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The goal of this work

Our goal is to examine the methods of motion capture data synthesis (editing
and manipulating this data). The result of this work should be a program,
which takes motion capture data as input and the output should be their
composition created by semi-interactive manner, so that the resulting motion
is as realistic as possible.
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Abstract

Title: The synthesis of the motion capture data
Author: Tomáš Sako
Department: Department of Applied Informatics
Advisor: RNDr. Stanislav Stanek

Abstract: The introduction of this work deals with the most widely used
methods of motion capture data synthesis. Next, we present method called
’Timewarp curve’ derived from ’Registration curves’ proposed by Lucas Ko-
var and Michael Gleicher and make our modification of this method, which
should speed up motion data synthesis. We implement mentioned method
and compare it with another in our software product (Motion Blender). As
the result, we get the comparison of efficiency, speed and reliability of those
algorithms. We change original ’Timewarp curve’ and get a novel algorithm
that preserves realism of human motion. In the end, we describe the struc-
ture, features and usability of the program and show the results of experi-
ments.

Keywords: motion capture, motion blending, registration curves, motion
synthesis
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1 Overview of the chapters

Chapter 2 gives the outline of the problem, discusses aims of this work and
describes what have been done yet.

Chapter 3 contains the definition of solved problem

Chapter 4 contains complex description of method - Registration curves,
by which we were inspired.

Chapter 5 consists of our benefit - the summary of methods, which we have
proposed.

Chapter 6 deals with software implementation of all methods : program
structure, features, interface, etc.

Chapter 7 gives a complete overview of our experiments and there is also
shown the correctness of our proposed methods.

Chapter 8 concludes this thesis and discusses possible future directions.
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2 Introduction

2.1 Definition

Motion capture (Mocap) is a technique of digitally recording movements for
entertainment, sports and medical applications. It consists of tracking points
on a moving face or body in order to get a simplified image of motion1.

2.2 Motivation

It is very difficult to animate human motion. The reason is that not only the
motion itself is complicated but also our familiarity with this kind of motion
is very huge. That means that we are very sensitive to even small artifacts
or errors in human motion, because we see moving people each day for many
times. Motion capture is the technology that enables us to get an arbitrary
data of realistic human motion performed by the actor. Unfortunately, we
often need to make some changes to the captured data in order to get exactly
what we want. Studios equipped with motion capture technology are very
expensive and therefore we want to be able to edit our data without the loss
of fidelity.

In recent years, there have been many approaches how to manipulate cap-
tured data in order to facilitate and speed up the work of animators. Many
problems have been solved, not only editing of data, but also realistic join-
ing motions together and parametrizing of motions (i.e. we can control the
strength and target of the punch or set trajectory of walking person). This
thesis deals with the second mentioned problem, that means realistic combin-
ing and mixing of captured human motions in order to get satisfying result.
It is called motion blending(i.e. we have two motions of running and walking
person and we would like to make a jogging motion so that its pace is higher
than the pace of walking but lower than running motion).

Our goal is to examine the methods of motion capture data synthesis (editing
and manipulating this data). The result of this work should be a program,
which takes motion capture data as input and the output should be their
composition created by semi-interactive manner, so that the resulting mo-
tion is as realistic as possible.

1en.wikipedia.org/wiki/Motion capture
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2.3 Our benefit

We present a method called ’Timewarp curve’ derived from ’Registration
curves’ proposed by Lucas Kovar and Michael Gleicher and make our modi-
fications of this method, which should speed up motion data synthesis. We
implement the original method and compare it with our proposed modifica-
tions in our software product (Motion Blender). As the result, we get the
comparison of eficiency, speed and reliability of those algorithms.

The benefits of this work are : creation of the overview of motion synthesis
methods, creation of a semi-interactive system for motion blending and fi-
nally our proposed methods with experiments. These methods are attempts
for the improvement of existing methods of timewarping(correct timing of
the resulting blended motion). We experiment with a timewarp curve, edit
and smooth it and compare dicreet and continuous(B-spline) approaches.

2.4 Previous works

In the past, many works were focused on realistic motion blending. First
approaches were based on keyframing, because it is the most simple and
therefore do not need many computations. Recent approaches were mostly
based on physics, because better hardware provides higher computational
power, which is essential for these approaches.
However, there is still no universal method for getting such a result from
motion blending, that would be unrecognizeable from the real movement of
person. Therefore we propose a few modifications that should help to ap-
proximate to an ideal.

Standard classification of motion synthesis techniques is : Methods Involving
Physics, Hand Controlled Methods, Data Driven Methods.

2.4.1 Methods Involving Physics

As the physical laws influence the motion of humans, there are several ap-
proaches which implement such laws into motion synthesis. What we need
is mass distribution for the entire body, the joint torques and knowledge
of Newton’s laws. We can find average mass distribution in biomechanics
[7]. Problem with torques solved Hodgins et al. [8] by using finite state
machines and proportional-derivative servos. Faloutsos et al. [9] attended
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to motions for preserving balance. Disadvantage of this approach is that
controller design is difficult to perform and such controller can produce only
severe motions. On the other hand, when it is generated, we can change the
input circumstances and produce particular motion like Laszlo et al. [10] did.
Hodgins and Pollard [11] adapted a controller to a new body by computing
controller parameters with scaling and consecutive tuning the results using
simulated annealing. Another method uses a few keyframes and adapts phys-
ical laws to motion resulting from simple interpolation. Liu and Popovic [12]
worked with ballistic motions and used spline interpolation. Character situ-
ated in the air obeyed Newton’s laws and on the ground model of momentum
transfer. Fang and Pollard [13] did it more effective, when they have shown
that physical constraints in the form of aggregate force and torque can be
differentiated in time linear in the number of DOFs.
Sometimes, physical approach generate motions with lack of personality. Neff
and Fiume [14] implemented the fact that opposing muscle forces varied the
amount of tension. However, there is still no physically simulated method
that would provide an arbitrary motion that would be realistic.

