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ABSTRACT

Various algorithms for a single problem usually have diverse performance; a single algorithm rarely
performs better than all others on all instances. We present an approach that takes advantage
of this fact. The Parallel Portfolio of Algorithms (PPA) is a collection of diverse algorithms for
a single problem. For solving a problem instance, all algorithms are executed in parallel. We
consider both decision and optimization problems.

The amount of computational resources assigned to each algorithm, referred to as a schedule,
determines the performance of a PPA. We explore how to create schedules optimal on a specific
problem domain. The domain is represented by a training set of randomly chosen instances.

We define a formal framework for learning algorithms that perform well on a training set with
regard to three performance measures. The framework requires the algorithms to perform well not
only on the training set, but also on the set of all instances. We use it to formalize the learning
of PPA.

We also provide a formal framework for representing the schedules of PPAs. We consider
two types of schedules, dynamic and static. For static ones, we define a fast but suboptimal
iterative algorithm, and a slower but optimal one. Then, we show that dynamic schedules may be
represented by a Markov Decision Process and provide algorithms for this case.

Moreover, we explore the generalization capabilities of PPA with both types of schedules.
We provide distribution-free bounds for learning schedules with a number of training instances
polynomial in precision and certainty.

We evaluated the presented methods on the SAT problem. For this purpose we considered 23
state-of-the-art algorithms. The PPA showed up to a 3-fold speedup compared to the best algo-
rithm, and consistently executed 2-times faster than the best algorithm. As a result, automatically
learned PPAs are attractive for applications and future research.
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Chapter 1

INTRODUCTION

Time is the most precious resource in the modern world. However, many important problems
seem to be successfully resisting to the geometrically increasing power of computers. The aim of
our work is to provide a general method for solving the real world problems faster and with better
results.

In the following, we use the standard computer science terminology for problem and problem
instance. Problem refers to the general definition, such as Traveling Salesman Problem (TSP).
Problem instance refers to the specific instance of the problem; it is a weighted graph for TSP.

1.1 Motivation

Representation of a specific domain is the heart of any intelligent system (Giarratano & Riley,
1998). The most common modeling paradigms for intelligent systems are logics, Bayes networks,
constraint and mathematical programs (Horvitz, Breese, & Henrion., 1988; Russell & Norvig,
2002). The main problem of these representation schemes is their intractability. As a common
feature, intractable representations usually have an accurate and tractable measure of quality
of the solution1. Depending on the actual domain, it may be the probability of the solution,
or its expected utility. For example, discovering optimal solutions is typically NP hard for Bayes
networks (Park & Darwiche, 2004), and for integer linear programming (Papadimitriou & Steiglitz,
1998). Moreover, in many application it is crucial to obtain good results in short time.

A common way to solve hard problems is instance decomposition. It is, for example, a Hyper-
Tree Decomposition (Gottlob, Leone, & Scarcello, 2000) for constraint satisfaction problems, and
Dantzig-Wolfe Decomposition (Papadimitriou & Steiglitz, 1998) for linear programming. The
main idea it to decompose a problem instance into smaller instances, solve each independently,
and recombine them to form a solution. However, because instance decomposition is domain
dependent, there are many cases where its application is problematic.

Another approach is problem decomposition2. Its concept is to decompose the set of all in-
stances into smaller and more homogeneous sets. Each subset may then have its own solver, which
specializes only on those instances. Though each solver is specialized for only a sub-problem, it
may be actually able to solve problems from other sets. As a result, the whole system3 is composed
of many individual algorithms. A problem instance can then be solved by executing all available
algorithms, either in parallel or sequentially.

Generality and good performance on specialized domains is a useful and practical property
of algorithms. Such algorithms could be constructed once and used many times in various do-
mains. The increased applicability may lower the development cost of high performance algo-
rithms. Unfortunately, since the information about the application domain is not available during
the construction of an algorithm, it cannot be utilized. However, the information usually becomes

1 This is a feature of all NP problems.
2 We introduce this terminology because it very well represents our main ideas.
3 The composition of several algorithms is called either a portfolio or an ensemble algorithm.
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available once the algorithm is deployed; at least by means of solved problem instances. Then, an
automatic adaptation of the algorithm to this information may enhance its overall performance.

Reliability is also an important issue for many systems. Problem decomposition can increase
reliability of a system, if the individual the subproblems overlap. The highest reliability is achieved
if every instance is solvable by all available algorithms. In this case, even if few algorithms crash
during solving a problem instance, it can still be solved by the algorithms that work.

1.2 PPA : Parallel Portfolio of Algorithms

The aim of this thesis is to present methods of effective composition of several algorithms for a
single problem. Unlike in other research on algorithm composition, we do not consider having
the ability to determine the best algorithm for a specific instance. Though, some of the proposed
models allow incorporation of this option to increase their performance.

The collection of algorithms is usually referred to as algorithm portfolio. Since all algorithms
are launched in parallel, when solving a problem instance, we call this kind of portfolio as parallel.
Because most computer systems are inherently sequential, the parallel execution can be achieved
by interleaving the execution of the algorithms in small time steps. This approach is widely used
and supported by operating systems.

We consider portfolios of both decision and optimization algorithms. For optimization algo-
rithms, we require anytime algorithms (Zilberstein, 1993). Anytime algorithms may be interrupted
before finishing the calculation, but should still return at least a partial solution.

In real-life computations, many resources act as bottlenecks. Usually, it is processor time,
memory space, communication throughput. We consider only the case when processor time is
the limiting factor of the computation. The efficiency of PPA is controlled by distributing the
available processor time to algorithms. This distribution is determined by a schedule, which is
optimally calculated offline from a training set of problem instances. We use several measures
of optimality, such as the expected time complexity, maximal time complexity, expected cost of
solutions, and other metrics of algorithm performance.

To allow feasible computation of optimal schedules, as well as their practical implementation,
we limit the set of available schedule choices. First, we consider schedules that assign constant
resource share to all algorithms. These are called static schedules. Second, we consider ones that
run only a single algorithm at a time, and can change it in discrete, equally sized, intervals. These
are called dynamic schedules.

For decision problems, the utility of a PPA is based on the time needed to solve the instances.
For optimization problems, we assume a fixed amount of available time. Then, the utility is based
on the quality of the solutions.

A drawback of the approach is the requirement to create multiple algorithms for a single prob-
lem. It is not an issue in problems where many standard algorithms already exist. Such problems
are, for instance, constraint programming, and mathematical programming. In addition, broader
usability of the portfolio algorithm compensates the initial effort. Since multiple algorithms require
more memory than a single one, the approach is not suitable for memory-limited applications.

1.3 Sample PPA

In many situations, PPAs are helpful because usually no algorithm dominates all others (Tsang,
Borrett, & Kwan, 1995). It makes sense not only to compose principally different algorithms, but
also to compose two instances of the same algorithm with different parameters, or heuristics. A
standard approach to learn a composition of heuristics is to express the compound heuristics as
a linear composition of the partial ones (Russell & Norvig, 2002; Sutton & Barto, 1998b). The
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Figure 1.1: Comparison of complexity functions of algorithms a1, a2 and a3.

PPA is based on separating these heuristic functions into independent algorithms. This may be
valuable when the heuristic functions are not correlated.

In some cases, even several instances of one algorithm may be composed into a parallel portfolio.
Each algorithm can search only a part of the whole problem instance, obtained by adding additional
constraints to it. Ideally, these constraints should define a different search space for each algorithm,
and cover it whole.

For a simple illustration when a PPA may be useful, consider the following simplistic toy
problem setup. It intends to show the benefit of diversity of algorithms. Let the problem consist
of set I of equally probable instances, and three algorithms a1, a2, and a3. We will show that in
this case, even a PPA with a naive schedule, outperforms each algorithm with regard to expected
solution time.

Then, assume that there is a bijection b : I → 〈0, 1〉 mapping a problem instance to a real
number4. Each instance may be experienced with equal probability. Because b is a bijection to
a real domain, the instance set must be infinite. Let the complexity functions of the available
algorithms, with regard to instances, be:

ta1(x) := b(x)2

ta2(x) := b(x)3

ta3(x) := (1− b(x))3.

The complexity graphs are shown on Fig. 1.1.
Average-case time complexities for algorithms are equal to their expected calculation times on

all problem instances. The complexities are

E [ta1(x)] = 0.33
E [ta2(x)] = 0.25
E [ta3(x)] = 0.25.

Consider algorithm c1 as a PPA of a1 and a2. Then consider an algorithm c2 as a PPA of
a1 and a3. The schedule assigns equal resources to each algorithm. Therefore, the appropriate
complexity functions are

tc1(x) = min {2 ∗ ta1(x), 2 ∗ ta2(x)}
tc2(x) = min {2 ∗ ta1(x), 2 ∗ ta3(x)} .

4 This assumption is for most cases an unreasonable one; we present it only for sake of clarity. Moreover, the
presented approach is based on the bijection not being known.
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Average-case time complexities of algorithms c1 and c2 are

E [tc1] = 0.5
E [tc2] = 0.11,

and are depicted in Figure 1.2.
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Figure 1.2: Comparison of complexity functions of c1 and c2 to the regarding atomic algorithms
a1, a2, and a3.

It is notable that algorithm c1 performs worse than both algorithms a1 and a2. On the other
hand algorithm c2 outperforms both a1 and a3. This illustrates why parallel portfolio of several
algorithms whose complexity functions are anti-correlated leads to an algorithms outperforming
both former ones.

In this case, we did not tune the algorithm shares to optimize the time, we only considered a
portfolio with a naive schedule. In the following, we show how to calculate the assignments and
demonstrate the usefulness on a practical example.

1.4 Summary

This section outlines the main claims of the thesis and its organization.

1.4.1 Thesis Statement

The thesis explores different possibilities of creating Parallel Portfolios of Algorithms. Most no-
tably, it presents the theoretical foundations of finding optimal static and dynamic schedules. In
addition, since the schedules are calculated from training instances, the thesis provides a light
exploration of the issue of generalization. Finally, the PPAs are evaluated on a wide-spread arti-
ficial intelligence problem, the satisfiability problem (SAT). This work builds on and significantly
extends the ideas and approaches from (Petrik, 2005).

1.4.2 Organization

The remainder of the thesis is organized as follows.

Chapter 2 Summarizes relevant work from related fields of machine learning, optimization, and
algorithm portfolios.

Chapter 3 Defines a model how the sample instances can be used in optimal schedules, and what
optimality types of schedules are relevant.
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Chapter 4 Defines a formal model to capture the basic properties of parallel portfolios. It defines
useful features of algorithms, used later during the analysis.

Chapter 5 Analyzes how to find static schedules for PPA, that is, schedules in which the resource
allocation for each algorithm is constant during the computation.

Chapter 6 Extends the results from the preceding chapter to find optimal schedules, and shows a
nice visualization scheme for PPA performance.

Chapter 7 Analyzes dynamic schedules, that is, schedules in which the resource allocation may
change during the calculation.

Chapter 8 Shows theoretical, distribution-free generalization bounds for PPA. It is based on the
formal learning framework from Chapter 3.

Chapter 9 Provides experimental results of PPA applied to solving one of the most frequent
problem in AI - Satisfiability problem.

Chapter 10 Summarizes the thesis and provides ideas for future work.

Appendix A Summarizes the basic notation used in the thesis.

Appendix B Contains a short overview of the mathematical background for terms used in the
thesis.

Appendix C Provides detailed numerical results of test runs of PPAs on the SAT problem.

Appendix D Contains implementation of calculation of optimal PPAs used for SAT application.
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Chapter 2

RELEVANT WORK

In this section, we introduce related approaches of composing various kinds of algorithms. Though
the idea is not new, there has not been much research done in this area. Our approach is also
related to learning to solve problems and therefore to concept machine learning. Therefore, we
present relevant research in machine learning too.

2.1 Learning to Solve Problems

The motivation behind learning to solve problems is the same as behind concept machine learn-
ing. However, the problem is usually much harder, because the learned programs must contain
advanced heuristics and solution templates to be competitive with algorithms developed by hu-
mans. Therefore, the main research concerns minor modifications of available algorithm skeletons.
The main goal is to get an empirically fastest algorithm with regard to a given distribution. This
problem is generally known as speedup learning.

Although speedup learning has not been as widely researched as concept learning, there have
been many successful applications (Finkelstein & Markovitch, 2001, 1998; Gratch & Chien, 1996;
Gratch & DeJong, 1996; Minton, Allen, Wolfe, & Philpot, 1995). Some of them are also related
to reinforcement learning (Sutton & Barto, 1998a).

2.1.1 Explanation Based Learning

Explanation based learning (EBL) is a type of concept machine learning in logic domain. Its
main goal, unlike in most other machine learning approaches, is not to learn a new concept,
but only to learn a concept that can be deducted the domain. This is useful in cases, when
extracting the concepts from the domain is hard. For example, take the game Chess. Most people
know the definition of the domain, but find hard to say whether for instance white can win in
6 moves. Therefore, it is expected that by adding the new rules, the domain can become more
tractable for reasoning1. EBL takes the training examples, explains why they are true and add
the corresponding rules. For more details see (Mitchell, 1997; Russell & Norvig, 2002).

The most widely used variant, Explanation Based Generalization, works on domains specified
by first order logic. It finds the most general preconditions for each sample, and adds the rule
classifying the sample based on these precodition. This approach can be extended to learning
search control knowledge for general problem solvers, and planners.

PRODIGY, a successful rule based planner, can be extended by EBL to learn control knowl-
edge (Gratch & DeJong, 1996). Also, a similar planner, SOAR, uses an EBL method called
chunking to learn control rules (Laird, Rosenbloom, & Newell, 1986). EBL was also successfully
used to learn control knowledge for partial order planners (Estlin, 1998).

An inherent problem of EBL learning is that the number of control rules may increase to
the point where they actually slow the system down. Moreover, a rule that is speeds solving

1 Similar approach is taken by Branch and Cut, and pre-solving of mathematical programming.
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of a single instance is not necessarily beneficial for solving others and therefore may also slow
the whole system down (Etzioni & Minton, 1992). These problems have were quite successfully
addressed by COMPOSER (Gratch & Chien, 1996). COMPOSER adds new rules only when they
show a statistically significant speedup. It was applied quite successfully on a NASA scheduling
problem (Gratch & DeJong, 1996).

A slightly different approach was taken by MultiTAC (Minton et al., 1995; Minton & Under-
wood, 1994). It takes a problem specified in a general meta-language and a generator of typical
instances. Then, it tries to apply various representation schemes and solution methods to obtain
the best performing algorithm on the domain. It uses an algorithm inspired by EBL to specialize
the general methods for the provided typical instances. In a case study, MultiTAC outperformed
a Ph.D.-level computer scientist in designing CSP algorithms (Minton, 1993).

2.1.2 Formal Models

One of the most fundamental problems of machine learning is generalization, and it also applies to
speedup learning (SL). It is even more vital for SL, because each sample instance must be solved
what is in most cases more time-consuming than labeling instances in concept learning. Therefore,
the training sets are generally smaller.

While much effort has been spent on inventing suitable models for concept learning (Mitchell,
1997), there have been only few attempts to formalize speedup learning. The most well-known
one is (Tadepalli & Natarajan, 1996). It is inspired by PAC learning model, the most common
model for evaluating concept learners.

Though the framework proposed by (Tadepalli & Natarajan, 1996) is interesting and applicable
in many cases it is not suitable for our purpose, because it strictly limits the class of algorithms.
Basically, it requires the algorithms to solve almost all problems in polynomial time. Another
interesting framework, similar in spirit, was proposed in (Tadepalli, 1992). It considers a batch
problem solving, that is a framework where the complexity is considered with regard to a set of
instances.

2.2 Composition of Classifiers

Most of the work on composition of classifiers deals with binary classification in context of machine
learning. The result of the ensemble classifier is determined by letting the individual classifiers
vote on the result. In simpler schemes, the training samples are used to determine weights of the
available classifiers. More advanced schemes also learn new classifiers based on the performance
of the current ones.

2.2.1 Composition of Existing Classifiers

Prediction with expert advice deals with predicting an output given a set of experts. Each expert
can vote on the output. Usually, the majority decides the result. The votes are weighted, and
main concern is to calculate the voting weights to achieve the best overall prediction.

The simplest forms of prediction with expert advice are halving and weighted majority algo-
rithms. Halving algorithm uses all available classifiers to vote on the label with equal weight.
If the predicted label is incorrect, the classifiers with invalid input are discarded. The principal
disadvantage of halving is high sensitivity to noise. Weighted majority algorithm works similarly,
except it only decreases the voting weight of classifiers with incorrect prediction. Both schemes
are used in the online learning framework (Kearns & Vazirani, 1994).

More involved prediction schemes were proposed in (Cesa-Bianchi, Freund, Helmbold, Haus-
sler, Schapire, & Warmuth, 1993; Hutter & Poland, 2004; Jacobs, Jordan, Nowlan, & Hinton,
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1991). Some related approaches are the expert mixture modeling (Meek, Thiesson, & Heckerman,
2002) and composition of information retrieval techniques (Arnt, Zilberstein, & Allen, 2004).

2.2.2 Composition of New Classifiers

A more flexible approach than taking a set of existing classifiers, is to learn new ones during the
composition, according to the actual training instances. This is equivalent to composing infinite
number of existing classifiers. The approach is generally referred to as ensemble learning (Meir &
Ratsch, 2003). Depending on the method used for construction of the ensemble, the approach is
either bagging, boosting, or leveraging.

The simplest approach, bagging, randomly draws subsets of the training set. These subsets are
then used to train classifiers that comprise the ensemble classifier. In many cases bagging and its
extensions increased the stability of classifiers, and increased their precision (Lee & Clyde, 2004;
Oza & Russell, 2001; Chawla, Hall, Bowyer, & Kegelmeyer, 2004).

The most successful ensemble learning approach is boosting, represented mainly by AdaBoost,
originated by (Freund & Schapire, 1996). AdaBoost cyclically adds new classifiers to the ensem-
ble. The training set is always reweighed with regard to the performance of the past classifiers.
It assigns the weight to each classifier according the its performance on the training set. The
individual classifiers that are used are usually either simple neural networks or decision stumps2.
The main advantage of boosting it its high generalization capability.

The main reasons for the success of boosting are not completely understood, but the common
assumption is that it is because it maximizes the margin(Schapire, Freund, Bartlett, & Lee, 1997).
Maximum margin classifiers are resistant against overfitting that plagues most learning algorithms.
There is vast number of other publications analyzing the success of boosting (Friedman, Hastie,
& Tibshirani, 2000; Kivinen & Warmuth, 1999; Shawe-Taylor & Cristianini, 1998). Leveraging is
a generalized boosting (Meir & Ratsch, 2003).

A related area is the learning in multi-agent systems (MAS). However, there is usually no
central control in MAS and the communication is limited (Stone & Veloso, 2000; Lander & Lesser,
1994; Lesser, 1999). Therefore, the emphasis of research is mainly on coordination among agents.

2.3 Composition of Algorithms

Unlike for composing binary classifiers, for algorithms it does not make sense to vote on the result.
Even when many results are available, only one can be used. This fact makes the composition of
algorithms fundamentally different from the composition of classifiers. As a result, the approaches
developed for composing classifiers cannot be directly used for composing algorithms.

2.3.1 Algorithm Portfolios

As mentioned before, even a good algorithm on a problem usually does not outperform all other
algorithms on all instances. Occasionally, instances that are virtually unsolvable by an overall
superior algorithm are solved with seconds by a generally inferior one. Therefore, a prior knowl-
edge of the algorithms’ performance on an instance may enhance the performance, by running the
most suitable algorithm for each instance. This is usually impossible to decide without actually
solving the instance. However, the performance may determined from its similarity to instances
with known performance. This way, easily-computable features of the instance may help to ap-
proximately determine the performance of each algorithm on it. The main obstacle is to decide
whether computation of an instance feature will enhance classification precision. This problem is
known as the algorithm portfolios (Gomes & Selman, 2001).

2 Decision stump is a decision tree with only one decision node.
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(Gomes & Selman, 2001) provides an empirical evaluation of composing randomized search
algorithms on more processors into portfolios. Their results indicate that it is profitable to combine
randomized algorithms with high variance for multiple processors. For a single processor, they
found random restarts to be the optimal strategy.

A successful algorithm portfolio selection approach was also taken by (Leyton-Brown, Nudel-
man, Andrew, McFadden, & Shoham, 2003). It is based, as well as most of other approaches, on
using a training set of problem instances to estimate a probabilistic model of the performance. The
authors used statistical regression to determine the best algorithm for instances of combinatorial
auction winner determination.

Concurrent use of various algorithms for solving one instance of a problem was proposed in
asynchronous teams (A-teams) (Talukdar, Baerentzen, Gove, & de Souza, 1998; Cicirello, 2003).
A-team is a set of memories and autonomous agents that asynchronously work on the results
of others. Each agent can read and modify the content of memories. Even each memory may
use a different representation of the problem. In fact, A-team is an extension of PPA, except
the resources for algorithms are fixed, and the algorithms can communicate during the solving
process. One of the prominent issues in the approach is to determine the optimal communication
order. (Baerentzen & Talukdar, 1997) shows that the problem can be formulated as a Partially
Observable Markov Decision Process. According to (Talukdar et al., 1998), A-teams appear to
be a good framework for combining heterogeneous algorithms and formulations.

