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Abstract

In this thesis, we try to implement a prototype model of Two-Dimensional Labelled

Security Model with Partially Trusted Subjects in Linux operating system. The

security model is based on PhD thesis[1] written by RNDr. Jaroslav Janá£ek, PhD.

We try to show the feasibility of implementation in the form of a kernel patch using

Linux Security Modules architecture. The implementation also includes neccesary

user space utilities for managment of the policy.

Keywords: information �ow policy, security model, Linux Security Modules, POSIX
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Introduction

Linux Security Modules is a security framework for Linux kernel enabling imple-

mentation of arbitrary security policies implementing mandatory access control. It

enables mediating access to all security relevant kernel structures during various ker-

nel operations triggered by system calls from user space. It also adds security �elds

to these structures which enable binding the policy relevant security information to

the structures during their life cycle.

Additionaly, Linux Security Modules encourages the use of extended attributes

in the security namespace used to store permanent security information for objects

of �lesystem.

1
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Chapter 1

Access control security mechanisms

The goal of this chapter is to give an overview of various approaches to protecting

resources and information using access control mechanisms and describe existing

implementations of respective access control types in Linux operating system. I will

not mention other security mechanisms, since properly designed operating system

should mediate all security critical operations and maintain the real security contexts

of concerned entities. Therefore it should be able to enforce chosen security policy

by means of access control.

Access control policy in general de�nes rules telling whether particular subject

may execute requested operation on particular object. The two most common access

control principles used in operating systems are discretionary and mandatory. They

may be used simultaneously.

1.1 Discretionary access control

Discretionary access control has three characteristic features:

1. it restricts access to objects on the basis of the identity of subjects, eventually

it may consider group to which the subject belongs, this approach does not

make di�erence between subjects with the same identity regardless of their

other security context

3



4 CHAPTER 1. ACCESS CONTROL SECURITY MECHANISMS

2. subjects with certain access permission are able to pass this permission to

other subjects

3. every object usually has the owner, it is typically derived from the subject,

which created the object, access policy for the object is determined by its

owner

1.1.1 DAC in Linux

Linux, similarly to all POSIX compliant systems, implements Unix permissions [2].

Operating system is a multi-user enviroment. User may correspond to a real person,

or to a role executing speci�c system operations. Users may be aggregated into user

groups. The idea behind groups is to provide the same access permissions for all

users in the group.

Each existing process runs on behalf of a user. Each �lesystem object is owned

by one of the users and is assigned a group. Setting access policy for the object is

handled by its owner. Objects keeps three distinct sets of permissions. These are

the owner, the group and the others set.

When a process attempts to access an object, the user on whom behalf the

process runs is compared with the owner of the object and in case of a match,

the owner permission set is used for access control. Otherwise, the membership

of process user in object group is tested and in case of positive answer the group

permission set is used. If neither of above is true, then the other set permissions are

chosen.

Each set comprises of three permission types, having slightly di�erent semantics

depending on the object type:

• read - in case of a �le grants the right to read the �le, when set on a directory

enables to list the content of the directory, for example using command ls

• write - enables modi�cation of a �le, in case of a directory creating a new �le

or removing existing �le within the given directory, in the latter case the write

permission on particular �le is not controlled
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• execute - enables executing a �le as a program, in case of a directory enables

traversing its subtree and accessing its contents, for example to read a �le,

just read permission is not su�cient, all directories on path from the root to

the parent directory of the �le must grant execute permission

The speci�c role in discretionary access control is bestowed upon system ad-

ministrator, who bypasses all control checks and who is authorized to change DAC

permission sets on arbitrary object, regardless of being its owner.

In order to �atten major di�erences between the authority of normal users and

the system administrator, following two permission types were added to executable

�les to enable granting such functionality to normal users, that would elsewhere be

prohibited.

• setuid

• setgid

These permissions belong to the same category as execute �ag, setuid might be

in the owner set of permissions, setgid in the group set. Therefore a �le might have

either execute or setuid or no permission set in the owner set at the third position.

The same is true for the setgid permission and the group set of permissions.

To describe the semantics of setuid and setgid, I will explain details about the

process user identity and how the new process user identity is computed when a

parent process executes binary �le.

The user identity of a running process is kept in several types of user identity

numbers, each uniquely determining the user registered in the system. The real

uid number determines the identity of user who started the process. The e�ec-

tive uid number determines the security capabilities of a given process. During all

discretionary access control checks the e�ective uid number of process is taken.

Under normal circumstances, the real uid and the e�ective uid number of running

process is equal. When a process tries to execute a binary �le (having execute

permission), the new process inherits the real and e�ective uid number of its parent.
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However, when setuid permission is set on a binary �le, the process being run

from this �le does not inherit its e�ective uid number from its parent process, but

it is set to the identity number of the owner of the binary �le.

Setting the setuid permission on a binary �le by the owner, (s)he enables every-

one to run the program with the power of its owner. Such process being run from

the setuid binary, however is able to �nd out the real identity of the user according

to the own real uid number and may choose its behaviour respectively when not

being run by the owner.

This concept was raised to enable common users executing some operations that

need the e�ective user id of the system administrator, because they try to access

protected system objects. Thanks to setuid permission, common user may for ex-

ample change its own system authentication password or try to ping some network

address.

Final concept used in traditional UNIX access control is the stickybit. It was

introcuded in order to strengthen the security of �les in directories shared among

several users. In Linux, the sticky bit has de�ned semantics only on directories

and when set, it protects �les within that directory against deleting or renaming by

anyone except from the system administrator, the owner of the �le or the owner of

the directory. Without sticky bit, anyone with write permission for the directory

could make these operations.

Access control lists

Access control lists[3] enable de�ning more �ne-grained discretionary access control

rules. They are also bound to objects of a �le system and semantically de�ne a

superset functionality when comparing with the traditional Unix permissions.

Access control list consists of the set of entries. Each entry is a pair of a tag type

and a set of permissions (read, write, execute). Respective permissions are granted

on the given object to the user or group speci�ed by the tag type.

Three categories of tags (ACL_USER_OBJ, ACL_GROUP_OBJ and ACL_OTHER) cor-

respond to traditional permissions. Remaining two tag types ( ACL_USER, ACL_GROUP )

need to be more closely speci�ed with a tag identi�er identifying the user or the
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group. This way it is possible to explicitly assign permissions to the speci�c user or

group on a particular object regardless of its ownership.

It is also possible to assign the default access control list to a directory specifying

the default value of ACL when creating a new object within the directory.

In theory, there could arise a con�ict between permissions set in access control

list and traditional permissions, but Linux prevents this by simultaneous changes to

both permissions when change on one of them is requested.

1.2 Mandatory access control

Mandatory access control[4] is a stricter form of access control by which operating

system constrains the ability of subjects to perform operations on objects. The

operating system keeps track of various security attributes on both objects and

subjects. When an operation is requested, the operation system kernel examines

the security attributes of concerned entities and makes a decision according to the

set of authorization rules.

These authorization rules are also called the security policy. The policy is man-

aged centrally by an administrator of the security policy. In contrast to discretionary

access control, where the policy may be overriden by users alone, allowing them to

grant access permission to objects they own, in mandatory access control this is not

possible. Policy is therefore system-wide and guaranteed to be enforced for all users.

Mandatory access control use originates in a military and government enviro-

ment, which are the typical multi-level security organization structures. Such envi-

roment operates with documents (objects) on various sensitivity levels and people

(subjects) with di�erent levels of trust are employed there. Therefore strict central

access policy had to be adopted to prevent data corruption or escape.

In the next sections, I will mention a brief overview of basic principles of some

existing mandatory access control policies implemented for Linux and also the core of

Two-Dimensional Labelled Security Model with Partially Trusted Subjects, whose

Linux implementation is the main goal of this thesis. The formal de�nition of

information �ow policy of this model is described in the next chapter. For more
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information regarding this model look at [1].

1.2.1 SELinux

Security-enhanced Linux[5] is the operating system mechanism enabling support for

a wide range of mandatory access control policies.

Originally it was developed by the United States National Security Agency, later

on released for an open source development and incorporated into the mainline

Linux kernel as a patch. SELinux functionality strongly in�uenced the design of

Linux security modules framework for writing user de�ned access control policies.

When it was released, SELinux was rewritten using this architecture.

SELinux may enforce mandatory access control policies with concepts such as

multilevel security, role-based access control and domain-type enforcement. The

main goal is to grant programs only the minimum privileges they need to do their

jobs while restricting other privileges that could be misused intentionally or by

program bugs. This is everything done on top of the discretionary access controls.

SELinux assigns information called the securitycontext to all subjects and ob-

jects. Security context consists of three parts: user, role and type. For subjects we

speak of a domain in case of the type.

In most de�ned policies used, the user and the role parts are neglected and access

control is based only on types. This concept is called the domain-type enforcement.

Only operations explicitly stated in the policy between pairs of domain-type are

permitted. The classi�cation of operation types is much richer than traditional read-

write-execute model. The idea behind is to divide system objects into separated well

de�ned areas called sandboxes by assigning the same type to all objects in a sandbox

and limit a particular subject to several operations on a particular sandbox. Due

to the fact that some complex processes such as init in�uence wide parts of the

operating system, the domain-type enforcement policies would have to de�ne too

large sandboxes and that would lead to losing their sense. Therefore transitions of

subjects between various domains is allowed in the stated transition rules.
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1.2.2 Two-Dimensional Labelled Security Model with Par-

tially Trusted Subjects

In this section I will describe the principles of this security model realizing mandatory

access control with multi-level security. The formal de�nition of allowed information

�ow in this model is concerned in the next chapter. More information about this

model can be found at [1]. The rest of this thesis contains implementation details of

this model as a security module for Linux kernel, some additional concepts added

in order to keep things working while maintaining safety and the deployment guide

and tips for a correct con�guration of the policy.

The model recognizes similarly as all previously de�ned security models in Linux

two kinds of entities:

• objects - passive entities, carriers of information, for example �les, sock-

ets,pipes, shared memory segments,. . .

• subjects - active entities, processing information, these are processes and

threads

The model is focused on securing two security attributes:

• confidentiality - level of protection against unauthorized reading

• intgrity - level of protection against unauthorized modi�cation

De�ned access policy is based on the two models designed for securing two at-

tributes mentioned above.

Bell-Lapadula model classi�es existing objects into multiple con�dentiality levels

according to the information they hold. Each normal nonprivileged subject in the

modeled enviroment has a con�dentiality level associated which limits operations it

can execute. The general rule in Bell-Lapadula model is no read-up and no write-

down. This means that subject may not read information on a higher security

level and may not write to a less secure object, which would lead to information

declassi�cation.
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Biba model was designed to overcome disadvantages of Bell-Lapadula model

concerning integrity. Similarly it classi�es information into integrity levels accord-

ing to its thrustworthiness. We may naturally consider information which is stricly

protected against modi�cation to be thrustworthy. A general rule for the integrity

protection is no write-up and no read-down. This means that an unprivileged sub-

ject may not modify information above its security level and is forbidden to read

information classi�ed with a lower level in order to secure the subject against being

spoiled by untrusthworthy data.

Apart from just focusing on security attributes viewpoint,the Two-Dimensional

Labelled Security Model also watches the user identity of interacting entities. It

secures highly con�dential data of a user against reading by another user's subject.

Similarly the data with strict integrity protection may not be modi�ed by any subject

of another user.

Bell-Lapadula and Biba model are suitable when we are demanding a high level

of security and enforcing multi-level security policy, but in general operating sys-

tem such as Linux there are too many scenarios requiring information �ow policy

exception from one of the models.

The traditional solution of handling exceptions from policy is deploying trusted

subjects allowed to violate the policy. This solution would however require too many

trusted subjects. In order to keep the system in a secure state, we must be sure,

that each trusted subject tries to execute only the claimed functionality (which needs

exception in the policy) and also that the program does not contain implementation

errors allowing it to misbehave, which could have fatal security consequences with

respect to the buggy subject's privileges.

Making such strong assumptions about all trusted subjects needed in the oper-

ating system enviroment is practically unreal, as a result lowering global security.

This problem was overcome in the described model by thinking the third type of

subjects out - partially trusted subjects.