2.4.2 Hand Controlled Methods

This is the oldest technique, where the animator specifies individual degrees
of freedom (DOFs) and joint torques at some points in time, which are called
keyframes. Other data in between keyframes are computed by simple inter-
polation methods. The main disadvantage is that animator has to create the
frames manually, which is very tedious work. On the other hand he has the
full control over motion. The more details the animator designs, the more
convincing motion he gets. Many poses of the character are needed, while 24
frames per second is considered as optimal frame rate. There is also another
technique which uses algorithms, that procedurally replicate motions. It is
the way, how to manually create motions at once. Perlin [3] and Perlin and
Goldberg [6] have shown that many motions could be generated with simple
and efficient algorithms. Disadvantage is that the most of edited motions
have lost the realism.

2.4.3 Data Driven Methods

Invention of motion capture technology has brought realistic example mo-
tions of high fidelity, which are used in data-driven synthesis algorithms.
However, example motions can be generated by keyframing or physical sim-
ulation. One possibility is signal processing operations apllied to each DOF.
Bruderlin and Williams [15] introduced some operations like multiresolution
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filtering, waveshaping and adding smooth displacement maps. Witkin and
Popovic [16] proposed motion warping and Gleicher [17] used displacement
mapping to have an interactive control over character’s trajectory. Problem
of these algorithms is that they fail when more body parts must be adjusted
simultaneously.
There were also some approaches to have a full control of the motion’s style
and aesthetics. Unuma et al. [18] worked with cyclic motions and linearly
combined the Fourier coefficients of DOFs and found out that it is possible
to control the emotions in human movement. Tak et al. [19] checked the po-
sition of the body’s zero moment point to preserve physical validity. Popovic
and Witkin [20] built physically-based framework for editing, that mapped
original motion onto a simplier model.
In this category belong also motion blending, motion graphs and parameter-
izing motions, which will be closely characterized in the next section.
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3 Basics and definition of the problem

Our figure in motion is represented as the skeleton consisting of joints and
bones which connect two joints. Bones are rigid and they can not bend or
change their length as in the real world. Joints represent the flexible parts
of human body. We keep joints in the hierarchy of tree, because it is easily
represented in computers. Each joint has one parent (except the main joint)
and joint’s position is given relatively to coordinates of its parent. This is
called the offset. Main joint which does not have parent is called root, it
mostly represents the pelvis or spine and its position is defined relatively to
the world coordinate system. All body parts are represented at the picture
below (see figure 1).

Figure 1: The picture of skeleton

Each motion is represented as the function of time, that returns frame spec-
ified by the position of the root and rotations of individual joints :

M(t) =
(

p(t), q1(t), . . . , qn(t)
)

, (1)

where p is the position of root in world coordinate system and qi is the orien-
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tation of the i-th joint relative to its parent’s coordinate system. These ori-
entations are mostly represented by unit quaternions or Euler angles (which
we use).
As input we have data from mocap - set of frames, where number of frames
depends on frame rate. In motion are frames represented by skeleton con-
figurations (poses) M(t1),..,M(tj) corresponding to regular sampling of our
motion M(t). Unfortunately, we do not have all frames needed to build par-
ticular motion. Frames, that are measured from mocap, are then interpolated
in order to generate in-between frames that are missing. Animators mostly
use linear interpolation to generate root positions and spherical linear inter-
polation (slerp) to generate intermediate joint orientations.

Helpfull tools in motion blending process are parameter curves. They repre-
sent the values of rotations or positions of joints in time progress. We can
investigate properties of motion(continuity, sudden changes in movement,
satisfying constraints) with them. See figure 2

Figure 2: Example of parameter curves with angles (in degrees), extracted
from running motion
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3.1 Motion blending

Let us have two input motions defined as functions F (t), G(t). As we would
like to interpolate between them and find some meaningful in-between frames,
we can use simple equation :

M(t) = αF (t) + (1− α)G(t) (2)

This is called weighted average of the poses, where weights are determined
by α value. However, this simple approach often does not bring plausible
results, for example see figure 3. Because of these artefacts, another algo-

Figure 3: Two frames are blended with weight (= 0.5), result is logically
unacceptable

rithms (inverse kinematics, mass distribution, etc.) must be included to get
satisfactory blends. We decided to deal with the problem of proper timing
of input motions. More complex description of timing can be seen in section
4.5.
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4 Registration Curves

In this section, we will describe method from the authors Lucas Kovar and
Michael Gleicher[2]. We decided to use it partially, only timewarp curve is
modified and implemented (other two curves are described below) because
of its effectivity and relative simplicity.
A registration curve is an automatically constructed data structure that en-
capsulates relationships involving the timing, local coordinate frame, and
constraint states of an arbitrary number of input motions. These relation-
ships are used to improve the quality of blended motion and allow blends
that were previously beyond the reach of automatic methods.
Building a registration curve consists of the following steps :

1. Creation of a timewarp curve - we implement and modify it

2. Creation of a coordinate alignment curve - out of scope

3. Determination of constraint matches - out of scope

4.1 Creation of a timewarp curve

Building a timewarp curve is the most difficult step from the algorithm of
registration curves. Therefore it has the highest computational times. Here
is the schedule of forming a timewarp curve :