2.3.2 Asymptotically Optimal Methods

A different approach to algorithm composition is to run all available algorithms in parallel. It
can be shown that given an infinite number of algorithms, each problem instance is solved as-
ymptotically as fast as would be solved by the fastest algorithm from the set. The method that
is used for problems with quickly verifiable solutions is Levin Search (Levin, 1973; Schmidhuber,
Zhao, & Wiering, 1997). It was later extended to all well-formulated problems in (Hutter, 2001)
and thus is called Hutter Search. (Schmidhuber et al., 1997) proposed an extension of LS that
uses instances encountered during previous solutions to determine how much resources should be
allocated to each algorithm. Optimal Ordered Problem Solver (Schmidhuber, 2002) incrementally
grows programs to solve arbitrary problems. It starts with simple problems instances, and as it
proceeds to solve harder ones, it uses the previously learned knowledge. The approach was suc-
cessfully applied to problems unsolvable by traditional reinforcement learners, such as Towers of
Hanoi with 30 disks. A somewhat simpler extension, called Adaptive Levin Search, was proposed
in (Schmidhuber & Wiering, 1996).



Chapter 3

FORMAL MODEL: LEARNING

In this chapter we propose a framework for speedup learning that we later use to find the optimal
PPAs and to determine their generalization capability. We use the term time optimization for
learning fast decision algorithms and quality optimization for learning optimization algorithms
that produce results with high utility. Sometimes, we use the term speedup learning to refer to
both these learning types.

3.1 Models

The model we propose is similar to the standard PAC learning model used in concept learn-
ing (Mitchell, 1997). Since we assume that the training instances are randomly drawn from the
training set, we allow a probability that the optimal algorithm is not learnable due to invalid
sample. The following definitions formalize the notions we later use for characterization of the
learning problems.

Definition 3.1.1. A problem domain is a set of possible problem instances together with a
probabilistic distribution over them, we denote this set as I. The distribution over the samples
must be stationary.

Definition 3.1.2. An algorithm is a function that maps an input in form of a problem instance
to a solution. Therefore, it must be deterministic.

Definition 3.1.3. An algorithm domain is a set of the all possible algorithms that can be used.
We denote this set as Φ. The set may alternatively denote the set of profit functions of these
algorithms.

Definition 3.1.4. A profit is a value from R that indicates the utility of the solution. It may
represent either the time required to reach the solution, or its quality. All profits in Φ must be
either non-negative or non-positive.

The profit is abstract at this point to cover both time and quality optimization. As mentioned
in Chapter 1, the profit of decision algorithms is based on time an algorithm needs to solve to
problem. As well, for optimization algorithms it is based on the quality of result given a fixed
amount of time. We provide its specific meaning for PPA in the next chapter.

Definition 3.1.5. Profit function f : I → R represents the profit of an algorithm on every
problem instance.

Definition 3.1.6. Training set I is a finite set of instances chosen randomly and independently
from I.

Definition 3.1.7. A learner takes a training set from problem domain and outputs an algorithm
from Φ that fulfills some conditions.
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Measure of usefulness of an algorithm is crucial for development of a learner. Thus, we consider
the following three variants of learning.

Mean Optimization supf∈Φ E [f(X)]

Limit Optimization supf∈Φ infx∈I f(x)

Bound Optimization supf∈Φ P [f(X) ≥ B] where B is a boundary value, which is provided.

We discuss reasons for each variant in the subsequent sections. Their actual application to PPA
learning is the content of the subsequent chapters.

An interesting question is to determine the optimal algorithm on I, given only I. In addition,
it is important to analyze the number of samples required in order to be certain that the algorithm
will perform well on all instances. Because, we assume that the instances are randomly chosen
from the distribution, it is not always possible to learn a good algorithm. To address this issue,
we allow the learner a probability of failing to learn an overall optimal algorithm. In the following,
the instances from the training set I will be denoted as x1, . . . , xm, where m = |I|. X is a random
variable that represents an instance from I.

3.2 Mean Optimization

Finding an algorithm that is optimal with regard to expected execution time is useful when many
problem instances must be solved. However, the model does not provide any assurance about
profit on any particular instance. The performance measure of an algorithm on the training set is
its empirical mean profit, defined as:

Fm(f) =
1
m

m∑
i=1

f(xi).

The following definition provides a bound for the overall mean profit of a learned algorithm,
given its empirical mean profit.

Definition 3.2.1. We say that a learner mean-generalizes if for any 0 < ε and 0 < δ < 1 it
outputs an algorithm f ∈ Φ, for which

P [Fm(f)−E [f(X)] > ε] ≤ δ.

The learner must use at most a polynomial number of training instances in 1
δ and 1

ε to achieve
the bound.

Even more important is whether the learner can output an algorithm that is close to the
optimal one on I. This is problematic, because it can use only the training set, which is typically
very small compared to all instances. The following definition addresses this concern.

Definition 3.2.2. Let the globally optimal algorithm be

f∗(X) = arg sup
g∈Φ

E [g(X)] .

We call a learner mean optimal if it for all 0 < ε and 0 < δ < 1 outputs an algorithm f

P [E [f∗(X)]−E [f(X)] > ε] ≤ δ.

The learner must use at most a polynomial number of training instances in 1
δ and 1

ε to achieve
the bound.
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3.3 Limit Optimization

In some cases, it is practical to optimize the worst case of the profit. This issue is also addressed by
the worst-case theoretical analysis. However, those bounds are usually asymptotic and thus usually
impractical. They also do not consider the specific features of the implementation. We calculate
the worst case empirically from sample runs of the algorithm. To cope with the incompleteness of
the training set, we consider mostly probabilistic bounds.

The measure of algorithm performance of a training set is empirical minimal profit obtained
as

Gm(f) = min
i

f(xi).

We proceed in the same manner as for mean optimization. Definition 3.3.1 addresses the issue
of generalization of a learned algorithm. Definition 3.3.2 compares the performance of a learned
algorithm from the training set to the algorithm optimal on I.

Definition 3.3.1. We say that a learner limit generalizes if for any 0 < ε < 1 and 0 < δ < 1 it
outputs an algorithm f ∈ Φ, for which

P [P [f(X) < Gm(f)] ≥ ε] ≤ δ.

The learner must use at most a polynomial number of training instances in 1
δ and 1

ε to achieve
the bound.

Definition 3.3.2. Let f∗ be the optimal algorithm, chosen according to

f∗ = arg sup
g∈Φ

inf
x∈I

g(x).

We say that a learner is limit optimal, if for all ε and δ, the learned algorithm’s profit function f
fulfills

P
[
P
[
f(X) < inf

Y
f∗(Y )

]
≥ ε

]
≤ δ.

The learner must use at most a polynomial number of training instances in 1
δ and 1

ε to achieve
the bound.

3.4 Bound Optimization

In many cases, problem instances need to be solved with at least a minimal profit. This is
particularly useful if the profit indicates time required to solve a problem instance. Then, a
problem instance is usually considered as unsolvable when it is not solved in a specified time frame.
Therefore, we search an algorithm that minimizes the probability of the algorithm obtaining a
profit smaller than a given bound.

The measure of performance of an algorithm on a training set is empirical failure profit, defined
as:

Hn(f) =
1
m

m∑
i=1

I {f(xi) ≤ B} .

We proceed in the same manner as for mean and limit optimization. Definition 3.4.1 addresses
the issue of generalization of a learned algorithm. Definition 3.4.2 compares the performance of a
learned algorithm from the training set to the algorithm optimal on I.
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Definition 3.4.1. We say that a learner bound-generalizes if for any 0 < ε < 1 and 0 < δ < 1 it
outputs an algorithm f ∈ Φ, for which for a given B

P [P [f(X) ≤ B]−Hm(f) ≥ ε] ≤ δ.

The learner must use at most a polynomial number of training instances in 1
δ and 1

ε to achieve
the bound.

Definition 3.4.2. Let the globally optimal algorithm be

f∗ = arg sup
g∈Φ

P [f(X) > B] .

Then, let f be an algorithm the learner. We say that a learner is bound optimal if it outputs an
algorithm f that fulfills

P [P [f(X) < B]−P [f∗(X) < B] > ε] ≤ δ.

The learner must use at most a polynomial number of training instances in 1
δ and 1

ε to achieve
the bound.

3.5 Summary

In this chapter, we defined a framework for learning optimal decision and optimization algorithms
with regard to three practical measures. The framework considers the capability of a learner to
find an algorithm that performs on the whole set comparably to its performance on the training
set. This capability is called, according to the measure of optimality, as mean-generalize, limit-
generalize, and bound-generalize. In addition, it takes into account whether a learner outputs an
algorithm close to the optimal on the whole set. Such learners are mean-optimal, limit-optimal,
and bound-optimal. We later use this framework to learn empirically optimal, or close to optimal,
PPAs. Then, we analyze their generalization ability.



Chapter 4

FORMAL MODEL: PARALLEL PORTFOLIO OF ALGORITHMS

In this chapter, we propose a formal model for creating PPAs. It builds upon the learning frame-
work from the previous chapter.

4.1 Problems and Algorithms

Practically encountered problems are usually of two types, decision or optimization. Decision
problems ask whether there is a solution with given characteristics. An example is a Traveling
Salesman Problem (TSP) when the question is whether there is a tour with a cost smaller than C.
Optimization problems usually have many acceptable solutions, some of them are more preferable
to others. The preference is most often represented by a cost function. Solutions with lower costs
are preferable. Therefore, the optimal solution is the one with the minimal cost. For instance,
finding a tour with the smallest cost in TSP is an optimization problem.

As in the previous chapter, we first define a general model and then specialize it to needs of
either of optimization or decision problems. However, optimization and decision algorithms may
not be combined within a single PPA. By Definition 3.1.2, we consider only deterministic algo-
rithms. Possibilities of extension to stochastic algorithms are mentioned in Chapter 10. Additional
assumptions placed on algorithms are defined in the following.

Definition 4.1.1. An algorithm is preemptable if it may be suspended and resumed at any time
with a neglectable cost of processor time. Therefore, preemptable algorithms can be interleaved
with no extra cost.

4.1.1 Decision Algorithms

As mentioned before, the time to solve a problem is the crucial measure for decision algorithm.
Notice that any optimization problem can be formulated as a decision one. The formulation may
be either “Is there a solution that has quality above q?”, or “Is the solution within p% of the
optimal one?”. The latter formulation is not usually possible, because the optimal quality is
not known. However, some algorithms, such as Primal-Dual algorithm for linear programming,
calculate also the range for optimal result (Papadimitriou & Steiglitz, 1998).

To simplify the creation of schedules we will require the decision algorithms to fulfill some
conditions. These are summarized in the following definition of schedulability. This will be the
universal criterium for creation of all types of

Definition 4.1.2. An decision algorithm is schedulable if it is preemptable and its use of processor
can be adjusted continuously without any penalty.

4.1.2 Optimization Algorithms

The term anytime algorithm was first introduced by (Dean & M.Boddy, 1988). They used the
term to leverage from the standard definition of algorithm, that once started runs until it finds
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the solution. The available time for problem solving is often limited, therefore the used algorithms
need to be interruptible at any instant it is needed. However, if interrupted before the expected
time, at least a partial result should be returned.

Definition 4.1.3. An algorithm is interruptible if it can be interrupted any time, and it returns an
answer1. An algorithm has a well-behaved improvement if the answers it returns are a well-defined
function of time.

Definition 4.1.4. An algorithm is said to be anytime if it is preemptable, interruptible, and has
a well-behaved improvement.

The meaning of anytime is in sense of (Zilberstein, 1996). The anytime assumption is reason-
able, because such algorithms exist for variety of problems (Wallace & Freuder, 1995).

Definition 4.1.5. An optimization algorithm has diminishing returns if the function of its return
qualities over time is concave, monotonically non-decreasing, and twice continuously differen-
tiable2.

Definition 4.1.6. An optimization algorithm is schedulable when it is anytime, has measurable
quality, and diminishing returns.

4.2 PPA Model

First, let us define a formal model that represents the available algorithms and problem instances.
We use this model to derive the methods to find PPA with greatest profit in sense of mean, limit, or
bound optimization. All algorithms comprising a PPA must be schedulable. Decision algorithms
in terms of Def. 4.1.2 and optimization in terms of Def. 4.1.6.

Given a PPA, its performance may be tuned by assigning different portion of the constrained
resources. In our case, this constraint is the processor, e.g. the number of available operations. The
amount of resources assigned to an algorithm at each point of time is determined by the resource
allocation function. Resource allocation functions for all algorithms in the portfolio comprise the
schedule. Hence the following definitions.

Definition 4.2.1. The resource allocation function (RAF) for an algorithm e, re : R+ → 〈0, 1〉
defines its share of processor power in each instance of time during a calculation.

We extend the notion of profit from the last chapter to be determined not only by an algorithm
and an instance but also by its resource allocation function. We deliberately do not specify the
profit function at this point, to keep the model general enough.

Definition 4.2.2. The resource profit function of an algorithm e is a function3

pe : re × I → R,

where I is the set of instances.

Definition 4.2.3. A Parallel Portfolio of Algorithms P is a tuple (I, E). I is a finite set of
training instances. E is a finite set of algorithms with resource profit functions.

The symbols that are not specifically defined, represent the following quantities:
1 Preemptable algorithm does not have to return anything when interrupted.
2 The standard definition does not require continuity.
3 With a RAF as a parameter.
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m Number of instances, generally indexed using i.

n Number of algorithms, generally indexed using j.

xi Problem instance.

pj Profit function for the algorithm ej .

Other symbols, frequently used in the thesis, are summarized in Appendix A.

Definition 4.2.4. A Schedule S for a PPA P is a list of resource allocation functions for algorithms
from E. Each resource allocation function corresponds to one profit function and is defined
R+ → R+. Moreover, all functions must fulfill the resource limitation constraint

n∑
j=0

rj(t) ≤ 1 for t ∈ R+.

As an intrinsic characteristics of PPA only one result for the problem may be used, even if
more algorithms provide solutions. Therefore, the PPA profit is the maximal value of profits of
individual algorithms. This is in contrast with ensemble learning, where classifiers vote and the
ensemble result is sum of votes. The max operator makes the analysis harder, because it introduces
discontinuity to the optimization problem defined for static schedules.

Definition 4.2.5. Profit P (S, x) of a PPA is equal to the maximal value of profits that its
algorithms achieve on a given instance. Mathematically, it is:

P (S, x) = max
j=1,...,n

pj(rj , x).

Remark 4.2.6. In the next, we use P also for mean and limit optimization. In addition, we vary
the parameters according to the situation. If the value of parameters is not clear from the context,
then it is explicitly clarified.

Definition 4.2.7. A schedule is B-optimal if it maximizes the empirical B-profit4 of PPA on all
available instances with regard to the operator B that is applied on the set of profit function on
instances.

Notice that in case of finding optimal schedules, the set of available algorithms Φ, as defined
in Def. 3.1.2, is composed of resource weighted portfolios of algorithms from E. This results into
a theoretically infinite set of possible algorithms, created from a finite one. This is similar to the
concept mixed strategies, versus pure strategies in game theory (Osborne & Rubinstein, 1994).

4.2.1 Profit Function

We introduced the concept of profit function to allow a single analysis for both optimization and
decision algorithms. For decision algorithms, we assume that the profit is achieved by finding a
solution in the shortest possible time. The quality of the solutions are disregarded, because all
solutions are equally worth. In contrast, for optimization algorithms, the profit is achieved by
finding a solution with greatest quality. For sake of simplicity, in this case the total available time
is fixed.

Notice that for optimization problems, where the provided time is fixed, it is only impor-
tant that the algorithms receive the processor time share, and it is irrelevant when. Therefore,

4 That is either mean, minimal, or failure, depending on the choice of operator.
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though a RAF defines amount as a continuous share, it does not have to obeyed for the actual
implementation. The performance should be identical.

Time optimization is used in case of decision algorithms. The actual profit function for static
schedules is provided in the following section. Because the time is unlimited, value of resource
allocation functions is relevant in the whole time interval from 0 to∞. The instances that are not
solved within a reasonable time are regarded as having a minimal profit.

Quality optimization is used in case of optimization algorithms. There is no extra profit for
achieving the optimal solution. Therefore, the profit function depends on the quality of a solution
at the final time, not on the time when the solution was obtained.

4.2.2 Optimality Operator

The optimality operator B defines how the schedules are compared, given their profits on a set
of training instances. There are various possible learning objectives. We do not yet specify the
operator to allow joint analysis of more objectives. We consider the optimization types specified
in Chapter 3, and they determine the operator B as:

Mean optimization B = 1
m

∑m
i=1 P (xi, S).

Limit optimization B = mini=1,...,m P (xi, S).

Bound optimization B = 1
m

∑m
i=1 I {P (xi, S) > B}.

4.3 Static Schedules

Static schedules allow only constant resource allocation functions. While this certainly is a limi-
tation, most experimental results do not show a significant decrease of performance compared to
the more complex dynamic schedules. The main reason to use static functions is to decrease the
complexity of choosing the optimal schedule.

Definition 4.3.1. A schedule is static when all resource allocation functions are constant in time.

Because RAF are constants in static schedules, we do not use the time parameter in their
notation. Also, profit functions of algorithms may be defined in term of these constants. Hence
the definition

Definition 4.3.2. The resource profit function for static schedules may be redefined as

pe : R+ × I → R+.

In other words, it only considers real values for profit, not functions.

According to Def. 4.2.5, the profit of the PPA on an instance x, given a schedule S is:

max
j=1,...,n

pj(rj , x).

Therefore, performance on the whole set of training samples will be

B
{

max
j=1,...,n

pj(rj , xi) i = 1, . . . ,m

}
.
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The optimal schedule is one that maximizes the ensemble profit. It can be formulated as a
nonlinear mathematical program:

maximize P (S) = B
{

max
j=1,...,n

pj(rj , xi) i = 1, . . . ,m

}
subject to

n∑
j=1

rj = 1,

rj ≥ 0 j = 1, . . . , n

(4.3.1)

S is the schedule for PPA, and it represents a vector of resource allocation values.
For optimization of quality, the performance profile function maps directly to the resource

profit function. This is possible because of the assumptions from Def. 4.1.6. Specifically, the
algorithm can be interrupted at any instant of time and it returns a solution of the instance.

Proposition 4.3.3. Let T be the time allocated for run of the P. Let the function f represent
the performance profile of a schedulable optimization algorithm. Then, the resource profit function
that maximizes the obtained quality is

p(r, x) = f(T ∗ r, x).

Moreover, this function is concave and twice continuously differentiable in r.

Proof. The proposition clearly follows from the preemptability assumption. The concavity and
continuity follows from the well-behaved improvement of f .

For optimization of time, the profit is determined by the following proposition.

Proposition 4.3.4. For schedulable decision algorithms, the time to find the first solution is
optimized if the resource profit function p for an algorithm is

p(r, x) = −ηx

r
,

where ηx is the time to solve the instance x. This function is concave in r and it is twice contin-
uously differentiable.

Proof. Let an algorithm that receives a fraction r from the time share and needs ηx to solve the
instance. Then, from the preemptability criteria the time it needs to solve the instance will be
ηx

r . The resource allocation profit is only this value negated. Therefore, its maximization leads to
minimization of the time. Also, it is equivalent for limit and bound optimizations. The function
is clearly concave, because its second derivative in r is negative.

For static schedules, we consider only mean optimization and limit optimization. The type of
optimization determines the choice of the operator B and therefore the form of (4.3.1). For the
mean optimization, it is

P (S) =
m∑

i=1

max
j=1,...,n

pj(rj , xi).

For limit optimization it is
P (S) = min

i=1,...,m
max

j=1,...,n
pj(rj , xi).

In the following sections, we explore how to solve these problems, which are in general non-convex
and defined on non-convex sets.
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4.4 Dynamic Schedules

Dynamic schedules allow the resource allocation function to change in discrete, equally spaced
intervals. Only one algorithm may be scheduled for each interval. As we show later, the model is
a more complex, but the proposed algorithms do not require as strict conditions as the algorithms
for static schedules.

Non-constant allocation of resources to algorithms during the calculation may be helpful for
decision problems, and thus time optimization. Notice it would not be helpful for optimization
problems, as mentioned before. Therefore, we consider only decision algorithms for dynamic
schedules.

The resource profit function is similar to that in Proposition 4.3.4, only extended to non-
constants. This requires different formalization to express the time to solve the problems.

Definition 4.4.1. Time is divided into b− 1 equally spaced intervals, and one infinitely long one.
The interval do not overlap. τ corresponds to the start of the last interval. The length of each
finite interval is z and the total number of intervals is b.

By the preceding definition, the number of intervals fulfills

b =
τ

z − 1
.

The situation is depicted in Figure 4.1.

Definition 4.4.2. A schedule is dynamic when all resource allocation functions are constants
from {0,1} on each interval, including the last, infinitely long one.

Definition 4.4.3. Resource allocation functions in dynamic schedules may be reformulated as a
list of constants r(1), . . . , r(b). They correspond to the constant values of the RAF. The available
resource constraint is

n∑
j=1

rj(k) ≤ 1.

Definition 4.4.4. Let Θ(l) represent the time interval 〈(l − 1)z, lz) for l = 1, . . . , b if l < b. And
Θ(l) = 〈(l − 1)z,∞) if l = b.

The profit of an algorithm on an instance is −η, with regard to the resource allocation function.
Profit of an PPA on an instance is also −ηS , with regard to the schedule for the portfolio. We do
not provide the formal definition because it uselessly clutters the text.

We consider dynamic schedules only for mean optimization and bound optimization. We show
in Chapter 7 that both of these problems can be formulated as Markov Decision Processes, used
in many areas of control theory and AI (Russell & Norvig, 2002; Sutton & Barto, 1998b). This
allows use of many standardized algorithms.

4.5 Summary

The model we proposed in this chapter captures the basic ideas of learning PPAs. It somewhat
simplifies the actual problem. The most prominent simplification is the lack of a classifier de-
termining - at least approximately - the most suitable algorithm for each instance. Also, we
ignored the existence of stochastic algorithms, and therefore also their high aptitude for com-
bining (Gomes & Selman, 2001). These issues should be addressed in the future. We provide a
discussion regarding them in Chapter 10.
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Θ(1)

τ

z

Θ(b)

Figure 4.1: Sketch of how time is split for the dynamic schedules.
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Chapter 5

STATIC SCHEDULES

In this chapter we propose a simple but a quite powerful approach for optimizing performance of
PPA limited to static schedules.