Before adopting partially trusted subjects, it is necessary to enhance the security

context of objects in the model by another security attribute - object label. The

label may be thinked of as an identi�er of the domain to which the object with its
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data belongs. Partially trusted subject is restricted to operate exceptions out of the

information �ow policy just on objects with labels, that are con�gurated for a given

subject. The con�guration of labels comprises of specifying a set of approved labels

for each combination of the security attribute (con�dentiality, integrity) and the

operation (read,write) concerned. Violating the policy by partially trusted subjects

within these given input/output labelled objects may be further resticted by de�ning

minimum/maximum bounds of the object's security level (con�dentiality, integrity)

needed to allow violating the policy.

To sum up, Two-Dimensional Labelled Security Model distinguishes three types

of running subjects considering the level of trust[1]:

• untrusted subjects - not trusted to enforce information �ow policy

• trusted subjects - trusted to enforce information �ow policy with intended

exceptions

• partially trusted subjects

� trusted not to transfer information from a dened set of objects at a higher

condentiality level to a dened set of objects at a lower condentiality level

in a way other than the intended one

� trusted not to transfer information from a dened set of objects at a lower

integrity level to a dened set of objects at a higher integrity level in a way

other than the intended one

� not trusted to transfer information between any other objects
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Chapter 2

Information Flow policy

This chapter introduces The Formal de�nition of the information �ow policy of

Two-Dimensional Labelled Security Model with Partially Trusted Subjects security

model.1

Formal de�nition of the information �ow policy

Let C = {0, 1, . . . , cmax} be the set of con�dentiality levels, I = {0, 1, . . . , imax} be
the set of integrity levels, L be the �nite set of possible labels for objects, 0 ∈ L

being the default label used for objects without an explicitly assigned label, and U

be the �nal set of user identi�ers. Let C and I be ordered so that 0 is the least

sensitive level and cmax and imax are the most sensitive levels.

Let us assume that each object O has the following attributes:

• CO ∈ C � the con�dentiality level of the object,

• IO ∈ I � the integrity level of the object,

• LO ∈ L � the label of the object (used to de�ne the input and output sets of

objects for partially trusted subjects),

• UO ∈ U � the user identi�er of the owner of the object.

1This chapter is a part of the [1]

13
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Let us assume that each subject S has the following attributes:

• CRS ∈ C � the highest con�dentiality level the subject can normally read

from,

• CWS ∈ C � the lowest con�dentiality level the subject can normally write to,

• CRLS ∈ C � the highest con�dentiality level of a specially labelled object that

the subject can read from,

• CWLS ∈ C � the lowest con�dentiality level of a specially labelled object that

the subject can write to,

• CRLSS ⊆ L � the set of labels of the objects that the subject can read from

as a partially trusted subject,

• CWLSS ⊆ L � the set of labels of the objects that the subject can write to as

a partially trusted subject,

• IRS ∈ I � the lowest integrity level the subject can normally read from,

• IWS ∈ I � the highest integrity level the subject can normally write to,

• IRLS ∈ I � the lowest integrity level of a specially labelled object that the

subject can read from,

• IWLS ∈ I � the highest integrity level of a specially labelled object that the

subject can write to,

• IRLSS ⊆ L � the set of labels of the objects that the subject can read from

as a partially trusted subject,

• IWLSS ⊆ L � the set of labels of the objects that the subject can write to as

a partially trusted subject,

• CNS ∈ C � the default con�dentiality level of the objects created by the

subject,
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• INS ∈ I � the default integrity level of the objects created by the subject,

• LNS ∈ L � the label of the objects created by the subject,

• US ∈ U � the user identi�er of the owner of the subject,

• IRUSS ⊆ U � the set of additional user identi�ers of the users who are trusted

by S to maintain trustworthy integrity levels on the objects they own (e.g. a

special user designated to own the shared system libraries and programs).

• CWUSS ⊆ U � the set of additional user identi�ers of the users who are trusted

by S to maintain trustworthy con�dentiality levels on the objects they own.

Let Cappr, Cshareable, Ishareable be system-wide constants with the following mean-

ing:

• Cappr ∈ C be the highest con�dentiality level for which the user may inter-

actively approve a request to read from an object O by a subject S when

Cappr ≥ CO > CRS,

• Cshareable ∈ C be the highest con�dentiality level of an object that may be

accessed by a subject with a di�erent owner than the owner of the object, and

• Ishareable ∈ I be the highest integrity level of an object that that may be

modi�ed by a subject with a di�erent owner than the owner of the object.

Let us de�ne the information �ow policy protecting con�dentiality and integrity

of data as follows:

1. A subject S may read from an object O if read(S,O) is true, where

read(S,O)⇔[CRS ≥ CO ∨ (CRLS ≥ CO ∧ LO ∈ CRLSS)

∨ (Cappr ≥ CO ∧UserApprovedRead(S,O))]
(2.1a)

∧[IRS ≤ IO ∨ (IRLS ≤ IO ∧ LO ∈ IRLSS)] (2.1b)

∧[US = UO ∨ CO ≤ Cshareable] (2.1c)

∧[US = UO ∨ UO ∈ IRUSS ∨ IRS ≤ Ishareable] (2.1d)
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where UserApprovedRead(S,O) is true if and only if the user (the owner

of S) has approved the particular request to read from the object O by the

subject S.

2. A subject S may write to an object O if write(S,O) is true, where

write(S,O)⇔[CWS ≤ CO ∨ (CWLS ≤ CO ∧ LO ∈ CWLSS)] (2.2a)

∧[IWS ≥ IO ∨ (IWLS ≥ IO ∧ LO ∈ IWLSS)] (2.2b)

∧[US = UO ∨ IO ≤ Ishareable] (2.2c)

∧[US = UO ∨ UO ∈ CWUSS ∨ CWS ≤ Cshareable)] (2.2d)

3. A subject S may create a new object O within (or related to) an object P if

create(S, P ) is true, where

create(S, P )⇔read(S, P ) (2.3a)

∧write(S, P ) (2.3b)

The attributes of the new object will be set as follows:

CO :=

CWLS if LP ∈ CWLSS

CNS otherwise
(2.3c)

IO :=

IWLS if LP ∈ IWLSS

INS otherwise
(2.3d)

LO := LNS (2.3e)

UO := US (2.3f)

4. A subject S may delete an object O from (or related to) an object P if

delete(S,O, P ) is true, where

delete(S,O, P )⇔read(S, P ) (2.4a)

∧write(S, P ) (2.4b)

∧write(S,O) (2.4c)
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5. Each untrusted subject S must satisfy:

CWS = CWLS ≥ CRS = CRLS (2.5a)

IWS = IWLS ≤ IRS = IRLS (2.5b)

CWLSS = CRLSS = IWLSS = IRLSS = ∅ (2.5c)

CNS ≥ CWS (2.5d)

INS ≤ IWS (2.5e)

LNS = 0 (2.5f)

6. Each partially trusted subject S must satisfy:

CWS ≥ CRS (2.6a)

CWS ≥ CRLS (2.6b)

CWLS ≥ CRS (2.6c)

IWS ≤ IRS (2.6d)

IWS ≤ IRLS (2.6e)

IWLS ≤ IRS (2.6f)

CNS ≥ CWS (2.6g)

INS ≤ IWS (2.6h)

The above rules ful�l the policy objectives on the condition that:

C = {0, 1, 2}

I = {0, 1, 2}

Cappr = 1

Cshareable = 1

Ishareable = 1
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with the meaning of the con�dentiality levels:

0− public,

1− C-normal,

2− C-sensitive,

and the meaning of the integrity levels:

0− potentially malicious,

1− I-normal,

2− I-sensitive.

Additional operations

• A subject S may set the con�dentiality level of an object O to c, and the

integrity level of O to i if reclassify(S,O, c, i) is true, where

reclassify(S,O, c, i)⇔[CO ≤ CRS ∧ CO ≥ CWS ∧ c ≥ CWS] (2.7a)

∧[IO ≥ IRS ∧ IO ≤ IWS ∧ i ≤ IWS] (2.7b)

∧CanRevoke(O) (2.7c)

∧UO = US (2.7d)

∧LO = LNS (2.7e)

• A subjectD (the debugger) may use the debugging interface to debug a subject

S if debug(D,S) is true, where

debug(D,S)⇔CRD ≥ max{CRS, CWS} (2.8a)

∧CWD ≤ min{CRS, CWS} (2.8b)

∧IRD ≤ min{IRS, IWS} (2.8c)

∧IWD ≥ max{IRS, IWS} (2.8d)

∧UD = US (2.8e)
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• A subject S may send a signal to a subject R if maysignal(S,R) is true,

where

maysignal(S,R)⇔CWS ≤ CRR (2.9a)

∧IWS ≥ IWR (2.9b)

∧US = UR (2.9c)

Changing the subject's security attributes

No subject may be able to modify its attributes in a way that allows it to perform

more operations. The following rules satisfy the requirement:

1. A subject S may change CNS to c if setCN(S, c) is true, where

setCN(S, c)⇔ c ≥ CWS (2.10)

2. A subject S may change INS to i if setIN(S, i) is true, where

setIN(S, i)⇔ i ≤ IWS (2.11)

3. A subject S may change CRS to c if setCR(S, c) is true, where

setCR(S, c)⇔ c ≤ CRS (2.12)

4. A subject S may change CWS to c if setCW(S, c) is true, where

setCW(S, c)⇔ c ≥ CWS (2.13)

5. A subject S may change IRS to i if setIR(S, i) is true, where

setIR(S, i)⇔ i ≥ IRS (2.14)

6. A subject S may change IWS to i if setIW(S, i) is true, where

setIW(S, i)⇔ i ≤ IWS (2.15)
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7. A subject S may change CRLS to c if setCRL(S, c) is true, where

setCRL(S, c)⇔ c ≤ CRS (2.16)

8. A subject S may change CWLS to c if setCWL(S, c) is true, where

setCWL(S, c)⇔ c ≥ CWS (2.17)

9. A subject S may change IRLS to i if setIRL(S, i) is true, where

setIRL(S, i)⇔ i ≥ IRS (2.18)

10. A subject S may change IWLS to i if setIWL(S, i) is true, where

setIWL(S, i)⇔ i ≤ IWS (2.19)

11. When a subject S creates a new subject S ′, the security attributes of S ′ must

be equal to those of S.



Chapter 3

Linux security modules

Tha aim of this chapter is describing a security framework enabling implementation

of various user de�ned security models of mandatory access control. I will introduce

key design elements of the framework, give an overview of controlled kernel struc-

tures and think about feasibility of Two-dimensional labelled security model with

partially trusted subjects implementation for Linux using Linux security modules

architecture.[6][7]

3.1 The history

The need for a general purpose security framework in Linux kernel raised from

several reasons:

• kernel community realized that conventional discretionary access control in

Linux is not secure enough for various scenarios

• several independent security projects were running, to use any of them, a kernel

patch had to be installed, patches interfered with various parts of existing

kernel code, this approach could easily bring incostistencies during new kernel

releases, patches had to be applied for each new kernel installed, due to these

circumstances, a massive deployment of any of new security mechanisms was

not practicable
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• the leaders of several projects emphasized the need of a �exible access control

architecture support in the mainstream Linux kernel, since Linus Torvalds1

did not want to favor any particular projects prior others, he suggested build-

ing a general access control framework with the infrastucture enabling kernel

modules to implement security functions

Dynamic loadable kernel modules existed prior to these activities, mainly for loading

device drivers and �lesystems. A problem with their usage for security implemen-

tation was that tke kernel did not provide them infrastructure to mediate access

to kernel objects. Therefore implementing security by kernel modules falled down

to interposition system calls requested by user space processes to the kernel. This

approach is however not su�cient for required security functions.

The constraints put on Linux security modules framework design by Torvalds

were following:

• truly generic, using a di�erent security model is just a matter of loading other

kernel security module

• simplicity and low performance overhead

• ability to implement existing POSIX.1e capabilities as an optional module

Further debates were held about the scope of the security framework. Some projects

were interested in security auditing and system virtualization apart from access

control. The �exibility of access control was debated as well. Most of the models

were interested just in further restricting access on top of the existing DAC, but

some models required also the ability to grant prileges even if DAC logic denied the

operation.

3.2 The design of Linux security modules

The core idea of Linux security modules design is to mediate access to internal

kernel objects. Provided security module should give answers to question whether
1Linux kernel project coordinator
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currently running subject S may execute a given operation on a kernel object O.

This is done by placing hooks into the kernel code just before the place where

original code would permit access to an internal kernel object and would perform

some action on that object. The responsibility of a given hook is to call the function

provided by the loaded security module that manages this kind of action on a partic-

ular kernel object type. The hook should provide all security context parameters to

the judging function that could be relevant in deciding according to LSM designers.