1. Creation of a grid

2. Finding a minimal-cost path

3. Fitting a smooth monotonic function to the frame correspondances

4.2 Creation of a grid

Using the coordinate-invariant distance function (described in chapter 4.2.1),
they create a grid where columns correspond to frames from the first motion,
rows correspond to frames from the second motion, and each cell contains
the distance between the corresponding pair of frames.
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4.2.1 A Coordinate-Invariant Distance Function

They extract neigbourhoods of five frames for each compared frame F1, F2.
Next, each frame is converted to a point cloud by attaching markers to the
joints of the skeleton, forming two larger point clouds. Finally, minimal sum
of squared distances between related points is computed over all rigid 2D
transformations of the second point cloud :

D(F1,F2)=minΘ,x0,z0

∑n
i=1wi ‖pi − TΘ,x0,z0 ṕi‖2 (3)

where pi and ṕi are the i-th points of both point clouds, TΘ,x0,z0 is a rotation
about vertical axis (y) and consecutive translation in the floor (x0, z0), wi is
the weight of the individual joints.

Assuming the wi sum to unity, the optimal solution to Equation (3) is
achieved under the following transformation :
we use the shorthand notation α =

∑n
i=1 wiαi

Figure 4: Computing D(F1,F2)[2].
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4.3 Finding a minimal-cost path

Given two cells in this grid, they use the dynamic timewarping algorithm
to find a minimal-cost connecting path, where the cost of a path is found
by summing its cells. From a given starting point, dynamic timewarping
is used to find optimal paths leading to all points on the boundary of the
grid. However, there is no preferred boundary point. They select the one
that minimizes the average cell cost [2]. This path corresponds to an optimal
timealignment that starts and ends at the bounding cells. See the example
of path in figure 5.

Figure 5: Minimal-cost path, (example genereated by our program Motion
Blender), height of the grid equals the number of frames of the 1st motion,
width of the grid equals the number of frames of the 2nd motion

Figure 6: Path musts satisfy these conditions [2].

1. Continuity
Each cell on the path must share a corner or edge with another cell on
the path.
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2. Causality
Paths must not reverse direction; they should either go entirely forward
or entirely backward in time.

3. Slope Limit
At most L consecutive horizontal steps or consecutive vertical steps
may be taken.

Slope limits are useful because very large slopes typically indicate that the
motions are (at least locally) so different that there are no good frame
matches. In this case it is preferable to limit the timewarping and accept the
fact that corresponding poses will not be particularly similar. They find a
slope limit of 2 or 3 to produce good results [2].

4.4 Fitting a smooth monotonic function to the frame
correspondances

They fit a uniform quadratic B-spline as an unconstrained optimization and
then adjust the knots. They create the timewarp curve by fitting a smooth,
strictly increasing function to the frame correspondences. If we only cared
about smoothness, then a simple solution would be to fit a spline, which only
requires solving a linear system. Adding in the constraint, that the spline
is strictly increasing, produces a significantly more expensive quadratic pro-
gramming problem. However, given the causality and slope limit restrictions,
it is likely that a spline fit without any constraints will be approximately
strictly increasing [2].

4.5 Why is timing important

Linear blending does not work in case, when corresponding events occur at
different absolute times. Therefore a timewarp curve is built, in order to
return sets of frame indices, so that the corresponding frames from each
motion match. This algorithm gives better results if the timewarp curve is
continuous and strictly increasing. When these conditions are satisfied, the
inverse functions for a timewarp curve are defined, and for each frame from
input motion they compute corresponding point on the timewarp curve and
vice-versa. They align motions so related frames are as similar as possible
and then they can average skeletal parameters (see figure 7).
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Figure 7: Examples of artefacts when blending without timing [2].

5 Proposed modification of the original algo-

rithm

5.1 Creating the grid

We extract point cloud (see figure 8) for each frame simply by traversing
the skeleton structure with particular joint offsets (from hierarchy data) and
rotations (from motion data). So, we get absolute coordinates of each joint,
which create our point cloud. As in Kovar [2], we use the neighbourhood of
five frames to have more information involved. After this extraction for each
motion, coordinate-distance invariant function (further distance function) is
computed as described in the chapter 4.2.1.

Finally, we create a grid where pixel [i,j] represents the ’distance’ (defined
in section 4.2.1, Equation (3)) between corresponding frames: i-th from first
and j-th from second animation. These are already resampled values from
distance function into RGB (0..255), of course. Obtained greyed image gives
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Figure 8: Example of extracted pointclouds in Motion Blender

Figure 9: Example of grid of two motions (running vs. walking) ’blendable’
with reg. curves, created by our program Motion Blender

us information about the ’relationship’ between two blended motions. An
image for two motions, satisfying the conditions for our method, is expected
to have a cyclic duplicating of some sample. It means that these motions are
periodically repeating the same movement (i.e step with first left leg by the
walk), and that there are logical correspondencies between the most similar
couples of frames (one frame from each motion). Similar couple of frames
means that distance function of these frames returns small value. As compar-
ison, we show two grids where on the first image (figure 9), input motions are
blendable, however on the second (figure 10) are not. Minimal-cost path is
optimal path, because there are the smallest differences between correspond-
ing frames in individual couples (see figure 11 for an example of dissimilar
frames).
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Figure 10: Example of grid of two motions (chopping wood vs. dancing),
which are ’unblendable’, in the figure below all four frames are depicted,
created by our program Motion Blender

Figure 11: Individual frames, which are selected on the grid, frame D has
the most similar poses, other are dissimilar
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Figure 12: Computed path using brute force recursion

5.2 Minimal-cost path

Given a complete table of distances comparing each frame from the first mo-
tion with each from the second, we try to find a minimal-cost path.

