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Outline

We overview the following concepts:

• toughness and its relation to hamiltonicity,

• matroids and simplicial complexes,

• the matroid intersection theorem, and

• results on independent systems of representatives.

We then interlink these topics by sketching a proof of a result on 2-
walks in tough graphs.
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Part 1

Toughness and hamiltonicity
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Toughness

A graph G is t-tough (t > 0 real) if for all X ⊂ V (G),

G−X has ≤ |X| /t components

(whenever it is disconnected)

Toughness τ (G) of G: maximum t such that G is t-tough (∞ if G
is complete)

Observe: t-tough graphs are 2t-connected

And: Every 1-tough graph has a 1-factor (directly from Tutte’s 1-factor
theorem)

Theorem 1 (Enomoto et al., 1985) Every k-tough graph has a k-
factor.
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Toughness and hamiltonicity

G hamiltonian =⇒ G is 1-tough

Conjecture 2 (Chvátal) There is t0 such that any t0-tough graph is
hamiltonian.

Chvátal conjectured t0 = 2 would do, but non-hamiltonian graphs of
toughness ≈ 9/4 were found by Bauer et al. (2000)

There are positive results for chordal graphs:

• 18-tough chordal graphs are hamiltonian (Chen et al. 1998)

• there are (7/4 − ε)-tough chordal non-hamiltonian graphs (Bauer
et al. 2000)

• (1+ε)-tough chordal planar graphs are hamiltonian (Böhme, Harant
and Tkáč 1999), 1-tough is not enough
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k-walks and k-trees

k-walks and k-trees generalize Hamilton cycles and paths, respectively:

k-walk : a closed spanning walk visiting every vertex at most k times

k-tree : a spanning tree of maximum degree at most k

One easily has

(k − 1)-walk =⇒ k-tree =⇒ k-walk

Theorem 3 (Win, 1989) For k ≥ 3, every 1
k−2-tough graph has a

k-tree.

Conjecture 4 (Jackson and Wormald) For k ≥ 2, every 1
k−1-

tough graph has a k-walk.
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2-walks

For k = 2, Jackson and Wormald’s conjecture states that every 1-tough
graph has a 2-walk.

There are nearly 17
24-tough graphs with no 2-walk; a finite upper bound

is available:

Theorem 5 (Ellingham and Zha) Every 4-tough graph has a 2-
walk.

Method:

• find a 2-factor F (possible as k-tough graphs have k-factors)

• then show that there is a matching interconnecting all the compo-
nents of F
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F -connecting matchings

G is a graph, F a disconnected spanning subgraph

A matching T ⊂ E(G) is an F -connecting matching if T ∪ F is
connected

When does an F -connecting matching exist in G?

Idea:

• contract each component of F to obtain G′

• look for a spanning tree T in G′

• but the pairs of edges incident in G are incompatible (T must
correspond to a matching in G)

So we need a spanning tree in G′ with local constraints
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Colorful spanning trees

This is reminiscent of colorful spanning trees:

G is a a graph; edges partitioned into E1, . . . , Ek ( colors )

A spanning tree T of G is colorful if it intersects each color in ≤ 1
edge

Theorem 6 G has a colorful spanning tree if and only if the removal
of any t colors leaves a graph with at most t + 1 components.

A proof uses the matroid intersection theorem. . .
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Part 2

Matroids and complexes
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Complexes

(Simplicial) complex K on a set V : a set system on V that is
hereditary :

if A ⊂ B ∈ K, then A ∈ K.
a complex K has an associated topological space |K| (the
polyhedron of K)

Example: if K consists of {1, 2, 3}, {1, 3, 4}, {4, 5} and all their sub-
sets, then |K| is:

1

2 3

4

5

Face of K = set from K

The induced subcomplex K[W ] on W ⊂ V consists of all the
A ∈ K with A ⊂ W
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Matroids

Matroid : a complex M such that for each X , all the maximal faces
of M [X ] have the same dimension, the rank rM(X) of X

Independent set of M = face

The maximal faces of M are its bases ; their dimension is r(M)

Common classes of matroids include:

• graphic matroids

• representable matroids

• transversal matroids
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Graphic matroids

G = (V,E) is a graph

The cycle matroid of G: matroid M(G) on E, the independent sets
are edge sets of forests

Example: G = K3 with edges a, b, c: the bases are {a, b}, {a, c} and
{b, c}
If G is connected, then the bases of M(G) are exactly spanning trees
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Transversal matroids

S = (A1, . . . , Ak) is a set system on V

Transversal (system of distinct representatives) of S: a set
{a1, . . . , ak} with ai ∈ Ai (and the ai’s distinct)

Partial transversal of S = transversal of some {Ai : i ∈ I} where
I ⊂ {1, . . . , k}
All partial transversals of S form a matroid on V — a
transversal matroid
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Part 3

Matroid intersection
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The Matroid intersection theorem

The Matroid intersection theorem is this celebrated result of Edmonds:

Theorem 7 Let M , N be matroids on the same ground set E. If, for
every X ⊆ E,

rM(X) + rN(E −X) ≥ k,

then M and N have a common k-element independent set.
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Application: König’s theorem