The module function may either permit access or deny it by returning speci�c error

number.

The requirement of simplicity of LSM1 design caused that most of the hooks

are restrictive. This means that a security module is asked to decide whether to

grant or reject access only if the access would be granted by DAC access control. In

the opposite case, the access is denied before the security module function is even

consulted. This is caused by too many access denying shotcuts called early in the

kernel code when some error conditions are detected by traditional access control

semantics. To be able to consult all these situations with security module, too many

authoritative hooks (their decision is �nal) would have to be inserted into the code,

that would also rapidly increase the number of hook functions implemented by the

security module realizing particular policy.

However to enable implementing POSIX capabilities policy as a security module,

its logic requires possibility to grant access despite DAC2 deny to some coarse grain

extend. This is realized by a permissive hooks calling the capable() function realized

by the loaded module. The module is asked to judge by this function whether

currently running process has a capability to override some discretionary controls.

Therefore these permissive hooks are usually coupled within code with some basic

discretionary access checks and enable module to override them.

1Linux Security Modules
2Discretionary access control
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A very important concept required by many policies and therefore included in

the Linux security modules design is the ability to bind security context to protected

kernel objects. LSM provides this by attaching opaque security �elds to their re-

spective structures. These are realized by pointers of void type. LSM lets all work

done with the content of these �elds to administration of the loaded security module

and provides usually allocate, deallocate and update hooks for all protected kernel

objects, which are suitable place to initialize, free and change the security context

of objects by module according to the realized policy. Also locking access to these

�eld against concurrent access is in hands of the loaded module.

Stacking of several security modules is very limited by the LSM architecture.

LSM enables stacking of several modules, where the �rst one act as a primary module

a it may enable other module to register itself and provide its implementation of

hook functions. However, the decision to call functions of the secondary modules

and evaluate their results is fully left to the primary module. This approach requires

stacking modules to have knowledge of each other. Automatic stacking of modules is

not possible. The major reason is that LSM provides just a single pointer to security

�elds, so that stacking modules would simultaneously rewrite it. There would also

have to be the control module on top of the stacking modules calling each registered

module's functions and combining their result and assigning place in kernel objects

for modules on their request.
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However, stacking with the built-in POSIX.capabilities module works automat-

ically, because capabilities have the space in kernel structures, they work with,

assigned separately from the opaque security �eld. If a hook function is called while

a user de�ned security module is loaded, then LSM checks whether this module im-

plements this hook function. In case it does not, then the capabilities hook function

is called. In the opposite case, the security module's function is called and it may

or may not ask the capabilities module for its access control decision.

When a security module wants to enforce the policy it implements in the system,

it has to registrate itself to the kernel. It is done by calling the register_security

function passing a security_ops structure to the LSM framework. The security_ops

structure identi�es a name of the policy, that has to be unique and should de�ne

individual functions realizing the logic of implemented policy bounded to the respec-

tive hook functions. This means assigning the pointers to functions to the formal

names of hooks. Signatures of implemented functions has to coincide with hook

functions.

After booting the system, the LSM framework is initialized with the dummy

hook functions realizing the traditional super-user DAC semantics. When a security

module tries to regiter itself to LSM, the dummy functions are replaced in the global

security operations table with the passed security functions realized by the module

. Hook functions not de�ned by module stay original.

3.2.1 Protected kernel objects and operations

I will brie�y mention here the overview of kernel objects that may be secured by

the LSM architecture and important mediated operations on them to catch on the

power of Linux security modules framework.

Mediated operations according to their goal may be divided into the two main

categories. Some operations execute access control granting or denying the speci�c

access to kernel structures, they realize the security policy logic.

On the other hand, the purpose of some operations is to manage internal secu-

rity context of kernel structures, that means initializating, deallocating, changing

structures.
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Finally there are hybrid hook functions, which either make requested changes to

the security context and return success or deny access.

I will list important mediated kernel structures and controlled operations and

tell which known entities from the user space of the operating system are associated

with them.

inode

Inode is a basic data structure holding information about objects of the �le system.

This include �les, directories, symbolic links and special objects such as sockets,

pipes and devices. It includes metadata about these objects such as access mode

in DAC, owner, size, parent �le system and identi�es uniquely the object within its

�lesystem by the inode number. It does not keep data, name or path of the object.

What is important from security context, LSM added a security �eld i_security to

the inode kernel structure.

The main acces control hook for the inode structure is inode_permission. The

key hook for determining inode's security label is d_instantiate called when �lesys-

tem object associated with the inode is being inserted to the root �le system.

task_struct

The task_struct represents a schedulable task within kernel, e.g. a process or a

thread. It holds informations about a task such as process id number, priority,

parent task, children tasks etc. From the security context the most important is a

pointer to the cred structure holding security credentials of the task, such as real

uid, e�ective uid, process capabilities and security opaque �eld for assigning speci�c

policy security context.

LSM enables the control of sending a signal to the task, tracing it, working with

the security opaque �eld, transferring credentials of a task to another task and many

other operations.
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linux_binprm

The linux_binprm kernel structure represents a program being executed during the

execve operation. A security context of the executed program is kept within the

same cred structure as for tasks.

There are various hooks related to the linux_binprm called at di�erent stages

of program execution. These hooks may forbid this activity or may initialize the

new security credentials of the executed program (based on the credentials of the

currently running executing process for example).

super_block

This kernel structure represents a �le system. It provides the s_security opaque

�eld for storing arbitrary security context de�ned by the loaded security module.

The most important super_block hook mediates mounting, unmounting a �le

system, reading its statistics or passing mount options during the mount process.

�le

File structure corresponds to the opened �le. It allows a security module to bind se-

curity information separately from the respective inode security �eld. While opening

a �le, its inode permission hooks are consulted. The �le strucuture speci�c hooks

are usually used for revalidating the read/write permission at each executed opera-

tion on an opened �le, mediate �le locking or various operations to an opened �le

through the system call fcntl().

kern_ipc_perm

This structure represents the security credentials of various inter-process commu-

nication objects. The same structure is bounded to all of the objects, these are

semaphores, shared memory segments or message queues.
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sk_bu�

This kernel structure corresponds to the packet. LSM has also added the security

�eld there to be able to preserve the security information across all network layers

the packet �ows through.

Applicaton networking layer is mediated by socket related hooks. Socket kernel

structure does not have separate security �eld added by LSM, the security context

may be stored in respective inode's i_security �eld. Socket security hooks may

di�er their behaviour based on recognized communication protocol from the socket

structure.

3.3 Feasibility of implementing Two-Dimensional La-

belled Security Model with Partially Trusted

Subjects by LSM architecture

In this section, I will try to outline that it is possible to implement this security

model in Linux with the use of the Linux security modules architecture.

The �rst precondition is that Two-Dimensional Labelled Security Model does

not need to override discretionary access control, what meets the design of LSM.

First I will analyze which kernel structures correspond to abstract entities in the

information �ow policy of the model.

Subjects comport purely with the in operating system which are matched with

the task_struct inside the kernel.

Objects in the security model may correspond to �les (directories), pipes, sock-

ets, �lesystems, packets, semaphores, message queues, shared memory segments and

individual messages. These abstract objects are modeled by respective inode, su-

per_block, sk_bu�, kern_ipc_perm and msg_msg structures within the kernel.

LSM added security �elds to all these structures, so it is possible to bind security

attributes de�ned in the policy to all abstract objects and subjects. Linux security

modules does not limit in any way the size or the form of bounded attributes to the

structures.
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Now I will try to show that operations on abstract entities de�ned in the in-

formatin �ow policy of model may be mediated using the Linux security modules

architecture. For each operation controlled in the model, I will list respective hook

functions mediating the operation. Some hooks listed may cover the functionality

in a larger scope than respective abstract operation (for example based on the input

parameters). I will not mention the details of hooks here, the important ones will

be described closer in the implementation chapter.

For operations such as read and write, having very general semantics, I will list

only the basic hooks. In fact these operations are covered in a vast number of hooks,

since every hook mediating access to internal structure's metadata may represent a

hidden communication channel. I will only list hooks controlling access to the actual

data.

• read - inode_permission, ipc_permission, msg_queue_msgrcv, shm_associate,

sem_associate

• write - inode_permission, ipc_permission, msg_queue_msgsnd, shm_associate,

sem_associate

• create - inode_create, inode_mknod

• delete - inode_unlink

• debug - ptrace_access_check

• signal - task_kill

• reclassify - inode_setxattr

• change subject′s attributes - setprocattr

Another important thing is storing the security attributes of permanent objects.

Since modern �lesystems used in Linux have extended attributes support and LSM

mediates also managing those attributes, this condition is ful�lled.

The aim of this section was not the formal proof of feasibility of the Two-

Dimensional Labelled Security Model implementation using LSM in Linux. It is
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not even doable because of several reasons. It is di�cult to accurately specify the

scope of information protection required when deploying the formal security model

onto the living operating system of such complexity. Even if this was determinable,

there would have to be the formal proof of mediating every watched operation by

Linux security modules architecture.

The real goal of this section was rather showing, that there are not major obsta-

cles in the logic the of security policy that would be uncatchable by LSM design.

Another feasibility argument is the implementation of the security model using

SELinux.[8] Since SELinux is currently build on the LSM architecture, it should be

feasible to make a standalone security module realizing the security policy.

3.4 Current state of Linux security modules

There has been changes in Linux security modules API in 2007, in�uencing rapidly

developing and a deployment process of security modules, although not changing the

mediating power.[9] The patch coverted LSM into the static interface. This change

disabled the possibility to realize a security policy as a dynamic loadable kernel

module, what aims a little bit against the original idea of LSM. There were several

arguments reasoning this change. First,the LSM loadable interface was expected as

an ideal entry point for inserting malicious rootkit code into the kernel. This could

have been done especially with the closed third party modules, which pretended

to realize the security policy. The second argument was the nonexistance of real

security project necessary requiring loadable and unloadable interface.

The �nal solution does not export the LSM interface for modules use and incor-

porated several most popular security modules into the mainline kernel.

This change has brought some complications for my implementation. The secu-

rity policy has to be implemented as a kernel patch, what means unevitably recom-

piling the kernel after each change in the code, creating and setting boot image and

rebooting the system to test new implementation.
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Implementation

This chapter will continously describe the steps of implementing the Two-Dimensional

Labelled Security Model with Partially Trusted Subjects security model in Linux

using LSM. There have raised several points, where implementing the policy logic

is not straight forward and requires more attention. I will always mention several

possible solutions at this points and clarify suitability of my decision. Finally I will

closely describe the new concepts added to the policy at this points, their semantics

and rules for their maintaining.

4.1 First tries - Implementing dummy policy

First step I tried to do was test out some sample security policy implemented by

LSM. First attempt was with the root_plug policy used to demonstrate the power

of LSM during its release, which prevented running tasks with the e�ective id of a

system administrator unless the speci�c usb drive is plugged in. However I did not

manage to even compile this module. At �rst I thought it is due to the changes of

LSM hooks or usb device interface since then. However I got the same results when

writing my own dummy security module that prohibited reading of a �le with some

hardcoded speci�c name.

After that I studied more closely the LSM kernel code[10] and I realized that it is not

exporting any symbols to the userspace for use in kernel modules. Finally I found
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out from kernel developers' mail logs the change in LSM API made static. Since

the web page of original LSM development group no longer works and all materials

relating LSM are dated to its �rst deployment it took me a while to �nd this out.

At this stage I implemented the dummy policy as a kernel patch. To test it out,

it was necessary to recompile the kernel with the patch added, install the new kernel

image to the boot menu with security boot option set to the name of the dummy

security module and reboot. For testing I tried various operations in the system

and compared their results with the expected outputs. Another approach to �nding

out closer what is done within the kernel is to place control print outputs at the

prominent places and watch kernel logs during the tests.

Finally, I realized experiments with the kernel compilation after changes made

to the security module to speed up the development and test cycles. The result is

approximately 5 minutes of time needed to recompile the kernel with the changes

made only to the security module �les.

4.2 Basic structures and operations

This section describes the implementation of structures and operations on the ab-

straction level of the information �ow policy. These operations either perform access

controls or manipulate with respective structures.

The implemented policy is recognized by the pts name within the kernel, related

to the partially trusted subjects concept in the model. Entities mentioned in this

chapter can be found at the header �le pts.h included in other �les implementing the

security model. To improve the development and testing of this part, I implemented

and tested it as a kernel module �rst, since it does not yet use the LSM achitecture.