5.2.1 Used methods

1. Brute force algorithm

This method is based on backtracking, which traverses each possible
path, counts the cheapest local path and gives the optimal path (figure
12). Advantage of this approach is that we are sure that there is no
lower-cost path, so it always finds the optimal path(in the finite time),
on the other hand, this reflects on the computational time.

2. Greedy algorithm

Greedy algorithm chooses always the best local solution of the problem.
We implement it as choosing the cheapest direction (that is allowed be-
cause of slope limit) in each recursion nesting. Very fast execution of
this algorithm is compensated with the poor quality (means higher
cost) of the resulting path, because choosing locally best solution does
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Figure 13: Pseudocodes of brute force and greedy algorithms

not always lead to finding an optimal path (figure 14).

3. Recursion with thresholds

This is the method which we created during testing and verifying for-
mer two methods. From experiments, we have determined two optimal-
izations, appearing to be very effective upgrades of slow, respectively
unaccurate methods mentioned above.

The first optimization includes the fact, that the cheaper paths al-
most always belong to the shorter ones. We employ this and add a
condition which prefers shorter path against the longer when deciding
in which direction should the computation follow.

Without the loss of generality we can assume that we search the path
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Figure 14: Computed path using greedy algorithm

from the upper-left to the lower-right corner. At the picture below
(figure 15) we see the situation when the direction of the red arrow
is optimal, because we choose the shortest path and a cell with the
smallest value.

Figure 15: First optimization

The second optimization involves the fact, that optimal path should
not contain the cells with high costs, because we want to blend the
most similar (which means the cells with small costs) frames together.
Therefore we have searched threshold (’area threshold’) determining,
which cells are too costly and need not to be traversed by recursion.
This value is obtained experimentally.
Pseudocode of this algorithm is derived from the brute force algorithm,
only our two thresholds (mentioned above) must be incorporated.



5 PROPOSED MODIFICATION OF THE ORIGINAL ALGORITHM 27

5.3 Timewarping with discrete path

Finding a minimal-cost path

Having a grid of two motions, we want to find a minimal cost path from
the beginning of motions to their end. This path, leading from one corner to
its opposite, represents couples of frames that are blended during blending.
It is not necessary to find path exactly between corner pixels, that can be
pixels from the close area. We search the first one third of pixels in hori-
zontal and the first one third of pixels in vertical direction and we choose a
minima of these values as our beginning of path. This is shown in the picture
below (figure 16), where two green lines represent the area of searching the
beginning pixel of the path. Then we use our recursive method for finding
a minimal-cost path. The implementation of recursion must ensure that the
resulting path will satisfy conditions described in the chapter 4.2.1 of this
work (depicted at the picture 6). Below, we compare all implemented meth-
ods and discuss, which method is the best solution.

Figure 16: Minimal-cost path (red line), area of possible beginning of path
(green lines), selected one third of pixels where we search for the possible
starting point of the path
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The representation of minimal-cost path

The optimal path is represented as an array of characters, where each charac-
ter means one pixel. Which character is used depends on the behavior of the
path. This information allows us to know the length (number of pixels) of
the resulting motion and also direction in each individual step. An example
is shown in the figure below (17).

Figure 17: Example of the path

Blending by using a timewarp curve

Although we have a minimal-cost path, the resulting motion after linear
blending would not be realistic. The cause is that in our path we allow more
than one consecutive pixels in the same (horizontal resp. vertical) direction.
This means that a pixel from one motion is consecutively blended with two
or three pixels from another motion. This may cause unpleasant deceleration
of the resulting motion in those pixels. We get rid of this uncorrectness with
the following algorithm.

Corrections of timewarp curve

We consider 4 basic cases when the path must be corrected. All of these
are depicted in the following scheme (see figure 20). Our main problem is,
that we want to find for each frame from the first motion a corresponding
frame from the second, according to the minimal path. This corresponding
frame from the second motion sometimes does not exist (in cases 3 and 4) or
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Figure 18: pseudocode-deletion

Figure 19: pseudocode-insertion
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Couples of correspondng frames(1st vs 2nd motion)
Pair 1 Pair 2 Pair 3 Pair 4 Pair 5

case 1 1 vs 1 2 vs (2iw3) 3 vs 4
case 2 1 vs 1 2 vs (2iw4) 3 vs 5
case 3 1 vs 1 2 vs 2 3 vs (2iw3) 4 vs 3
case 4 1 vs 1 2 vs (1iw2) 3 vs 2 4 vs (2iw3) 5 vs 3

Table 1: Illustration of corresponding frames

sometimes there are many candidates (in cases 1 and 2). Therefore we use
INSERTION and DELETION algorithms.

In the cases 1 and 2 (DELETION), there are many frames from the second
motion corresponding to the frame number 2 from the first motion. What
we do is linear interpolation between two frames (2 and 3 in case 1, resp. 2
and 4 in case 2), and the resulting frame is then in our algorithm blended
with the second frame from the first motion.