5.1 Basic Properties

The combination of algorithms only makes sense in case it is at least as fast as the fastest available
algorithm. We formally show this in the following proposition.

Proposition 5.1.1. The profit from using a static schedule PPA is at least as great (on training
instances) as when using the best algorithm, both for mean and limit Optimization.

Proof. To prove the theorem for mean optimization, we need to show that

max
S:S∈C

m∑
i=1

P (S, xi) ≥ max
j=1,...,n

m∑
i=1

pj(xi),

where C is the simplex constrained by the resource constraints. Actually, the profit of choosing
the best algorithm is equivalent to

max
j=1,...,n

m∑
i=1

pj(xi) = max
S:S∈C,S∈I∗

m∑
i=1

P (S, xi),

where I∗ is set of integer vectors. Then, by Theorem B.1.3, the theorem holds for mean optimiza-
tion, because

{S S ∈ C,S ∈ I∗} ⊆ {S S ∈ C}.

The proof for bound optimization follows the same idea.

Remark 5.1.2. This property cannot be guaranteed generally for the whole problem distribution.
In particular cases, the generalization bounds may show that the parallel portfolio is with a high
probability more profitable than each atomic algorithm.

5.2 Formulation

The optimization problem (4.3.1) is unsolvable by standard gradient methods, because the inner
max operator makes the problem discontinuous. Therefore, in this section we propose a block
gradient method to solve this problem. Because the problem is not convex, we cannot in general
expect an optimal solution. We present an algorithm that can find optimal schedules in the next
chapter.

First, we define a matrix that determines which algorithm from PPA solves each instance.
Additionally, we provide additional functions that are determined by this classification.
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Definition 5.2.1. Classification is the assignment of instances to algorithms in a portfolio. It
determines which algorithm solves the particular instance; even if there is another one with a
bigger profit on the instance. The assignment is realized by an m × n matrix W with elements
from {0, 1}. The matrix must fulfill

n∑
j=1

Wij = 1 i = 1, . . . ,m. (5.2.1)

The semantics of Wij = 1 is that the algorithm j solves the instance i. The classification is
used independently from the actual schedule.

Definition 5.2.2. The classification matrix separates the instance set I into subsets Ij j =
1, . . . , n as

xi ∈ Ij ⇔Wij = 1.

Also
mj = |Ij | .

Classification function k(·, ·) induced by the classification matrix W is defined as

k(l, j) = {xl ∈ Ij xl = xi} Wij = 1 j = 1, . . . , n l = 1, . . . ,mj ,

and for W that fulfills (5.2.1) has cardinality 1.

Clearly, by (5.2.1), each instance is in exactly one set Ij . The optimization problem can now
be expressed both in terms of W and S. Profit of a PPA is not equal to the profit of the best
algorithm on the instance, but instead to the algorithm to which it is assigned. The objective
function may be reformulated as

max
S
B
{

max
1≤j≤n

pj(rj , xi) i = 1, . . . ,m

}
=

= max
S
B

max
w≥0


n∑

j=1

wjpj(rj , xi)
n∑

j=1

wj = 1, wj ∈ {0, 1}

 i = 1, . . . ,m

 .

Further, by Thm. B.1.2 the optimization problem reduces to

maximize P (S, W ) = B


n∑

j=1

Wijpj(rj , xi) i = 1, . . . ,m


subject to

n∑
j=1

rj = 1,

n∑
j=1

Wij = 1 i = 1, . . . ,m,

rj ≥ 0 j = 1, . . . , n,

Wij ∈ {0, 1} i = 1, . . . ,m j = 1, . . . , n

(5.2.2)

where W is the classification matrix. The solutions of this reformulation do not necessarily
correspond to real executions. Generally, they offer a lower bound of the real profit. The analysis
is summarized by the following proposition.

Proposition 5.2.3. The optimal solution of (5.2.2) is equivalent to the optimal solution of (4.3.1).
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Randomly initialize W 0

i← 0
while P (Si,W i) > P (Si−1,W i−1) do

Si+1 ← arg maxS P (Si,W i)
W i+1 ← arg maxW P (Si+1,W i)
i← i + 1

end while

Figure 5.1: General CMA.

Definition 5.2.4. Operator B is monotonous if it fulfills

(ai ≥ bi i = 1, . . . , k)⇒ B{A} ≥ B{B},

for any equally sized vectors A = (a1, . . . , ak) and B = (b1, . . . , bk).

The problem can further be simplified by dropping the integrality assumption, as the following
proposition states.

Proposition 5.2.5. Let the operator B be monotonous. Optimal solution of (5.2.2) without
integrality constraints does not have a better solution as the original problem.

Proof. The proof is simple. Let, without loss of generality, Wkl ∈ (0, 1). From the assumption∑n
j=1 Wij = 1 there must be another indices l1, . . . , lh where Wkli is not integer. Let l∗ be the

index with highest value of pl∗(rl∗ , xk), breaking ties arbitrarily. By monotonicity of B, setting
Wkl∗ to 1 and other fractional values to 0 does not decrease the value of solution.

As a result, the optimization problem may be solved without the integrality constraint. Then,
it can be modified by the procedure from the proof above to satisfy the integrality constraint.
Therefore, standard gradient methods could be applied to solve it. However, the main problem is
that the problem is not convex and therefore the search for the global maximum would be quite
problematic.

5.3 Classification-Maximization Algorithm

The reformulation above gives a way to a static schedule optimization algorithm that works in
two phases. In the first phase it estimates the optimal classification of the instances. Given this
classification, it maximizes the assignment of resources to algorithms. During the maximization
phase, the algorithm that is assumed to solve each instance is fixed by the result of the classification
phase. These phases are iterated while the PPA profit decreases. Thus the phases are classification
and optimization.

This method is generally known as block coordinate descent method or nonlinear Gauss-Seidel
method (Bertsekas, 2003). In general, it does not guarantee convergence to the global optimum,
even for convex functions. We discuss globally optimal methods in Chapter 6. The general form
of CMA is depicted in Fig. 5.1.

In the classification phase, the algorithm determines the optimal assignment matrix W for a
constant S. It means to solve

maximize P (W ) = B


n∑

j=1

Wijpj(rj , xi) i = 1, . . . ,m


subject to

n∑
j=1

Wij = 1 i = 1, . . . ,m,

rj ≥ 0 j = 1, . . . , n.

(5.3.1)
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As the following proposition states, the optimal solution of this problem can be found by simply
iterating the set of available instances and algorithms.

Proposition 5.3.1. Let B be monotonous. Then, a solution of (5.3.1) with optimal profit is
achieved if

Wij = 1⇔ j = arg max
j=1,...,m

pj(rj , xi) , (5.3.2)

and ties may be broken arbitrarily. In other words, the optimal classification is the one that
actually corresponds to the schedule.

Proof. The reasoning is the same for both directions. Assume that the optimal solution does
not satisfy (5.3.2). So let Wiĵ = 1, be a classification with a sub-optimal profit. Let j∗ =
arg maxj=1,...,m pj(rj , xi). Clearly, setting Wiĵ = 0 and Wij∗ = 1 does not invalidate the clas-
sification constraints. Since this holds for all i, monotonicity of B implies that the profit is not
decreased. Therefore, the solution that fulfills the condition must also have the optimal profit.

During the maximization step, the algorithm determines the optimal S given a constant W .
It means to solve

maximize P (S) = B


n∑

j=1

Wijpj(rj , xi) i = 1, . . . ,m


subject to

n∑
j=1

rj = 1,

rj ≥ 0 j = 1, . . . , n,

(5.3.3)

The maximization step depends on choice of B. Therefore, we analyze the specific cases in the
next section. In addition, because CMA is a randomized algorithm (see initialization of W ),
repeated execution may produce better results.

5.4 CMA-SPPA

In this section, we define Classification Maximization Algorithm for Static Parallel Portfolios of
Algorithms. The classification stage is the same as in the general CMA, but the maximization
phase is different for mean and limit optimization.

The maximization step maximizes the profit function given a firm assignment determined by
W . This makes the problem much simpler, because we then deal with a continuous, convex
problem. As we show, this problem can be solved analytically, using only constraint values. To
perform the subsequent analysis, we need to place additional restriction on the class of profit
profiles of the algorithms. Hence the following definition:

Definition 5.4.1. A set E of resource profit functions p is homogeneous if they all can be expressed
as

pj(r, x) = νj(r) ∗ µj(x).

Definition 5.4.2. Operator B is multiplicatively transitive if

B {c ∗ ai i = 1, . . . , k} = c ∗ B {ai i = 1, . . . , k} .

Definition 5.4.3. Operator B is recursive if

B(A ∪B) = B{B(A),B(B)},

for any equally sized vectors A = (a1, . . . , ak) and B = (b1, . . . , bk).
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The next lemma trivially establishes the above properties for operators that are later used for
mean optimization.

Lemma 5.4.4. Operators min and mean value( 1
m

∑m
i=1 xi) are recursive, multiplicatively transi-

tive, and monotonous.

Proof. The proof follows straight from the definitions.

In the maximization phase of CMA, W is given; and optimal S must be determined. Thus,
the objective function of (5.3.3) may be reformulated to

max
S,W
B


n∑

j=1

wjpj(rj , xi) i = 1, . . . ,m


= max

S,W
B {pj(rj , xi) k(l, j) = xi, i = 1, . . . ,m} .

Further by recursiveness of B,

max
S
B
{
B
{
pj(rj , xk(l,j)) l = 1, . . . ,mj

}
j = 1, . . . , n

}
.

For homogeneous profit functions we get pj(rj , xi) = νj(rj)∗µj(xi). Assuming B to be multiplica-
tively transitive, the objective is

max
S
B
{
B
{
νj(rj) ∗ µj(xk(l,j)) l = 1, . . . ,mj

}
j = 1, . . . , n

}
= max

S
B
{
νj(rj) ∗ B

{
µj(xk(l,j)) l = 1, . . . ,mj

}
j = 1, . . . , n

}
.

The general form of the optimization problem is now

maximize P (S) = B
{
νj(rj)B

{
µj(xk(l,j)) l = 1, . . . ,mj

}
j = 1, . . . , n

}
subject to

n∑
j=1

rj = 1

rj ≥ 0 j = 1, . . . , n

(5.4.1)

The above can be summarized in the following proposition.

Proposition 5.4.5. Let the algorithms from E be schedulable and homogeneous. Let B be recursive
and multiplicatively transitive. Then the optimal solution of (5.4.1) results in the optimal schedule
for a fixed classification.

In the following, we address the choice of a specific B operator. For mean optimization it is
mean value, and for limit optimization it is min. Both options lead to analytically expressible
optimal solution conditions.

5.4.1 Mean Optimization

First, define the cumulative profit of an algorithm on the instances that are assigned to it as

dj =
mj∑
i=1

µj(xk(i,j)).
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Notice, it is not a mean value but a sum. The specific problem for mean optimization then becomes

maximize P (S) =
1
m

n∑
j=1

νj(rj)dj

subject to
n∑

j=1

rj = 1

rj ≥ 0 j = 1, . . . , n

(5.4.2)

Theorem 5.4.6. Let the algorithms be schedulable. Then, the solution of (5.4.2) is globally
optimal if it fulfills

ν ′j(rj)
ν ′k(rk)

=
dk

dj
.

Proof. The theorem follows from the second order optimality conditions. The Lagrangian function,
Definition B.1.5, for an equivalent minimization problem is

L(S, λ) = − 1
m

n∑
j=1

νj(rj)dj + λ

n∑
j=1

rj .

The equation in the theorem follows by algebraic manipulations from the necessary optimality
criteria, Theorem B.1.4. Because the of schedulability assumption, it also fulfills the convexity
criterium of Theorem B.1.6. Thus this is a local maximum. By Proposition B.1.7, this local
maximum is also global.

5.4.2 Limit Optimization

First define the minimal profit for each algorithm as

ej = min
i=1,...,mj

µj(xi),

then the optimization problem for limit optimization may be formulated as

maximize P (S) = min
j=1,...,n

νj(rj) ∗ ej

subject to
n∑

j=1

rj = 1

rj ≥ 0 j = 1, . . . , n

(5.4.3)

The problem is equivalent to

maximize P (S, R) = R

subject to R ≤ νj(rj) ∗ ej j = 1, . . . , n
n∑

j=1

rj = 1

rj ≥ 0 j = 1, . . . , n

(5.4.4)

Assuming that each algorithm solves at least one problem instance.
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Lemma 5.4.7. Let the algorithms be schedulable. Let the resource profit functions be monotoni-
cally increasing1. Let each algorithm be assigned at least one instance. The local extrema of (5.4.4),
where the inequality

R ≤ νj(rj) ∗ ej j = 1, . . . , n

is replaced by the equality
R = νj(rj) ∗ ej j = 1, . . . , n

are equivalent to local extrema of the original problem.

Proof. By contradiction. The solution vector is M = (r1, . . . , rn, R). Let the optimal solution be
M∗ = (S∗, R∗) = (r∗1, . . . , r

∗
n, R∗) and assume there exists such l that

νl(r∗l ) > R∗,

and for all j 6= k

νj(r∗j ) ≥ R∗.

Because νl is continuous, there is an ε such that νl(r∗l − ε) > R∗. Now, let

M̂ = (r̂1, . . . , r̂n, R̂) = (r∗1 +
ε

n− 1
, . . . , r∗l − ε, . . . , min

j=1,...,n
νj(r̂j)).

Because νj are increasing, νj(r̂j) > νj(r∗j ) for j 6= l. Then also

min
j=1,...,n

νj(r̂j) > min
j=1,...,n

νj(r∗j ),

thus R̂ > R∗. Therefore
∇P (M∗)′(M̂ −M∗) = R̂−R∗ > 0.

This violates the necessary local optimality condition, Proposition B.1.1. Thus the to contradiction
proves the theorem. Notice that Proposition B.1.1 is for minimization problems. Negating the
objective function transforms it to a maximization problem; that is why the sign in this proof is
opposite to one in the proposition.

Therefore, the optimal schedule for a fixed classification can be determined analytically.

Theorem 5.4.8. Let the algorithms be schedulable. Let the resource profit functions be monoton-
ically increasing. Let each algorithm be assigned at least one instance. Then the globally optimal
solution of (5.4.4) satisfies

νj(rj)
νk(rk)

=
ej

ek
.

Moreover, there is only one such solution.

Proof. The fact that the optimal solution must fulfill this equalities follows from Lemma 5.4.7.
We only need to show that there is only one such solution. Assume by contradiction, that there
are two different solutions r1, r2, . . . , rm and r′1, r

′
2, . . . , r

′
m. Without loss of generality, assume that

r1 > r′1. Because
m∑

j=1

rj =
m∑

j=1

r′j ,

1 The requirement for schedulable optimization algorithms is to be non-decreasing.
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there must be rl < r′l. Let it be, without loss of generality r2. Because both are the solutions of
the same problem,

ν1(r1) = ν2(r2)
ν1(r′1) = ν2(r′2).

From monotonicity of rj we get

ν1(r1) > ν1(r′1) = ν2(r′2) > ν2(r2),

what is a contradiction. Thus there is at most one solution, and therefore it is globally optimal.

5.5 CMA: Decision Problems

The resource profit function of decision algorithms is the same for all algorithms, as Proposi-
tion 4.3.4 states. Therefore, in this case, we can derive more specific and useful condition. The
execution time of a decision algorithm on instance x is η(x). Thus the resource profit functions
are homogeneous and equal to

ν(r) =
1
r

µ(x) = −η(x).

First, we provide the specific theorems and then we note how these properties can be easily
satisfied.

Theorem 5.5.1. Let the PPA use decision algorithms. The mean optimal schedule for the maxi-
mization phase of CMA, given a fixed classification, must fulfill

ro

rp
=

√∑mo
i=1 ηo(xk(i,o))∑mp

i=1 ηp(xk(i,p))
.

Proof. By Theorem 5.4.6.

The following theorem predicts the mean run-time of a PPA with mean optimal static schedule
for decision algorithms. Notice it is for a fixed classification of instances, and thus it is a lower
bound for the execution.

Theorem 5.5.2. Let S be the optimal schedule of a PPA for decision problems, obtained in the
maximization phase of CMA for mean optimization. Then the expected execution time of the
schedule is

max
S

P (S) =

 n∑
j=1

√√√√ 1
m

mj∑
i=1

ηp(xk(i,j))

2

.

Proof. By algebraic manipulation from the previous theorem.

Theorem 5.5.3. Let the PPA use decision algorithms. The limit optimal schedule for the maxi-
mization phase of CMA, given a fixed classification, must fulfill

ro

rp
=

mini=1,...,mo −ηo(xk(i,o))
mini=1,...,mp −ηp(xk(i,p))

Proof. By algebraic manipulations from Theorem 5.4.8.
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The optimality equalities required by mean and limit optimizations for decision algorithms
can be satisfied as follows. The resources are assigned to the algorithms ignoring the resource
constraints to fulfill the condition from the theorem. Because normalization of the sum of algo-
rithms’ resource shares to 1 does not change the relative ratio of shares, the optimality constraint
required by the theorem is satisfied after the normalization.

5.6 Summary

We presented in this chapter a simple method to calculate simple schedules. As we show later,
despite its simplicity this approach is quite effective. The calculation procedure is done in it-
erative classification and maximization steps. This idea is similar to Expectation Maximization
algorithm (Russell & Norvig, 2002; Bertsekas, 2003) and Block Coordinate Descent.

Because the optimization problems in this chapter are not convex, we cannot expect to arrive
to an optimal solution. However, the randomization at the start of CMA increases the chance of
getting to the global maximum in several executions. In the next chapter, we provide a modified
algorithm that finds the optimal schedule, but has a higher computational complexity.

A simple extension, helpful in some cases, is to pre-process the portfolio by removing the
algorithms that are worse for each instance than other single algorithm. It may even be possible
to remove algorithm that is dominated by a different algorithm for each instance, but this would
probably require a deeper analysis.

The applicability of the algorithms for static schedules, as presented in this chapter, is limited
to PPA of homogeneous algorithms. While it is trivial condition for decision algorithms, it is not
clear whether optimization algorithms tend to fulfill it.

Other research on algorithm portfolios is concerned with calculating a prediction function,
which predicts the quality of the algorithms. If such a function was available, then the schedule
could be calculated for each instance individually. The overhead of schedule calculation would be
small, because CMA procedure is fast, even for large portfolios.



32 Chapter 5. Static Schedules



Chapter 6

STATIC SCHEDULES: GEOMETRIC FORMULATION

In this chapter, we propose an algorithm for calculating static schedules that is optimal but still
tractable in terms of the sample size, and a method to visualize a static schedule of algorithms.
These results are also used in generalization bounds in Chapter 8.

6.1 Optimal Algorithm

A naive search for the globally optimal schedule may be obtained by a modifying CMA to search
through all classifications. This algorithm is depicted in Fig. 6.1. The number of maximization

i = 0
P ∗ = 0
for all W ∈ {0, 1}m,n do

P ← maxS P (S, W i)
if P > P ∗ then

P ∗ ← P
end if
i← i + 1

end for

Figure 6.1: Naive Optimal CMA - NOCMA.

runs of this algorithm is
O (nm) ,

where m is the number of samples and n is the number of algorithms. Therefore, the algorithm
needs

O (mn ∗ nm)

operations to find the optimum. This is exponential in the number of training samples, what is
a generally high number. To get a more effective algorithm, we show that only a subset of all
classifications must be explored. The following analysis leads to an algorithm with time complexity
polynomial in m and exponential in n.

Definition 6.1.1. A classification is valid when it is consistent with a schedule. On other words,
each instance is assigned to the algorithm that has the best performance on it.

Only valid classification may happen in reality, and their profit is higher than a profit of a
suboptimal classification. As a result, only valid classifications need to be explored to find the
best schedule. This notion is stated formally in the next lemma.

Lemma 6.1.2. Let S∗ be the globally optimal schedule of a PPA and let Ŝ be the best schedule
obtained from a valid classification and a single maximization phase. Then

P (S∗) = P (Ŝ).
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Proof. We show the lemma by contradiction. Let

P (S∗) > P (Ŝ).

Clearly, a classification W ∗ from a schedule S∗ is valid. Then, by running a maximization phase
of CMA on this classification, we get a schedule S∗′. Then, by

P (S∗′) ≥ P (S∗) > P (Ŝ),

what is with contradiction of optimality condition of Ŝ.

The following lemma defines the properties of a valid classification.

Lemma 6.1.3. Let the resource profit function be homogeneous. Let a, b be arbitrary algorithm
from PPA. Then, for a valid classification, we have

xo ∈ Ia ∧ xp ∈ Ib ⇒
µa(xo)
µb(xo)

≥ µa(xp)
µb(xp)

,

where Ia is the set of instances assigned to a and Ib to b.

Proof. Because the classification is valid,

pa(xo) ≥ pb(xo)
pa(xp) ≥ pb(xp).

From the homogeneity assumption, we get that

µa(xo)νa(ra) ≥ µb(xo)νb(rb)
µa(xp)νa(ra) ≤ µb(xp)νb(rb).

By arithmetic manipulations

νb(rb)
νa(ra)

≤ µa(xo)
µb(xo)

νb(rb)
νa(ra)

≥ µa(xp)
µb(xp)

,

the lemma follows.

As a consequence, we have the following lemma.

Lemma 6.1.4. Let the resource profit functions be homogeneous. For any two instances xo, xp,
and algorithms a and b, let without loss of the generality

µa(xo)
µb(xo)

>
µa(xp)
µb(xp)

.

