SQUARE OF METRICALLY REGULAR GRAPHS

Vladimír Vetchý
University of Defence Brno

Let X be a finite set, card $X \geq 2$. For an arbitrary natural number D let $\boldsymbol{R}=\left\{R_{0}, R_{1}, \ldots, R_{D}\right\}$ be a system of binary relations on X. A pair (X, \boldsymbol{R}) will be called an association scheme with D classes if and only if it satisfies the axioms
$A 1-A 4$:
A1. The system \boldsymbol{R} is a partition of the set X^{2} and R_{0} is the diagonal relation, i.e. $R_{0}=\{(x, x) ; x \in X\}$.

A2. For each $i \in\{0,1, \ldots, D\}$, it holds $R_{i}^{-1} \in \boldsymbol{R}$.
A3. For each $i, j, k \in\{0,1, \ldots, D\}$ it holds

$$
(x, y) \in R_{k} \wedge\left(x_{1}, y_{1}\right) \in R_{k} \Longrightarrow p_{i j}(x, y)=p_{i j}\left(x_{1}, y_{1}\right)
$$

where

$$
p_{i j}(x, y)=\left|\left\{z ;(x, z) \in R_{i} \wedge(z, y) \in R_{j}\right\}\right| .
$$

Then define

$$
p_{i j}^{k}:=p_{i j}(x, y), \text { where }(x, y) \in R_{k} .
$$

A4. For each $i, j, k \in\{0,1, \ldots, D\}$ it holds $p_{i j}^{k}=p_{j i}^{k}$.
The set X will be called the carrier of the association scheme (X, \boldsymbol{R}). In particular, $p_{i 0}^{k}=\delta_{i k}, p_{i j}^{0}=v_{i} \delta_{i j}$, where $\delta_{i j}$ is the Kronecker-symbol and $v_{i}:=p_{i i}^{0}$ and define

$$
P_{j}:=\left(p_{i j}^{k}\right), 0 \leq i, j, k \leq D .
$$

(See E.Bannai, T.Ito. Algebraic Combinatorics I. The Bejamin/Cummings Publishing Company, California, 1984 .)

Given an undirected graph $G=(X, E)$ of diameter D we may now define $R_{k}=\{(x, y) ; d(x, y)=k\}$, where $d(x, y)$ is the distance from the vertex x to the vertex y in the standard graph metric. If (X, \boldsymbol{R}) gives rise to an association scheme, the graph G is called metrically regular (sometimes also called distance regular) and $p_{i j}^{k}$ are said to be its parameters. In particular, a metrically regular graph with diameter $D=2$ is called strongly regular.

Let $G=(X, Y)$ be an undirected graph without loops and multiple edges. The second power (or square of G) is the graph $G^{2}=\left(X, E^{\prime}\right)$ with the same vertex set X and in which mutually different vertices are adjacent if and only if there is at least one path of length 1 or 2 in G between them.

The characteristic polynomial of the adjacency matrix A of a graph G is called the characteristic polynomial of G and the eigenvalues and the spectrum of A are called the eigenvalues and the spectrum of \boldsymbol{G}. The greatest eigenvalue of G is called the index of G .

1 Conditions for metrically regular graphs of diameter D to have their square metrically regular

(The same problem we can find in Brouwer A.E., Cohen A.M., Neumaier A.: Distance-regular graphs, p. 151, Springer-Verlag 1989.)

Because $G=(X, E)$ is metrically regular, the pair (X, \boldsymbol{R}) forms an association scheme with parameters $p_{i j}^{k}$, where

$$
\boldsymbol{R}=\left\{R_{0}, R_{1}, \ldots, R_{D}\right\}, R_{i}=\{(x, y) ; x, y \in X, d(x, y)=i\} .
$$

If $G^{2}=\left(X, E^{\prime}\right)$ is metrically regular then the pair $\left(X, \boldsymbol{R}^{\prime}\right)$ forms an association scheme too, where $\boldsymbol{R}^{\prime}=\left\{R_{0}^{\prime}, R_{1}^{\prime}, \ldots, R_{D^{\prime}}^{\prime}\right\}$ and $R_{0}^{\prime}=R_{0}, R_{k}^{\prime}=R_{2 k-1} \cup R_{2 k}$. So, for its parameters ${ }^{2} p_{i, j}^{k}$ it must hold

$$
{ }^{2} p_{i j}^{k}=\sum_{m, n=0}^{1} p_{2 i-m, 2 j-n}^{2 k-1}=\sum_{m, n=0}^{1} p_{2 i-m, 2 j-n}^{2 k}, \quad 1 \leq i, j, k \leq D^{\prime}
$$