In the cases 3 and 4 (INSERTION), there is a similar problem, however we
do not have many frames and need one, but we have one frame and we need
many. So we interpolate frames 2 and 3 and this new frame is considered as
corresponding to the frame 3 from the first motion. Analogue approach is
used in the case 4, where frames 1 and 2 are blended together and the result-
ing frame corresponds to the frame 2 of the first motion. Finally, frames 2
and 3 are interpolated and the outcome is then corresponding to the frame 4
of the first motion. HUH. Maybe, the included table (1), resp. pseudocodes
(18 and 19) are clearer. (iw means ’interpolated with’)

Now, we have for each frame from the first motion a corresponding frame
from the second and we can preform blending.
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Figure 20: Corrections of timewarp curve (correspx is frame from 2nd motion
corresponding to the frame x from the 1st motion)
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5.4 Timewarping with B-spline

We incorporate a continuity into solution of blending problem by using a
B-spline. This allows us a great control over the motion itself. We use B-
spline with a degree of 3 and with a uniform vector of knots. To satisfy the
condition, that curve must start at the first point of the path and end at the
last point, we must multiply the starting and ending vertex (each two times).
So we get a continuous, monotonic curve representing the optimal path and
we can obtain a frame corresponding to an arbitrary point of this curve.

Let us have (x,y) coordinates of the point on the curve, these real num-
bers represent the frames from two input motions, which must be blended
to get the frame corresponding to the point [x,y]. Y-coordinate corresponds
to the first input motion, however it is a real number so it is bounded by
two neighbouring frames(represented by integer values). We gain the frame
corresponding to the y-coordinate by interpolation between these two neigh-
bouring frames with a weight that is defined by decimal fraction of the y-
value. Analogue computation executes for x-coordinate and second input
motion. For clearer understanding see the figure (21).
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Figure 21: Blending with B-spline
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6 Software Implementation

This part deals with software implementation of the presented work. Here
we describe program architecture, its features, platforms, used programming
languages and implemented user interface.

6.1 Name

Name : Motion Blender

6.2 Our Implementation

6.2.1 BVH Processing

Animation files are loaded by our own loader which supports various types
of bvh standards (i.e. ’zxy’,’zyx’,..). On one hand, such a hierarchical data
makes preprocessing and implementation more difficult, on the other hand,
it speeds up the computations.

Firstly, structure data are parsed and then skeleton structure is built us-
ing recursion. We represent each skeleton with the pointer of its root. We
use similar recursive method for saving bvh files.
Afterwards, motion part of bvh file is parsed. At first, the proper timing of
motion is computed from given frame time and then, motion data is treated.

6.2.2 Linear Blending

This is the simplest method, which blends individual frames in order, as they
sequentially follow. While using bvh files where the joint angles (Euler an-
gles) are included and while we are blending motions with the same skeletal
structure, we are not forced to use spherical interpolation and instead we use
a simple linear interpolation of these angles. Having satisfied the previous
conditions, this simplification does not have any visual impact on the result-
ing blend.



6 SOFTWARE IMPLEMENTATION 35

6.3 Information about Program

6.3.1 Purpose

We called our program ”Motion Blender” because the main purpose of it is
to demonstrate realistic motion blending. Motion Blender allows us to blend
human motions and to save the result as standard Biovision file. Blend-
ing is performed semi-automatically, the algorithm is visualized and so the
user takes a closer look in the theory of human motion representation in
computers. Another purpose of Motion Blender is that we can get a brand
new high-fidelity motion in a few seconds instead of using motion capture
technology.

6.3.2 Features

Motion Blender displays a motion represented by the standard type of Bio-
vision motion file .bvh.
The result of the blending is not only blended motion, but also a grid with
optimal path (if found), textfile with individual frame distances and other
statistics created by blending algorithm.
In the future, we see possible upgrades of this program in adding other file
formats, blending algorithms, making some parametrization of the motion or
setting an arbitrary trajectory of moving skeleton.

6.3.3 Input/Output

As mentioned before, user specifies input motions by loading Biovision mo-
tion file into the program. We have chosen this file because it has simple
structure, it is easy to visualize motion which it represents, and also because
it is a standard format and therefore widely supported. Here is its definition :

Bvh-file defines motion of hierarchical skeleton, so the movement of the
bone depends on the movement of its predecessor. There is defined the num-
ber of frames and the length of frame. Motion is represented by the value
of each channel from the hierarchical part. Hierarchical order is important
when we want to edit the motion.
.bvh example :

HIERARCHY
ROOT Hips
{

OFFSET 0.00 0.00 0.00



6 SOFTWARE IMPLEMENTATION 36

CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation
JOINT Hip

{
OFFSET 0.000000 -17.940001 0.000000
CHANNELS 3 Zrotation Xrotation Yrotation
End Site

{
OFFSET 0.000000 -3.119999 0.000000
...

MOTION
Frames: 20
Frame Time: 0.033333
0.00 39.68 0.00 0.65 ...

6.3.4 Understanding bvh structure

A bvh file consists of two parts, a header section describing the hierarchy and
initial pose of the skeleton; and a data section containing the motion data.
The start of the header section begins with the keyword ”HIERARCHY”.
The following line starts with the keyword ”ROOT” followed by the name of
the root segment of the hierarchy. After this, hierarchy is described. It is per-
missable to define another hierarchy, this would be denoted by the keyword
”ROOT” too. A bvh file may contain any number of skeleton hierarchies.
In practice, the number of segments is limited by the format of the motion
section, one sample in time for all segments is on one line of data and this
will cause problems for readers which assume a limit to the size of a line in
a file.

The world space is defined as a right handed coordinate system with the
Y axis as the world up vector.

The motion section begins with the keyword ”MOTION”. This line is fol-
lowed by a line representing the number of frames, this line uses the ”Frames:”
keyword and another value indicating the number of frames that are in the
file. On the line after the frames definition is the ”Frame Time:” definition,
this indicates the sampling rate of the data. In the example BVH file above
the sample rate is given as 0.033333, this is 30 frames per second, the usual
rate of sampling in a BVH file.
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The rest data contains the actual motion data. Each line represents one
frame of motion data. The numbers appear in the order of the channel spec-
ifications as the skeleton hierarchy is parsed.