Then for a valid classification

(xo ∈ Ib ⇒ xp /∈ Ia) ∧ (xp ∈ Ia ⇒ xo /∈ Ib) ,

where Ia is the set of instances assigned to a and Ib to b.
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Proof. To show xo ∈ Ib ⇒ xp /∈ Ia by contradiction, assume

xo ∈ Ib ∧ xp ∈ Ia.

Then, application of Lemma 6.1.3 leads to

µa(xo)
µb(xo)

≤ µa(xp)
µb(xp)

,

what is clearly a contradiction. The other statement, xp ∈ Ia ⇒ xo /∈ Ib, can be proved analo-
gously.

For each pair of algorithms, the instances can be decreasingly ordered according to

µa(x)
µb(x)

.

Then, from Lemma 6.1.4, for each schedule there is a split point D, for which no instances for
which µa(x)

µb(x) > D are assigned to b and no instances for which µa(x)
µb(x) < D are assigned to a.

Theorem 6.1.5. The number of valid classifications of instances to problems, when RAF are
homogeneous, is at most

(m + 1)(
n
2).

Proof. As we showed in Lemma 6.1.4, only schedules that can be represented by a set of
(
n
2

)
split

points are valid. Moreover, there is at most one classification, consistent with a set of split points.
To see this, take two different classifications. Because they are different, they must assign at
least one instance to different algorithm, let it be algorithms a and b. This makes the split point
between a and b different for each classification. Because, there is at most

(m + 1)(
n
2)

possible split-point sets, the theorem follows.

As a result, of the above theorem, we propose a Valid Optimal Classification Maximization
Algorithm, depicted in Figure 6.2. It iterates through all split-point sets, for each creates a
classification, and finds the optimal schedule for that classification. A way to make classification
from a split-point set is to assign instance to an algorithm if it is assigned to it for each split-
point. Notice, that the conditions on valid schedules are necessary, not sufficient. Therefore, the
algorithm also checks classifications that are not valid. This increases its complexity but does not
impact the optimality.

Theorem 6.1.6. VOCMA reaches a schedule with the optimal profit in

O
(
mn ∗ (m + 1)(

n
2)
)

,

for mean and limit classifications.

Proof. The profit is optimal because each valid schedule has a unique split-point set by Lemma
6.1.4, and it is sufficient to enumerate all valid schedule by Lemma 6.1.2. The complexity is
evident from the total number of split-point sets and Theorem 5.4.6 and Theorem 5.4.8.
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i = 0
P ∗ = 0
Initialize split points (s1, . . . , s(n

2)
) = (0, . . . , 0)

for all (s1, . . . , s(n
2)

) ∈ (0 . . .m)(
n
2) do

Create W from s1, . . . , s(n
2)

)
if W is not valid then

CONTINUE
end if
P ← maxS P (S, W i)
if P > P ∗ then

P ∗ ← P
end if
i← i + 1

end for

Figure 6.2: Valid Optimal CMA - VOCMA.

µf

µe

D

µe

µf

Figure 6.3: Point graph of performance of algorithms, and how the split point divides it.
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If

µe

µf

D

Ie

If

Ie

Figure 6.4: Picture of how split point divides the instance set.

6.2 Visualization

Consider having only two algorithms e and f . If they are homogeneous, their performance may
depicted as a two-dimensional point graph. Each point represents an instance. Position of each
point for instance x is determined by µe(x) and µf (x) on axes. A simple example, with 5 instances
is in Figure 6.3.

As shown in the section above, we can define a split point D. Because there are only two
algorithms we have

µe(x)
µf (x)

≥ D ⇔ x ∈ Ie (6.2.1)

µe(x)
µf (x)

≤ D ⇔ x ∈ If , (6.2.2)

breaking ties arbitrarily to ensure Ie∩ If = ∅. Interestingly, the point graph defined above, a split
point represents a line that separates Ie and If . This is depicted in Figure 6.3 and Figure 6.4.

Obviously, for two algorithms, a split point defines a classification. However, it also defines a
schedule. We can calculate what the allocation of resources must be in order for the classification
to be valid. The conditions are:

µe(x)νe(re)
µf (x)νf (rf )

≥ 1 ∀x ∈ Ie

µe(x)νe(re)
µf (x)νf (rf )

≤ 1 ∀x ∈ If .
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Figure 6.5: Visualization of algorithms 21 and 20 from the SAT problem application. f denotes
the µ of algorithm 21, and e denotes µ of algorithm 20.

From (6.2.1) and (6.2.2) we get the sufficient conditions for a valid schedule:

D
νe(re)
νf (rf )

≥ 1 D
νe(re)
νf (rf )

≤ 1.

Thus the condition is
νe(re)
νf (rf )

=
1
D

.

The preceding can be formalized in the following theorem.

Theorem 6.2.1. Let the PPA consist of two schedulable and homogeneous algorithms. Let the
functions ν be monotonously increasing. A split-point D the uniquely defines a schedule1 as

νe(re)
νf (rf )

=
1
D

. (6.2.3)

Proof. The correspondence between a split point and a schedule is evident from the above analysis.
Uniqueness of solution of (6.2.3) can be done similarly to the proof of Theorem 5.4.8.

Specific visualization schemes from the application, from Chapter 9, are in Figure 6.5 and
Figure 6.6. Notice the profits are negative, this is because it is for a decision algorithms. Figure 6.5
shows that the algorithms have quite different performance on many instances. On the other hand,
Figure 6.6 shows algorithms with a similar performance.

1 Also the resource allocation functions.
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Figure 6.6: Visualization of algorithms 12 and 22 from the SAT problem application. f denotes
the µ of algorithm 12, and e denotes µ of algorithm 22.

6.3 Summary

We presented in this chapter an algorithm to calculate optimal static schedules for PPA. It is based
on CMA from the preceding chapter. Though the method guarantees optimality, it is impractical
in other aspects because of its high computational complexity. Specifically, it has a polynomial
time complexity in the number of instances, but exponential in the number of algorithms in PPA.
Therefore, a calculation of schedules for more than 5 algorithms is typically infeasible. However,
the naive implementation of the algorithm, as presented in this chapter, may be significantly
improved by propagating the bounds and eliminating creation of schedules that are not valid. In
the graph of split points between the algorithms, every edge is probably determined by all cycles
that cross it. This could eliminate many of the created invalid schedules. This would require a
further investigation, more details are in Chapter 10.

The VOCMA approach also leads to a nice visualization. The visualization allows to compare
the performance of algorithms, and makes the notion of split points more intuitive.
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Chapter 7

DYNAMIC SCHEDULES

In this chapter we analyze dynamic schedules, formally introduced in Chapter 4. As noted before,
dynamic schedules make sense only for time optimization, that is portfolios of deterministic algo-
rithms. However, for sake of consistency, we still use the notion of profit equal to negative value
of execution time. Therefore, finding the schedules is a maximization problem.

7.1 Basic Properties

Finding the optimal schedule for the dynamic model by heuristically enumerating all possible
schedules would be a very time consuming task. A common method for solving hard problems
dynamic programming. One formulation that permits the use of this technique is a Markov
Decision Process (MDP). As mentioned above, it is possible to formulate the dynamic model as
an MDP, in which each policy corresponds to a dynamic schedule. In this chapter, X is a random
variable representing an instance from I.

Definition 7.1.1. Ze(l, X) denotes the probabilistic event that the algorithm e solves an instance
from I in the time interval Θ(l). Formally,

Ze(l,X) = I {(l − 1)z ≤ ηe(X) < lz} .

Alternatively, Z represents a set of instances, that are solved within that time. The actual
meaning is determined by the context in which it is used.

Definition 7.1.2. ZS(l, X) denotes the event of an instance being solved by any algorithm from
the portfolio in the time interval Θ(l). The algorithms are executed according to the schedule S.

We use Z(l, X) when the choice of the schedule is clear.

Definition 7.1.3. Z(k . . . l, X), l ≥ k represents the event of an instance being solved in any of
the intervals k through l. Formally,

Z(k . . . l, X) =
⋃

j=k,...,l

Z(j, X).

Lemma 7.1.4. Let e be a schedulable decision algorithm. Let

l∑
k=1

re(k) = a,

re(l) = 1.

Also, Let e′ be the same algorithm, but with resource allocation function

re′(k) = 1 k = 1, . . . , a.

Then
Ze(l,X) ≡ Ze′(a,X).
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Proof. The proposition follows from preemptability of the algorithm e, because it can then be
preempted and resumed with no performance penalty.

In the further text, Ze refers to solving the instance in a hypothetical case if e had re(l) = 1
for l = 1, . . . , b. This is consistent with the original definition, because of the preceding lemma.
In addition, Zk is a shorthand notation for Zek

.
The next lemma shows an important property of the resource allocation functions, which can

be utilized to obtain effective algorithms for finding dynamic schedules.

Lemma 7.1.5. Let the PPA be a set of schedulable decision algorithms. Let re, r
′
e be any resource

allocation functions for which
k∑

l=1

re(l) =
k∑

l=1

r′e(l) = h,

and
re(k + 1) = r′e(k + 1).

Then,
pe(re, x) = pe(r′e, x) ∀x ∈ Ze(h + 1).

Proof. The lemma, as well as Lemma 7.1.4, follows from preemptability of the algorithms.

For sake of simplicity we use,

pe(a, x) = pe(re, x) if
k∑

i=1

re(l) = a

on time the interval k + 1 whenever x ∈ Ze(a). We also use,

pe(a . . . , x) = pe(re, x) if
k∑

l=1

re(l) = a, re(l) = 1, l = k + 1, . . . , b,

on the time intervals from k + 1 to b whenever x ∈ Ze(a . . .). These simplifications are possible
because of Lemma 7.1.5.

7.2 Formulation

We define two alternative MDP’s for both mean and bound optimizations. They share states the
same set of states and actions, but they differ in the definition of rewards.

COMMON MDP DEFINITION States are vectors of natural numbers. They are divided into
two disjunct sets

S =

(c1, . . . , cn) cj ∈ {0, . . . , b},
n∑

j=1

cj < b


F =

(c1, . . . , cn, k) cj ∈ {0, . . . , b}, k ∈ {1, . . . , n},
n∑

j=1

cj ≤ b

 .
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The initial state is s0 = (0, . . . , 0) ∈ S. Actions for each state from S are from {A1, . . . , An},
where Aj are arbitrary diverse elements. Given a state s = (c1, . . . , cn), and an action Ak, the
possible subsequent state are:

s′ = (c1, . . . , c
′
k = ck + 1, . . . , cn) ∈ S if

n∑
j=1

cj < b− 1

f ′ = (c1, . . . , c
′
k = ck + 1, . . . , cn, k) ∈ F.

The probability distribution over the subsequent states s′ and f ′, given a random problem instance,
an action A, and a state s, is:

P
[
f ′ s,Ak

]
= P

[
Zk(c′k, X) ¬Z(s,X)

]
P
[
s′ s,Ak

]
= P

[
¬Zk(c′k, X) ¬Z(s,X)

]
,

where the notation Z(s,X) denotes and event of any algorithm from the portfolio, solving the
instance until this state. The reward function R for

f = (c1, . . . cn, k) ∈ F

s = (c1, . . . cn) ∈ S

is defined as

R(f) = E [Πk(f,X) Zk(ck, X) ∧ ¬Z(f 	 k, X)] if
n∑

j=1

cj < b

R(f) = E [Πk(f . . . , X) Zk(ck . . . , X) ∧ ¬Z(f 	 k, X)] if
n∑

j=1

cj = b

R(s) = 0,

where (c1, . . . , ck, . . . , cn)	k = (c1, . . . , ck−1, . . . , cn). Π denotes an abstract reward, later specified
for mean and bound optimization. Next, we refer to Π as to an abstract profit.

REWARDS FOR MEAN OPTIMIZATION The reward function R is defined as

R(f) = −
n∑

j=1, j 6=k

cj + E [pk(ck, X) Zk(ck, X) ∧ ¬Z(f 	 k, X)] if
n∑

j=1

cj < b

R(f) = −
n∑

j=1, j 6=k

cj + E [pk(ck . . . , X) Zk(ck . . . , X) ∧ ¬Z(f 	 k, X)] if
n∑

j=1

cj = b

R(s) = 0.

In this case, Π is

Πk(f,X) = −
n∑

j=1, j 6=k

cj + pk(ck, X).
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REWARDS FOR BOUND OPTIMIZATION The reward function R is defined as

R(f) = E

I

−
n∑

j=1, j 6=k

cj + pk(ck, X) ≥ B

 Zk(ck, X) ∧ ¬Z(f 	 k, X)


if

n∑
j=1

cj < b

R(f) = E

I

−
n∑

j=1, j 6=k

cj + pk(ck . . . , X) ≥ B

 Zk(ck . . . , X) ∧ ¬Z(f 	 k, X)


if

n∑
j=1

cj = b

R(s) = 0.

In this case, Π is

Πk(f,X) = I

−
n∑

j=1, j 6=k

cj + pk(ck, X) ≥ B

 .

Probability is represented here as an expected value of an identity function. These two represen-
tations are equivalent, as Theorem B.2.2 states. For bound optimization, there is no point to have
τ greater than −B1. The schedule after that does not affect the failure profit of the PPA. Let
τ = −B. Then the rewards become

R(f) = 1 if
n∑

j=1

cj < b

R(f) = 0 if
n∑

j=1

cj = b

R(s) = 0.

Definition 7.2.1. l-th level in the preceding MDP is the set of states where

n∑
j=1

cj = l.

Lemma 7.2.2. Each dynamic schedule maps to a policy in the proposed MDP. Conversely, each
policy in the proposed MDP maps to a dynamic schedule.

Proof. A policy may be transformed to a schedule as follows. Let each state represent a hypothet-
ical time instant during an hypothetical solution process. More specifically, the state represents
number of intervals allocated to each algorithm until the state’s time instant. The problem in-
stance is unsolved in states of S, and solved in states of F . The action Aj is equivalent to running
the algorithm ej in the time instance of the state. Given a solution of the MDP is in form of an
optimal actions for all states. Then, the schedule for the policy is the following. Let (Aj1 , . . . , Ajb

)
be the optimal sequence of actions for states (s1, . . . , sb), where sl+1 is the non final successor
of sl. Then, the equivalent schedule for the model is the sequence (ej1 , . . . , ejb

). Each element
determines which algorithm has a non-zero resource allocation function in that time interval. The

1 Notice, that in this case only negative bound makes since, as all profits are negative.
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reverse transformation is similar. Though for a single schedule, there are more than one policies
in the MDP, differing in actions in states unreachable from the initial one. Therefore, their profit
is the same.

In the following, we use ΠS to denote the abstract profit2 of a PPA with schedule S. In this
case the PPA is considered to behave as a single algorithm. Its abstract profit on each instance
is equal to the abstract profit of the algorithm that solves the instance. In fact, the optimal
dynamic schedule is the schedule with the maximal average abstract profit in the initial state
(E [ΠS(s0 . . . , X)]). This is because the probability for bound optimization can be represented as
an expected value, by Theorem B.2.2.

Lemma 7.2.3. Utility U of a state s = (c1, . . . , c)n) in the MDP defined above with a fixed policy
is

U(s) = E [ΠS(s . . . ,X) ¬Z(s,X)] ,

where S is a schedule constructed from an MDP policy as defined in Lemma 7.2.2.

Proof. We prove the lemma by a backward induction on the levels of states. First, clearly U(f) =
R(f). As the base of the induction, take b−1 level of state set S. For each state s in this level, let
the policy define independently an arbitrary action Ak. The possible successor state is f . Notice
that s = f 	 k. The utility of s is ,by definition of reward,

U(s) = U(f) = E [Πk(f . . . , X) Zk(ck, X) ∧ ¬Z(s,X)]
= E [ΠS(f . . . , X) Zk(ck, X) ∧ ¬Z(s,X)] ,

because the profit of a PPA with schedule S on instances solved by ek is equal to the profit of
ek. Each instance belongs to at least one interval, because the last interval spans to infinity. This
shows the induction base. The inductive step can be proved as follows. Let s be any state and let
s′ ∈ S and f ′ ∈ F be the subsequent states, given an action Ak. Clearly, s is reached only when
¬Z(s,X). Then

U(s) = P
[
f ′ s,Ak

]
U(f ′) + P

[
s′ s,Ak

]
U(s′)

= P
[
Zk(c′k, X) ¬Z(s,X)

]
E
[
Πk(f ′, X) Zk(ck, X) ∧ ¬Z(s,X)

]
+P

[
¬Zk(c′k, X) ¬Z(s,X)

]
E
[
ΠS(s′ . . . , X) ¬Zk(ck, X) ∧ ¬Z(s,X)

]
,

by the inductive assumption and the definition of MDP. Then, because ΠS = Πk if ek solves the
instance, we have

U(s) = P
[
Zk(c′k, X) ¬Z(s,X)

]
E
[
ΠS(f ′ . . . , X) Zk(ck, X) ∧ ¬Z(s,X)

]
+P

[
¬Zk(c′k, X) ¬Z(s,X)

]
E
[
ΠS(s′ . . . , X) ¬Zk(ck, X) ∧ ¬Z(s,X)

]
= P

[
Zk(c′k, X) ¬Z(s,X)

]
E [ΠS(s . . . ,X) Zk(ck, X) ∧ ¬Z(s,X)]

+P
[
¬Zk(c′k, X) ¬Z(s,X)

]
E [ΠS(s . . . ,X) ¬Zk(ck, X) ∧ ¬Z(s,X)] ,

because it can be shown for both mean and bound optimization that

E
[
ΠS(f ′ . . . , X) Zk(ck, X) ∧ ¬Z(s,X)

]
= E [ΠS(s . . . ,X) Zk(ck, X) ∧ ¬Z(s,X)]

E
[
ΠS(s′ . . . , X) ¬Zk(ck, X) ∧ ¬Z(s,X)

]
= E [ΠS(s . . . ,X) ¬Zk(ck, X) ∧ ¬Z(s,X)] .

Then by Theorem B.2.1 we get

U(s) = E [ΠS(s . . . ,X) ¬Z(s,X)] ,

what proves the theorem.
2 Empirical mean profit or empirical failure profit.
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t← b− 1
while t ≥ 0 do

for all States s = (c1, . . . , cn) where
∑n

j=1 cj = t do
for all Actions ek ∈ E do

Calculate reward R(f) according to Π
Calculate utility U(s)

end for
Pick the best action e

end for
t← t− 1

end while
Return schedule composed of best actions starting at state (0, . . . , 0)

Figure 7.1: DP-DPPA for both mean optimization and bound optimization. Π determines the
actual type of optimization.

Theorem 7.2.4. Let the algorithms be schedulable. A schedule based on the optimal policy of the
formulated MDP has optimal mean or bound profit.

Proof. From Lemma 7.2.3, the utility of the first state

U(s0) = E [ΠS(s0 . . . , X) ¬Z(s0, X)] = E [ΠS(s0 . . . , X)] .

This is equivalent to the empirical mean of bound profit of the schedule. Because, there is an MDP
policy for each schedule, the optimal policy also defines the schedule with maximal profit.

The approach presented in this chapter differs from (Petrik, 2005) in not assuming the instances
to be partitioned into classes for each algorithm3. Therefore, it offers a more precise schedule, for
the cost of increased complexity of the optimal calculation. This is because the solved instances
must be determined individually for each state. Partitioning the instances into classes allowed pre-
processing of the runtime data. Moreover, (Petrik, 2005) did not consider bound optimization.

7.3 Scheduling Algorithm

The formulation according to Theorem 7.2.4 allows direct solution by any general MDP solving
algorithm. The standard method for solving MDP is the already mentioned dynamic program-
ming, sometimes called Bellman update. An excellent introduction to MDPs and solution methods
is (Kall & Wallace, 1994; Sutton & Barto, 1998b). DP-DPPA, in Figure 7.1, is very similar to
the generic Bellman update, only it is somewhat simpler because the MDP does not contain any
loops.

Theorem 7.3.1. Let the algorithms be schedulable. DP-DPPA solves the scheduling problem in
time

O
(

m ∗ n2 ∗
(

b

n

)
∗ n! ∗ b

)
.

Proof. Correctness of DP-DPPA follows directly from Theorem 7.2.4. Regarding the complexity,
notice there are at most b levels to be calculated. The number of states per level increases up to
the last level, which has

(
b
n

)
∗ n! states. There are O (n) possible actions per a single state and

evaluation of rewards takes O (m ∗ n) operations. The theorem follows.

3 Equivalent of the classification from CMA.
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t← b− 1
while t ≥ 0 do

for all States s = (c1, . . . , cn) where
∑n

j=1 cj = t do
for all Actions ek ∈ E, except those with smaller index than the last non-zero component
of s do

if t = b− 1 then
R(f)← 0

else
R(f)← 1

end if
Calculate utility U(s)

end for
Pick the best action e

end for
t← t− 1

end while
Return schedule composed of best actions starting at state (0, . . . , 0)

Figure 7.2: DP-BDPPA, an algorithm for finding bound optimization dynamic schedules, if τ =
−B.

Though the algorithm DP-DPPA works for both bound and mean optimization, for bound
optimization, it can be improved to eliminate unnecessary steps. The following lemma indicates
how.

Lemma 7.3.2. Consider a PPA of deterministic algorithms. The order of execution of algorithms
before B does not affect the empirical failure profit of the PPA.

Proof. Because exchanging scheduled algorithms for any two intervals before the bound does not
change the profit, the theorem follows.

The modified algorithm for bound optimization, DP-BDPPA, is in Figure 7.2. It does not
iterate over all actions for each state. It explores only the actions that do not have a lower index
than the preceding action.

Theorem 7.3.3. Let the algorithms be schedulable and τ = −B. Then DP-BDPPA solves the
scheduling problem with the equal profit as DP-DPPA. Though the actual schedule may differ.