Implemented parts were then moved to the kernel patch for the security policy.
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Following two structures represent the security context of objects and subjects:

struct subject_pts {

int cr_s;

int cw_s;

int crl_s;

int cwl_s;

struct list_head crls_s;

struct list_head cwls_s;

int ir_s;

int iw_s;

int irl_s;

int iwl_s;

struct list_head irls_s;

struct list_head iwls_s;

int cn_s;

int in_s;

char ln_s[PTS_LABELLEN];

uid_t u_s;

struct list_head irus_s;

struct list_head cwus_s;

struct mutex lock;

};

struct object_pts {

int c_o;

int i_o;

char l_o[PTS_LABELLEN];

uid_t u_o;

struct mutex lock;

};

I modelled con�dentiality and integrity levels as an integer type, admitting a

possible use of negative values, what was later used for the model expansion. Labels

are character arrays with a static length de�ned as a value of the macro object

PTS_LABELLEN . Using the static array is easy to manage and with a reasonable

maximum length set is not limiting. Identi�er of a user is of a type uid_t which is

used for numbering of users in the rest of kernel as well.

The label and user id sets are implemented as linked lists. Assuming small

cardinalities of these sets during the real usage, the linear time of searching does not

matter. The elements of these linked lists are of a type label_item or user_id_item,

which are the wrapper structures for label and user id number. These structures

have to contain member of a type list_head enabling navigation within linked list.

Kernel provides a way to dereference the particular list_head member and get its
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wrapping structure, i.e. object of label_item or user_id_item type.

4.2.1 Policy parameters

All initial paramaters of the policy are de�ned as macro objects with their respective

values set prior to patching the kernel. There is a variable corresponding to each

parameter, whose value is initialized with a value of the respective macro object

directive.

Example of default con�dentiality level of object set to 1:

#define DEF_C_O 1

int def_c_o = DEF_C_O;

My implementation sat out with such a static solution for de�ning parameters per-

manently before the deployment. This solution should be su�cient in most cases,

where the semantics of security levels is clari�ed and �xed prior the security mod-

ule deployment in the system. Rede�ning parameters in a situation, where the

attributes of permanent objects are set according to the former manners could bring

an unwanted and hardly catchable behaviour in the new settings.

Despite this, the dynamic setting of the policy could be easily realized by passing

them as boot options of a currently loaded kernel and rewriting particular variables

holding the parameters.

The described parameters include permitted ranges for con�dentiality and in-

tegrity levels, default values for invidual members in object_pts and subject_pts

structures and default values for the three system constants de�ned in the informa-

tion �ow policy.

I used the following settings:

• C and I ranges from 0 to 2

• all default values concerning C and I are 1, including the system constants

• default label is set to an empty string

• default label and user id sets in subject_pts are empty
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4.2.2 Operations

There are set of methods realizing allocating, deallocating, resetting and cloning the

basic structures.

Function signatures for the subject_pts structure:

struct subject_pts *new_subject_pts(gfp_t)

void del_subject_pts(struct subject_pts *)

void reset_subject_pts(struct subject_pts *)

struct subject_pts *duplicate_subject_pts(struct subject_pts

*,gfp_t)

Allocating creates a new structure with the default values set, the input param-

eter of a type gfp_t is the required atomicity of memory allocations and is one of

the arguments used for allocating memory within the kernel. It had to be added

due to the fact, that allocating security context of subjects is required also during

some speci�c states of system(booting for example), when speci�c memory allocation

schemes are used.

Resetting takes an existing structure and changes it to the default state. Dupli-

cate operation takes an existing security structure and make its copy.

Another operation for creating new objects is new_object_pts_by_subject,

which simulates creation of a new object by the subject with its security context

passed as an argument.

Changes of basic structures

Changes of security levels are done by direct assignment of an integer to the changed

value. Setting a new label is done with helper function normalize_label, which takes

care of the maximum length of label allowed.

Various helper operations on sets are de�ned explicitly. I have created macro func-

tion templates for general operations(add, delete, clear, contain) on sets. These

macros require the actual type of objects within set to implement the operations

create, delete and compare. I have realized these operations for the used types

label_item and user_id_item and created general operations(add, delete, clear,
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contain) for sets containing these types by appropriate assigning parameters to the

macro function templates.

Text serializing/deserializing operations

Since security attributes should be adjustable by authorized subjects from the user

space and they will be passed in the natural text form, it was necessary to de�ne

equivalent textual representation of object and subject structures' values. The rep-

resentation may be of two slightly di�erent types: static showing the current state

of security attributes and a dynamic representation requiring changes of security

attributes. These have the equal syntax for objects.

Both representations consist of clauses separated by semicolons. Each clause

relates to one member of a security structure.

Clauses have the following form: member_name operator value

In case of a static representation and non-set clauses of dynamic representations the

operator is always = . In textual change requests for sets, also + = and − = op-

erators are allowed. These require adding(removing) value following them to(from)

the respective set in the structure. Value in set clause consists of comma separated

single values.

Since only letters of the alphabet and digits are allowed as characters of labels,

this representation is unambiguous.

Example of a default object textual representation: c_o = 1; i_o = 1; l_o =;

User identity attributes within subjects and objects structures denoting the

owner are derived attributes, they are already present in the kernel structures and

their values is copied to de�ned security structures from there. Mechanisms for get-

ting and setting their value are already present in the operating system(system calls

setuid and chown) and therefore are not included in the textual representation.

To be able to e�ectively work with the textual representation and make conver-

sions to/from the security structures following functions were de�ned:

int valid_subject_pts_string(char * s)

int string_to_subject_pts(char *s, struct subject_pts *sub, int
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resetHeritable)

char *subject_pts_to_string(struct subject_pts *sub, int *size)

The �rst function validates the passed string against the textual representation

format. The second function changes security attributes of the subject structure

according to the string s. The third argument will be explained later. The last

function returns the textual representation of current security attributes of sub and

sets size pointer value to its length.

Analogical functions exist for the object security structure.

Control operations

Final stage of de�ning this abstract level of security policy are the operations real-

izing access control. The most signi�cant is

int pts_access(struct subject_pts *sub,struct object_pts *obj,int request)

deciding whether subject sub may execute operation request on object. The return

value is 0 in case of granting access or −EPERM error code in case of a denial.

The coding of the third argument is taken from the permission model used in kernel.

Individual bits of this integer means following basic operations:

MAY_EXEC 1

MAY_WRITE 2

MAY_READ 4

MAY_APPEND 8

MAY_ACCESS 16

MAY_OPEN 32

MAY_CHDIR 64

Since implemented policy recognize only read and write basic operations, I de�ned

my own permission integer bits this way:

#define MAY_READ_PTS (MAY_EXEC | MAY_READ | MAY_ACCESS | MAY_OPEN)

#define MAY_WRITE_PTS (MAY_WRITE | MAY_APPEND )
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There may be passed several operations to the function through request argument,

therefore function computes all operations the passed subject may do with the ob-

ject according to the information �ow policy and the result is logically anded with

request. When the �nal result is equal to the original request, it means all requested

operations are permitted and the access is granted.

4.3 Implementing basic LSM hooks

Now it is time to implement the �rst trial version of policy, which uses de�ned

security structures and access control operations. The �rst version works just with

the default values of attributes in the security structures.

The init process is initialized with the default subject_pts security context and

because it is an ancestor of every running process and changes of a subject security

context are not yet implemented in this version, every process runs with the default

subject attributes.

Analogically, all objects are either created dynamically by subjects with the

default attributes or belong to permanent objects, getting their security attributes

from stored extended attributes which use in the policy will not be supported yet

in the initial version.

Every requested operation enabled by DAC sent to the initial policy hooks there-

fore should be allowed.

In following sections I will focus especially on tasks and �lesystem objects, whose

security is maintained by inode hooks. Following initialization inode hooks are

implemented:

int inode_alloc_security(struct inode *inode)

void inode_free_security(struct inode *inode)

int inode_init_security(struct inode *inode, struct inode

*dir,char **name, void **value, size_t *len)

The �rst hook binds the object_pts structure derived from the security context of

the currently running subject to the inode i_security �eld during the inode initial-

ization. The second hook frees memory occupied by the security context of the
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currently destroyed inode. The third hook enables setting of extended attributes

concerning security that the currently loaded policy wants to assign to the initial-

ized inode. In our case it will be single security attribute, I called it PTS. The

hook function assign this to the name argument and �lls value with the textual

representation of inode's security attributes, len argument holds its size.

Now it is time to implement initialization hooks for tasks. These are:

int cred_alloc_blank(struct cred *cred, gfp_t gfp)

void cred_free(struct cred *cred)

int cred_prepare(struct cred *new, const struct cred *old, gfp_t

gfp)

void cred_transfer(struct cred *new, const struct cred *old)

The �rst hook should allocate su�cient memory for the security context assigned

to the initialized task. In our case it binds the subject_pts structure with default

attributes to the passed credentials' security �eld. The second hook frees memory

holding the security context of the terminating process. Remaining two hooks realize

transition of security credentials, they create the copy of subject_pts structure in

old credentials and assign it to the new ones.

Finally following access control hooks are implemented:

int inode_permission(struct inode *inode, int mask)

int inode_create(struct inode *dir, struct dentry *dentry, int

mode)

int inode_mknod(struct inode *dir, struct dentry *dentry, int

mode, dev_t dev)

int inode_unlink(struct inode *dir, struct dentry *dentry)

int my_inode_rename(struct inode *old_inode, struct dentry

*old_dentry, struct inode *new_inode, struct dentry *new_dentry)

In all these hook implementations, the security contexts of participating object(s)

and subject are retrieved(in the time of calling these hooks, they are already set)

and they are passed to the pts_access function with the correct request according

to the information �ow policy. In case of the inode structure, the security context
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is held in i_security �eld, in case of dentry it may be navigated to the correspond-

ing inode and retrieved from there. Subject security context is gained by calling

current_security().

The �rst hook is general access control, it passes directly the mask request to

the pts_access with the exception of MAY_EXEC request on a directory, which is

automatically granted in our security model(when accessing a �lesystem object in

DAC execute permission is controlled through the full path to the object, this is

kept in LSM, however our model does not explicitly recognizes MAY_EXEC).

The second hook and third hooks correspond to creating inode at the passed dentry,

with the dir inode of its parent directory. This is judged according to the create

operation in the policy. The di�erence between hooks is that the second hook is

called when creating a regular �le, the third is called for special objects as pipes and

sockets.

The fourth hook is used for controlling the delete operation.

The �nal basic control hook is used for control when renaming dentry. What is un-

usual is that if the new renamed dentry already exists, this object is deleted without

calling inode_unlink or inode_permission hook. I simulated rename operation as

requiring both read and write access to the inode corresponding to the old dentry

and in case the new dentry existed before also requiring write access to its inode.

Kernel hooks implemented in this section build the policy infrastructure with

static assigning of security contexts just during the initialization of objects. Changes

of live objects cannot be done so far. They will be discussed in the next section.

To �nish this static infrastructure I will show how object security attributes may

be speci�ed non-default during their initialization using following hook:

void d_instantiate(struct dentry *opt_dentry, struct inode

*inode)

This hook is called when an inode is being bounded within the �lesystem tree to

the passed dentry. If the inode belongs to permanent objects, the given opt_dentry

is checked whether it has extended attribute used by the security policy set(PTS

in our case). If yes, the validity of its value is tested(the textual representation of

object_pts) and security context of the inode is set respectively.
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In case of objects created dynamically after every system start, this hook provides

also suitable place for uni�ed initialization security labeling of objects based on their

parent �lesystem type(for example if we want to assign nondefault attributes to

objects of a device �lesystem).

4.4 Hooks serving security attributes changes re-

quests

The aim of this section is to solve managing changes of security contexts of existing

entities in the running system. This means implementing hooks called on change

requests, describe the way of communicating required changes from the user space

to the kernel, on the other side transfering current security state of attributes from

the kernel to the user space for reading.

Finally it is crucial to solve the problem, that only specially authorized trusted

subjects under the direct control of a user or the security administrator should be

permitted to make those changes.

4.4.1 Transfering objects' security attributes

Security attributes of objects may be mediated from the user space with use of

extended attributes supported by modern �le systems. Extended attributes are

pairs name:value attached to �les. They are used to hold metadata related to a �le.

In Linux, the name part consists of two parts, the namespace and actual name(null

terminated string) joined with comma. Currently four namespaces are recognized:

user, trusted, system(storing ACLs) and security. For implementing our policy the

security namespace is important.