6.3.5 Interpretation

To get the position of a segment, firstly, a transformation matrix is created
from the local translation and rotation information for that segment. For
any joint segment the translation information will be the offset as defined
in the hierarchy section. We get the rotation data from the motion section.
For the root object, the translation data will be the sum of the offset data
and the translation data from the motion section. The BVH format does not
account for scales so it isn’t necessary to worry about including a scale factor
calculation.

There are many ways, how to create the rotation matrix from individual
rotation data. Here we describe some of them.

The easiest way to create the rotation matrix is to create 3 individual rota-
tion matrices, one for each axis of rotation. Then concatenate the matrices
from left to right Y, X and Z.

Another solution is computing the rotation matrix directly.

Remaining part of interpretation is adding the offset information. It is per-
formed simply by inserting the X,Y and Z translation data into the proper
locations of the matrix (4th row resp. column). Once the local transforma-
tion is created then concatenate it with the local transformation of its parent,
then its grand parent and continue recursively.

6.4 The Structure of Program

Motion Blender is object-oriented program having several classes and using
a few graphic and mathematical libraries. It has user friendly API and so
the user need not to be trained to use it. Some of these components are
described below.
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6.4.1 Development Environment

As for a programming language we have chosen Delphi (object oriented Pas-
cal). Rendering is provided by OpenGL. The reason why we have chosen
these languages instead of the others is simple. The application is fast, con-
sistent, multiplatform, both languages are well-known and also our familiarity
with them is at the highest level.

6.4.2 User Interface

Application consists of scene window, control panel, weight panel and view
panel (see figure 22).

Scene window displays the whole scene where all actions are performed. It is
a standard 3D OpenGL scene with planar grid, which enables us to visualize
the position of objects at the scene. Orientation of the scene is modified by
user with the mouse. The skeleton is as simple as possible in order to make
the scene continuous and more flexible.

Control panel
User can find there buttons for loading and playing animations (also frame
by frame), buttons for creating resulting blends, choosing the used algorithm,
fields for setting threshold value and the count of frames of the resulting mo-
tion and other important functionality.

Weight panel
Here can user select weight vector that will be used for blending. Program
allows blending with constant weights, or creating a transition motion by
using dynamic weights.

View panel
In this panel, there are several buttons mostly used for moving the camera
in the scene in order to create a better view.
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Figure 22: Screen from Motion Blender

6.4.3 Source code overview

Units :

Unit1.pas
- interface between GUI and motion classes (forms, events, buttons)

TFileBVH.pas
- implementation of motion classes, especially parsing of bvh file (hierarchical
and data part), loading and saving of bvh files, creation of data structures
and using them in order to visualize motion data

MyGLInit.pas
- auxiliary unit with some helpful openGL functions for scene inicialization

MotionBlending.pas
- implementation of blending algorithms, i.e. algebraic classes

Classes :

TJoint
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- basic class, creates a node in the skeleton tree, carries information about
its name, offset, rotations and pointers to its children and parent
- special method extends the array of descendants

TFrame
- carries information from data part in bvh file, where each line means ex-
actly one frame
- included data represent the channels of joints (mostly 6 decimal places)
- included constructor that performs linear blending of two input frames and
arbitrary weight

TAnimation
- except name, it has also an array of frames which correspond to the par-
ticular animation

TSkeleton
- carries information about its global position, frame duration (in seconds),
pointer to the root, number of joints, currently rendered frame, number of
frames and animation object
- special method displays skeleton in actual frame at the global position

TQuaternion
- implemented algebraic object representing one particular rotation

TAxisAngle
- another form of rotation representation

TPointCloud
- point cloud specific for each frame
- data consists of absolute coordinates
- special method displays pointcloud of particular frame

TBlending
- implemented functions for conversion between matrices, quaternions and
axis angles
- spherical linear interpolation, weighted average
- computations of aligning values, timewarp curve, etc.

TCell
- the base of recursive traversing the grid
- contains the path from the beginning of the searching
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- contains also the cost of this path

6.4.4 Programming features

Pointers
- we implement them because it minimizes memory in use

Recursion
- recursively defined skeleton in bvh file forces us to use this technique, ad-
vantage is partial support in OpenGL renderer

Comments
- we use English language

6.4.5 Data structures

text file
- bvh file

tree
- we keep hierarchical skeleton information there (no fixed n-ary tree allowed,
because joint can have multiple children)

OpenGL matrix stack
- we use PushMatrix and PopMatrix for recursive joints and bones manipu-
lating and rendering
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7 Experiments and Verification

We perform experiments on an AMD Sempron PC (2GHz processor and 1GB
memory). As input files we use free bvh files, which we achieved from CMU
Graphics Lab Motion Capture Database. While we use always the same set
of motions for our experiments, it provides us the possibility to choose, which
method gives more plausible and realistic animation. In all our experiments
we use constant blending weights(=0.5), in order to simplify verification of
the results.

Another criteria for our testing is the robustness of the method. We test
which classes of human moves can be synthesized, for which motions it gives
a non-realistic results and also for which motions it is impossible to create
transition with this algorithm. This is also described in this chapter.