Proof. Clearly, DP-BDPPA explores a subspace space of possible schedules in the same way as
DP-DPPA. We need to show that the explored space contains a schedule with the same profit
as the optimal one. Therefore, let S∗ be the optimal schedule determined by DP-BDPPA. The
intervals of the algorithm before τ may be reorganized, such that the indexes of algorithms ordered
by time form a nondecreasing sequence. By Lemma 7.3.2, the profit of the schedule is unchanged.
Moreover, this is a schedule that may be a result of DP-DPPA algorithm.

Remark 7.3.4. It may be also interesting to explore how the order of algorithms influence the
generalization capability of a parallel portfolio.

7.4 Approximation

In this section, we show that for mean optimization, increasing the length of intervals may lead
to an algorithm that is polynomial in the number of the intervals b.
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Assume a fixed number of algorithms. Then, by Theorem 7.3.1, the worst-case complexity of
DP-DPPA is polynomial in terms of b. Because b may be encoded in binary, the complexity of
the scheduling algorithm is exponential in terms of the input length. However, the complexity
can be reduced by giving up some precision. Then, the optimal schedule can be found in the time
independent of b, and only polynomially increasing in the degree of precision. In the following, task
is calculation of an algorithm that is scheduled for an interval. As the approximation algorithm
is for mean optimization only, P (S) denotes the mean profit, thus

P (S) =
1
m

m∑
i=1

P (S, xi).

Lemma 7.4.1. Let S and S′ be the optimal dynamic schedules with z and z′ = c ∗ z respectively,
where c ∈ I+. Then we have

−P (S′) ≤ −P (S) + (c− 1) ∗ (n− 1) ∗ z.

Proof. We prove the theorem by transforming the schedule S to a new schedule S′ that is valid for
z′. Then, we show that −P (S′) is bounded from above. The basic idea to create S′ by swapping
tasks from S to ensure that switches between any two algorithms take place only at times divisible
by z′. It is possible to create a schedule with delay in expected time of at most (c− 1) ∗ (n− 1) ∗ z
as follows.

Let S′ initially be an identical copy of S. Then, apply the following procedure. Start with
l = 0. The tasks from in time z′ ∗ l to time z′ ∗ (l+1) may remain in place if they are scheduled for
the same algorithm. Otherwise, assume without the loss of generality, that a task t1 at the time
z′∗ l is scheduled for an algorithm e. In addition, assume that tasks t2, . . . , tc are the first following
tasks scheduled for e. Use empty tasks when there are no such finitely long tasks. Then schedule
the tasks t1, . . . , tc from time z′ ∗ l to the time z′ ∗ (l + 1), preserving the original order. The
tasks originally scheduled for these intervals are pushed for later, pushing also other task, to fill
intervals freed by t2, . . . , tc. The ordering of the tasks should be preserved during the pushing. The
procedure is depicted in Figure 7.3. The process then continues identically at the time z′ ∗ (l + 1)
until the end of schedule is reached.

Most importantly, in the above construction, each algorithm can cause delay for each task at
most once. Each delay is by at most (c− 1)z. Therefore, the expected execution time is increased
by at most (c− 1) ∗ (n− 1) ∗ z.

Theorem 7.4.2. Let −P (S) ≥ b for all S. There is a ε-approximate algorithm that solves the
scheduling problem for any ε such that

ε =
(n− 1) ∗ (c− 1)

b
for all c ∈ I. (7.4.1)

The approximate algorithm is polynomial in both 1
ε and the input length of the instance, given a

constant number of algorithms.

The algorithm is similar to a FPTAS, except it allows approximations only for discrete values
of ε.

Proof. The approximate algorithm is based on DP-DPPA, only using z′ := ε ∗ z. The proof of the
correct approximation and complexity is very similar to the proof of FPTAS for knapsack (Elmieh,
1999).



7.4. Approximation 49

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

z′

S

S ′

e

e e e

e ee1

e1

e2 e3 e4 e5

e2 e3 e4 e5

z

Figure 7.3: Illustration of the iterative step from proof of Lemma 7.4.1 when creating S′ from S.
The picture shows intervals of the dynamic schedule and the algorithms scheduled
for them.

To prove the correct approximation, assume S to be the optimal schedule calculated by DP-
DPPA using z and S′ to be the optimal schedule calculated using z′. Then by Lemma 7.4.1

−P (S′) ≤ −P (S) + (n− 1) ∗ (c− 1) ∗ z.

By definition, the algorithm is ε-approximate if

−P (S) ∗ (1 + ε) ≥ −P (S′).

Therefore, to show that the algorithm is approximate we have

−P (S) ∗ (1 + ε) ≥ −P (S) + (n− 1)(c− 1)z
≥ −P (S) + ε ∗ b

−P (S) ≥ b,

what is assumption of the theorem.
The complexity is proved by observing how it depends on ε. Trivially, the complexity of this

modified algorithm is equal to the original algorithm only that b′ := b
c . From (7.4.1) we have

ε =
(n− 1)(c− 1)

b
≤ nc

b
.

Thus
b

c
≤ n

ε
.

Then, by Theorem 7.3.1 the complexity is

O
(

m ∗ n2 ∗
( b

c

n

)
∗ n! ∗ b

c

)
≤ O

(
m ∗ n2 ∗

(n
ε

n

)
∗ n! ∗ n

ε

)
,

what is polynomial in 1
ε . This proves the theorem.
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7.5 Summary

In this chapter we introduced a method for finding optimal dynamic schedules. As the main
result, dynamic schedules may be represented as Markov Decision Processes (MPD), and therefore
calculated using the standard methods. Because calculation of a schedule depends exponentially
on the number of algorithms and the length of the schedules, we also provided an approximate
algorithm for mean optimization. For bound optimization, we presented a simplified algorithm as
well.

Dynamic schedules, unlike their static counterparts can take advantage of diverse profit pro-
files of algorithms and do not require homogeneous resource profit functions. However, their
calculation, even when formulated as MDP, is very time intensive. Moreover, since they can fit
the distribution better, their generalization properties are more questionable. As a result, static
schedules could be more beneficial for most domains. A possible combination of the static and
dynamic schedules would be to run more calculate the steps in the method as static schedules.
However, this approach would require an extensive analysis.

The method of finding optimal dynamic schedules, presented in this chapter, requires knowl-
edge of the full algorithm statistics. It is suitable only for a problem domain with a static instance
distribution and a large number of available training instances. For dynamically changing distri-
bution, reinforcement learning (RL) may be used. RL methods solve the same problem as MDP,
only probabilities and rewards do not need to be known in advance. They are discovered during
the actual execution. Application of RL would lead to a truly adaptive scheduling algorithm.
There is also a large number of Monte Carlo simulation algorithms capable of finding an optimal
policy for large MDPs in short times. A good overview is (Sutton & Barto, 1998b). Static sched-
ules for can be re-calculated quickly using CMA. Therefore, the problem with a dynamic instance
distribution is not that interesting for further research.



Chapter 8

GENERALIZATION BOUNDS

In this chapter, we theoretically analyze the proposed PPA learning schemes within the framework
from Chapter 3. The primary importance is to show that a reasonable number of samples is
sufficient to learn a PPA that is really useful for the whole problem distribution. This is the same
assurance that is important for concept learning. Because the bounds are loose and are for the
worst-case, they are not very practical for computing the specific bounds. In the whole chapter,
we assume that the profit is positive. The theorems would hold, with minor modifications, for the
fully negative case too.

8.1 General Results

In this section we provide a simple bounds for cases with finite number of potential algorithms Φ.
Except being generally useful, it can be used for dynamic schedules. However, because the space
of static schedules is infinite, we provide a conceptually different analysis for those in the next
section.

8.1.1 Mean Optimization

The simplest way to determine the quality of an algorithm is to use its profit on the training set.
In fact, this profit is equal to Fm(f). We call this learner empirical profit maximizer. In the next,
we show that even this simple approach leads to finding an algorithm that closely approximates
the optimal algorithm. However, these assurances assume that the set of all algorithms is finite
and the profit is bounded.

Theorem 8.1.1. Let the profit of each algorithm be bounded by 〈a, b〉. Then a learner that maxi-
mizes the mean profit needs

m ≥ (b− a)2

2 ∗ ε
(ln |Φ|+ ln

1
δ
)

samples to fulfill the generalization bound from Def. 3.2.1. Therefore, if the set of available algo-
rithms is finite, the learner mean generalizes.

Proof. Let f(X) be a profit function that fulfills the assumptions of the Hoeffding’s Bound,
Thm. B.2.4. Now, let

Fm(f) =
1
m

m∑
i=1

f(xi).

Therefore, the bound for Fm(f), according to Thm. B.2.4, is

P
[
Fm(f)−E [Fm(f)] ≥ ε′

m

]
≤ exp

(
−2ε′2∑m

i=1(bi − ai)2

)
.
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Given ε = ε′

m and assumed bounds for f(X) we get

P [Fm(f)−E [Fm(f)] ≥ ε] = P [Fm(f)−E [f(X)] ≥ ε] ≤ exp
(
−2mε

(b− a)2

)
.

Since there are |Φ| available algorithms, the probability of at least one having a worse deviation
from the sample profit is bound by the following, using Boole’s Bound, Theorem B.2.6.

P
[
max
f∈Φ

Fm(f)−E [f(X)] ≥ ε

]
≤ |Φ| exp

(
−2mε

(b− a)2

)
.

To prove the theorem, we need to show that the probability may be made arbitrarily small by
choosing enough samples

δ ≥ |Φ| exp
(
−2mε

(b− a)2

)
ln

1
δ

+ ln |Φ| ≤ 2mε

(b− a)2

m ≥ (b− a)2

2ε

(
ln

1
δ

+ ln |Φ|
)

.

This proves the theorem, because the number of samples is polynomial in all required attributes.

Theorem 8.1.2. Let the profit of each algorithm be bounded by 〈a, b〉. Then, the learner that
globally maximizes mean profit requires

m ≥ (b− a)2

2 ∗ ε

(
ln (|Φ|+ 1) + ln

1
δ

)
samples, to satisfy the bound from Def. 3.2.2. Therefore, if the set of available algorithms is finite,
the learner is mean optimal.

Proof. Let f∗ be the globally optimal algorithm from Φ. Its empirical profit is

F ∗
m = Fm(f∗) =

1
m

m∑
i=1

f∗(xi).

Clearly, we are concerned only about the algorithms f that offer a higher profit on training samples
than the optimal one, so

Fm(f) ≥ F.

From Theorem 8.1.1, we get:

P
[
max
f∈Φ

Fm(f)−E [f(X)] ≥ ε2

]
≤ |Φ| exp

(
−2mε2
(b− a)2

)
.

Next, similarly to proof of Theorem 8.1.1 we get by Hoeffding’s Bound

P [E [f∗(X)]− Fm(f∗) ≥ ε1] ≤ exp
(
−2mε1
(b− a)2

)
.

Then

E [f∗]−E [f ] = E [f∗] + Fm(f∗)− Fm(f∗)−E [f ]
≤ (E [f∗]− Fm(f∗)) + (Fm(f)−E [f ]).
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Therefore, assuming ε = ε1 + ε2, we get

P
[
max
f∈Φ

E [f∗] + E [f ] ≥ ε

]
≤ P

[
max
f∈Φ

(E [f∗]− F ∗
m) + (Fm(f)−E [f ]) ≥ ε

]
≤ P

[
max
f∈Φ

E [f∗]− F ∗
m ≥ ε1

]
+ P

[
max
f∈Φ

Fm(f)−E [f ] ≥ ε2

]
≤ exp

(
−2mε1
(b− a)2

)
+ |Φ| exp

(
−2mε2
(b− a)2

)
≤ (|Φ|+ 1) exp

(
−2mε

(b− a)2

)
.

Hence the theorem.

Remark 8.1.3. To make the analysis practical for FPTAS learning algorithms, the additive ε must
be changed to multiplicative. The multiplicative bound may then be derived from Chernoff’s
Bound, Theorem B.2.3.

8.1.2 Limit Optimization

As with mean optimization, the simplest approach of maximizing the minimal empirical profit
leads to a proper generalization, given the number of algorithms to chose from is finite.

Theorem 8.1.4. A learner maximizing the minimal empirical profit requires

m ≥ 1
ε

(
ln |Φ|+ ln

1
δ

)

samples to fulfill the bound from Def. 3.3.1. Therefore, if the set of available algorithms is finite,
the learner limit generalizes.

Proof. To prove the generalization, we need to show that in the worst case the probability bounds
hold. Therefore, we show that maximal probability for all algorithms that satisfy the condition of
being learned is bounded by the theorem’s inequality.

P
[

max
f :f∈Φ

{P [f(X) < Gm(f)]} > ε

]
= E

[
P
[

max
f :Gm(f)=Z

{P [f(X) < Z]} > ε Z

]]
≤ sup

Z∈〈a,b〉
P
[

max
f :Gm(f)=Z

{P [f(X) < Z]} > ε Z

]
.
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Now, let us derive the value of the probability, depending on Z.

P
[

max
f :Gm(f)=Z

{P [f(X) < Z]} > ε

]
= E

[
I
{

max
f :Gm(f)=Z

P [f(X) < Z] > ε

}]
= E

[
max
f∈Φ

I {Gm(f) = Z} I {P [f(X) < Z] > ε}
]

≤
∑

f∈Φ,P[f(X)<Z]>ε

P [Gm(f) = Z]

≤
∑

f∈Φ,P[f(X)<Z]>ε

P [Gm(f) ≥ Z]

= |Φ|(1− ε)m.

Since the value of the probability does not depend on Z, it is also the value of the expectation.
Now, the above upper bound can be simplified to (Mitchell, 1997):

|Φ| exp (−εn) .

The theorem follows by algebraic operations.

Theorem 8.1.5. A learner that globally maximizes the minimal empirical profit needs the follow-
ing number of samples to fulfill the bound from Def. 3.3.2.

m ≥ 1
ε

(
ln |Φ|+ ln

1
δ

)
.

Therefore, if the set of available algorithms is finite, the learner is limit optimal.

Proof. To prove the theorem we need to bound the fraction of instances that are solved with
smaller profit than the infimum of the optimal algorithm on I. Let the minimal empirical profit
of the optimal algorithm be G∗

m = Gm(f∗) = mini f
∗(xi). Clearly,

inf
x∈I

f∗(x) ≤ G∗
m ≤ Gm(f),

otherwise f∗ would be chosen as the optimum. Therefore, this theorem is a weaker version of
Theorem 8.1.4 and number of samples is identical to result of it.

8.1.3 Bound Optimization

As before, it is easy to show that, given a finite set of available algorithms, a learner that minimized
the empirical failure profit generalizes well.

Lemma 8.1.6. The empirical failure profit Hm(f) is an unbiased estimator of the true failure
profit P [f(X) < B].

Proof. Clearly

E [Hm] = E

[
1
m

m∑
i=1

I {f(xi) ≤ B}

]

=
1
m

m∑
i=1

E [I {f(xi) ≤ B}]

= E [I {f(X) < B}]
= P [f(X) < B] .
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Thus the theorem holds.

For simplicity, we define

H(f) = P [f(X) < B] = E [I {f(X) < B}] .

Please notice that according to Lemma 8.1.6

H(f) = E [Hm(f)] .

Given this notation, the problem partially reduces to the agnostic learning problem (Mitchell,
1997). As a result, our proofs follow a similar path as the proofs in agnostic learning.

Theorem 8.1.7. A learner that minimizes empirical failure profit requires

m ≥ 1
2ε2

(
ln |Φ|+ ln

1
δ

)
samples to fulfill the bound from Def. 3.4.1. Therefore, if the set of available algorithms is finite,
the learner bound generalizes.

Proof. The proof follows from Theorem B.2.4 (Hoeffding’s Bound). The basic line follows, assum-
ing the worst case that all algorithms have the same empirical failure profit.

P
[
max
f∈Φ
{H(f)−Hm(f)} > ε

]
≤

≤ |Φ|max
f∈Φ

P [H(f)−Hm(f) > ε]

≤ |Φ|max
f∈Φ

P [n ∗H(f)− n ∗Hm(f) > n ∗ ε]

≤ |Φ| exp
(
−2(nε)2

n(b− a)

)
= exp

(
−2mε2

(b− a)

)
= |Φ| exp

(
−2(nε)2

n

)
= exp

(
−2mε2

)
.

This leads straight forward to the bound from theorem.

Theorem 8.1.8. A learner that globally minimizes empirical failure profit requires

m ≥ 2
1
ε2

(
ln |Φ|+ ln

1
δ

+ ln 2
)

samples to fulfill the bound from Def. 3.4.2. Therefore, if the set of available algorithms is finite,
the learner is bound optimal.

Proof. Let f∗ be the globally optimal algorithm. Since the learner is an empirical failure profit
minimizer, we get

Hm(f∗) ≥ Hm(f).
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Now, assuming the worst case of all algorithms having the same empirical failure profit, we get

P
[
max
f∈Φ

P [f(X) < B]−P [f∗(X) < B] > ε

]
≤ |Φ|max

f∈Φ
P [P [f(X) < B]−P [f∗(X) < B] > ε]

= |Φ|max
f∈Φ

P [H(f)−H(f∗) > ε]

≤ |Φ|max
f∈Φ

P [H(f)−Hm(f) + Hm(f∗)−H(f∗) > ε]

≤ |Φ|max
f∈Φ

(
P
[
H(f)−Hm(f) >

ε

2

]
+ P

[
Hm(f∗)−H(f∗) >

ε

2

])
≤ 2 ∗ |Φ| exp

(
−nε2

2(b− a)

)
= 2 ∗ |Φ| exp

(
−nε2

2

)
.

The last inequality is derived in a similar way to the proof of Theorem 8.1.7, using both Hoeffding’s
Bounds.

8.2 Dynamic Schedules

Since the number of potential dynamic schedules is finite, we can apply the theorems from the
preceding section to this case. Notice however that Φ is not equal to E, but it is the set of
all schedules. Because we defined dynamic schedules only for mean and bound optimization, we
provide the specific generalization bounds only for these two optimization types. The following
lemmas establish how many different dynamic schedules there are. We always assume that the
algorithms that comprise the PPAs are fixed, and there is finitely many of them.

Lemma 8.2.1. The number of dynamic schedules for mean optimization with fixed z, b, and τ is

nb.

Proof. There are n algorithm that can be scheduled for each of the b intervals. Thus the lemma.

Theorem 8.2.2. Let the profit of dynamic schedules be from 〈a, b〉. A learner that finds dynamic
schedules with fixed z, b, and τ that globally minimize the empirical mean profit is mean optimal.
Moreover, the learner requires

m ≥ (b− a)2

2 ∗ ε

(
b ln (n + 1) + ln

1
δ

)
samples to fulfill the bound.

Proof. The theorem follows from Theorem 8.1.2 and Lemma 8.2.1 and because

(b− a)2

2 ∗ ε

(
ln
(
nb + 1

)
+ ln

1
δ

)
≤ (b− a)2

2 ∗ ε

(
b ln (n + 1) + ln

1
δ

)
.

Lemma 8.2.3. The number of dynamic schedules for bound optimization with fixed z, b, and τ is

bn.
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Proof. There are b intervals that can be assigned to n algorithms. Thus the lemma.

Theorem 8.2.4. A learner that finds dynamic schedules with fixed z, b, and τ that globally
maximize the empirical failure profit is bound optimal. Moreover, the learner requires

m ≥ 2
1
ε2

(
n ln b + ln

1
δ

+ ln 2
)

samples to fulfill the bound.

Proof. The theorem follows from Theorem 8.1.8 and Lemma 8.2.3.

Notice, that for we used fixed z, b, and τ for the bounds. If these parameters are tuned
according to the specific sample, the proposed generalization bounds do not hold. Moreover,
better bounds may be possibly obtained by using an approach based on Vapnik-Chervonenkis
theory, but it would require a more extensive analysis. This approach is used in the next section
for static schedules.

8.3 Static Schedules

The number of static schedules for a given set of algorithms to comprise PPA is infinite. Therefore,
the bounds from the preceding sections are not applicable in this case. The analysis we provide
below is based on research on concept learning, which faces a similar problem. Because the
static schedules were solved only for mean and limit optimization, we analyze only these two
cases. Notice, that mean-optimality and limit-optimality assume the learning algorithm finds
an empirically globally optimal algorithm. This is not the case of CMA. Thus the optimality
bounds hold only for the globally optimal VOCMA algorithm. However, mean-generalization and
limit-generalization bounds hold also for CMA.

Theorem 8.3.1. Let the resource profit functions be schedulable and homogeneous. Let p̂, µ̂, ν̂
be the maximal values of corresponding functions. Also, let m∗ε2

bp2 > 2. Then, the generalization
probability is

P

[
sup
f∈Φ
|Fm(f)−E [f ] | > ε

]
≤ 8(m + 1)(

n
2)2n exp

(
−mε2

32p̂

(
1

ν̂µ̂n

)2
)

.

Proof. We prove the theorem in 4 steps. All steps, except the 3rd one are almost identical to the
proof of Thm. B.2.7 from (Devroye, Gyorfi, & Lugosi, 1996).

STEP1: FIRST SYMMETRIZATION BY A GHOST SAMPLE. Define new random variables
X ′

1, . . . , X
′
m ∈ I, such that all variables X1, . . . , Xm, X ′

1, . . . , X
′
m are independent. F ′

m now repre-
sents the empirical performance of the algorithm on the ghost sample. We show now that

P

[
sup
f∈Φ
|Fm(f)−E [f ] | > ε

]
≤ 2P

[
sup
f∈Φ
|Fm(f)− F ′

m(f)| > ε

2

]
. (8.3.1)
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To show this, let f∗ ∈ I be a set for which |Fm(f∗)− E [f∗] | > ε if such a set exists, and a fixed
algorithm from I otherwise. Then

P

[
sup
f∈Φ
|Fm(f)− F ′

m(f)| > ε

2

]
> P

[
|Fm(f∗)− F ′

m(f∗)| > ε

2

]
> P

[
|Fm(f∗)−E [f∗] | > ε, |F ′

m(f∗)−E [f∗] | < ε

2

]
= E

[
I {|Fm(f∗)−E [f∗] | > ε}P

[
|F ′

m(f∗)−E [f∗] | < ε

2
X1, . . . , Xm

]]
.