There is the example in the following picture.

$$
{ }^{2} p_{11}^{1}=
$$

$$
=p_{11}^{1}
$$

$$
+p_{12}^{1}
$$

$$
+p_{21}^{1}
$$

$$
+p_{22}^{1}=
$$

$$
=p_{11}^{2}
$$

$$
+p_{12}^{2}
$$

$$
+p_{21}^{2}
$$

$$
+p_{22}^{2}
$$

On the other hand, if A denotes the adjacency matrix of the metrically regular graph G and A_{2} the adjacency matrix of G^{2} it holds

$$
A_{2}=\frac{1}{p_{11}^{2}} A^{2}+\frac{p_{11}^{2}-p_{11}^{1}}{p_{11}^{2}} A-\frac{\lambda_{1}}{p_{11}^{2}} I .
$$

So, if the eigenvalues of G are $\lambda_{1}>\cdots>\lambda_{k}$ with respective multiplicities $m_{1}=$ $1, m_{2}, \ldots, m_{k}$, the eigenvalues of G^{2} are in the form

$$
\begin{equation*}
\mu_{i}=\frac{\lambda_{i}^{2}+\left(p_{11}^{2}-p_{11}^{1}\right) \lambda_{i}-\lambda_{1}}{p_{11}^{2}} \tag{1}
\end{equation*}
$$

with multiplicities

$$
m_{i}^{\prime}=\sum_{j \in M_{i}} m_{j}, \quad M_{i}=\left\{j ; \mu_{j}=\mu_{i}\right\} .
$$

It is proved for metrically regular bipartite graphs of diameter $D \leq 7$ that the spectrum of the metrically regular graph G^{2} is in the form

$$
S_{p}\left(G^{2}\right)=\left\{\begin{array}{llll}
\mu_{1}, & \mu_{2}=\mu_{D+1}, & \mu_{3}=\mu_{D}, & \mu_{4}=\mu_{D-1}, \\
1, & m_{2}+m_{D+1}, & m_{3}+m_{D}, & m_{4}+m_{D-1}, \\
\ldots
\end{array}\right\} .
$$

(It would be reasonable to conjecture that this holds for general D). Thus, from (1) we obtain for bipartite graphs:

$$
\begin{gathered}
\left(p_{i j}^{k}=0, i+j+k \equiv 1 \quad(\bmod 2)\right) \\
-p_{11}^{2}=\lambda_{2}+\lambda_{D+1}=\lambda_{3}+\lambda_{D}=\lambda_{4}+\lambda_{D-1}=\cdots .
\end{gathered}
$$

2 Bipartite graphs

$\mathrm{D}=3,4$
V.Vetchý. Metrically regular square of metrically regular bigraphs I, Arch. Math. Brno, Tomus 27b (1991), 183-197.

Theorem 1. Let G be a metrically regular graph with diameter $D=3$ (4 distinct eigenvalues) and G^{2} be strongly regular. Then it holds $\lambda_{3}=-1, \lambda_{2}>0$.

Theorem 2. For every $k \in N, k \geq 2$ there is only one metrically regular bipartite graph $G=(X, E)$ with diameter $D=3,|X|=2 k+2$ so that G^{2} is a strongly regular graph. The nonzero parameters of G are the following:
$\begin{array}{ll}p_{10}^{1}=p_{23}^{1}=p_{20}^{2}=p_{13}^{2}=p_{30}^{3}=1 & v_{0}=v_{3}=1 \\ p_{12}^{1}=p_{11}^{2}=p_{22}^{2}=k-1 & v_{1}=v_{2}=k\end{array}$
$p_{12}^{1}=p_{11}^{2}=p_{22}^{2}=k-1 \quad v_{1}=v_{2}=k$
$p_{12}^{3}=k$

$$
S_{p}(G)=\left\{\begin{array}{rrrr}
k, & 1, & -1, & -k \\
1, & k, & k, & 1
\end{array}\right\}
$$