Verification is performed on one hand by computer, who has a few restric-
tions for the satisfying outcome and on the other side by the human eye,
because the computer can not decide if the motion has needed visual form
(it is not accomodated to the human motion).
2

2The data used in this project was obtained from mocap.cs.cmu.edu. The database
was created with funding from NSF EIA-0196217.
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7.1 One example of blending experiment

We have chosen two input motions : walking (298 frames, 31 joints) and run-
ning (173 frames, 31 joints), that were be blended. Blending in our program
lasted 18 seconds plus preprocessing which consists of creation of pointclouds.
Included graph 23 shows comparation of movement of the left foot in mo-
tions. It demonstrates that the pace of the resulting motion is between the
paces of the input motions and also that time when the left foot is touching
the floor is shorter than by walking and longer than by running. See a grid
in 24.

Figure 23: Graph of positions of the left foot in the input motions and in the
resulting blended motion
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Figure 24: Grid for blending walking and running (constant weight = 0.5)

7.2 Restrictions on the input motions

Unfortunately, there is no blending method, that could blend an arbitrary
chosen motions. In this section, we discuss the problem of choosing proper
motions which are ’blendable’ for our methods.

1. The number of joints

Input files should be of the same skeletal hierarchy or at least they
should have the same number of joints. If we imagine two motions
with different skeletons, how could the outcome of blending look like?
If the numbers of joints do not equal, our algorithm fails because it
is not able to find corresponding joints from each skeleton, and there-
fore the grid is not created. This condition is fulfilled always when the
numbers of joints equal, however, we get the best results in cases when
both input files have identical skeleton structure.

2. Different frame rate

Also frame rate creates the condition of ’blendability’. If we have
one motion captured in 20 fps and second in 40 fps, these motions
are ’unblendable’. The resulting transition could not look like realis-
tic, because the output would have to be resampled to get the same
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high fidelity look. There is also much smaller probability of failing
to find minimal-cost path, when input motions have the same frame
rates. In Motion Blender (our program), the outcome of the blending
looks the most realistic when input motions are of the same frame rate.

3. Logical similarity

This is the most important criteria. Blending algorithms are a great
tool for motion synthesizing, however they work only for some subsets
of motions. As seen in the figure (10), chopping and dancing motions
can not be effectively blended. These subsets are formed by logically
similar motions. For example running and walking motions in all paces
and directions are proper inputs for blending algorithms. Another sub-
set is formed by kick motions where blending allows us to parametrize
the resulting motion and determine the height and the speed of the kick
(analogue for punches). Our method works fine with motions from such
subsets, because it is based on the similarity of skeleton poses during
animation. It does not matter if the motion covers long run or only a
few cyclic steps, although the longer input motions, the longer compu-
tation of blending.

7.3 Experiments

We have used for experiments (see table 2) of finding minimal-cost path
10 walking and running motions, which have given us some reasonable re-
sults(blendable). Column ’Accuracy’ shows the ratio of costs of individual
path to optimal path. 100 percent accuracy means that resulting path is
optimal. Calculation time is measured after preprocessing, which consists of
creation of the grid, and the timer is stopped after the path is being found.
Accuracy is computed as follows:

Method Calculation time Accuracy

Brute force 81 s 100%
Greedy < 1 s 92,4%
Optimized recursion 8 s 100%

Table 2: Finding optimal path, counting in integer values (statistics)
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Accuracy=100× cost of particular path
cost of optimal path

(4)

And another comparation of two basic methods when we compute in real
numbers. The lower table (3) shows, that brute force recursive traversing
lasts unacceptable long time, so for computations in real numbers we do not
recommend this method.

Method Calculation time Accuracy

Brute force 1179 s 100%
Greedy < 1 s 94,9%

Table 3: Finding optimal path, counting in real values (statistics)

We also experimented with area threshold (4) and our main task was to
find out its best values for blending. We define the desired value as the per-
centage of the maximum cost of the cell in the grid (with frame distances).
Calculation time is measured after preprocessing, which consists of creation
of the grid, and the timer is stopped after the resulting blended motion is
successfully saved. Threshold area is defined as follows:

threshold area=100× cost of actual cell
maximal cost of cell

(5)

area value Calculation time Accuracy

20% failed failed
30% 21 s 100%
40% 36 s 100%

Table 4: Searching for optimal area threshold (statistics)

Experiments show that interval 25-45 percents satisfies the best our require-
ments for the speed and accuracy. With values under 25 percents algorithm
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often fails to find optimal path and when higher values than 45 percents are
taken into account, the computation lasts sometimes multiple times longer.
We got the best results with area threshold in interval 30-35 percents.

7.4 The comparation of implemented algorithms

We implemented three algorithms for blending and creating transitions into
Motion Blender. In this section we will discuss and compare their speed and
efficiency.

1. Linear blending

This is the simplest method, which blends individual frames in order,
as they sequentially follow. While using bvh files where the joint angles
(Euler angles) are included and while we are blending motions with the
same skeletal structure, we are not forced to use spherical interpolation
and instead we use a simple linear interpolation of these angles. Having
satisfied the previous conditions, this simplification does not have any
visual impact on the resulting blend.
We have experienced that for motions with similar timing and frame
poses it gives satisfying blends, however it is only a tiny subset. Be-
cause of its simplicity, linear blending has the best time performance,
it lasts mostly one second in average(for the motions of approximately
300 frames).

However we get worse results, when trying to make up transition. As
we do not find corresponding couples of frames, timing is not adjusted
in this method, therefore the resulting transitions are not realistic and
they have many artefacts (i.e. root position is blended incorrectly,
many foot slides appear, etc.).