Now, the conditional probability inside may be bounded by Chebyshev’s Bound B.2.5 as

P
[
|F ′

m(f∗)−E [f∗] | < ε

2
X1, . . . , Xm

]
≥ 1− E [f∗] (1−E [f∗])

mε
2

≥ 1− p̂2

mε2
≥ 1

2
,

whenever m∗ε2
bp2 > 2. This shows (8.3.1).

STEP2: SECOND SYMMETRIZATION BY RANDOM SIGNS. Let δ1, . . . , δm be independent
identically distributed variables independent from X1, . . . , Xm, X ′

1, . . . , X
′
m with

P [δi = −1] = P [δi = −1] =
1
2
.

Because X1, . . . , Xm, X ′
1, . . . , X

′
m are independent, the distribution of

sup
f∈Φ

∣∣∣∣∣
m∑

i=1

(f(Xi)− f(X ′
i))

∣∣∣∣∣
is the same as distribution of

sup
f∈Φ

∣∣∣∣∣
m∑

i=1

δi(f(Xi)− f(X ′
i))

∣∣∣∣∣ .
Thus by STEP 1

P

[
sup
f∈Φ
|Fm(f)−E [f ] | > ε

]
≤ 2P

[
sup
f∈Φ

∣∣∣∣∣
m∑

i=1

δi(f(Xi)− f(X ′
i))

∣∣∣∣∣ > ε

2

]
.

By applying the union bound, we can remove the ghost sample X ′
1, . . . , X

′
m

P

[
sup
f∈Φ

∣∣∣∣∣
m∑

i=1

δi(f(Xi)− f(X ′
i))

∣∣∣∣∣ > ε

2

]

≤ P

[
sup
f∈Φ

∣∣∣∣∣
m∑

i=1

δif(Xi)

∣∣∣∣∣ > ε

4

]
+ P

[
sup
f∈Φ

∣∣∣∣∣
m∑

i=1

δif(X ′
i)

∣∣∣∣∣ > ε

4

]

≤ 2P

[
sup
f∈Φ

∣∣∣∣∣
m∑

i=1

δif(Xi)

∣∣∣∣∣ > ε

4

]
.
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STEP3: CONDITIONING. To bound the probability from STEP 2, we condition on the sample
X1, . . . , Xm

P

[
sup
f∈Φ

∣∣∣∣∣
m∑

i=1

δif(Xi)

∣∣∣∣∣ > ε

4
X1, . . . , Xm

]
.

Since, there are at most (m + 1)(
n
2) possible instance to algorithm classifications (Thm. 6.1.5)

represented by W , we obtain

(m + 1)(
n
2) sup

W
P

sup
S

∣∣∣∣∣∣
n∑

j=1

νjrj

mj∑
i=1

δk(i,j)µj(Xk(i,j))

∣∣∣∣∣∣ > ε

4
X1, . . . , Xm

 ,

where S defines only the resource assignments, not the classification. Function k, and mj are
defined the same way as in Chapter 5. For the choice of schedule here, we do not require equality
of resources to one, just to be smaller. The, there is 2j possible distribution of signs to components
of the sum over j. Therefore, also by homogeneity assumption

(m + 1)(
n
2) sup

W
P

sup
f∈S

∣∣∣∣∣∣
n∑

j=1

νj(rj)
mj∑
i=1

δk(i,j)µj(Xk(i,j))

∣∣∣∣∣∣ > ε

4
X1, . . . , Xm


≤ (m + 1)(

n
2) sup

W
2n sup

S
P

∣∣∣∣∣∣
n∑

j=1

νj(rj)
mj∑
i=1

δk(i,j)µj(Xk(i,j))

∣∣∣∣∣∣ > ε

4
X1, . . . , Xm


≤ (m + 1)(

n
2)2nP

∣∣∣∣∣∣
n∑

j=1

µ̂ν̂

m∑
i=1

δi

∣∣∣∣∣∣ > ε

4
X1, . . . , Xm

 .

STEP4: HOEFFDING’S BOUND. With X1, . . . , Xm fixed, the probability is a sum of m random
variables and therefore can be bound by the Hoeffding’s Bound B.2.4. Then

P

∣∣∣∣∣∣
n∑

j=1

µ̂ν̂

m∑
i=1

δi

∣∣∣∣∣∣ > ε

4
X1, . . . , Xm

 ≤ 2 exp

(
−mε2

32p̂

(
1

ν̂µ̂n

)2
)

.

Taking the expected value from both sides yields the result.

Lemma 8.3.2. Let f̂ be the algorithm that maximizes the empirical mean profit. Then,

E [f∗]−E
[
f̂
]
≤ 2 sup

f∈Φ
|E [f ]− Fm(f)| .

Proof.

E [f∗]−E
[
f̂
]
≤ E [f∗]− Fm(f∗) + Fm(f∗)−E

[
f̂
]

≤ E [f∗]− Fm(f∗) + Fm(f̂)−E
[
f̂
]

≤ 2 sup
f∈Φ

∣∣∣Fm(f̂)−E
[
f̂
]∣∣∣ .
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Corollary 8.3.3. Let f be the algorithm that maximizes the empirical mean profit. Let f∗ be the
mean optimal static schedule as in Definition 3.2.2. If the assumptions of Theorem 8.3.1 hold,
then we have

P [E [f∗(X)]−E [f(X)] > ε] ≤ 8(m + 1)(
n
2)2n exp

(
−mε2

128p̂

(
1

ν̂µ̂n

)2
)

.

Proof. The corollary follows directly from application of Lemma 8.3.2 on the theorem.

Theorem 8.3.4. Let the assumptions of Theorem 8.3.1 hold. A learner that finds a static schedule
PPA by maximizing the empirical mean profit is mean optimal. Moreover, it needs

max

(
512
(
n
2

)
(ν̂µ̂n)2p̂
ε2

ln
256
(
n
2

)
(ν̂µ̂n)2p̂
ε2

,
256(ν̂µ̂n)2p̂

ε2
ln

2n+3

δ

)

samples.

Proof. The proof is based on Problem 12.5 from (Devroye et al., 1996). The bound on samples
follows from Corollary 8.3.3 as shown next. Let

d =
ε2

p̂

(
1

ν̂µ̂n

)2

.

The, the applying the bound

(m + 1)(
n
2) ≤ exp

(
md

256

)
,

whenever m ≥ 512(n
2)

d ln
256(n

2)
d . This holds because 2 lnx ≤ x if x ≥ e2.

Next, we show the generalization capabilities of limit optimization.

Theorem 8.3.5. Let the resource profit functions be homogeneous and schedulable. Let p̂, µ̂, ν̂
be the maximal values of corresponding functions. Also, let m∗ε2

bp2 > 2. Then, the generalization
probability is

P

[
sup
f∈Φ

P [f(X) < Gm(f)] ≥ ε

]
≤ 8(m + 1)n exp

(
−mε2

32

)
.

Proof. First, by the proof of Thm. 8.1.4, we need to bound the probability

P

[
sup
f∈Φ

P [f(X) < Z] > ε Z

]
,

where Φ is the set of static schedules. This set is infinitely large. In the following let A denote the
event that the algorithm portfolio solves the problem with the specified profit Z. Therefore, let Φ
denote a set of these probabilistic events for all portfolios. Then the probability is a probabilistic
measure on this set. The rest of the proof is based on the Vapnik-Chervonenkis Theorem B.2.9.
To use this theorem, see that

s(Φ,m) ≤ (m + 1)n.

To show this, split the event A to
A = A1 ∧ . . . ∧An,
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where Ai represents the event that the i-the algorithm in the portfolio, with the given processor
time assignment, solves an instance. Also, let Φi be set of Ai. Clearly, because of the homogeneity
assumption,

s(Φ1,m) ≤ m + 1.

Let A′ = (A1, . . . , An), and similarly Φ′ be the set of these events. Because Φ′ ⊆ Φ,

s(Φ,m) ≤ s(Φ′,m) = (m + 1)n.

Then, the inequality is

P

[
sup
f∈Φ

P [f(X) < Z] > ε Z

]
≤ 8(m + 1)n exp

(
−mε2

32

)
,

from Theorem B.2.9. Taking expected value from both sides makes the proof complete.

Corollary 8.3.6. Let f be the algorithm that maximizes the empirical limit profit. Let f∗ be the
limit optimal static schedule as in Definition 3.3.2. If the assumptions of Theorem 8.3.5 hold,
then we also have

P
[
P
[
f(X) < inf

Y
f∗(Y )

]
≥ ε

]
≤ 8(m + 1)n exp

(
−mε2

128

)
.

Proof. The corollary holds by a similar argument as Lemma 8.3.2.

Theorem 8.3.7. Let the assumptions of Theorem 8.3.5 hold. A learner that finds a static schedule
PPA by maximizing the minimal empirical profit is limit optimal. Moreover, it needs

max
(

512n

ε2
ln

256n

ε2
,
256
ε2

ln
8
δ

)
samples.

Proof. The theorem is result of Corollary 8.3.6. The sample bound can be obtained similarly as
for Theorem 8.3.4.

Remark 8.3.8. A tighter bound could be obtained using VC results that assume that the training
set can be learned with zero training error, as in Section 12.7 of (Devroye et al., 1996).

The preceding theorems show that static schedules can generalize to the whole instance dis-
tribution, though there are infinitely many of them. The generalization capability is reduced
dramatically with the increasing number of algorithms in the portfolio.

8.4 Summary

We provided theoretical bounds for the specified types of learning dynamic and static schedules,
as well as for general algorithm learning problem. The importance of the results is that, for
both static and dynamic schedules, the number of samples is polynomial in both precision and
confidence of learning. In addition, the bounds are also polynomial in the number of algorithms
in the PPA. Therefore, it is reasonable to assume that the schedules are learnable.

The space of possible dynamic schedules is finite. Therefore, the worst-case of required training
instances to be polynomial in both number of algorithms and the number of intervals. This bound
can be probably improved by the Vapnik-Chervonenkis techniques used for generalization of static
schedules.
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The space of possible static schedules is infinite, what makes the approach presented before
unusable. Inspired by the work on Vapnik-Chervonenkis dimension, we showed that it is also
possible to learn the static schedules with a polynomial number of training instances in the number
of samples.

The presented bounds are not tight and offer only a worst case analysis. They are not nec-
essarily always practical. Despite the bound are polynomial, they still require a huge number of
samples for a reasonable generalization probability.



Chapter 9

APPLICATION: SAT PROBLEM SOLVING

In this chapter we the demonstrate practical applicability of Parallel Portfolios of Algorithms. As
the application we use the Satisfiability problem (SAT). The purpose SAT problem is to determine
whether a formula in propositional logic is satisfied for at least one interpretation. There are two
main variants of the problem, characterized by their formulations. One is Conjunctive Normal
Form (CNF) and the other is Disjunctive Normal Form (DNF). In CNF, the formula is provided
as a conjunction of clauses and in DNF as a disjunction of terms.

SAT is an important problem in reasoning, planning and generally in artificial intelligence
(Russell & Norvig, 2002). Moreover, SAT was the first problem to be shown NP complete (Cook,
1971).

9.1 Problem Setup

In general, evaluation of algorithm performance takes a lot of processor time. Therefore, we used
data from SAT-Ex, a library of performance of 23 cutting edge SAT algorithms (Simon, 2005).
The instances were, as well as the algorithms, taken from the Sat-Ex project. The whole set
consists of 1303 instances, and total processor time spent on running the instances on was more
than 529 days on a P-II 400Mhz machine. The cutoff time for execution was 10000 seconds.

We evaluate the performance of algorithms by simply comparing their statistical results on the
set of instances. We assign a execution time of 20000 seconds for problem instances that were not
solved within the provided 10000 seconds. Obviously, this may skew the results. A more involved
approach that addresses this problem was proposed by (Etzioni & Etzioni, 1994).

Implementation of algorithms to finds the optimal schedules for PPA is in Appendix D. Profit
of PPA is calculated only theoretically on the available problem instanced. Thus, the portfolios
were only simulated, not really implemented.

We used the following state-of-the-art algorithms for creation of PPAs. Later, we refer to each
algorithm by the number in parentheses. Interesting algorithms are provided with a short descrip-
tion. If no citation is provided for the description, then the description is from (Simon, 2005). In
addition, DP stands for Davis-Putnam algorithm and DLL for Davis-Longeman-Loveland algo-
rithm.

zres (1) ZRes is a propositional solver based on the original procedure of DP,
as opposed to its modified version of DLL. On some highly structures
SAT instances, proved hard for resolution, ZRes performs very well and
surpasses all classical SAT provers by an order of magnitude (Chatalic &
Simon, 2000).
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relsat-200 (2) Relevance-bounded SAT solver (Bayardo & Schrag, 1997).
eqsatz (3) It is equivalence reasoning enhanced satz to solve satisfiability problems

involving equivalence clauses (Li, 2005).
nsat (4)
ntab (5)
ntab-back2 (6)
csat (7)
sato-3.2.1 (8)
dr (9) Directional Resolution. It is one of the rare DP implementation as stated

in 1960. It was also the first attempt to revive DP.
posit (10)
modoc (11)
sato (12) It is a propositional solver based on DP method. It uses additional heuris-

tics to speed up the solving (Zhang, 1997).
heerhugo (13)
satz-213 (14)
sat-grasp (15)
calcres (16) It is an implementation of the original procedure of DP as stated in 1960

(DP as opposed to the DLL well-known version of this procedure).
satz (17)
relsat (18) It is a randomized DLL algorithm. Though, we treat it as deterministic.
asat (19) It is a simple DLL implementation. Still, it is often very efficient.
ntab-back (20)
zchaff (21) It is a very fast extension of DLL, one of the fastest SAT solvers

(Moskewicz, Madigan, Zhao, Zhang, & Malik, 2001).
modoc-2.0 (22)
satz-215 (23)

Because, only CMA can handle a large number of algorithms, we also use subsets of all avail-
able algorithms to evaluate performance and feasibility of VOCMA and dynamic schedules. The
notation for the sets of algorithms is

E All algorithms
E1 3, 19, 21
E2 7, 20, 23
E3 5, 6, 8

The set of instances in Sat-Ex is divided into 11 families. Each family contains similar instances.
We denote the set of all available instances as I. Further, any set decorated by Ĩ is a reduced set
containing only instances that can be solved by at least one algorithm. Moreover, we define the
following instance sets

I The set of all instances I4 Last 800 instances
I1 First 400 instances I5 First 800 instances
I2 Middle 400 instances I6 Instances 1100 - 1303
I3 Last 400 instances I7 Instances 700 - 900

The instances were randomly resorted, when taken from Sat-Ex site. The instance set may be
downloaded as specified in Appendix D.
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9.2 Algorithms

This section summarizes the statistics of the algorithms on the instance set. The actual numerical
results are in Appendix C. Table C.1 summarizes the performance of individual algorithms on the
instance sets and Graph C.1 shows the performance of all algorithms on I.

Because many of the algorithms use a quite different approach to solve the problem, their
results vary significantly as well. The best performer and once the fastest SAT solver is zChaff. It
outperforms other algorithms on all instance subsets. However, there are still instances that can
be solved faster by other algorithms, and PPAs exploit this fact. We provide the specific results
in the following sections.

As mentioned before, the variance1 of an algorithm is also important (Huberman, Lukose, &
Hogg, 1997; Zilberstein, 1996). A low variance increases the reliability for using the algorithm in
a complex system, and also can increase the confidence of the users. Thus, we provide a statistics
of standard deviation of algorithms in Table C.2. Later, we also explore whether and how PPA
can decrease the variance. Also, other ideas regarding the variance are in Chapter 10.

9.3 Static Schedules: CMA

The CMA algorithm can be used to determine a locally optimal schedule for all 23 algorithms, be-
cause of its linear complexity in terms of the number of algorithms. Since the starting classification
is chosen randomly, each it run may output a different PPA.

We tested mean optimization CMA for both I and Ĩ. The simulated execution times of several
PPAs for instances from I are in Table C.3. Table C.4 provides the same data for Ĩ. In both cases
the optimal algorithm significantly outperforms the best algorithm for the instance set (zChaff).
In the first case the mean execution time was decreased by 37%, and the standard deviation was
decreased by 24%. In the second case, the mean execution time was decreased by 68% and the
standard deviation was decreased by 55%. The impressive results on Ĩ were mainly caused by
each instance being solved by at least one algorithm, thus reducing the very long runtime for those
instances.

The small number of different results on different runs of CMA indicates that there may be
only a few local optima in the problem. We explore further whether it is typical for CMA to reach
the global optimum in Section 9.4.

The results of several runs of limit optimization CMA for runs on Ĩ are in Table C.5. The
execution time for instances not solved within 10000 seconds were set to be 25000. The purpose
was to identify whether all the instances would be solved with in a time longer than 20000, or they
would not be at all. Moreover, since the PPAs are evaluated only theoretically, if the instance is
not solved by any algorithm within the allocated 10000 seconds, it is assumed to be never solved.
PPA with a static schedule solved each instance with the worst-case time of 16165.8, while no
individual algorithm solved all instances2. The standard deviation 1280.8 was much lower than
the variance of the algorithm with the minimal variance on this instance (zChaff). Still, the
standard deviation was higher than the deviation of mean optimal static schedule PPA.

As well as in the case of mean optimization, the results on various runs of CMA are different.
We also explore the tendency of CMA to reach the global optimum for limit optimization in
Section 9.4.

1 Or equivalently, standard deviation.
2 The fact that we dropped all instances that were not solved by either algorithm turns this experiment to only

a theoretical study. However, in many cases it is feasible to assume that each instance is solved by at least one
algorithm.
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9.4 Static Schedules : VOCMA

The purpose of this section is to compare the results obtained by CMA to those obtained by the
optimal algorithm VOCMA. Unfortunately, though the complexity of VOCMA is polynomial in
number of samples, calculation of more than 20 samples for 3 algorithms turned out to be very
time consuming. The complexity be attributed also to the naive implementation of the algorithm.
Therefore, we tested VOCMA only on the first 20 samples of indicated instance sets.

The results on mean optimization are summarized in Table C.6. The results on limit opti-
mization are summarized in Table C.7. It is clear that in both cases, CMA obtained the optimal
solution. For most instances in both cases, most runs of CMA converged to the globally optimal
solution. It is not possible to verify the hypothesis for large sets of algorithms. However, it may be
conjectured from the small number of different results of CMA on the large sets that the optimum
was reached.

9.5 Dynamic Schedules

The complexity of dynamic schedules depends on the both the number of instances and the number
of algorithms. Thus, for the tests we limited the number of algorithms to 3 and the largest instance
set we used contained 200 instances.

The results of mean optimization dynamic schedules on an instance set for several different
parameter values are in Table C.8 and Table C.9. It is clear from the first table that the schedule
with the best profit was obtained for z = 1. This can be explained by very short execution times
of the considered algorithms on this instance set. In addition, increasing b beyond 10 did not
increase the performance. On the other hand, for the second table, the best performance was
achieved when using z = 50. The reason is that in this case, there were many instances unsolvable
by some algorithms, and these have the execution time 20000. These results indicate that dynamic
schedules are very sensitive to the choice of z and b.

The experimental results of bound optimization dynamic schedules are in Table C.10. They
indicate a slight increase in performance of the PPA compared to the best algorithm. However,
the gain could be more significant when using more diverse algorithms or larger instance sets.

We also compared the performance of PPA with dynamic schedules to PPA with static sched-
ules. The results are summarized in Table C.11. There was no clear winner, but in most cases
the results were similar. The exception was the first row, where dynamic schedules almost twice
over-performed the static ones. In the next cases, static schedules seem more advantageous. The
difference was that parameters of the dynamic schedules were not tuned for experiments except
the first two rows. That is, we tested only one choice of z and b.

9.6 Generalization

This section explores the generalization capabilities of PPA with static and dynamic schedules.
These results are only empirical, in contrast with the theoretical treatment in Chapter 8. However,
they practically indicate the actual generalization; in this case the theoretical bounds are wide,
and do not guarantee anything.

The generalization is tested by having a training and test sets. The optimal PPA is calculated
from the training set. The algorithm can be assumed to generalize well if its performance on
the training set is acceptable. We further denote the training set by I ′ and test set by I. If not
specified otherwise, the test set is the set of all available instance, therefore the same symbol.

For static schedules we used the suboptimal CMA algorithm to calculate the schedule. Gen-
erally, the considered PPA is the best one from 15 runs of CMA. The PPA were created from the
training set. Schedules were by no means tuned for test set.
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The results of generalization tests of static schedules for mean optimization are in Table C.12.
Though, the fraction of samples used to find the optimization was usually smaller than a half,
in most cases the learned PPA performed better on the whole instance set than the best single
algorithm. This indicates that static schedules may very well generalize even from fairly small
sample sets.

The results from of generalization tests of static schedules for limit optimization are in Ta-
ble C.13. Generally, only less than 2% of the samples from the whole set were not solved by the
worst case time on the training set. As a result, even a small number of instances may lead to a
good PPA in case of limit optimization.

Though dynamic schedules seem to be slightly more powerful than their static counterparts, it
is very interesting to compare how much a good performance on training set generalizes to a bigger
problem distribution. The comparison is of course possible only in case of mean optimization,
which is shared by both approaches.

