k$ has a 2-walk.