2. Timewarping with discreet path

Description of the method can be found in the 3rd chapter of this
work. When comparing a time performances it appears to be the
slowest one, but this disadvantage is compensated with the efficiency.
Elapsed time of computations depends on many factors. The more
frames the input motions have, the longer the computation lasts. Also
the shape of the optimal path determines the execution time. Having a
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big slope(depicted in the figure 26), many further adjustments must be
done, and of course, it prolongs the calculations. Another influencing
factor is the area threshold, determining which cells of the table are too
high to be a part of the minimal cost path. Setting up this threshold,
we are able to dramatically speed up the algorithm, although we risk
the possibility of failing to find the timewarping path.

Figure 25: Example of timewarping with discrete path, the pace and minima
and maxima of the left foot are blended according to constant weights(=0.5).

Resulting motions do not suffer from the artefacts as in the linear blend-
ing method. They have correctly adjusted timing, and blending of cor-
responding frames ensures high fidelity look. When creating transition
or simple blending motions, we are bounded by the frame rate of the
input motions, but sometimes it might be usefull to speed up or slow
down the animation. This problem is solved by incorporating the B-
spline curve.

3. Timewarping with B-spline

As written above, a continuous strictly monotonic B-spline curve is
displaced over the discreet points of the minimal-cost path found in
the grid. Now we are able to visualize each point of the curve as the
frame of the resulting motion. Smoothness of the B-spline ensures that
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Figure 26: Path in yellow circles has bigger slope than the rest of path

no artefacts from linear blending should occur. Also we can freely
resample the resulting motion, simple by adjusting the needed param-
eter of the curve. Therefore the outputs of Motion Blender are not
only blended and transition motions, but also the motions generated
at various (arbitrary) frame rates. However, the quality of resulting
motion, while upsampling, is low and the movement becomes discon-
nected. Improvement of this error will be our task in the future.

Time performance is comparable with the second method, elapsed time
depends on the number of frames of the resulting motion. The follow-
ing tests have been performed with these settings : area threshold set
as 35, computing a simple blending with weight of 0.5 (see table 5).
Time performance is computed as follows:

Time performance=100× time timewarping discreet path
time timewarping particular method

(6)
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Figure 27: Example of timewarping with B-spline, the resulting curve (green)
is not smooth, this is why the motion becomes disonnected. However the
pace of motion and the minima and maxima of left foot are blended well
(according to our expactations).

Algorithm Time performance

timewarping with discreet path 100%
timewarping with B-spline (output = 200 frames) 88.2%
timewarping with B-spline (output = 400 frames) 100.7%

Table 5: Comparation of computing times for 2nd and 3rd system (with
various output settings)

8 Conclusion and Future work

Unfortunately, we have not made out a generally effective blending algorithm
(have not been invented yet?). Section with experiments has shown, that we
turn each implemented algorithm to advantage in different situations. Linear
blending serves the best when used with short motions where no timewarp-
ing is needed, then elapsed time of computations is negligible. On the other
hand, we recommend to employ timewarping method, when logically related
events do not occur at the same absolute times. As we want shorter resulting
blend (less than 300 frames) we suggest using B-spline method, in other way
discreet path should be used to get the most satisfying outcome.
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When comparing time performance with the original paper [2], their creation
of timewarp curve lasts 3.43s for two motions of 600 frames, our timewarp-
ing with equivalent input motions lasts approximately 10-times longer (same
results for discreet path and B-Spline). This may be caused by the fact,
that they have used slope limit of 2 (we have used slope limit of 3), slightly
differrent approach, another hardware and style of programming may also be
factors influencing the results.

We have also succesfully implemented generating transitions, however it is up
to the user to specify the length and the placement of the desired transition
and to give properly edited input motions. Results are plausible and may be
used for further motion synthesis.

Figure 28: Possible weight distribution during the creation of transition

In this work we have demonstrated the possibilities of motion blending, sug-
gested own improvements and investigated which methods are proper for
which inputs. We have presented a framework, which can be used for further
synthesis, having such a robust blending capability, we can use it not only
for building transitions, but also motion parametrization, creation of motion
graphs, continuous motion control, and others.

The quality of transitions could be upgraded by incorporating another type
of weight distribution during blending. Our linear distribution and also other
possibility can be seen in the figure 28 (our distribution on the left side).
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9 Glossary

Retargeting
applying motion data captured from one person to a virtual person of a dif-
ferent size

Inverse Kinematics
the process of computing the pose of a human body from a set of constraints

End effector
joint with no child

Point cloud
set of single points

fps
frames per second
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Názov : Syntéza nasńımaných dát pohybu
Autor : Tomáš Sako
Katedra : Katedra aplikovanej informatiky
Dipl. vedúci : RNDr. Stanislav Stanek

Abstrakt: Úvod tejto práce pojednáva o najpouž́ıvaneǰśıch a
najrozš́ıreneǰśıch metódach syntézy nasńımaných dát pohybu. Prezen-
tujeme tu metódu ”časovej krivky” odvodenej od ”registračných
kriviek” od autorov Lucas Kovar a Michael Gleicher, ktorú sme
sami modifikovali. Táto modifikácia by mala urýchlǐt syntézu dát.
Následne ju porovnávame s inými metódami vo vlastnom programe
(Motion Blender). Takto meńıme pôvodný algoritmus ”časovej krivky”
zachovávajúci hodnovernosť ľudského pohybu. Výsledkom práce je
porovnanie efektivity, rýchlosti a spǒlahlivosti implementovaných
algoritmov. V záverečnej časti práce je poṕısaná štruktúra, vlastnosti a
použitělnosť nášho programu a ukazujeme tu výsledky našich experi-
mentov.

Kľúčové slová: nasńımané pohybové dáta, syntéza animácíı,
skeletálne animácie
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