G is a graph

the matching number ν(G) = size of a largest matching

the vertex cover number τ (G) = minimum number of vertices
needed to cover all edges

Observe: ν(G) ≤ τ (G), inequality strict e.g. for K3

Theorem 8 (König) If G is bipartite, then ν(G) = τ (G).
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Application: Colorful spanning trees

G is a a graph; edges partitioned into colors E1, . . . , Ek

A spanning tree T of G is colorful if it intersects each color in ≤ 1
edge

Theorem 9 G has a colorful spanning tree if and only if the removal
of any t colors leaves a graph with at most t + 1 components.
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Other applications

Theorem 10 (Rado) Let M be a matroid on E. A set system
{Ai : i ∈ I} on E has a transversal that is independent in M if and
only if

rM(
⋃

i∈X
Ai) ≥ |X|

for all X ⊂ E.

Observe: Hall’s theorem is a corollary

Another corollary is a theorem of Ford and Fulkerson saying when two
set systems on the same ground set have a common transversal
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Part 4

Independent systems of representatives

20



Independent systems of representatives

Throughout: G is a graph, (P1, . . . , Pm) a partition of V (G)

Independent system of representatives (ISR) : an independent
set S ⊂ V (G) with |S ∩ Pi| = 1 for all i

When does G have an ISR?
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Haxell’s theorem

D ⊂ V (G) is totally dominating if every vertex v ∈ V (G) has a
neighbor in D (v ∈ D is not enough)

total domination number γ̃(G): the size of a smallest totally dom-
inating set

Theorem 11 (Haxell, 1995) If, for each I ⊆ {1, . . . ,m},
γ̃
(
G
[⋃

i∈I
Pi

])
≥ 2 |I| − 1,

then an ISR exists.
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Complexes of graphs

G = (V,E) is a graph

Independence complex I(G) of G: complex on V , faces = inde-
pendent sets of vertices

Example: A graph and its independence complex (clearly not a ma-
troid!):

1

2
3

45

1

2 3

4

5

Matching complex of G: on E, faces = matchings in G

Observe: The matching complex is just I(L(G))
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Connectivity

A topological space X is n-connected if every continuous map from
the k-sphere Sk to X can be extended to a map from the (k + 1)-ball
Bk+1 to X , for all k ≤ n.

Connectivity κ(X): maximum n such that X is n-connected

This space has connectivity 0:

Informally: n-connectedness means ‘no holes up to dimension n’
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Extensions of Haxell’s theorem

(1) Colorful faces

independent transversal = transversal that is a face of I(G)

Meshulam: Replace I(G) by an arbitrary complex on V

When does a set system have a transversal that is a face of a complex
K?

(2) Faces independent in a matroid

transversal = basis of the transversal matroid T defined by the colors
Pi

Aharoni and Berger: Replace T by an arbitrary matroid

When does a matroid have a basis that is a face of a complex K?
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Colorful faces

Given a graphG, any partition (P1, . . . , Pm) of V (G) induces a coloring
of the points of I(G); an ISR is then just a colorful face

General problem Find a sufficient condition for the existence of a
colorful face in a given complex with colored points.

Theorem 12 (Meshulam, 2001) A complex K with points parti-
tioned into color sets P1, . . . , Pm contains a colorful face whenever for
each I ⊆ {1, . . . ,m}, the complex

K
[⋃

i∈I
Pi

]

is (|I| − 2)-connected.
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Colorful faces and Haxell’s theorem

The connectivity of I(G) is related to domination:

κ(|I(G)|) ≥ γ̃(G)

2
− 2

(+ other lower bounds of this sort)

Using the above, Meshulam’s result specializes to Haxell’s theorem.
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Aharoni and Berger’s theorem

This recent result of Aharoni and Berger generalizes

• the theorems on ISRs and colorful simplices,

• one direction of the Matroid intersection theorem:

Theorem 13 (Aharoni and Berger, 2004) Let M be a matroid
and K a complex on the same ground set E. If, for every X ⊆ E,

rM(X) + κ(|K[E −X ]|) ≥ r(M)− 2,

then M has a basis belonging to K.

The connection relies on the following fact: If M is a matroid, then
the connectivity of |M | equals r(M)− 2.
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Part 5

Putting it together
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Back to F -connecting matchings

F is a spanning disconnected subgraph of G, we are looking for an
F -connecting matching

Let G′ be obtained from G by contracting each component of F

We apply the theorem as follows:

•M is the cycle matroid of G′

• K is the matching complex of G− E(F )

The connectivity of K (and subcomplexes) is estimated using a variant
of the domination number: γ∨(H) is the minimum number of paths
of length 2 dominating all edges of H

Notation:

ω(H) = the number of components of H

HX = the spanning subgraph of H with edge set X
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Results

Theorem 14 If for each X ⊆ E(G),

γ∨(GX) ≥ ω(G−X)− 1,

then G contains an F -connecting matching.

For the 2-walk problem, this yields:

Corollary 15 Every (3 + 9
k−3)-tough graph of girth ≥ k has a 2-walk.
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