Used extended attribute's name is de�ned by the following macros, whereXATTR_

SECURITY_PREFIX is already de�ned by the kernel as security. and stands

for the security namespace:

#define XATTR_PTS_SUFFIX "PTS"

#define XATTR_NAME_PTS XATTR_SECURITY_PREFIX XATTR_PTS_SUFFIX
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Working with extended attributes is supported by the libattr dynamic library provid-

ing needed functions for user programs. On top of that, there are existing command

line programs such as attr.

In case of permanent objects, their extended attributes are stored persistently

on a hard drive, and in implemented policy during a call of d_instantiate hook, the

PTS extended attribute value(if set for the object) is used to determine the security

context of the object. For dynamically created objects, their security attributes may

be set after their creation within inode_init_security hook.

Following LSM hooks are used for working with extended attributes in security

namespace(not controlling access to them yet):

int inode_getsecurity(const struct inode *inode, const char

*name, void **buffer, bool alloc)

int inode_setsecurity(struct inode *inode, const char *name,

const void *value, size_t size, int flags)

The �rst hook is called when there is a request for reading extended attribute

name within security namespace of inode. By this hook, loaded security policy

may interpret the value of xattribute1 read and pass the result by buffer. In

case the policy does not want to interpret the value of the xattr name, it returns

−EOPNOTSUPP . In this case the actual stored value of this extended attribute

is returned(if set) or an 'attribute not set' message.

Example of this usage in our policy:

Let be a value of the PTS xattr for a �le f permanently stored as i_o = 2; meaning

its integrity level is raised and other values are default. If our policy is loaded and

succesful read request for PTS xattr of �le f is done, it returns the full textual rep-

resentation of the security context c_o = 1; i_o = 2; l_o =; , but in case no policy

is used or policy not interpreting the PTS xattr, then i_o = 2; would be returned.

The second hook is called when a security xatrr name is being set to value. It

provides place to update the security context of an inode. In our case it updates

the object_pts structure bounded to the inode according to the value if the name

1extended attribute
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is equal to PTS. It is important to update a permanent xattr value of PTS with the

full textual representation of the current object state after accepting the set value.

Let's assume for example that a permanent PTS xattr value is stored as c_o = 2;

for an object O and afterwards its owner makes a succesful set query with the value

i_o = 2;. We expect that by not mentioning other attributes in the query, the

user wants them to remain unchanged. After accepting the query the object's full

security context is c_o = 2; i_o = 2; l_o =; If we did not update the stored value of

permanent xattribute PTS , after the system reboot the PTS xattr value found for

the object O would be i_o = 2; and therefore we would downgrade its con�dentialty

to the default value 1, which is an undesired behaviour.

Finally there are access control hooks allowing/forbidding read/write/remove

operations on extended attributes. They are called for all xattributes, not just for

the security namespace.

int inode_getxattr(struct dentry *dentry, const char *name)

int inode_setxattr(struct dentry *dentry, const char *name,

const void *value, size_t size, int flags)

int inode_removexattr(struct dentry *dentry, const char *name)

Realization of these is not clear so far and will be discussed later.

4.4.2 Transfering subjects' security attributes

Here I will explain, how it is possible to pass the current security context of a

running process from the kernel to the userspace and how to ask for its change from

the userspace.

Linux uses the proc �lesystem, in default settings mounted at /proc during the

boot time. It is used to present various information about running processes and

other system information from the kernel to the userspace in a hierarchical structure.

For each process there is a directory named after the PID process number holding

information about particular process. Process may access own directory structure

by using the symbolic link /proc/self without knowing own PID number. It contains
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the attr directory, with several �les which may be read or written to and these events

may be maintained by a security policy using following hooks:

int getprocattr(struct task_struct *p, char *name, char **value)

int setprocattr(struct task_struct *p, char *name, void *value,

size_t size)

These hooks ful�ll both access control role and may realize other functionality.

The �rst hook is called when a �le name within the attr directory of a process p

is read in the userspace. The hook may deny access by returning a negative number

with the respective error or set the content of �le name for reading process by �lling

the value with the content and returning the size of content. In the PTS policy

implementation only the �le current is interpreted, its content is �lled with the

textual representation of the security context of the subject p at given moment.

The second hook is called when there is a write attempt of the value to the

�le name in the attr directory of the process p. Policy may as well deny write

or try to make internal changes based on the written value and return the size of

an accepted input from the value. In our case, let's assume the name is equal to

current and write access is permitted. Then the passed value is validated against the

subject security context textual representation format and if the result is positive,

subjects_pts structure of the task's p credentials is changed respectively.

The decision when to allow changing of the security attributes of a subject is

consulted in the next section.

4.4.3 Security context changes policy

I have shown how it is possible to change the security attributes of protected kernel

structures from the user space on demand. The important step is how to judge

whether the subject requiring change should be authorized to make those changes.

The information policy de�nes which changes should be approved automatically

and what changes can be made only by specially authorized trusted subjects under

the direct control of the user(I will assume that each user is fully responsible for

the objects he owns and all processes running on his behalf and may change their
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security attributes with the exception of their owner - but changing the ownership is

not done via mechanisms described in last two subsections). In my implementation

of the security model, I will tighten up these rules and enable any changes only when

done by specially authorized trusted subjects(all original applications running are

not aware of my security module, therefore they would not require such changes). I

will assume that all support utilities I will implement are well designed and will act

as SAT 1 subjects not violating the policy.

Now the big question is how to di�er whether the subject asking changes is a

SAT subject. Several approaches have come in my mind:

• allowing only one running SAT subject of a certain type(e.g. the type of a

SAT subject may be the process manager enabling a user to run a task with

arbitrary security attributes), this SAT subject would run as a service being

executed early during the boot sequence(set into init scripts), it would regis-

ter itself as a SAT subject to the security policy(the policy would afterwards

denied registering another SAT subject of this type), the subject_pts struc-

ture would have to be extended by a �ag per every type of the SAT subject,

the security policy would set the corresponding �ag in the subjec_pts of a

registered task, only subject with the set �ag could violate the policy accord-

ing to its privileges as a SAT subject, problems how to communicate with

this service(dbus or other form of interprocess comunication would have to be

used), what if the service would terminate unexpectedly before system halt?,

attention to preventing other applications to register itself as a SAT subject

prior to the intended one

• add another extended attribute to the security namespace for marking binary

�les from which SAT subjects are launched, marking those binaries would

be done before the security module deployment, the policy itself would deny

attempts to set this extended attributes for other binaries or removing this

attribute from the marked binaries, during a binary launching, it would be

checked whether this xattr is set, if yes, the added �ag in the subject_pts

1specially authorized trusted
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structure of initialized process marking SAT subjects would be set, during the

access control of operations realized only by SAT subjects this �ag would be

checked for the currently running process

• the third idea is similar to the second, but instead of adding another extended

attribute it takes advantage of the POSIX capabilities used in Linux, the

capabilities behaviour and its usage for our problem is outlined in the next

section

4.5 Capabilities

Traditional Unix discretionary access control distinguished between the privileged

processes (e�ective uid of the root) which avoided all permission checks within the

kernel and unprivileged processes which were the subject of permission checks ac-

cording to their security credentials. This all or nothing privileges model was later

divided into smaller distinctive units(capabilities[11]), each representing a single

privilege(enabled or disabled separately from others). Capabilities are per process

security atributes.

Currently Linux recognizes 35 di�erent capabilities. From the view of the imple-

mented security model especially 4 of them are important:

• CAP_MAC_OVERRIDE - reserved for the implemented MAC 1 policy, priv-

ilege to override the policy rules

• CAP_MAC_ADMIN - privilege to modify enforced MAC policy, used by the

MAC security administrator

• CAP_CHOWN - privilege to override restrictions of changing the �le owner

or group, changing the owner of objects is critical operation in our model

• CAP_SETUID - privilege to change one of user ids of a running process,

changing the subject's owner should be allowed in our model only to the login

managers
1mandatory access control
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It seems from the suggested use of implemented capabilities, that granting the

CAP_MAC_OVERRIDE capability to(and only to) SAT subjects under the di-

rect control of a user would be suitable to implement the managment of security

attributes changes by the owner. To see whether it is feasible and how I will closely

describe working capability mechanisms and the way to slightly modify them to

implement our goal. Each thread has three capability sets, each containing a subset

of assigned capabilities. These are:

• permitted - a limiting superset for the capabilities that may be added to the

e�ective set

• inheritable - capabilities, that may be preserved through the execve call run-

ning a new program

• e�ective - these capabilties are used within the kernel for permission checks

on privileged operations

When a new program is forked, it gets the copy of capability sets of its parent. To be

able to grant capabilities to certain programs, the �le capabilities were introduced

recently. They are permanently stored as an extended attribute of the binary �le

within the security namespace.

File capabilities also contain three capability sets:

• permitted - these are automatically moved to the permitted set of a thread

being run from this �le

• inheritable - they are anded with the inheritable set of an old task calling

execve on this �le, the result is also moved to the new thread's permitted set

• e�ective - this is not capability set, but a single bit, if set, the new thread's

e�ective set is equal to the permitted set, otherwise new e�ective set is empty

Now I will show precisely, how the new thread's capability sets are computed during

execve:
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P'(permitted) = (P(inheritable) & F(inheritable)) |

(F(permitted) & cap_bset)

P'(effective) = F(effective) ? P'(permitted) : 0

P'(inheritable) = P(inheritable)

The capability bounding set in the �rst formula is another per thread attribute. It

is used to limit capabilities handed over during execve. This set value is preserved

across fork and execve and once something was dropped from it, it may not be

regained back. Task may not add any capability not included in its bounding set to

its inherited set and the bounding set also masks the �le permitted set. Therefore

only way to pass cabality not included in the bounding set is in case the inherited

set contains this capability(added before shrinking capability bounding set) and

executed binary has that capability in its inherited �le capability set.

To keep original super user semantics, following corrections are done during

execve: if an executed program belongs to root and has the uid bit set or the real

uid of the thread is 0 (root) then all capabilities in the �le permitted and inherited

set are raised and also the e�ective bit is set. This grants all capabilities to that

executed thread with the exception of those not included in the bounding set.

During the transitions between root and non-root uid of a running task, its

capability sets are also changed respectively. The transition of e�ective uid from

0 to nonzero means clearing e�ective set, the transition from the state when there

is some uid equal to 0 to the state when all uids are nonzero means clearing the

permitted set. Finally the transition from nonzero to 0 copies whole permitted set

to the e�ective set.

The capability policy also includes three per process bit �ags modifying the

behaviour for threads with uid 0. These are:

• SECURE_KEEP_CAPS - if set, switching all uids to nonzero does not mean

losing permitted and e�ective capabilities, resets after each execve

• SECURE_NO_SETUID_FIXUP - changing uids of thread does not change

capability sets
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• SECURE_NOROOT - disables granting all �le capabilities to set-uid-root

programs and programs with uid 0

Finally there is also a companion locking �ag for all these, which disables any future

changes to these if set(and also changes of locks itself).

4.5.1 Necessary changes in capabilities policy

Now the question is whether it is possible to realize specially authorized trusted sub-

jects using the mechanics above without any modi�cations. What we actually want

is that only certain programs could gain CAP_MAC_OVERRIDE capability and no

others. This can be achieved only by editing �le capabilities of these programs with

mentioned capability, such that they gain this capability in its permitted set and have

their e�ective bit set. Attempt to grant such setting to any other programs should

be denied. Privilege to setting �le capabilities is maintained by CAP_SETFCAP

capability. The only way to deny setting CAP_MAC_OVERRIDE for any process

by root processes is to drop CAP_SETFCAP from the capability bounding set of

init(or somewhere lower inside the process tree, where arbitrary root process may

be executed). This however means disabling the possibility to assign any �le ca-

pabilities within the system, what is an undesired behaviour. There is no way to

specialize this restriction to only single CAP_MAC_OVERRIDE capability.

Fortunately capabilities policy may be overriden inside LSM hooks, it is possible

within the inode_setxattr hook to test whether the XATTR_NAME_CAPS ex-

tended attibute(holds �le capabilities) is set, and if yes look whether CAP_MAC_

OV ERRIDE is being set and deny setting xattr in this case.