The construction of $G=\left\{\left(X=X_{1} \cup X_{2}, E\right)\right\}$:

$$
\begin{aligned}
& X_{1}=\left\{v_{1}, \ldots, v_{k+1}\right\} \\
& X_{2}=\left\{u_{1}, \ldots, u_{k+1}\right\} \\
& E=\left\{\left(v_{i}, u_{j}\right) \mid i, j=1,2, \ldots, k+1 ; i \neq j\right\}
\end{aligned}
$$

The realization is the following graph:

Theorem 3. There is only one table of parameters of an association scheme so that the corresponding metrically regular bipartite graph of diameter $D=4$ (5 distinct eigenvalues) has a strongly regular square. The nonzero parameters of G are the following:

$$
\left.\begin{array}{ll}
p_{01}^{1}=p_{20}^{2}=p_{30}^{3}=p_{40}^{4}=p_{14}^{3}=p_{24}^{2}=p_{34}^{1}=1 & \\
p_{11}^{2}=p_{13}^{2}=p_{33}^{2}=2 \\
p_{12}^{1}=p_{23}^{1}=p_{12}^{3}=p_{23}^{3}=3 \\
p_{22}^{2}=p_{13}^{4}=4 \\
p_{22}^{4}=6
\end{array} \quad \begin{array}{r}
v_{0}=v_{4}=1 \\
v_{1}=v_{3}=4 \\
v_{2}=6
\end{array}\right] \begin{array}{rrrr}
4, & S_{p}(G)=\left\{\begin{array}{rrrr}
4, & 0, & -2, & -4 \\
1, & 4, & 6, & 4, \\
\hline
\end{array}\right\}
\end{array}
$$

The realization of this table is the 4-dimensional unit cube.
$\mathrm{D}=5$
V.Vetchý. Metrically regular square of metrically regular bigraphs II, Arch. Math. Brno, Tomus 28 (1992), 17 - 24.

Theorem 4. There are only four tables of parameters of association schemes so that the corresponding metrically regular bipartite graphs of diameter $D=5$ (6 distinct eigenvalues) have a metrically regular square. The nonzero parameters of G are the following:

$$
\begin{array}{llr}
p_{i 0}^{i}=p_{45}^{1}=p_{35}^{2}=p_{25}^{3}=p_{15}^{4}=1 \\
p_{13}^{2} & =p_{24}^{2}=p_{12}^{3}=p_{34}^{3}=k+1 \\
p_{14}^{5}=2 k+1, & p_{23}^{1}=p_{22}^{4}=p_{33}^{4}=2 k+2, & k=p_{11}^{2}=p_{44}^{2}=p_{14}^{3} \\
p_{22}^{2}=p_{33}^{2}=p_{23}^{3}=3 k \\
p_{23}^{5}=2(2 k+1)
\end{array} \quad \begin{aligned}
2 k=p_{12}^{1}=p_{34}^{1}=p_{13}^{4}=p_{24}^{4} \\
v_{0}=v_{5}=1 \\
2 k+1=v_{1}=v_{4} \\
2(2 k+1)=v_{2}=v_{3}
\end{aligned}
$$

$S_{p}(G)=\left\{\begin{array}{ccc} \pm(2 k+1), & \pm(k+1), & \pm 1 \\ 1, & 8-\frac{12}{k+2}, & 6 k-5+\frac{12}{k+2}\end{array}\right\}$,
$k \in\{1,2,4,10\}$.
In the case $k=2$ the realization of this table is the 5-dimensional unit cube, for $k=1$ the realization is the following graph:

$\mathrm{D}=6$
V.Vetchý. Metrically regular square of metrically regular bipartite graphs of diameter $D=6$, Arch. Math. Brno Tomus 29 (1993), 29-38.

