DECOMPOSITIONS OF GRAPHS

Tomáś Vetrík

Faculty of Civil Engineering

Slovak University of Technology
Bratislava, Slovakia

G - graph
$V(G)$ - its vertex set
$E(G)$ - its edge set
$F_{1}, F_{2}, \ldots, F_{m}$ - a set of factors of G
$\mathrm{d}(\mathrm{G})$ - diameter of G
The study of decompositions of complete graphs into factors with given diameters was initiated by Bosák, Rosa and Znám.

Theorem 1 If complete graph K_{n} is decomposable into m factors $F_{1}, F_{2}, \ldots, F_{m}$ with prescribed diameters $d_{1}, d_{2}, \ldots, d_{m}$, then for every $n^{\prime}>n$ the complete graph $K_{n^{\prime}}$ is also decomposable into such factors.
$F\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ - the smallest positive integer n such that the graph K_{n} can be decomposed into m factors with prescribed diameters $d_{1}, d_{2}, \ldots, d_{m}$.

If all the factors have the same diameter d, we write $F\left(d_{1}, d_{2}, \ldots, d_{m}\right)=F_{m}(d)$.
n is admissible with respect to m
if m divides $n(n-1) / 2$
$G_{m}(d)$ - the smallest positive integer n such that the graph K_{n} can be decomposed into m isomorphic factors of diameter d.
$H_{m}(d)$ - the smallest admissible integer n such that for all admissible integers $n^{\prime} \geq n$, the complete graph $K_{n^{\prime}}$ is also decomposable into such isomorphic factors of diameter d.

It is obvious that

$$
F_{m}(d) \leq G_{m}(d) \leq H_{m}(d)
$$

Conjecture (Kotzig and Rosa)

For every $m, d \geq 2$ it holds that

$$
G_{m}(d)=H_{m}(d)
$$

The truth of the conjecture has been verified For $m=2$ and for $m=3$ if $d=3,4,5,6$.

DECOMPOSITIONS OF COMPLETE GRAPHS INTO 3 FACTORS

Let us assume that the diameters d_{1}, d_{2}, d_{3} satisfy

$$
\begin{equation*}
d_{1} \leq d_{2} \leq d_{3}<\infty \tag{1}
\end{equation*}
$$

Theorem 2 (Bosák, Rosa and Znám)
Let $d_{1} \geq 5$. Then $F\left(d_{1}, d_{2}, d_{3}\right) \leq d_{1}+d_{2}+d_{3}-8$.
Theorem 3 (Hrnčiar) Let $d_{1}>65$.
Then $F\left(d_{1}, d_{2}, d_{3}\right)=d_{1}+d_{2}+d_{3}-8$.

$$
d_{1}=2
$$

Theorem 4 (Bosák, Rosa and Znám)
Let $d_{2} \geq 2$. If $d_{3} \geq 7$, then $F\left(2, d_{2}, d_{3}\right)=d_{3}+1$ except $F(2,2,7)$.
$F(2,6,6)=F(2,5,6)=F(2,5,5)=F(2,4,6)=$
$F(2,4,5)=F(2,4,4)=7$;
$F(2,3,6)=F(2,3,5)=F(2,3,4)=F(2,3,3)=8 ;$
$F(2,2,7)=F(2,2,6)=F(2,2,5)=9$;
$F(2,2,4)=F(2,2,3)=10 ; 12 \leq F(2,2,2) \leq 13$.
Theorem 5 (Stacho, Urland) $F(2,2,2)=13$.

$$
d_{1}=3
$$

Theorem 6 (Palumbíny) Let $d_{2} \geq 7$.
Then $F\left(3, d_{2}, d_{3}\right) \leq d_{2}+d_{3}-6$.

Theorem 7 (Palumbíny)
$F(3,3,3)=F(3,4,4)=F(3,5,5)=6$;
$F(3,3,4)=F(3,3,5)=F(3,3,6)=F(3,4,5)=$ $F(3,4,6)=F(3,5,6)=F(3,6,6)=7$.
If $3 \leq d_{2} \leq 7 \leq d_{3}$, then $F\left(3, d_{2}, d_{3}\right)=d_{3}+1$.
If $d_{3} \geq 8$, then $F\left(3,8, d_{3}\right)=d_{3}+2$.

Results

The auxiliary result needed in the proof of Theorem 8.

Lemma 1 Let u, v be two distinct vertices of a graph G with n vertices $(n \geq 5)$ and finite $\operatorname{diameter} d(d \geq 2)$. Let $\operatorname{deg}(u)=a, \operatorname{deg}(v)=b$ and $a+b>n-d+3$.
I. If the edge $u v \in G$, then there exists at least $(a+b)-(n-d+3)$ vertices adjacent to both vertices u and v in graph G.
II. If the edge $u v \notin G$, then there exists at least $(a+b)-(n-d+2)$ vertices adjacent to both vertices u and v in graph G.

Theorem 8 Let $d_{2} \geq 9$.
Then $F\left(3, d_{2}, d_{3}\right)=d_{2}+d_{3}-6$.

$$
d_{1}=4
$$

Theorem 9 (Říhová) Let $d_{2} \geq 5, d_{3} \geq 6$.
Then $F\left(4, d_{2}, d_{3}\right) \leq d_{2}+d_{3}-4$.

Theorem 10 (Říhová)
I. $F(4,4,4)=F(4,5,5)=6$;
II. Let $d_{3} \geq 5$. Then $F\left(4,4, d_{3}\right)=d_{3}+1$,
III. Let $d_{3} \geq 6$. Then $F\left(4,5, d_{3}\right)=d_{3}+1$.

Results

Theorem 11 Let $d_{2} \geq 6$.
Then $F\left(4, d_{2}, d_{3}\right) \leq d_{2}+d_{3}-5$.

Corollary 1 Let $d_{3} \geq 6$.
Then $F\left(4,6, d_{3}\right)=d_{3}+1$.

Theorem 12 Let $d_{2} \geq 7$.
Then $F\left(4, d_{2}, d_{3}\right)=d_{2}+d_{3}-5$.