Another problem is computing new thread's capabilities during execve. We want

only threads executed from a binary with the CAP_MAC_OVERRIDE �le capabil-

ity set to be able to gain the CAP_MAC_OVERRIDE e�ective capability regardless

of the uid of executing thread. Let's assume security bit SECURE_NOROOT is

not systemwide set. If it was, too many programs with uid 0 requiring privileges

for their correct behaviour(other than CAP_MAC_OVERRIDE) would not work

anymore, because although the �le capabilities infrastructure is developed, it is not
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extensively used within Linux distributions, which rely on keeping the superuser

semantics during execve. Fine tuning of �le capabilities for privileged programs by

system administrator would be required.

But with SECURE_NOROOT turned o�, every program executed by a root

process gains CAP_MAC_OVERRIDE automatically if not masked out by the ca-

pability bounding set. In case it was masked out however, also running the intended

SAT program would not grant him CAP_MAC_OVERRIDE.

The solution may be realized by the

int bprm_set_creds(struct linux_binprm *bprm)

LSM hook that is called prior to succesful execve operation on a binary represented

by passed argument. This hook may a�ect the security credentials of a new task

being run from this binary, which contains also its capability sets. It is possible to

navigate to the respective dentry of a binary �le from the bprm structure, check

there whether its �le capabilities contain CAP_MAC_OVERRIDE and assign this

capability to the e�ective and permitted set of the executed task only in case yes.

The behaviour of execve for all other capabilities will stay unchanged by calling the

bprm_set_creds hook of the capability policy implementation within my hook.

4.5.2 Implementing specially authorized trusted subjects

Now when I have shown how it is possible to recognize specially authorized trusted

subjects within the kernel, it is time to implement them as user space utilities.

First utility is called the extended attribute manager xattrmng. It is used for

maintaining the security policy relevant xattr PTS on objects of a �le system. It

provides these main functions:

• printing the current security context of an object in the textual representation

• removing the PTS extended attribute - this means setting object's security

context to the default state

• setting the PTS extended attribute to desired value
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Remove and set operations are sensitive, before allowing them, the utility checks

the equality of the uid of the running process with the changed object's owner uid.

If this check is succesful the owner is asked to authenticate himself. Authentication

is done by password. Here several implementation possibilities are o�ered.

The implemented policy may maintain its own security authenticating system

for users independent of authentication into the system. This would entail password

changes managment, storing hashed values of passwords and protection of stored

passwords against modifying.

Another possibility is to use system passwords for authentication. These are

stored in /etc/shadow. The �le is formatted into rows, each row corresponds to a

single user identi�ed by its UID number. The most important column of a row is

a hashed password. It consists of three parts, �rst identi�es the algorithm used for

hashing, the second is a random salt string concatenated with a raw password before

it is hashed, and third is the actual hashed value.

Validating of the passed password could be done by the utility itself, this would

however require the detailed knowledge of storing passwords and computing hashes,

and could also become potentially outdated in the future.

I used Pluggable Authentication Modules libraries providing a high level API for

using the lower authentication schemes in the background. Utilities such as login or

su use PAM libraries for authentication tasks, therefore there is a high probability of

keeping the same API and a given functionality without needed changes in the future.

The authentication part in utilities execution starts PAM session with the passed

system user(uid of the running utility) and communicating objects, then program

calls the pam_authenticate service, which asks user to pass its password and �nally

the result of authentication is passed to the program. In case the authentication

was succesful the actual remove/set xattr functionality is executed.

In case of the set operation, the passed security context value is validated and if

valid it is passed via setxattr to the kernel. In the policy hook, the CAP_MAC_OVERRIDE

capability of a process requiring change is checked and afterwards the validating

passed value is done as well.

Except from this remove/set PTS xattr functionality done on a single object I
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have implemented also possibility to do it recursively in a passed directory to ease

the mass labeling of objects of the same security sensitivity.

Examples of xattr utility usage:

xattrmng -g /etc/shadow

xattrmng -d ./text

xattrmng -s "c_o=2;i_o=2;" /etc/shadow

xattrmng -sr "c_o=0;i_o=2;" /bin

The �rst example reads the security attributes of /etc/shadow, the second removes

the PTS xattr from the text �le, the third sets the security attributes of /etc/shadow

with the passed value and the fourth uses recursive setting on /bin directory.

The second SAT utility is called procmng. This utility enables user to run a pro-

cess with desired security attributes. First it asks the user to authenticate itself

using PAM and afterwards it validates the desired security attributes and writes

them to /proc/self/attr/current. This setting is evaluated within setprocattr LSM

hook, it checkes whether current process has the CAP_MAC_OVERRIDE capa-

bility and validates passed value. If everything is alright, the procmng process now

runs with the passed security attributes. Afterwards it executes the program desired

by the user and since execve preserves security attributes, the required task is �n-

ished and program runs with the security attributes required. To easy up repetitive

running programs with commonly used settings to users, I enabled passing security

attributes' value as a link to �le, which content is read and used. So the user may

store commonly used con�gurations in security pro�le �les.

Example of reading the protected �le /etc/shadow with cat program, security at-

tributes are passed either directly or by a pro�le �le:

procmng "cr_s=2;" cat /etc/shadow

procmng -p PrivilegedRead cat /etc/shadow

The correct setting of the enviroment for these utilities prior to the policy deploy-

ment includes setting the CAP_MAC_OVERRIDE �le capability for their binaries.
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4.6 Necessary exceptions to running trusted sub-

jects

At this stage, when the core of security policy is implemented, it is time to test it on

the running system with proper binding of security attributes to objects according

their sensitivity. I will list initial labeling done to important permanent objects

used in the system and try to clarify chosen labeling. Security attributes will be

expressed by the textual representation.

• system libraries and binary executable �les co = 0; io = 2; - these should be

readable by every subject, information they hold is public and needed for run-

ning tasks, however they have to be strongly protected against unauthorized

modi�cation, which could cause unpredictable or malicious behaviour of run-

ning tasks(included directories and their contents - /bin, /lib, /sbin, /usr/bin,

/usr/sbin, /usr/lib, . . . )

• system con�guration �les - io = 2; their unauthorized modi�cation is strictly

unwanted, a�ecting the system behaviour, con�dentiality level is not com-

pletely clear, for most �les default level is su�cient, might be derived from the

DAC access rules, if others do not have read permission then con�dentiality

level should be 2 (for example /etc/shadow), con�guration �les are included

mainly in /etc directory

Now I have tried to test system with these permanent objects set. Booting system

was not succesful with kernel panic as a result, error messages stated that main

harddisk could not be mounted. At this occasion, it is suitable to emphasize the

importance of having standard kernel available for the system loading at boot menu

to be able to enter system and try to �x things in tested version. Apparently, what

happened was that some process running with default security attributes during

boot up sequence tried to execute operation on protected object, which was rejected

by loaded PTS policy. In order to recognize e�ectively participating entities, denied

operation and other circumstances and be able to look for solutions I introduced

permissive mode of running security policy.
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4.6.1 Permissive mode

As a response to above described problems I added two modes of running into the

security policy. They are independent of each other and a�ect policy behaviour in

di�erent way.

Printing mode records all events when policy decides to reject privileges to per-

form some operation with respective details. That means printing rejected opera-

tions, identi�ers of entities concerned in operators(for inode it is inode number and

type of �lesystem, for dentry it may be recursive printing of its path, for process it

may be its name) and maybe printing important security attributes of these entities.

Permissive mode is used for tuning system security. Running permissive mode

without printing mode does not make any sense. During permissive mode, all op-

erations are judged by the policy in standard manners, but in case operation would

be denied, print is made(printing mode on) and the hook does not return -EPERM

but permits operation. This mode therefore only simulates implemented policy and

logs possible problems, but from the outer view it seems as if no mandatory policy

would be loaded. To see kernel live time logs dmesg command may be used.

Printing and permissive modes are realized in all access control hooks, they may

be set on or o� by de�ning respective macro values. To easily switch between them

without recompiling kernel, I have implemented two policy variants with distinc-

tive security operations tables and names, one implementing permissive mode with

prints, second having nonpermissive mode with prints. Which policy will be loaded

is chosen by setting security boot parameter.

4.6.2 Default binary execution attributes

Thanks to permissive mode I was able to detect that mount process running with

default security context tried to create �le within /etc directory protected against

write and was rejected. However mount process was executed during boot up session

prior to user has any control over system, therefore is not possible to authenticate

itself and execute mount with proper attributes.

There must be found the way how to grant needed privileges to such processes.
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First idea is to divide system run into two epochs: booting and the state when

user is in control of the system. Processes executed during booting would be able

to override all access control checks(running as trusted subjects). Several problems

raise for this approach. How to reliably di�er between these time periods? Another

problem is that after the start of the second epoch there are still running processes

executed during boot. If we could reset their security attributes to default values

automatically, this could bring unwanted e�ects.

The rational solution seems to �nd as tight ranges of security attributes which

they need to operate within as possible and grant them these security attributes

automatically. This is naturally realized by binding these default security contexts

to the respective binaries, from which these processes are executed. Binding may

be done by using extended attributes.

For this purpose security policy reserves new security attribute BIN_PTS by fol-

lowing macros:

#define XATTR_BIN_PTS_SUFFIX "BIN_PTS"

#define XATTR_NAME_BIN_PTS XATTR_SECURITY_PREFIX XATTR_BIN_PTS_SUFFIX

Now the question is how to manage setting this attribute to prevent violating policy.

If malicious process could set this xattr, it would be able to run arbitrary program

with arbitrary security context. Therefore utility for setting BIN_PTS xattr rep-

resenting default security context of process executed from binary should run as spe-

cially authorized trusted subject. To recognize it within kernel, CAP_MAC_OVERRIDE

�le capability would be assigned to it similarly to previously implemented SAT sub-

jects.

Another question is whose authentication is required within that utility and

under what conditions will process being run from binary gain security context

described by the value of its BIN_PTS xattribute value. We could require at least

the authentication of the binary's owner during setting the xattr, or to be more

strict only security administrator could do such changes. Both of the solutions are

suitable. The �rst answer partially implies the second question's solution. Receiving

binary's default security context during executing should be granted to processes

whose owner was authorized to set this security context for binary. In this case,
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it is the owner of the binary(in case of setuid binaries it should be every process

executing it). Since programs being run during boot that need default security

context are probably all owned by root and bootup processes have uid of root, this

solution seems viable.

To implement this behaviour, bprm_set_creds hook is modi�ed. In case the

currently running process has uid equal to the owner of executed binary or binary

is setuid, it is checked whether binary has BIN_PTS xattr set with valid value. If

yes, the process being executed does not inherit security context of current process,

but its security context is read from the binary xattr.

With adding the concept of default binary execution attributes another issue

has come out. When the security context of process is gained from BIN_PTS xattr

and afterwards the process execve's another process(without BIN_PTS xattr), what

should be security attributes of the new process? This problem shows up practically,

because login manager needs to access system passwords, therefore needs cr_s=2.

However after succesful login all processes of logged user automatically gain cr_s=2

by applying traditional transfer of security attributes between processes. It is clear

that in this case, it is unwanted.

To solve this problem I have introduced the new security attribute heritable

for subjects(into subject_pts structure). It has integer value and tells whether the

security attributes should be preserved through execve operation and how many

times. It recognizes positive values with zero on one hand and in�nity value on the

other hand, which is modelled by -1 value. During execve, this value is checked, if

it is -1 then new process gains the same security context as the old one. If value is

positive, then the same happens, but heritable value is decreased. If value is equal

to 0, then new process does not inherit security attributes of the old one, but it

gains default security attributes.

If the binary has BIN_PTS xattr set and its value says nothing about heritable

attribute, than heritable is supposed to be 0. In case the process with default

security attributes is created or process launched by user using procmng utility and

heritable is not explicitly set, then heritable value is expected to be -1.

Finally I will describe the userspace utility for maintaining BIN_PTS xattrs on
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binaries. It is called binmng and it supports reading current value of xattr, removing

value, or setting it with explicitly passed value or value read from security pro�le

�le.

Examples of use, �rst one is reading xattr, second is setting the xattr:

binmng -g /bin/mount

binmng -s "iw_s=2;" /bin/mount

This utility requires to have CAP_MAC_OVERRIDE �le capability.

4.7 Labeling temporary objects

In this section I will focus on dealing with the security attributes of nonpermanent

�lesystem objects. These objects are dynamically created usually during the system

startup. I have already mentioned how it is possible to label them uniformly within

the d_instantiate hook according to �lesystem they belong to. This approach is

however not always su�cient. I will focus on device �lesystem objects, which contain

representatives that require a special security treatment.

