DECOMPOSITIONS OF GRAPHS

Tomáš Vetrík

Faculty of Civil Engineering

Slovak University of Technology

Bratislava, Slovakia

G - graph V(G) - its vertex set E(G) - its edge set $F_1, F_2, \dots, F_m - \text{a set of factors of } G$ d(G) - diameter of G

The study of decompositions of complete graphs into factors with given diameters was initiated by Bosák, Rosa and Znám.

Theorem 1 If complete graph K_n is decomposable into m factors $F_1, F_2, ..., F_m$ with prescribed diameters $d_1, d_2, ..., d_m$, then for every n' > n the complete graph $K_{n'}$ is also decomposable into such factors.

 $F(d_1, d_2, ..., d_m)$ – the smallest positive integer nsuch that the graph K_n can be decomposed into m factors with prescribed diameters $d_1, d_2, ..., d_m$.

If all the factors have the same diameter d, we write $F(d_1, d_2, ..., d_m) = F_m(d)$. n is admissible with respect to m if m divides n(n-1)/2

 $G_m(d)$ – the smallest positive integer n such that the graph K_n can be decomposed into misomorphic factors of diameter d.

 $H_m(d)$ – the smallest admissible integer n such that for all admissible integers $n' \ge n$, the complete graph $K_{n'}$ is also decomposable into such isomorphic factors of diameter d.

It is obvious that

$$F_m(d) \le G_m(d) \le H_m(d).$$

Conjecture (Kotzig and Rosa) For every $m, d \ge 2$ it holds that

$$G_m(d) = H_m(d).$$

The truth of the conjecture has been verified For m = 2 and for m = 3 if d = 3, 4, 5, 6.

DECOMPOSITIONS OF COMPLETE GRAPHS INTO 3 FACTORS

Let us assume that the diameters d_1, d_2, d_3 satisfy (1) $d_1 \leq d_2 \leq d_3 < \infty$.

Theorem 2 (Bosák, Rosa and Znám) Let $d_1 \ge 5$. Then $F(d_1, d_2, d_3) \le d_1 + d_2 + d_3 - 8$.

Theorem 3 (Hrnčiar) Let $d_1 > 65$. Then $F(d_1, d_2, d_3) = d_1 + d_2 + d_3 - 8$.

$$d_1 = 2$$

Theorem 4 (Bosák, Rosa and Znám) Let $d_2 \ge 2$. If $d_3 \ge 7$, then $F(2, d_2, d_3) = d_3 + 1$ except F(2, 2, 7). F(2, 6, 6) = F(2, 5, 6) = F(2, 5, 5) = F(2, 4, 6) = F(2, 4, 5) = F(2, 4, 4) = 7; F(2, 3, 6) = F(2, 3, 5) = F(2, 3, 4) = F(2, 3, 3) = 8; F(2, 2, 7) = F(2, 2, 6) = F(2, 2, 5) = 9; F(2, 2, 4) = F(2, 2, 3) = 10; $12 \le F(2, 2, 2) \le 13$.

Theorem 5 (Stacho, Urland) F(2, 2, 2) = 13.

$$d_1 = 3$$

Theorem 6 (Palumbíny) Let $d_2 \ge 7$. Then $F(3, d_2, d_3) \le d_2 + d_3 - 6$.

Theorem 7 (Palumbíny) F(3,3,3) = F(3,4,4) = F(3,5,5) = 6; F(3,3,4) = F(3,3,5) = F(3,3,6) = F(3,4,5) = F(3,4,6) = F(3,5,6) = F(3,6,6) = 7.If $3 \le d_2 \le 7 \le d_3$, then $F(3,d_2,d_3) = d_3 + 1.$ If $d_3 \ge 8$, then $F(3,8,d_3) = d_3 + 2.$

Results

The auxiliary result needed in the proof of Theorem 8.

Lemma 1 Let u, v be two distinct vertices of a graph G with n vertices $(n \ge 5)$ and finite diameter d $(d \ge 2)$. Let deg(u) = a, deg(v) = band a + b > n - d + 3.

- I. If the edge $uv \in G$, then there exists at least (a+b) - (n-d+3) vertices adjacent to both vertices u and v in graph G.
- II. If the edge $uv \notin G$, then there exists at least (a+b) - (n-d+2) vertices adjacent to both vertices u and v in graph G.

Theorem 8 Let $d_2 \ge 9$. Then $F(3, d_2, d_3) = d_2 + d_3 - 6$.

$$d_1 = 4$$

Theorem 9 (Říhová) Let $d_2 \ge 5$, $d_3 \ge 6$. Then $F(4, d_2, d_3) \le d_2 + d_3 - 4$.

Theorem 10 (Říhová) *I.* F(4, 4, 4) = F(4, 5, 5) = 6; *II.* Let $d_3 \ge 5$. Then $F(4, 4, d_3) = d_3 + 1$, *III.* Let $d_3 \ge 6$. Then $F(4, 5, d_3) = d_3 + 1$.

Results

Theorem 11 Let $d_2 \ge 6$. Then $F(4, d_2, d_3) \le d_2 + d_3 - 5$.

Corollary 1 Let $d_3 \ge 6$. Then $F(4, 6, d_3) = d_3 + 1$.

Theorem 12 Let $d_2 \ge 7$. Then $F(4, d_2, d_3) = d_2 + d_3 - 5$.