For dynamic schedules, we studied only the generalization of mean optimization. The results
are in Table C.14. The table also contains the comparison to static schedules on the same instance
sets. Clearly, dynamic schedules generalize well the full distribution. They over-performed static
schedules on most training sets. However, static schedules had better performance for most test
sets. As a result, static schedules seem to have a better generalization capability.

9.7 Summary

PPAs proved to be useful for the application on the presented SAT solvers on considered instances.
The best results were obtained by VOCMA algorithms and for dynamic schedules. However,
VOCMA is computationally very difficult and dynamic schedules do not seem generalize as well
as static ones.

The performance of CMA for static schedules was in most cases comparable to both VOCMA
and dynamic schedules. With its low computational complexity, simple algorithm, and high good
generalization, CMA was superior to the other two approaches.
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Chapter 10

CONCLUSION AND FUTURE WORK

In this chapter we summarize the main results of the thesis and provide pointers to interesting
extensions and applications.

10.1 Conclusion

We proposed a method of enhancing the performance of deterministic algorithms by running
more algorithms for the same problem in parallel, thus creating a PPA. The way in which the
algorithms are combined is determined by a schedule. It specifies the resources allocated to each
algorithm in every time instance. Given an set of typical instances randomly drawn from the
instance distribution, we explored how to tune the schedule for the best performance.

The two main types of schedules we explored were static and dynamic schedules. We presented
two primary ways of calculating static schedules, CMA and VOCMA. CMA does not guarantee
optimality of the results, but its calculation is very fast. VOCMA, on the other hand, is optimal
but it is practically unusable for finding PPA of more than 5 algorithms for more than 100
instances. Dynamic schedules can be modeled as a Markov Decision Process (MDP). It is useful
because this formulation allows the use of standard algorithms for calculation of optimal schedules.
We proposed a dynamic programming algorithm for this case and a possibly useful approximate
algorithm.

For the measure of the best PPA, we proposed three methods: mean optimization, limit
optimization, and bound optimization. Each of them is applicable and practical in different
context. For both static and dynamic schedules, we showed that they need an asymptotically
reasonable number of samples to achieve good generalization. The number of required samples is
polynomial in the number of algorithms in the PPA, precision, and certainty.

All presented approaches were able to significantly outperform the best algorithm in the SAT
problem domain. In most cases, they over-performed the best algorithm even when trained only on
a subset of all instances. Together with the polynomial generalization bounds, this indicates that
PPA may be practically applicable in other domains. However, the applicability on optimization
problems, thus finding a PPA with best results in a fixed time, is limited by the assumptions
placed on profit functions of individual algorithms.

From all presented schedule types and calculation methods, the most advantageous seems to
be the simplest one, that is static schedules with the CMA algorithm. The advantage of VOCMA
vanishes with a larger number of algorithms or samples. Dynamic schedules can obtain better
results on the training set, but their generalization seems to be empirically worse. They require
more tuning and cannot handle many algorithms. On the other hand, dynamic schedules can be
used for bound optimization. Moreover, dynamic schedules do not require homogeneous profit
functions. Profit functions are naturally homogeneous for decision algorithms, but this may not
be the case for optimization algorithms.

The presented result can also be applied to the popular field of multi-agent systems. In this
scenario, we could have a community of agents, each trying to solve the same problem instance.
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10.2 Future Work

The presented work on PPA is by no means complete. The next list summarizes the interesting
extensions and applications. Each paragraph summarizes advancement a specific direction of PPA.

SCHEDULES

Minimization of variance: The idea is to not maximize minimal profit, but instead to minimize
the variance of profits, given a desired mean profit. This is proposed in (Huberman et al.,
1997).

Combination of importance sampling algorithms: The PPA approach may lower the error of im-
portance sampling. Some research in this area has been done, for example (Owen & Zhou,
2000).

Stochastic algorithms: Extending the approach to cover also stochastic algorithms may be useful.
One possibility is to use probabilistic results as a profit of an algorithm. This would reduce
the algorithms to deterministic. Other approaches may be useful too.

Randomized schedules: Exploring probabilistic schedules is interesting too. They may be used to
lower variance, as in research on optimal portfolio selection, Example 3.1.5 in (Bertsekas,
2003). Also, it may be possible to use the game theory analysis to create best schedules for
the worst case distribution over the instances, as in mixed strategies (Osborne & Rubinstein,
1994).

Branch and Bound: PPA framework could be applied to branch and bound algorithms. In this
case, the performance may be increased by communication of the current best bound between
the algorithms. Moreover, a different schedule may be optimal for each bound.

SOLUTION METHODS

Extension to non homogeneous algorithms: For optimization algorithms, it may be useful to gen-
eralize CMA to handle also non-homogeneous algorithms.

Hybrid CMA and VOCMA: VOCMA algorithm that works by iteratively determining optimal
split points for each pair of algorithms.

VOCMA: The VOCMA algorithm could be possibly enhanced by early checking whether a split
point leads to a valid classification. Given algorithms a, b, and c, the split points between
a-b and a-c determine the split point between b-c. Extending this idea to more algorithms
may dramatically reduce the computation time of VOCMA.

Domination: CMA usually picks only a small number of algorithms to have non-zero resources.
Determining the algorithms that must have zero resources in the optimal schedule may
reduce the solution time, and improve the results.

GENERALIZATION

Regression: The schedule learning process is related to a non-parametric regression (Friedman
et al., 2000). Therefore, regression methods may be used for finding schedules.

General mean optimization bound: The generalization result presented for mean optimization sta-
tic schedules may be extended to arbitrary algorithms. One possibility is to form a forest
induced by the domination relation of algorithms.
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Variance: The variance on the training set may have a prediction capability for the generalization.
Maybe it is possible to obtain tighter online bounds for learning using the training set
variance.

EVALUATION

Optimization problems: The practical applicability of the PPA on optimization algorithms needs
to be evaluated. There is the question whether the homogeneity assumptions is not too
strict.

Comparison to ALS: It would be interesting to compare the PPA approach to the Adaptive Levin
Search, as presented in (Schmidhuber & Wiering, 1996).

Generalization from simple instances: Learning on difficult instances takes a long time. This prob-
lem could be addressed by learning on easier instances of a similar type. However, it must be
determined how to generate the simples instances, and determine the quality of the schedule.

Comparison to heuristic combination: The approach could be compared to combining two heuris-
tics for a single problem. The standard approaches either represent the compound heuristic
function as a linear combination of the individual ones, or take maximal values. Weights
for the linear combination may be obtained using reinforcement learning, but in general it
invalidates the admissibility of heuristics. On the other hand, taking the maximal value is
often ineffective. Treating heuristics as different algorithms and combining them using PPA
may lead to interesting results.

OTHER EXTENSIONS

Parametrized complexity: The PPA approach may yield interesting results for parametrized com-
plexity algorithms (Downey & Fellows, 1998).
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Appendix A

NOTATION

Symbol Meaning
P Parallel Portfolio of Algorithms.
B Operator that determines the optimality of a schedule.
S Schedule of a PPA.
E Set of individual algorithms for portfolio creation.
I Training set of instances.
I All possible instances for the problem.
Φ Set of all available algorithms for speedup learning.
P Profit function of a PPA, usually determined by a schedule and an in-

stance.
p Profit function for individual algorithms.
µ Profit function dependency on instance, in homogeneous algorithms.
ν Profit function dependency on resource amount, in homogeneous algo-

rithms.
r Resource allocation function, these comprise the schedule.
e Individual algorithm.
x Single instance, usually from I.
X Random variable that represents a single instance, generally from I.
η Execution time of a decision algorithm.
τ Maximal time for a dynamic schedule, only one algorithm is executed

after this time.
z Length of each interval in dynamic schedules.
b Number of the intervals in dynamic schedules, including the last, infinitely

long one.
Z Probabilistic event that the algorithm solves the instance during the spec-

ified time interval.
Θ Time interval in dynamic schedules, its length is specified by z.
B Bound optimization bound value.
m Number of instances in the training set.
i Iterator used to iterate over the instances.
n Number of algorithms in the portfolio.
j Iterator used to iterate over the algorithms.
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Appendix B

MATHEMATICAL BACKGROUND

In this appendix we summarize mathematical concepts we use in the thesis. It contains mostly
background on mathematical optimization, optimality conditions and convex analysis. In addition,
it contains the probabilistic and static concepts used in pattern recognition.

B.1 Mathematical Optimization Basics

This section present a small part of the non-linear and linear programming theory. The theorems
and definitions are presented according to (Bertsekas, 2003).

Proposition B.1.1. If x∗ is a local minimum of f over X, then

∇f(x∗)′(x− x∗) ≥ 0, x ∈ X. (B.1.1)

Moreover, if f is convex over X, then the condition B.1.1 is also sufficient for x∗ to minimize f
over X.

Proposition B.1.2. Every function f satisfies maxa maxb f(a, b) = maxa,b f(a, b).

Proposition B.1.3. Let C1 ⊆ C2. Then

max
x∈C1

f(x) ≤ max
x∈C2

f(x).

Theorem B.1.4 (Lagrange Multiplier Theorem - Necessary Conditions). Let x∗ be a local min-
imum of f subject to h(x) = 0, and assume that the constraint gradients ∇h1(x∗), . . . ,∇hm(x∗)
are linearly independent. Then there exists a unique vector λ∗ = (λ∗1, . . . , λ

∗
m), called a Lagrange

multiplier vector, such that

∇f(x∗) +
m∑

i=1

λ∗i∇hi(x∗) = 0.

If in addition f and h are twice continuously differentiable, we have

y′

(
∇2f(x∗) +

m∑
i=1

λi∇2hi(x∗)

)
y ≥ 0 for all y ∈ V (x∗),

where V (x∗) is the subspace of first order feasible variations

V (x∗) =
{
y ∇hi(x∗)y′ = 0, i = 1, . . . ,m

}
.

Definition B.1.5. Let f : Rn → R be the objective function, and hi(x) = 0i = 1, . . . ,m the
constraints. Lagrangian function L : Rn+m → R is defined as

L(x, λ) = f(x) +
m∑

i=1

λihi(x).
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The necessary optimality conditions for x∗ in terms of the Lagrangian function are:

∇xL(x∗, λ∗) = 0, ∇λL(x∗, λ∗) = 0.

Theorem B.1.6 (Second Order Sufficiency Conditions). Assume that f and h are twice contin-
uously differentiable, and let x∗ ∈ Rn and λ ∈ Rm satisfy

∇xL(x∗, λ∗) = 0, ∇λL(x∗, λ∗) = 0,

y′∇2
xxL(x∗, λ∗)y > 0, for all y 6= 0 with ∇h(x∗)′y = 0.

Then x∗ is a strict local minimum of f subject to h(x) = 0. In fact, there exist scalars γ > 0 and
ε > 0 such that

f(x) ≥ f(x∗) +
γ

2
‖x− x∗‖2 , ∀x with h(x) = 0 and ‖x− x∗‖ < ε.

Proposition B.1.7. A convex continuous function on a compact convex set has only one local
minimum, which is also the global minimum.

B.2 Statistics

This section introduces fundamental theorems from probability theory and statistics, used in the
work. The theorems and definitions are presented according to (Devroye et al., 1996).

Theorem B.2.1. Let X be a random variable. Then

E [X] = E [X y]P [y] + E [X ¬y]P [¬y] .

Theorem B.2.2. Let A be a random event, then

P [A] = E [I {A}] .

Theorem B.2.3 (Chernoff’s Inequality). Let Xi be random independent variables. Let their sum
be

Sn =
n∑

i=1

Xi Xi ∈ 〈ai, bi〉.

Then, for any ε > 0 we have

P [Sn −E [Sn] ≥ εσ] ≤ exp
(
−2ε2

)
P [Sn −E [Sn] ≤ −εσ] ≤ exp

(
−2ε2

)
.

Theorem B.2.4 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent bounded random vari-
ables such that Xi is from interval 〈a, b〉. Let their sum be Sn =

∑n
i=1 Xi. Then for any ε > 0 we

have

P [Sn −E [Sn] ≥ ε] ≤ exp
(

−2ε2∑n
i=1(bi − ai)2)

)
P [Sn −E [Sn] ≤ −ε] ≤ exp

(
−2ε2∑n

i=1(bi − ai)2)

)
.

Theorem B.2.5 (Chebyshev’s Inequality). Let X be a random variable. Then for each t,

P [|X −E [X]| ≥ t] ≤ Var [X]
t2

.
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Theorem B.2.6 (Boole’s Inequality). For any finite or countable set of events A1, A2, . . . we have

P

[⋃
i

Ai

]
≤
∑

i

P [Ai] .

Theorem B.2.7 (GlivenkoCantelli). Let Z1, . . . , Zn be i.i.d.1 real valued variables with distribu-
tion function F (z) = P [Z1 ≤ z]. Denote the standard empirical function by

Fn(z) =
1
n

n∑
i=1

I {Zi ≤ z} .

Then

P
[
sup
z∈R
|F (z)− Fn(z)| ≥ ε

]
≤ 8(n + 1) exp

(
−nε

32

)
.

Definition B.2.8. Let A be a collection of measurable sets. For (z1, . . . , zn) ∈ {Rd}n, let NA be
the number of different sets in

{{z1, . . . , zn} ∩A A ∈ A}.

The n-th shatter coefficient is

s(A, n) = max
(z1,...,zn)∈{Rd}n

NA(z1, . . . , zn).

That is, the n-th shatter coefficient is the maximal number of different subsets of n points that
can be picked out by the class of sets A.

We use notation ν(A) = P [Z1 ∈ A] and νn(A) = 1
n

∑n
j=1 I {Zj ∈ A}.

Theorem B.2.9 (Vapnik and Chervonenkis). For any probability measure ν and class of sets A,
and for any n and ε > 0,

P
[
sup
A∈A
|νn(A)− ν(A)| > ε

]
≤ 8s(A, n) exp

(
−nε2

32

)
.

1 Independent and identically distributed.
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Appendix C

APPLICATION RESULTS

In this chapter we present numerical results from experiments on SAT problem solving. The actual
experiments are described and commented in Chapter 9.
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E 1 2 3 4 5 6 7 8
I 13176.0 715.0 1103.6 3731.7 4940.3 1704.9 3270.1 1319.7
I1 13040.6 820.6 1078.8 3899.3 4895.4 1985.4 3379.4 1299.4
I2 13050.3 559.5 1033.1 3484.7 5192.8 1545.6 2999.9 1261.1
I3 13398.0 967.1 1509.0 3818.7 4868.4 1847.3 3573.1 1650.1
I4 13183.7 653.1 1119.5 3647.3 4755.6 1550.3 3080.9 1269.1
I5 13036.8 665.7 1032.2 3671.4 5025.6 1742.5 3168.4 1256.8
I6 13911.1 374.9 568.5 3661.0 4979.9 1515.3 3485.4 901.0
I7 12866.8 808.8 1208.3 3606.6 4901.6 1546.7 2968.8 1281.1
Ĩ 13133.9 595.9 986.8 3631.2 4847.3 1591.9 3166.8 1204.3
E 9 10 11 12 13 14 15 16
I 18424.5 3885.8 1396.2 994.4 4503.0 1184.0 2674.3 13938.4
I1 18006.5 3932.3 1430.9 905.5 4671.2 1025.7 2763.2 13936.0
I2 18409.3 3456.8 1073.4 935.3 3973.8 1088.8 2272.7 13887.1
I3 18708.4 4369.7 1823.2 1412.0 5060.1 1639.2 3052.4 14085.1
I4 18681.5 3812.1 1426.3 1002.8 4426.6 1253.6 2651.5 13875.6
I5 18205.9 3673.9 1228.5 896.6 4302.5 1033.6 2495.8 13903.9
I6 18917.9 3912.2 1335.1 600.7 3839.9 1117.2 2430.1 14665.8
I7 19105.7 3509.5 1263.6 1022.2 4446.6 1082.2 2182.2 13303.1
Ĩ 18414.7 3786.2 1281.3 877.0 4407.2 1067.7 2567.3 13900.9
E 17 18 19 20 21 22 23
I 1336.0 951.0 5722.8 1841.4 372.3 1408.7 1100.0
I1 1050.9 1097.9 5682.7 2024.5 371.9 1531.5 960.8
I2 1222.3 665.0 5462.1 1740.3 413.0 1098.0 934.3
I3 1941.6 1228.9 6138.2 2061.4 470.0 1723.6 1583.2
I4 1492.2 898.5 5636.8 1706.3 343.4 1396.6 1151.6
I5 1113.1 857.3 5554.3 1859.5 368.0 1291.1 923.7
I6 1276.4 800.9 6268.2 1527.4 118.5 1253.4 1019.4
I7 1524.5 811.3 5352.8 1857.7 513.7 1080.8 1070.4
Ĩ 1220.7 833.4 5634.6 1729.2 251.1 1293.9 983.3

Table C.1: Mean execution time of individual algorithms on various instance sets.

E 1 2 3 4 5 6 7 8
σ(I) 9192.0 3599.2 4404.6 7629.7 8565.2 5512.9 7272.3 4864.5
σ(Ĩ) 9204.6 3274.3 4159.2 7545.0 8509.2 5338.3 7174.4 4651.8
E 9 10 11 12 13 14 15 16
σ(I) 5380.1 7810.9 4972.8 4103.7 8194.2 4563.1 6655.0 9118.3
σ(Ĩ) 5395.3 7731.2 4767.5 3833.7 8128.1 4329.9 6534.2 9134.0
E 17 18 19 20 21 22 23
σ(I) 4890.6 4198.5 8976.6 5716.9 2633.3 4999.5 4410.4
σ(Ĩ) 4679.6 3934.4 8933.6 5552.8 2140.2 4795.8 4165.3

Table C.2: Standard deviation in execution time of individual algorithms on the training sets.
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Figure C.1: Mean execution time of individual algorithms on I.

Run −E [P ] σ(P )
1 331.5 2656.3
2 294.8 2462.7
3 255.2 2226.2
4 318.7 2583.6
5 314.6 2580.5
6 321.2 2591.3
7 343.7 2704.2
8 255.2 2226.2
9 307.6 2520.6

10 308.4 2504.6
1-200 233.2 2005.6

Simple 3365.2 36787.2

Table C.3: Mean execution time and standard deviation of 10 calculations of CMA on I and the
best result from 200 runs. Simple denotes a naive PPA, in which all algorithms get
an equal share.
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Run −E [P ] σ(P )
1 126.6 1849.2
2 78.8 972.2
3 194.5 1866.4
4 78.8 972.2
5 135.7 1766.7
6 126.6 1849.2
7 78.8 972.2
8 78.8 972.2
9 78.8 972.2

10 78.8 972.2
1-200 77.1 1000.5

Simple 544.3 8036.5

Table C.4: Mean execution time and standard deviation of 10 calculations of CMA on Ĩ and the
best result from 200 runs. Simple denotes a naive PPA, in which all algorithms get
an equal share.

Run −minP σ(P )
1 16165.8 1380.5
2 16165.8 1380.5
3 26096.3 2187.9
4 24929.4 2104.2
5 16165.8 1380.5
6 16165.8 1380.5
7 16165.8 1380.5
8 16165.8 1380.5
9 16165.8 1380.5

10 257515.9 37054.4
1-200 16165.8 1380.5

Simple 224907.8 8036.5

Table C.5: The worst case execution time and standard deviation of PPAs calculated by CMA Ĩ.
Simple denotes a naive execution where all algorithms in the portfolio have the same
resource share. Instances not solved by an algorithm in 10000 seconds are assumed
to be never solved. Moreover, the penalty for not solving an instance was changed
to 25000 seconds.

Instances Algorithms −P ∗ −PCMA C −PB

I6 E1 2.13 2.13 10 15.59
I6 E2 2.14 2.14 3 199.05
I6 E3 1.92 1.92 7 8.48
I7 E1 0.52 0.52 6 1.29
I7 E2 85.90 85.90 8 85.94
I7 E3 1.18 1.18 2 1.68

Table C.6: Optimality of using CMA for mean optimization. P ∗ is the profit of the mean optimal
PPA, calculated by VOCMA. PCMA is the profit of the best PPA out of 10 runs of
CMA. C is the number of runs of CMA that resulted in its optimal profit. PB is the
best profit of an individual algorithm from the specified algorithm set.
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Instances Algorithms −P ∗ −PCMA C −PB

I6 E1 12.09 12.09 10 162.97
I6 E2 10.93 10.93 7 3939.34
I6 E3 19.63 19.63 8 102.40
I7 E1 4.03 4.03 7 9.78
I7 E2 1710.24 1710.24 9 1710.24
I7 E3 15.74 15.74 4 22.54

Table C.7: Optimality of using CMA for limit optimization. P ∗ is the profit of the limit optimal
PPA, calculated by VOCMA. PCMA is the profit of the best PPA out of 10 starts of
CMA. C is the number of starts of CMA that resulted in its optimal profit. PB is
the best profit of a single algorithm from the specified algorithm set. All profits are
with regard to specified instance set.

z b E [P (S)] σ(P (S))
1 10 1.39 3.56
1 15 1.39 3.56
2 10 1.64 4.19
2 15 1.64 4.19
5 10 2.19 5.23
5 15 2.19 5.23

10 10 2.86 6.79
20 10 3.36 8.58
e 15.59 46.15

Table C.8: Results of calculating mean optimal dynamic schedules for PPA for the first 20 in-
stances of I6 and the algorithm set E1. e is an algorithm from E with the best
empirical performance.

z b E [P (S)] σ(P (S))
1 10 211.3 2000.2

10 10 204.7 2001.7
20 10 205.4 2003.6
50 15 19.5 122.3

100 10 23.0 124.6
100 15 23.0 124.6
200 10 27.1 138.8
e 217.8 1999.8

Table C.9: Results of calculating mean optimal dynamic schedules for PPA for the first 100
instances of I6 and the algorithm set E1. e is an algorithm from E with the best
empirical performance.
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I z b B = 4 B = 10 B = 16
I6(1 : 20) 1 10 0.9 0.95 1
I6(1 : 20) 2 10 0.85 0.9 1
I6(1 : 20) e1 0.85 0.85 0.9
I6(1 : 100) 1 10 0.87 0.9 0.93
I6(1 : 100) e2 0.85 0.88 0.92

Table C.10: The results of bound optimal dynamic schedules using algorithms from E1. Column
B is the fraction of instances solved before the bound. e1 and e2 are algorithms
from E with the best empirical performances.