Here are some of them with the description of suitable security attributes for them:

• device �les representing hard disks and partitions, by accessing them, process

may read or modify any data psychically found on the device, this is a very

powerful privilege, it can be seen that for every process running on some arbi-

trary security level there exists an object with some security attributes which

process cannot read/write to, let's assume a process may read/write to the par-

ticular device �le, then however this device might contain an object for which

the process has access denied but could bypass this by accessing the object

directly through the device �le, this implies that process with no conventional

security context should be able to read from/write to these devices

• special devices such as /dev/null (everything written to it is accepted, reading

returns EOF), /dev/zero (for read returns as many zeroes as asked), /dev/full

(write returns No space left error), every write and read operation on these
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devices should be granted, however if we would assign these devices some

particular security attributes, there would always exist security attributes for

process, that would forbid read/write

• /dev/random , /dev/urandom - these act as random numbers generators, read

access should be granted for everyone

4.7.1 Security attributes outside standard bounds

These examples show up that so far used security attributes are not su�cient for

some devices. Therefore we have to widen the security model. One possibility is to

add standalone �ags for each combination of con�ndentiality/integrity and access

for everybody/nobody. This is however reduntant and makes model less clear. It is

possible to use current attributes with the values not interpreted so far.

This means that setting the value of object's security attribute above the upper

bound is restrictive towards all operations on the object considering this security

attribute. On the other hand, values below the lower bound grant access to every-

body. In our enviroment this means for example setting c_o = −1; i_o = −1; to
/dev/null and c_o = 3; i_o = 3; to /dev/sda1.

Now it is important to think of, who should be authorized to set the attributes

outside normal bounds on the object. If we would permit setting arbitrary security

value to the object by its owner, he would be able to signi�cantly a�ect behaviour

of other users' processes. Let's assume there is a process P1 of user U1 running with

the ir_s = 2; security context. This process shouldn't be permitted to read from

objects of another user. But if another user U2 could set c_o = −1; on its objects,

this would mean that P1 is allowed to read such objects. Therefore setting security

attributes should be allowed only to the security administrator. Details about the

security administrator role and security administration mode are in the last section

of this chapter. Labeling of these specially treated devices has to be therefore done

by special trusted subjects authorized by the security administrator.
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4.7.2 Udev daemon labeling

Another question is how the actual labeling of devices will be done. Simple solution

is to run a script labeling devices in the moment when they are already created and

inserted into the directory tree. This however let them with the default security con-

text in the time between their initialization and running script. Another problem is

labeling devices that are created later during system run, for example when plugging

external disc. More elegant solution is to use the udev daemon. Udev is a user space

process managing device �lesystem standardly mounted at /dev. It reacts to events

triggered during plugging and loading devices within kernel by reading the sysfs

�lesystem mounted at /sys through which kernel exports information about various

curretly plugged devices. As a response to these events it creates corresponding

device nodes within the device �lesystem.

Udev's behaviour is managed by the rules found in udev's con�guration �les.

[12] Each rule consists of a series of key-value pairs. There are pairs that specify

upon which event this rule should be used, the speci�cation might be done by

the kernel name of the device, action done, or various attributes of the device.

Speci�cation may be used for wide set of devices having common attributes because

it may be expressed also using regular expressions. Then there are pairs related

to making device nodes specifying the name of created nodes or alternative nodes

being symbolic linkes to the real node. The most interesting pair for us are those

that enable running user speci�ed command upon recognized event speci�ed by this

rule.

The labeling process run by udev when it recognizes specially labeled device has

to be special trusted subject authorized by the security administrator because of

setting attributes outside traditional bounds. Let's assume we may mark particular

binary, so that when the process is run from it, this process is recognized as a special

trusted subject authorized by security administrator within kernel and it allows the

process labeling objects with arbitrary values. I will show how this marking may be

done in the next section. Since this labeling process run from the marked binary has

to provide labeling automatically without possibility to authenticate as the security

administrator, it is crucial that no process apart from udev should be able to run this
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binary. This may be realized also with the security attributes raised above standard

upper bound. If security administrator sets security context of the device labeling

utility binary to c_o = 3; no process with standard attributes will be able to read it

and therefore also not able to execute it and subsequently change arbitrary object's

security attributes. To enable udev running this utility, the security administrator

has to set the BIN_PTS xattr of udev to cr_s = 3; so that it will be able to

execute it. This will cause that udev will be run automatically with the raised read

capability during boot up.

The mentioned utility was named deviceXattrmng. It has the same functionality

as xattrmng, but it does not require authentication.

To prevent misusing of potential bugs found in udev by attacker for reading

other objects with a high con�dentiality protection we may use the partially trusted

subjects concept. The deviceXattrmng binary may be assigned a label l_o apart

from only raised c_o and the BIN_PTS xattr of udev will get only crl_s = 3; and

crls_s set will have the respective label added.

4.8 Security administration

It is clear from the previous section that there is a high demand on adopting a

security administrator role for the implemented security model.

The �rst important question is who should serve this role. In traditional Linux,

the root account gains all administrative privileges, this means he maintains con�g-

uration of the system, network, security etc. Not only the aggregation of so many

privileges in hands of a single person is problematic, but also the fact that all pro-

cesses running in the system on behalf of root have the full power. It is therefore

reasonable to separate the role of the security administrator of our policy from the

system administrator root account. This does not necessary mean that the tradi-

tional system administator and the security administrator have to be two distinct

real persons, but it enables such con�guration of privileges.

Another problem is the extent of the security administrator privileges granted by

the security policy. Natural solution enables the security administrator to override
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completely all policy access controls and rules. These privileges granted by kernel to

the security administrator are however strongly in�uenced by the form of recognized

security administration mode. If we realized security administration by creating a

system account for the security administrator and stated that all processes running

with the e�ective uid of this account gain security administration privileges, then

in case the system administrator could log into his account he would gain unlimited

privileges. On the other hand, in the same situation but with the logging disabled

for the security administrator account, the administration mode would be restricted

by the functionality of utilities belonging to security administrator and having the

setuid bit turned on.

I have used capabilities for recognizing security administration. Processes hold-

ing the CAP_MAC_ADMIN capability are privileged to do security administration

of the policy.The ideal solution stating clearly authority of the security administrator

is creating a set of utilities with well de�ned semantics that run as trusted subjects

authorized by the security administrator and only they execute security administra-

tion operations. The solution how to grant the CAP_MAC_ADMIN capability only

to these utilities is similar to the realization of SAT subjects for managing security

attributes by the entity owner. I have modi�ed capability transfer during execve for

CAP_MAC_ADMIN so, that only processes executed from binaries having the �le

capability CAP_MAC_ADMIN may enforce the administration of security. This

concerns the beginning of the administration.

In order to enable powerful utilities starting the administration session (for ex-

ample running bash with the CAP_MAC_ADMIN capability) through which all

executed programs should have the administration privilege, I have further modi�ed

the capability settings within bprm_set_creds hook. Executed process gains the

MAC administration capability also in case the old process making exec had this

capability.

Another issue with the trusted subjects running administration tasks is how they

authenticate the security administrator. I have used authentication by password.

The important thing is the way of storing, validating and change managment of this

password(and all other passwords used for the authentication within SAT subjects
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recognized by the policy). One possibility is to store an independent set of passwords

for the users(not connected with their system accounts). This way I would have to

implement utilities for managment of these passwords, and would bring an additional

overhead for the users to memorize and manage two passwords. The better solution

is using the system accounts for authentication, also taking into an account the

use of PAM authentication(validates passwords according to /etc/shadow) in the

already implemented utilities. After this decision, it is necessary to create account

for the security administrator before the policy deployment.

In my case, I have created the user securityAdministrator with the uid number

999. Numbers lower than 1000 usually determines a special system user. Number

999 should be free in most used Linux distributions(after the uid 0 of root there

are always numbers reserved for various virtual users). The implemented utilities

for security administration need to know whose authentication they will ask for.

The uid might be hardcoded into them or another viable solution is to create a

con�guration �le (for example in /etc) strictly protected against modi�cation and

readable by everyone, which will contain uid of the security administrator.

Finally I will mention some utilities suitable for the security administration and

their functionality. It depends on a decision before the deployment of the secu-

rity policy which utilities to provide to the security administrator by assigning

CAP_MAC_ADMIN to their �le capabilities. In less dynamic systems, where not

so many changes from a security point of view are done during the production run

it is suitable to limit privileges of the security administrator and rely on the correct

initial con�guration. On the other hand, in dynamic systems, security administrator

may have very high privileges. In this case security might be raised by requiring

more than one administrator for running security administration utilities. This may

be implemented by easy modi�cation of utilities, so that the con�guration �le iden-

tifying security administrator would contain the list of uid numbers, and the utility

would continously ask authentication from particular security administrators in this

list. Administration mode will start only in case all of them succesfully log in.

Tips for functionality provided by possible security administration utilities:

• labeling device �les - implemented deviceXattrmng, called by udev, not re-
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quiring authentication of the security administrator, therefore having con�-

dentialy level above the standard upper bound

• labeling passed object with arbitrary attributes(also outside the normal bounds,

such object afterwards is protected against relabelling by its owner as well),

implemented adminXattrmng utility

• labelling passed binary with the default execution attributes - these may exceed

standard ranges, used for programs working with special objects, implemented

adminBinmng utility

• maintaining user passwords, may change other users' passwords, implemented

pswd utility

• setting CAP_MAC_ADMIN and/or CAP_MAC_OVERRIDE on binaries,

adding new specially authorized trusted subjects

• running administrative session - all processes run with the CAP_MAC_ADMIN

capability, the last two have the same power, the security administrator is high

privileged, implemented admin utility

• changing the owner of the object

• setting the CAP_CHOWN, CAP_SETUID �le capabilities - enabling process

to change its e�ective uid or change owner of the objects, these operations will

be discussed in the next subsection

4.8.1 Restricting security administration privileges of root

This part is going to discuss some necessary steps needed for limiting root privileges

concerning possible policy violation by him. This is done as a result of the decision

to separate the role of system administrator from the security administrator.

The main idea of this process is to prevent root from doing such operations, which

have been granted to him so far and which should be done only by the security

administrator(these do not necessary have to be straight operation requests, but



64 CHAPTER 4. IMPLEMENTATION

also hidden channels or indirect operations such as directly accessing devices). The

detailed knowledge of the system is required to do this properly, I will mention only

important issues known to me, certainly there are many more. It is important to

realize, that system administrator has power to bring down the system or corrupt

it in many ways. The idea is not to control these types of misbehaviour including

accessibility violation, but only restrict violating of the implemented security model.

System accounts managment

Traditionally system accounts information are stored within /etc/passwd and /etc/shadow

(storing hashed passwords). Utilities such as passwd are used to manage these in-

formation. It is a setuid program allowing each user to change its password etc. and

root to make arbitrary changes. Since passwords for system accounts are used in

our policy for authenticating users and especially the system administrator, these

should be protected against modi�cation by anybody(included root) except from

the security administrator. Depending on the chosen administration policy, system

administrator does not have to be allowed to change it directly but with use of

trusted administration utilities.

The recommended setting of the security attributes of /etc/shadow includes

raised con�dentiality and integrity. Since this �le is accessed also by programs such

as login managers, which run with the root uid number, root should stay its owner.

This way the non-privileged processes of root won't be able to access it and also

no processes of other users. The read access of login managers may be solved using

default execution parameters for their binaries. However we want to completely

prevent root processes from modifying this �le. This may be achieved by raising

the integrity level of /etc/shadow above the standard bound to value 3. Now the

standard passwd utility run by root with arbitrary security values won't be able to

modify it. While trying to modify /etc/shadow, passwd works in two steps. First it

makes a copy of original �le, then it tries to do required changes on this copy and

�nally if all went right it calls move from the changed copy to the original �le. Since

the kernel hook �nds out that the dentry to which move is made is already engaged,

it veri�es write permission to it and this denies modi�cation of the password.
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To enable such changes to the security administrator I have implemented the

pswd utility. It runs with the CAP_SET_UID capability enabling changes of own

uid and also with the CAP_MAC_ADMIN privilege, therefore overrides access con-

trol on /etc/shadow. It could either try to do required changes itself, but this is too

laborious and prone to errors, therefore uses the proved passwd program and is just

a wrapper for its execution.

I will describe behaviour of this utility during the request for a password change.

The utility may be executed with no argument, this means user wants to change

own password. In this case passwd is executed directly, it knows when there is no

argument, the user wants to change its own password. It may modify /etc/shadow

now because the CAP_MAC_ADMIN capability is inherited.