Theorem 5. There is only one table of parameters of an association scheme with 6 classes so that the corresponding metrically regular bipartite graph of diameter $D=6$ (7 distinct eigenvalues) has a metrically regular square.

$$
\begin{array}{lllllc}
p_{10}^{1}=1 & p_{20}^{2}=1 & p_{30}^{3}=1 & p_{40}^{4}=1 & p_{50}^{5}=1 & p_{60}^{6}=1 \\
p_{12}^{1}=5 & p_{11}^{2}=2 & p_{12}^{3}=3 & p_{13}^{4}=4 & p_{14}^{5}=5 & p_{15}^{6}=6 \\
p_{23}^{1}=10 & p_{13}^{2}=4 & p_{14}^{3}=3 & p_{15}^{4}=2 & p_{16}^{5}=1 & p_{24}^{6}=15 \\
p_{34}^{1}=10 & p_{22}^{2}=8 & p_{23}^{3}=9 & p_{22}^{4}=6 & p_{23}^{5}=10 & p_{33}^{6}=20=v_{3} \\
p_{45}^{1}=5 & p_{24}^{2}=6 & p_{25}^{3}=3 & p_{24}^{4}=8 & p_{25}^{5}=5 & \lambda_{6}=-4 \\
p_{56}^{1}=1 & p_{33}^{2}=12 & p_{34}^{3}=9 & p_{26}^{4}=1 & p_{34}^{5}=10 & m_{6}=6 \\
\lambda_{1}=6 & p_{35}^{2}=4 & p_{36}^{3}=1 & p_{33}^{4}=12 & \lambda_{4}=0 & \lambda_{7}=-6 \\
m_{1}=1 & p_{44}^{4}=8 & p_{45}^{3}=3 & p_{35}^{4}=4 & m_{4}=20 & m_{7}=1=v_{6} \\
\lambda_{2}=4 & p_{46}^{2}=1 & \lambda_{3}=2 & p_{44}^{4}=6 & \lambda_{5}=-2 & v_{1}=6=v_{5} \\
m_{2}=6 & p_{55}^{2}=2 & m_{3}=15 & v_{0}=1 & m_{5}=15 & v_{2}=15=v_{4}
\end{array}
$$

The realization of this table is the 6-dimensional unit cube.
$\mathrm{D}=7$
V.Vetchý. Metrically regular square of metrically regular bipartite graphs of diameter $D=7$, to appear.

Theorem 6. There are only two tables of the parameters of association schemes so that the corresponding metrically regular bipartite graphs with 8 distinct eigenvalues (diameter $D=7$) have the metrically regular square.

The realization of the case $p_{11}^{2}=2$ is the 7-dimensional unit cube. The realization of the case $p_{11}^{2}=1$ is the following graph:

3 Conjecture

With respect to Theorems 1.- 6. it would be reasonable to conjecture:

There is only one table of parameters of an association scheme with $2 k$ classes $(k \geq 2)$ so that the corresponding metrically regular bipartite graph of diameter $D=2 k$ has a metrically regular square. The realization of this table is the $2 k$ dimensional unit cube.

4 General case for $\mathrm{D}=3$

In this case follows from the conditions to be the square G^{2} strongly regular for the spectrum of G

$$
\begin{gathered}
S_{p}(G)=\left\{\begin{array}{ccc}
\lambda_{1}=r, & \lambda_{2}, & -1, \\
1, & \lambda_{4} \\
m_{2}, & m_{3}, & m_{4}
\end{array}\right\} \\
\lambda_{2,4}=\frac{p_{11}^{1}-p_{11}^{2} \pm \sqrt{\left(p_{11}^{1}-p_{11}^{2}\right)^{2}+4\left(\lambda_{1}+p_{11}^{2} p_{13}^{3}\right)}}{2}
\end{gathered}
$$

A. $\sqrt{\left(p_{11}^{1}-p_{11}^{2}\right)^{2}+4\left(\lambda_{1}+p_{11}^{2} p_{13}^{3}\right)}=t \in \mathbf{N}$

This implies

$$
\begin{gathered}
\lambda_{2,4}=\frac{a \pm c}{2}, \quad c \in \mathbb{N} . \\
m_{2}(c+a)=m_{4}(c-a)+2 t, \quad t \in \mathbb{N}, t>1 \\
m_{3}=\lambda_{1}+t, \quad t \in \mathbb{N}, t>1
\end{gathered}
$$