E I E [P (S)] E [P (S′)] σ(P (S)) σ(P (S′)) E [P (e)] σ(P (e))
E1 I6(1 : 20) 1.39 2.13 3.56 4.26 15.59 46.15
E1 I6(1 : 100) 19.54 24 122.3 2265.8 217.8 1999.8
E1 I6 44.85 27.13 332.39 166.6 118.5 1404.7
E2 I6 717.4 715.79 3462.3 3459.7 1019.4 4164.87
E2 I7 1070.44 1070.17 4381.5 4384.4 1070.44 4381.51
E3 I7 1241.87 1235.18 4771.1 4852.8 1281.09 4760.9

Table C.11: Comparison of PPA performance with dynamic schedules versus static schedules.
S denotes the mean optimal dynamic schedule for training instance. S′ denotes the
best mean static schedule from a 10 runs of CMA. Dynamic schedules were created
with parameters z = 50 and b = 15, except the first row where z = 1. e represents
an algorithm with best empirical performance.

I ′ −E [P (S) I ′] −E [P I]
I1 399.8 387.4
I2 225.1 418.8
I3 380.1 311.7
I4 228.5 297.3
I5 225.2 259.7
I6 26.4 514.1
I7 393.1 311.5

Table C.12: Generalization of mean optimization static schedules. The schedules were obtained
by CMA for I ′ and simulated on I, which is the set of all instances.

I ′ −E [P I ′] P
[
P (S) < B Ĩ

]
I1 7726.4 0.005
I2 5174.6 0.013
I3 10569.1 0.004
I4 10573.2 0.002
I5 11230.0 0.003
I6 1485.8 0.012
I7 9829.7 0.015

Table C.13: Generalization of limit optimization static schedules. The schedules were obtained
by CMA algorithm for I ′ and simulated on Î.
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E I ′ I E [P (S) I ′] E [P (S′) I ′] E [P (S) I] E [P (S′) I]
E1 I6(1 : 20) I6 1.39 2.13 114.77 51.28
E1 I6(1 : 100) I6 19.54 24.02 44.85 30.92
E2 I7(1 : 20) I7 85.94 85.94 1070.44 1070.44
E3 I7(1 : 100) I6 720.91 680.59 1281.1 1291.62

Table C.14: The generalization results comparison for mean optimization dynamic and static
schedules. S denotes the mean optimal dynamic schedule. S′ denotes the best
schedule obtained from 10 runs of CMA. The schedules were calculated from I ′ and
simulated on I.
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Appendix D

IMPLEMENTATION

This chapter contains the code of algorithms that calculate both static and dynamic sched-
ules. All algorithms were implemented in Scilab 3.0. Scilab is a free algebraic and mathemat-
ical programming tool that offers similar capabilities as Matlab. It can be downloaded from
http://www.scilab.org. The programs are optimized for implementation simplicity, not for the
performance of the calculations. Thus, the calculation of the optimal static schedules and dy-
namic schedules could be significantly enhanced. A Scilab ready matrix containing the algorithms
can be downloaded from http://marekpetrik.webpark.sk/performancematrix.

D.1 Static Schedules

//X conta ins p r o f i t s , which are e q u i v a l e n t to nega t i v e s o l u t i o n t imes
//The f o l l ow i n g code l oads the t e s t i n s t ance s
//Rows in the matrix r ep re s en t i n s t ance s and columns a l gor i t hms
//X = fscanfMat(”<path >”);
//X = modifyEndValue (X, −20000);
//X1 = X(1 : 4 0 0 , : ) ;
//X2 = X(400:800 , : ) ;
//X3 = X(800:1200 , : ) ;
//X4 = X(503:1303 , : ) ;
//X5 = X(1:800 , : ) ;
//X6 = X(1100:1302 , : ) ;
//X7 = X(700:900 , : ) ;
//Xx = e l im ina t eUnso l vab l e (X) ;

//X6A1 = X6( : , [ 3 , 1 9 , 2 1 ] ) ;
//X6A2 = X6( : , [ 7 , 2 0 , 2 3 ] ) ;
//X6A3 = X6( : , [ 5 , 6 , 8 ] ) ;
//X7A1 = X7( : , [ 3 , 1 9 , 2 1 ] ) ;
//X7A2 = X7( : , [ 7 , 2 0 , 2 3 ] ) ;
//X7A3 = X7( : , [ 5 , 6 , 8 ] ) ;

//General ly , the semantics o f the symbols i s f o l l ow i n g :
//X − performance o f a l go r i t hms ; in s t ance s x a l go r i t hms
//W − assignment o f s o l u t i o n s to a lgor i thms , has the same dimensions as X
//c − s chedu l e − vec t o r o f r va l u e s

// Simula tes the run o f the p a r a l l e l p o r t f o l i o wi th a s t a t i c s chedu l e
function z = s imulate (X, c )

ieee ( 2 ) ;
W = calculateW (X, c ) ;
r = ones ( s ize ( c , 1 ) , 1 ) . / c ;
r = nane l iminate ( r ) ;
//This w i l l not work f o r p o s i t i v e p r o f i t s and min , because then

http://www.scilab.org
http://marekpetrik.webpark.sk/performancematrix
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// zero w i l l be minimal va lue .
z = X .∗ W ∗ r ;

endfunction

// Ca l cu l a t e s the emp i r i ca l mean p r o f i t
//x − l i s t o f performances
function r = mySum(x )

y = thrownan( x ) ;
r = sum( y ) . / s ize (y , 1 ) ;

endfunction

// c a l c u l a t e s the opt imal W, g iven in s t ance s and schedu l e
function W = calculateW (X, c )

R = zeros (X) ;
W = R;
ieee ( 2 ) ;
for i =1: s ize (X, 1 ) , R( i , : ) = X( i , : ) . / c ’ ; end ;
for i =1: s ize (X, 1 ) , [m, n ] = max(R( i , : ) ) ; W( i , n ) = 1 ; end

endfunction

// Ca l cu l a t e s the opt imal s chedu l e f o r a f i x e d c l a s s i f i c a t i o n
// t − type o f the op t imiza t ion , the same meaning as in calculateCMA
function c = ca l cu la t eC (X,W, t )

A = X.∗W

i f t == 1 then
a = sum(A, ’ r ’ ) ;
b = sum(W, ’ r ’ ) ;
ieee ( 2 ) ; // e l im ina t e e r ro r s from mu l t i p l i c a t i o n by zero
a = nane l iminate ( a . / b ) ;
b = normal ize (b ) ;
// use abs , because : s q r t (−0) = −0,
//and i f a = −0 then 1/a=−in f , and t ha t i s wrong
// i t i s caused by a s c i l a b bug
c = abs ( sqrt(−b .∗ a ) ) ’ ;

e l s e i f t == 2 then
a = min(A, ’ r ’ ) ;
c = a ’ ;

end

c = normal ize ( c ) ;
endfunction

// Ca l cu l a t e the opt imal c , W using the
// t − type o f op t imiza t ion ,
// t = 1 means ”mean op t im i za t i on ” , t = 2 means ” l im i t op t im i za t i on ” .
function [ c , W] = calculateCMA (X, t )

c = normal ize (rand ( s ize (X, 2 ) , 1 ) ) ;

for i =1:20 do
W = calculateW (X, c ) ;
cOld = c ;
c = ca l cu la t eC (X,W, t ) ;
n = norm( c − cOld ) ;
// i t e r a t e on ly u n t i l the l a s t e lement i s reached
i f n == 0 then break ; end ;
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end
endfunction

//Column performance p l o t
function plotPerformance (p)

p1 = tabul (p ) ;
p1 ( : , 2 ) = cumsum( p1 ( : , 2 ) ) ;
p1 ( : , 2 ) = p1 ( : , 2 ) . / s ize (p , 1 ) ;
plot2d(−p1 ( : , 1 ) , p1 ( : , 2 ) ) ;

endfunction

//∗∗∗∗ VOCMA algor i thm

//VOCMA algor i thm
//pc − the s chedu l e
//p − the p r o f i t o f the schedu l e
// t − the same as in calculateCMA
function [ pc , p ] = solveOptimal (X, t )

m = s ize (X, 1 ) ;
n = s ize (X, 2 ) ;
k = s ize (R, 2 ) ;
R = bu i l dS t ruc tu r e (X) ;
p = −10000;
pc = 0 ;

o = zeros (k , 1 ) ;
d = 0 ; vm = 0 ;
while sum(abs ( o − ones (k , 1 )∗m)) > 0 do

d = d+1;
i f modulo(d , 1000) == 0 then

disp ( [ d , vm, p , pc ’ ] ) ;
end ;
W = c l a s s i f yV e c t o r ( o , R, m, n ) ;
[W, v ] = createW (W) ;
i f v then

vm = vm + 1 ;
c = ca l cu la t eC (X,W, t ) ;
i f t == 1 then

e = mySum( s imulate (X, c ) ) ;
else

e = min( s imulate (X, c ) ) ;
end ;
i f e > p then

p = e ;
pc = c ;

end
p = max(p , e ) ;

end
o = createNextVector ( o , m) ;

end
endfunction

// Bui lds s t r u c t u r e r equ i r ed to t r a n s l a t e s p l i t po in t s in t o
//a c l a s s i f i c a t i o n
function R = bu i l dS t ruc tu r e (X)



90 Appendix D. Implementation

n = s ize (X, 2 ) ;
R = zeros ( s ize (X, 1 ) , n ∗ (n−1) / 2 ) ;
z = 0 ;
for j =1:n do

for k = ( j +1):n do
z = z + 1 ;
a = X( : , j ) . / X( : , k ) ;
[ b , c ] = gsort ( a , ’ g ’ , ’ i ’ ) ;
R( : , z ) = c ;

end ;
end ;

endfunction

//Creates a s chedu l e s f o r a s e t o f s p l i t po in t s
// the s p l i t po in t i s de f ined in terms o f the f i r s t a l gor i thm
//h − the v ec t o r to c l a s s i f y
//R − the r e s u l t o f b u i l d s t r u c t u r e − mapping to in s t ance s
//m − number o f i n s t ance s
//n − number o f a l go r i t hms
function W = c l a s s i f yV e c t o r (h , R, m, n)

s = s ize (h , 1 ) ;
W = zeros (m, n ) ;
z = 0 ;
for j =1:n do

for k = ( j +1):n do
z = z + 1 ;
W(R( 1 : h( z ) , z ) , j ) = W(R( 1 : h( z ) , z ) , j ) + 1/(n−1);
W(R(h( z )+1:$ , z ) , k ) = W(R(h( z )+1:$ , z ) , k ) + 1/(n−1);

end
end

endfunction

//For a p a r t i a l l y s p e c i f i e d W, re turns 0/1 W, i f p o s s i b l e
//v s p e c i f i e s i f each problem ins tance i s s o l v e d
function [W, v ] = createW (W)

W = f loor (W) ;
v = (sum(W) == s ize (W, 1 ) ) ;

endfunction

//Creates a next s p l i t po in t v e c t o r
//k i s the l im i t o f the h i g h e s t number
function o = createNextVector ( o , k )

for i=s ize ( o , 1 ) : −1 :1 do
i f ( o ( i ) >= k)

o ( i )=0;
else

o ( i )=o ( i )+1;
break ;

end
end

endfunction

//∗∗∗ he l p e r f unc t i on s

//Removes the rows t ha t are not s o l v e d by e i t h e r a l gor i thm
function X = el iminateUnso lvab l e (X)
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r = find (max(X, ’ c ’ ) <= −10000);
X( r , : ) = [ ] ;

endfunction

// Modi f i es the end va lue o f the problem ,
// i f the s tandard non f i n i s h p r o f i t i s < 10000
function X = modifyEndValue (X, nval )

X( find (X <= −10000)) = nval ;
endfunction

//Normalizes the vec t o r
function x = normal ize ( x )

x = x . / sum( x ) ;
endfunction

//Replaces a l l occurrences o f %nan and %inf by zero
function x = nane l iminate ( x )

b = isnan ( x ) ;
c = i s i n f ( x ) ;
x (b) = 0 ;
x ( c ) = 0 ;

endfunction

//Reverses the input matrix in the s p e c i f i e d d i r e c t i o n
function X = rev e r s e (X, d)

i f d == ’ r ’ then
X = X($ : −1 : 1 , : )

e l s e i f d == ’ c ’ then
X = X( : , $ :−1:1)

end
endfunction

D.2 Dynamic Schedules

//The f o l l ow i n g must be executed in the conso le ,
// f o r co r r e c t f unc t i on o f the a l go r i t hms
// g l o b a l N O M;

//Finds an opt imal dynamic schedu le , g i ven the s e t
// o f t r a i n i n g in s t ance s f o r bound op t imiza t ion ,
// the bound i s e q u i v a l e n t to the end time
// icount − number o f i n t e r v a l s , i n c l ud i n g the l a s t one
//The end time = icount − 1
// t − type o f op t imiza t ion ,
// t = 1 mean op t imiza t ion , t = 2 l im i t op t im i za t i on
//Example : dynOptimize (X,9 , 2 )
function R = dynOptimize (X, icount , t )

//N − new s t a t e va l u e s
//O − o ld s t a t e va lues , they are rep l a ced by new to save memory
//M − succes s ions , d e f i n e which a l gor i thm i s opt imal in which s t a t e
global N O M;

m = s ize (X, 2 ) ;
s = ones (m, 1 )∗ i count ;
[ p , q ] = s ta teToPos i t i on ( s , i count ) ;
N = spzeros (p , q ) ;
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M = spzeros (p , q ) ;

g ene ra t eS ta t e s ( zeros (m, 1 ) , icount −1, 1 , icount , 0 , t ) ;
O = N;
for i =( icount −2):−1:0

N = spzeros (p , q ) ;
g ene ra t eS ta t e s ( zeros (m, 1 ) , i , 1 , icount , 1 , t ) ;
O = N;

end
R = O;

endfunction

// Recons truc ts the dynamic schedu l e from r e s u l t s c a l c u l a t e d by
// dynOptimize
// a l g s − number o f a l go r i t hms
// icount − number o f i n t e r v a l s
function V = reconst ructSequence ( a lgs , i count )

global M;
s = zeros ( a lgs , 1 ) ;
V = zeros ( i count ) ;
for i =1: i count do

[ p , q ] = s ta teToPos i t i on ( s , i count ) ;
k = f u l l (M(p , q ) ) ;
V( i ) = k ;
s ( k ) = s (k)+1;

end
endfunction

// Simula tes a dynamic schedu l e on the prov ided in s t ance s
//X − i n s t ance s
//V − dynamic schedu l e
// t − type , t = 1 mean , t = 2 bound s imu la t i on
function R = simulateD (X,V)

R = zeros ( s ize (X, 1 ) , 1 ) ;
S = zeros ( s ize (X, 1 ) , 1 ) ;
s = zeros ( s ize (X, 2 ) , 1 ) ;
for i =1:( s ize (V,1)−1) do

k = V( i ) ;
H = X( : , k ) >= s (k ) & X( : , k ) < s ( k ) + 1
H = H & ˜S ;
R(H) = X(H, k ) + sum( s ) − s ( k ) ;
S = S | H;
s (k ) = s (k ) + 1 ;

end
// s imi la r , but f o r the l a s t i n t e r v a l
k = V($ ) ;
H = X( : , k ) >= s (k ) ;
H = H & ˜S ;
R(H) = X(H, k ) + sum( s ) − s ( k ) ;

endfunction

// Ca l cu l a t e s the reward o f the l a s t f i n a l s t a t e s
// t − type o f op t imiza t ion ,
// t = 1 mean op t imiza t ion , t = 2 bound op t im i za t i on
// s − the s t a t e



D.2. Dynamic Schedules 93

//k − the a l gor i thm tha t was run
//X − the a l gor i thm ins tance performance matrix
function r = calculateEndStateReward ( s , k , X, t )

C = zeros ( s ize (X, 1 ) , 1 ) ;
for j =1: s ize (X, 1 ) do

C( j ) = sum( (X( j , : ) − s ’ ) < 0) == 0 ;
end
C = bool2s (C) ;
i f sum(C) > 0 then

r = sum(X( : , k ) . ∗C) / sum(C) + sum( s ) − s ( k ) ;
else

r = 0 ;
end

endfunction

// Ca l cu l a t e s the reward and p r o b a b i l i t y f o r s o l v i n g an ins tance
// in the s t a t e s t ha t precede the l a s t s t a t e
//k − the a l gor i thm to be run
function [ p , r ] = ca lcu la te InnerStateReward ( s , k , X, t )

C = zeros ( s ize (X, 1 ) , 1 ) ;
D = zeros ( s ize (X, 1 ) , 1 ) ;
h = s (k)+1;

for j =1: s ize (X, 1 ) do
C( j ) = (sum(X( j , : ) < s ’ ) == 0 ) ;
D( j ) = (X( j , k ) < h ) ;

end

C = bool2s (C) ;
D = bool2s (D) ;
E = C .∗ D;

i f (sum(E) > 0)
i f t == 1 then

r = sum(X( : , k ) . ∗E)/sum(E) + sum( s ) − s ( k ) ;
else

r = −1;
end ;
p = sum(E) / sum(C) ;

else
r = 0 ;
p = 0 ;

end
endfunction

// Ca l cu l a t e the u t i l i t y o f inner s t a t e s from S ,
// t ha t i s those t ha t do not l ead to l a s t s t a t e s i s F
// s − the s t a t e
function c a l c u l a t e I n n e r S t a t eU t i l i t y ( s , icount , t )

global N O M;

[ p , q ] = s ta teToPos i t i on ( s , i count ) ;
i f t == 1 then

s t a r t = 1 ;
else

s t a r t = lastNonZero ( s ) ;
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end

for k=s t a r t : s ize ( s , 1 ) do
h = s ; h(k ) = h(k ) + 1 ;
[ p2 , q2 ] = sta teToPos i t i on (h , i count ) ;
[ pp , pr ] = ca lcu la te InnerStateReward ( s , k , X, t ) ;
r = pp∗pr + f u l l (O(p2 , q2 ))∗(1−pp ) ;

o = f u l l (N(p , q ) ) ;
i f o == 0 then

N(p , q ) = r ;
M(p , q ) = k ;

else
i f r < o then

N(p , q ) = r ;
M(p , q ) = k ;

end
end

end
endfunction

// Ca l cu l a t e the u t i l i t y o f end s t a t e s from S ,
// t ha t i s those t ha t l ead to l a s t s t a t e s i s F
// s − the s t a t e
function c a l c u l a t eEndS ta t eUt i l i t y ( s , icount , t )

global N M;
[ p , q ] = s ta teToPos i t i on ( s , i count ) ;
for k=1: s ize ( s , 1 ) do

r = calculateEndStateReward ( s , k , X, t )
o = f u l l (N(p , q ) ) ;
i f o == 0 then

N(p , q ) = r ;
M(p , q ) = k ;

else
i f r < o then

N(p , q ) = r ;
M(p , q ) = k ;

end
end

end
endfunction

//Generates s u c c e s s i v e l y s t a t e s and c a l c u l a t e s t h e i r u t i l i t y
// s − the curren t s t a t e
// l − the s t a r t i n g po in t
//g − s i z e t o t a l sum
//O − o ld va lues , sparse matrix
//X − the s t a t i s t i c s
// icount − the maximal va lue a l l owed f o r each s t a t e
//N − new va lues , sparse matrix
// i e == 0 −> end s t a t e , o the rw i s e inner s t a t e
//Example : g ene ra t eS t a t e s ( z e ro s (3 ,1) , 9 , 1 , 9 , 0)
function gene ra t eS ta t e s ( s , g , l , i count , i e , t )

global N O;
i f l >= s ize ( s , 1 ) then

s ( l ) = g ;
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i f i e == 0 then
i f t == 1 then

c a l c u l a t eEndS ta t eUt i l i t y ( s , icount , t ) ;
end

else
c a l c u l a t e I n n e r S t a t eU t i l i t y ( s , icount , t ) ;

end
else

for i =0:g do
s ( l ) = i ;
g ene ra t eS ta t e s ( s , g−i , l +1, icount , i e , t ) ;

end
end

endfunction

// ∗∗∗∗∗∗∗∗∗∗∗∗ he l p e r f unc t i on s

//Transforms a s t a t e in t o coord ina t e s in a 2−dimensiona l matrix
// s − s t a t e v ec t o r − column
//m − the maximal va lue f o r each po s i t i o n
//p − the f i r s t dimension
//q − the second dimension
function [ p , q ] = s ta teToPos i t i on ( s , m)

p = 0 ;
q = 0 ;

k = 1 ;
l = s ize ( s , 1 ) ;

for i=f loor ( l /2) :−1:1 do
p = p + k ∗ s ( i ) ;
k = k∗m;

end
k=1;
for i=l :−1:( f loor ( l /2)+1) do

q = q + k ∗ s ( i ) ;
k = k∗m;

end
p=p+1; q=q+1;

endfunction

// re turns the l a s t non−zero element o f the vec tor ,
// re turns 1 f o r a zero vec t o r
function i=lastNonZero ( s )

for i=s ize ( s , 1 ) : −1 :1 do
i f s ( i ) ˜= 0 then

break ;
end

end
endfunction
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