In case pswd is called with a argument, it supposes that the security administrator

wants to change the password of passed user. Therefore it challenges the security

administrator to authentify itself. If succesful, the running process changes its ef-

fective and real uid to 0 and calls passwd with the passed user. Changing uids to

root is important, because passwd enables changing passwords only to root.

Maintaining software and libraries

The system administrator is responsible for maintenance of software in the computer.

By modifying or replacing installed software or libraries by malicious ones violation

of the policy may happen. Modifying specially authorized trusted subjects enforcing

the policy is even more dangerous. Therefore already installed software and libraries

have to be protected against unauthorized modi�cation by the system administrator

by limiting provided ways of maintenance.

This could be achieved by raising the integrity level of the directories containing

programs and libraries (and their content) to 3. In addition, software maintenance

will be restricted only to usage of a trusted software package installer(or its wrapper),

which could be for example limited to installing software from the o�cial repositaries

of a distribution. This program would have the default execution attributes set to

iw_s = 3; cw_s = 0; cn_s = 0; in_s = 3;, so it would be able to modify the

contents of installation directories and ensure that newly created �les have proper
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security attributes. It would ask root for authentication after start.

Another possibility how to implement this similarly would be changing the owner

of installation directories and its contents to a virtual user created for software

maintenance. This user would not be able to log into the system and since all

software would have increased integrity, other users' processes could not modify it.

The software would be maintained through a setuid installation utility belonging to

the virtual user(with raised default execution attributes) and could have the same

functionality as one described paragraph above.

Changing ownernship of objects

This is one of the crucial operations I have not paid attention to yet. It should

be reserved only for the security administrator or forbidden at all. I have analyzed

the possible impact of forbidding it with the security policy running in a permissive

mode with prints. The vast majority of chown operations were done during the

system startup or after the user logged in. I have watched the transitions between

users, most have been done on temporary objects and changing ownership between

root and one of the virtual users. Only process changing ownership between root

and my account was the login manager after I logged in.

From these observations I have decided to forbid chown operations with the following

exceptions:

• changing ownership between root and virtual users on objects is permitted

in case the process requiring chown is CAP_CHOWN capable, virtual users

are used usually to enhance the security of important system objects through

group permissions in DAC, this should not represent a security threat in our

model

• other changes between the real users have to be allowed at least to some extent,

for example exception for login managers, trusted subjects privileged to call

chown should be recognized by marking the binaries they are executed from,

this marking is allowed only by the security administrator and is done by set-

ting the CAP_CHOWN �le capability to it, remembering whether thread is
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privileged to make such exceptions cannot be held within the CAP_CHOWN

thread capability because this is already used as a condition controlled wihin

the �rst type of exceptions, therefore I will not modify mechanism of computing

this thread capability and will remember the privilege to execute chown ac-

cording to this second exception as a new boolean member chown stored in the

subject_pts structure, this member is initialized within the bprm_set_creds

hook according to presence of the CAP_CHOWN �le capability in executed

binary

Important question is how to distinguish users concerned in the �rst exception.

Their list might be communicated to kernel by trusted subject during boot up.

Much easier solution I used and which is su�cient in case the list of virtual users is

stable after the initial con�guration of the system is a �rm setting of the array of

user identi�ers system_users in the kernel patch. This array includes root and all

virtual system users.

Changing process uid number

This operation is critical within our security model. If user would be able to run a

process with the raised attributes which would afterwards change own uid number,

the process could access protected data of another user. I have analyzed the running

system and logged attempts to change the process uid number. The results are very

similar to the chown operation. Except from the login manager, all uid changes are

done between the root and the virtual users. I have therefore used a similar solution

as for the chown operation recognizing two types of exceptions. The second type

is approved only to the programs executed from binaries having the �le capability

CAP_SETUID set. Setting these may be done only by the security administrator.

To keep track of this privilege within a running thread, there has beed added a

setuid member to the subject_pts structure being set in the bprm_set_creds hook.

The list of system_users used to recognize , whether the change uid operation is

classi�ed as a �rst exception, is the same and shared with the chown operation.
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Chapter 5

Testing

In this chapter, I will show a guide for installation of the implemented policy and

user space utilities and example of their usage.

5.1 Kernel patch installation

This section includes the tutorial for applying a kernel patch with the implemented

policy.

1. First, you need to download Linux kernel source code, I recommend the version

you are currently using. You may �nd this by running uname− r command.

2. Navigate to the root directory of the downloaded source. Add following line

to the ./security/Makefile

obj-y += pts/built-in.o

3. Copy the /pts directory from the enclosed archive to /security directory of

the kernel source tree

4. Check con�guration before compiling, make sure extended attributes support

is enabled. I recommend using a copy of the co�guration �le for currently

running kernel. In my case it is /boot/config − 2.6.32− 28− generic

69
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5. Build and install the patched kernel. For Ubuntu 10.04 this manual can be

used. [13] Now check whether an entry for your newly built kernel exists in your

boot loader. In my case these entries can be found at /boot/grub/grub.cfg .I

recommend keeping also possibility to load the original kernel and make two

entries for the new kernel, one running in permissive mode. Add boot options

security = pts to the entry for the new kernel and security = ptsPermissive

for the entry loading kernel with policy in the permissive mode.

6. Make sure extended attributes are enabled for mounted hard drives. Add the

user_xattr mount option for them in the /etc/mtab .

The line for my hard drive looks like this:

/dev/sda6 / ext4 rw,errors=remount-ro,user_xattr 0 0

5.2 User space utilities installation and con�guring

security

This section includes a guide for installing user space utilities for managing the

policy and recommends security attributes setting for objects of the �le system and

default execution options for some programs.

1. In order to compile user space utilities, development libraries for extended

attributes and Pluggable Authentication Modules are needed. For Ubuntu

distribution these are included in libattr1− dev and libpam0g− dev packages.

2. To install user space utilities run sh installUtilities.sh script from the enclosed

archive as a system administrator. The script builds them, moves to /bin

directory and sets required �le capabilities.

3. create security administrator account

Now it is time to bind the security attributes to important objects. I will mention

only some recommended settings.
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• device labeling - copy enclosed con�guration �le 40 − device − xattrs.rules

for udev to the /etc/udev/rules.d directory, edit for your speci�c devices if

needed, raise integrity level of the directory and its content to 3

• label shared libraries and programs with con�dentiality 0, integrity 3, example

adminXattrmng −sr ”c_o = 0; i_o = 3; ” /bin

• label contents of /etc with integrity 2, the exceptions are /etc/shadow (C2,I3)

and /etc/passwd(C1,I3)

• protect /boot and its content from modi�cation by anybody except security

administrator by raising I to 3

• try to run the policy in the permissive mode, watch kernel logs made during

boot up, set default execution parameters using binmng and adminBinmng

utility for trusted programs accessing protected objects during booting, in my

case these were udev,mount, NetworkManager, gdm−binary, unix_chkpwd

. . .

5.3 Running program with user speci�ed security

attributes

This section describes an example of running program with nondefault security

attributes. It is a program downloaded from the internet, that is untrustworthy, but

we want to test out what it does. We run it with lowered security attributes so that

it cannot read from/write to �les that are on normal or higher security level.

procmng "cr_s=0;iw_s=0;" ./unknownApp

Let's say the program is malicious and tries to delete entire home directory of the

user. However, the security module does not grant it the privileges to do so. If it

was run with the default security attributes, it would cause great harm to the user.
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Conclusions

The objective of this thesis was implementing Two-Dimensional Labelled Security

Model with Partially Trusted Subjects in Linux operating system. We have shown

the feasebility of implementation by creating the prototype model using Linux Secu-

rity Modules architecture and necessary user space tools for the policy managment.

The implemented model in its current state is focusing mainly on the protection

of �lesystem objects. It introduces the role of security administrator for the policy

maintenance. The thesis presents several concrete examples of running applications

within the implemented enviroment and gives the hints for correct security con�gu-

ration of the system.

For production deployment of the security model without any exception in con-

strain rules, the following tasks need to be done in the future:

1. Communication objects protection - implementing security attributes and rules

for the network communication subjects

2. Trusted path - forbidding information �ow between processes via the X server

by using separate X server for each speci�c combination of security attributes

of subjects
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Resumé

V tejto práci sa zaoberáme implementáciou �Two-Dimensional Labelled Security

Model with Partially Trusted Subjects� bezpe£nostného modelu v opera£nom sys-

téme Linux. Model navrhol RNDr. Jaroslav Janá£ek, PhD. vo svojej dizerta£nej

práci.[1] Bezpe£nostná politika sa zameriava na ochranu dôvernosti a integrity citlivej

informácie spracovávanej privilegovanou aplikáciou pred nedôveryhodnými aplikáci-

ami toho istého pouºivate©a. Takúto ochranu informácie nie je moºné realizova´ ²tan-

dardnými metódami vo©ného riadenia prístupu v opera£nom systéme. Implementácia

má formu patchu do jadra systému a sady podporných nástrojov do uºivate©ského

priestoru umoº¬ujúcich administráciu a vykonávanie autorizovaných výnimiek z pra-

vidiel bezpe£nostnej politiky.

Cie©om je ukáza´ uskuto£nite©nos´ realizácie politiky s vyuºitím bezpe£nost-

nej architektúry Linux Security Modules v jadre systému. Architektúra poskytuje

v²eobecné moºnosti realizácie povinného riadenia prístupu. Zaregistrovanej bezpe£nos-

tnej politike umoº¬uje pomocou tzv. �hook� funkcií sprostredkováva´ prístup ku

chráneným ²truktúram jadra systému po£as spracovávania rôznych systémových

volaní dôleºitých z h©adiska bezpe£nosti. Navy²e architektúra pridala ku chráneným

²truktúram bezpe£nostné polia umoº¬ujúce politike uklada´ pre ne ©ubovo©né bezpe£nos-

tné kontexty.

Práca uskuto£¬uje mapovanie abstraktných entít v modeli na reálne ²truktúry

v jadre systému a taktieº mapovanie abstraktných operácii na jednotlivé kontrolné

funkcie realizovaného modelu. Bezpe£nostné atribúty trvalých objektov sú uchová-

vané pomocou roz²írených atribútov súborového systému. Implementácia vyuºíva v

jadre existujúci koncept oprávnení �POSIX Capabilities� na implementáciu ²peciál-
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nych autorizavaných dôveryhodných subjektov pod priamou kontrolou uºivate©a sys-

tému. Tieto subjekty umoº¬ujú uºivate©ovi po úspe²nej autenti�kácii meni´ bezpe£nos-

tné koncepty vlastnených objektov alebo beºiacich subjektov. Na korektnú realizá-

ciu politiky toku dát implementovaný model upravuje sémantiku výpo£tu získaných

pouºívaných oprávnení pri spú²´aní nových subjektov.

�alej sa v práci rie²i bezpe£ný spôsob spú²´ania subjektov s uºivate©om predde�-

novanými bezpe£nostnými atribútmi bez nutnosti priamej interakcie s uºivate©om a

automatické zna£kovanie dynamických objektov pri ich vzniku. Pri týchto rie²eniach

sa ukazuje potreba jemného roz²írenia hodnôt bezpe£nostných atribútov kvôli ²peci-

�ckým bezpe£nostným poºiadavkam niektorých existujúcich objektov. Rozoberá sa

dopad týchto roz²írení na moºnosti správy politiky.

Nakoniec sa rie²i otázka nedôveryhodného systémového administrátora a za-

vádza sa rola bezpe£nostného administrátora spravujúceho politiku s príslu²nými

implementáciami potrebných nástrojov. Práca ¤alej pojednáva o tom, ako je moºné

jednoducho de�nova´ privilégia bezpe£nostného administrátora na základe poskyt-

nutých nástrojov a realizuje potrebné kroky na odstránenie bezpe£nostných priv-

ilégii systémového administrátora. Nakoniec je priloºený manuál ku in²talácii reali-

zovaného bezpe£nostného modelu a odporú£ané iniciálne nastavenia.

Výsledkom práce je prototyp bezpe£nostného modelu zamieravajúceho sa hlavne

na ochranu objektov súborového systému a sada nástrojov na správu politiky mod-

elu. Na produk£né nasadenie politiky je nutné dopracova´ niektoré úlohy popísane

v závere.

K©ú£ové slová: politika toku dát, bezpe£nostný model, Linux Security Modules,

POSIX capabilities
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