From the condition for the traces of A^{2} and A^{3} of the adjacency matrix of G we obtain

$$
\begin{gathered}
4 c p_{11}^{2} p_{13}^{3} m_{4}=t(c+a+2)\left(2 \lambda_{1}-c-a\right) \\
2 c m_{4} p_{12}^{3}\left(2 \lambda_{1}-c-a+2 p_{11}^{2} p_{13}^{3}\right)=v_{2}\left(\lambda_{1}+1\right)(c+a)\left(2 \lambda_{1}-c-a\right)
\end{gathered}
$$

In this case we get for

$$
\begin{array}{ll}
\lambda_{1}=3 \text { - only one graph } & \text { - bipartite graph on } 8 \text { vertices } \\
\lambda_{1}=4 \text { - three graphs } & \text { - bipartite graph on } 10 \text { vertices } \\
& -2 \text { graphs on } 10 \text { and } 35 \text { vertices } \\
\lambda_{1}=5 \text { - two graph } & \begin{array}{l}
\text { - bipartite graph on } 12 \text { vertices } \\
\\
\\
\end{array} \text { - graph on } 36 \text { vertices }
\end{array}
$$

B. $\sqrt{\left(p_{11}^{1}-p_{11}^{2}\right)^{2}+4\left(\lambda_{1}+p_{11}^{2} p_{13}^{3}\right)} \notin \mathbf{N}$

$$
m_{2}=m_{4}
$$

For the parameters we obtain the following conditions

$$
\begin{gathered}
\left(p_{11}^{1}-p_{11}^{2}\right)\left(\lambda_{1}-1-p_{11}^{1}+p_{11}^{2}\right)=2 p_{11}^{2} p_{13}^{3} \\
m_{2}\left(p_{11}^{1}-p_{11}^{2}+2\right) p_{11}^{2}\left(\lambda_{1}-p_{13}^{3}\right)=\lambda_{1}\left(\lambda_{1}+1\right) p_{12}^{1}
\end{gathered}
$$

According to these conditions we can consider two cases $p_{11}^{1}=p_{11}^{2}$ or $p_{11}^{1}>p_{11}^{2}$.

1. $\mathrm{p}_{11}^{1}=\mathrm{p}_{11}^{2}$.

We obtain the following table of the nonzero parameters of the association scheme such that there can exist metrically regular graphs G realizing this table with spectrum $S_{p}(G)$:

$$
\begin{align*}
& p_{10}^{1}=1 \quad p_{20}^{2}=1 \quad p_{30}^{3}=1 \tag{2}\\
& p_{11}^{1}=p_{11}^{2} \quad p_{11}^{2}=p_{11}^{2} \quad p_{12}^{3}=1+p_{11}^{2}\left(1+v_{3}\right) \tag{3}\\
& p_{12}^{1}=v_{3} p_{11}^{2} \quad p_{12}^{2}=v_{3} p_{11}^{2} \quad p_{22}^{3}=\left[1+p_{11}^{2}\left(1+v_{3}\right)\right]\left(v_{3}-1\right) \tag{4}\\
& p_{22}^{1}=v_{3}^{2} p_{11}^{2} \quad p_{13}^{2}=1 \quad p_{33}^{3}=v_{3}-1 \tag{5}\\
& p_{23}^{1}=v_{3} \quad p_{22}^{2}=v_{3}^{2} p_{11}^{2} \quad v_{1}=1+p_{11}^{2}\left(1+v_{3}\right) \tag{6}\\
& v_{0}=1 \quad p_{23}^{2}=v_{3}-1 \quad v_{2}=v_{3}\left[1+p_{11}^{2}\left(1+v_{3}\right)\right] \tag{7}\\
& S_{p}(G)= \\
& =\left(\begin{array}{cccc}
1+p_{11}^{2}\left(1+v_{3}\right) & \sqrt{1+p_{11}^{2}\left(1+v_{3}\right)} & -1 & -\sqrt{1+p_{11}^{2}\left(1+v_{3}\right)} \\
1 & v_{3}+p_{11}^{2} \frac{v_{3}\left(v_{3}+1\right)}{2} & 1+p_{11}^{2}\left(1+v_{3}\right) & v_{3}+p_{11}^{2} \frac{v_{3}\left(v_{3}+1\right)}{2}
\end{array}\right), \\
& v_{3} \in \mathbb{N}
\end{align*}
$$

The least example is on 12 vertices.

